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Among the patterns of motor cortical activity, those that directly drive muscles remain 

unresolved. Lesion studies have led to the hypothesis that motor cortex functions primarily 

to improve movement efficacy by enabling patterns of muscle activity that the rest of the 

motor system cannot achieve1-3. Yet such studies weakly constrain when motor cortical 

output influences muscle activity in the unperturbed state. Analysis of motor cortical activity 

has consistently found, and imputed functional significance upon, signals that correlate with 

limb muscle activity4-6 or kinematics7-9. But a selective role in driving certain muscle activity 

patterns might rely on signals related only to those patterns and not others. Here we 

quantified the direct influence of forelimb motor cortex on muscle activity throughout a 

naturalistic climbing behavior, finding that this influence is selective for, and highly 

dependent upon, muscle activity states. We used multielectrode array recordings to identify 

linear combinations (components) of motor cortical activity patterns that covary with this 

influence. We find that these components differ substantially from those that covary with 

muscle activity or kinematics. Our results reveal a direct motor cortical influence on muscles 

that is selective within a motor behavior and reliant on a previously undescribed neural 

activity subspace. 

One primary barrier to resolving how motor cortex drives movement is a persistent ambiguity 

regarding the components of muscle activity directly influenced by motor cortical output. Lesion 

studies have revealed a circumscribed set of motor behaviors that require motor cortex for their 

execution, like individuated finger movements1,10-12. Yet at least in non-human mammals, broad 

swaths of the motor behavioral repertoire persist without normal motor cortical influence, 

including walking, jumping, climbing, goal-oriented manual tasks, and even highly precise, 

learned limb movement sequences13-18. In some cases, though, especially when dexterity is 

challenged, these movements are slower, less agile, and less effective1,15,19,20. This has led to the 

hypothesis that motor cortex confers an added level of muscle control that improves movement 

efficacy and task learning by activating combinations of muscles in temporal patterns that cannot 

be achieved by other motor system structures2,3,21. However, it remains unclear how this influence 

manifests during movement22-25. The involvement of motor cortex in motor learning18,26,27 and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.18.545509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545509


movement preparation/initiation28-30 complicates lesion interpretation vis-à-vis movement 

execution, as disturbance to processes on which execution depends can impede execution itself. 

Recent results indicate that direct motor cortical influence can be selective for the performance of 

certain tasks31, but it remains unclear whether during such tasks, motor cortical influence is 

responsible for the totality of muscle activation or is selective to particular muscle activity patterns, 

and whether it informs muscle activity pattern, or is merely permissive32. 

This fundamental ambiguity about when muscle activity is influenced by motor cortical output has 

in turn stymied characterization of the output activity components mediating this influence. Studies 

assessing the effect of motor cortical activity on muscles have focused on components of motor 

cortical activity that correlate with or explain the variance of muscle activity4-6, or movement 

parameters like joint angles or reach direction (kinematics)7-9. These correlations and explained 

variance can be substantial, consistent with the functional relevance of the activity components. 

However, if motor cortical output is primarily responsible for select muscle activity patterns, which 

may reflect only a fraction of muscle activity during movement, we might expect that the 

components of motor cortical output that drive muscle activity may only reflect those select 

patterns and not muscle activity in total. Moreover, motor cortical activity that covaries with 

muscle activity or kinematics in total may be a consequence of monitoring or predicting body 

state33, perhaps to subserve aspects of motor control apart from directly driving muscle 

activation34. In line with this, muscle activity can be decoded from motor cortical activity during 

movements where this activity does not directly drive muscles31. Thus, the components of motor 

cortical activity responsible for its influence may differ from those to which functional significance 

has previously been imputed (Fig. 1a)8,35-39. 

We sought to better resolve the components of motor cortical firing that drive muscles and test 

how similar they are to those that covary with muscle activity or movement kinematics. To address 

this in an ethologically relevant context in which a diversity of limb movements is performed, we 

developed a paradigm in which head-fixed mice perform a naturalistic climbing behavior. We 

combined electromyography, optogenetic silencing, and dimensionality reduction to assess the 

influence of motor cortical output across the limb movements mice express during climbing. 

Contrary to classical approaches, rapid optogenetic silencing of motor cortical output enabled us 

to quantify the direct effects of this output on muscle activity. We found that this influence (a) is 

selective for specific muscle activity states during climbing, (b) when present, has a magnitude 

highly dependent upon muscle activity state, and (c) exhibits selectivity and muscle state-

dependence that themselves vary markedly across muscles. We then used multielectrode arrays 

(Neuropixels40) to record motor cortical firing patterns during climbing and identify components 

that covary with influence on muscles. We found a substantial difference between these 

components and those that covary with muscle activity and movement kinematics. Our results 

indicate a selective motor cortical influence on muscles that is mediated by a neural activity 

subspace distinct from those traditionally focused upon. 
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An ethological movement paradigm 

In our naturalistic climbing paradigm, head-fixed mice climb with all four limbs across a series of 

handholds that extend radially from a wheel, thereby rotating the wheel (Fig. 1b,c; Extended Data 

Fig. 1a,b; Supplementary Movie). After each handhold accessible to the right limbs rotates 180° 

past the mouse, a linear actuator embedded within the wheel moves the handhold to a new, 

randomly chosen mediolateral position, while the left handholds remain fixed (Fig. 1d; Extended 

Data Fig. 1c-f). This ensures that the sequence of right handholds the mouse climbs across is 

unpredictable (Fig. 1e), so sensory information must be used in real time to steer right limb 

movement. Thus, mice do not rely solely on a stereotyped movement strategy, performing adaptive 

forelimb movements expected to involve motor cortical influence41. Water-restricted mice climb 

intermittently in bouts throughout hour-long daily sessions, earning water rewards when they stop 

climbing based on the distance of the previous bout. The likelihood of reward and volume 

dispensed is varied adaptively within sessions to encourage longer distance bouts and maintain a 

relatively consistent reward rate across sessions. As mice climb, activity of four muscles in the 

right forelimb is measured with chronically implanted EMG electrodes42,43 (Extended Data Fig. 

1g), and limb orientation is charted using video-based tracking44 (Extended Data Fig. 2). 

Despite the reward scheme, climbing in this paradigm does not show signs of learning or continued 

improvement across sessions. After mice are acclimated to head fixation (2 sessions) and taught 

the pairing between climbing and reward (1-3 sessions), we observe little change in climbing 

performance, including the time spent climbing (Fig. 1f), the velocity of climbing (Fig. 1g), and 

the distance of climbing bouts (Fig. 1h). Moreover, the form of muscle activity changes only 

minimally across sessions. We computed principal angles for the muscle activity matrices (4 

muscles by T timepoints), comparing each of the first 20 daily sessions to the 20th session (Fig. 

1i,j). The first principal angle for this comparison was generally low, averaging less than 2°, and 

there was little indication of gradual change across sessions. Thus, perhaps because climbing is a 

critical element of the mouse’s natural movement repertoire, this paradigm obviates the need for 

extensive training. In fact, some mice exhibit long, continuous bouts of climbing during the first 

session during which they are taught the climbing-reward pairing. This paradigm can facilitate 

motor system interrogation during a kinematically-diverse, nonstereotyped, and ethologically-

relevant motor behavior. Though motor cortical function has been studied extensively in the 

context of learned motor tasks, our paradigm allows us to assay function during a task at which 

mice are naturally good.  
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Figure 1 | Head-fixed climbing paradigm. a, Schematic of different scenarios for the overlap 

between neural activity subspaces discussed herein. b, Bird’s-eye view of wheel apparatus for 

climbing. A shaft encoder measures the wheel’s angular position. Actuators randomize the position 

of each right handhold when they reach a point 180° away from the mouse. A ratchet ensures the 

wheel only rotates in one direction. A slip ring commutes voltage signals to and from the actuators. 

c, A head-fixed mouse climbing in the paradigm. d, Example sequence of right handhold positions 

over time, illustrating randomization. e, Autocorrelation of right handhold positions. f-h, 1st, 2nd, 

and 3rd quartiles (n = 9 mice) for the fraction of time spent climbing (f), median climbing velocity 

(g), and median climbing bout distance (h) across sessions. Gray lines in f-j are for individual 

animals. Session 1 indicates the first session after mice had learned the pairing between climbing 

and reward (1-3 sessions) and reward dispensation switched from experimenter- to computer-

controlled. i,j, 1st, 2nd, and 3rd quartiles for the 1st (i) and 2nd (j) principal angles for EMG time 

series collected during each of the first 20 climbing sessions versus the 20th climbing session.   
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Direct motor cortical influence during climbing 

To assess the direct influence of motor cortical output on muscle activity in this paradigm, and 

how it might vary with muscle activity state, we sporadically and briefly inactivated the left caudal 

forelimb area (CFA, forelimb M1+S1) at random as mice climbed. We used transgenic mice that 

express channelrhodopsin2 in all cortical inhibitory interneurons, applying occasional 25 ms blue 

light pulses that covered the surface of CFA (10 mW/mm2; Fig. 2a). Previous measurements 

indicate that this yields a ~50% activity reduction in deep cortical layers within 7 ms, which rises 

to 90-95% in < 20 ms31,45. Light pulses were always >4 seconds apart to allow recovery of neural 

activity between events; on average, ~100-200 trials were collected during each daily session (11-

37 sessions per animal). Equivalent events without blue light were also notated in recordings to 

serve as control trials. Random trial timing ensured broad coverage of muscle activity states each 

mouse expressed during climbing. Inactivation and control trial averages diverged ~10 ms after 

light onset, which reflects the shortest latency at which CFA influences muscles (Fig. 2a, Extended 

Data Fig. 3). Such direct influence has previously been observed in mice during a trained forelimb 

reaching task but is not seen during treadmill locomotion31. 

We then quantified the direct influence of left CFA on right forelimb muscles in each mouse (n = 

8) across the range of muscle activity states they expressed during climbing. For statistical power 

in assessing inactivation effects, we used nonlinear dimensionality reduction (UMAP46) to cluster 

trials occurring at similar muscle activity states in a readily parsable two dimensional map. To 

represent muscle activity states, muscle activity traces surrounding each trial, together with their 

corresponding first derivatives, were divided into overlapping 50 ms epochs that began every 10 

ms (Fig. 2b). For each epoch, the muscle activity and derivative trace segments were concatenated 

into a single vector. We applied UMAP to map these vectors into two dimensions while preserving 

the proximity of nearby vectors (Fig. 2c). On the resulting maps, points from successive epochs 

form trajectories that reflect the sequence of states during control and inactivation trials. Control 

and inactivation trajectories that are similar before trial/light onset often subsequently diverge (Fig. 

2c). Epochs from both control and inactivation trials were broadly distributed across maps, 

indicating that large clusters of activity states arising from only one trial type do not occur (Fig. 

2d). We did not observe separate map regions clearly corresponding to specific phases of climbing, 

like reaching or pulling, perhaps because much recorded muscle activity related not to the basic 

cyclic motion of the limb, but to adaptive adjustments superimposed upon it. 

To quantify CFA influence on muscles across these muscle activity state maps, we first defined 

grids over them (Fig. 2d).  Separately for each muscle, we then measured the inactivation effect 

locally around each grid point. For each grid point, we first computed the trial-averaged muscle 

activity for each muscle from -10 to +30 ms from trial/light onset, separately for inactivation and 

control trials. For these averages, we weighted the muscle activity from each trial by a Gaussian 

function of the Euclidean distance between the given grid point and the point reflecting the trial 

epoch just prior to when an inactivation effect could be observed (-40 to +10 ms from trial/light 

onset, “weight epoch”; Fig. 2d). The standard deviation of the Gaussian function was chosen so 
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that averages reflect muscle activity states in a local neighborhood around each grid point. For 

each muscle, we quantified inactivation effect size for each grid point using the difference between 

the rate of change in inactivation and control trial averages from 0 to 20 ms after trial/light onset 

(Fig. 2e). This difference is proportional to the distance from the identity line of a point plotting 

the inactivation and control rates of change against one another (Fig. 2f). By plotting these effect 

sizes at each grid point across the map, we produced an “inactivation effect map” for each muscle 

recorded in each individual mouse (Fig. 2g; Extended Data Fig. 4a).  

These inactivation effect maps reveal that CFA’s direct influence on muscles varies during 

climbing. Maps for different muscles in a given mouse show wide variation in the magnitude and 

direction of inactivation effects across grid points (Fig. 2g; Extended Data Fig. 4a). We resampled 

from control trials to compute empirical null distributions for effect sizes at each grid point. 

Distributions of the effect sizes aggregated over grid points and mice, when compared to their 

empirical null counterparts, showed that the elbow flexor and wrist extensor were nearly always 

deactivated when affected, while effects on the elbow extensor were roughly symmetric around 

zero and generally smaller in magnitude (Fig. 2h). Effects on the wrist flexor lie in between, 

showing a bias toward deactivation. We also use empirical null distributions to compute p-values 

for each grid point’s effect size on each map (Fig. 2i; Extended Data Fig. 4a). Histograms of the 

resulting p-values aggregated over grid points and mice were skewed toward 0 to different extents 

across muscles (Fig. 2j), indicating that the fraction of muscle activity states influenced by CFA 

varied across muscles. We estimated from these p-value distributions the fraction of grid points at 

which CFA influenced muscles47, finding that estimates differed widely and significantly across 

muscles (p = 2 x 10-4, Kruskal-Wallis test; Extended Data Fig. 4b). The mean estimated fractions 

were 0.62, 0.22, 0.73, and 0.37 for elbow flexor, elbow extensor, wrist extensor, and wrist flexor 

muscles, respectively. These results indicate that CFA’s direct influence is only present at certain 

muscle activity states, varies in magnitude when present, and this variation across states itself 

differs markedly across muscles. 

Importantly, the relationship between effect size and the level of muscle activity at trial/light onset 

was complicated and highly nonlinear (median Pearson correlation across muscles and mice = 

0.22; Fig. 2k; Extended Data Fig. 4c). This indicates that CFA influence is not proportional to 

muscle activity, so that motor cortical activity components that resemble muscle activity over time 

would not strongly covary with CFA influence. Thus during climbing, direct CFA influence is 

neither pervasive nor absent, but is instead selective and highly state-dependent. This complex 

state dependence also rules out a merely permissive, or noninformative, influence on muscles.  
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Figure 2 | Direct CFA influence across muscle activity states. a, Control (gray, 18,397 trials) 

and inactivation (cyan, n = 9,029 trials) trial averages (mean ± sem) for four muscles across 8 

mice. Vertical cyan bars in a and b indicate the 25 ms epoch of blue light applied to CFA and gray 

dotted lines are 10 ms after light onset. b, Example of muscle activity and its corresponding first 

derivative used for creating muscle activity state maps. c, Example map of muscle activity state 

vectors from one animal. Larger, connected dots show examples of state vectors for sequential 

overlapping epochs from individual trials. d, Grid overlaying a map including only points from 

the epochs used for weighting trials in grid point trial averages. e, Schematic of the calculation of 

inactivation effect at each grid point from the control (black) and inactivation (cyan) trial-averaged 

muscle activity. ΔC and ΔL reflect the slopes of lines connecting the average activity just before to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.18.545509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545509


just after the inactivation effect begins. f, Schematic illustration of the effect size on a plot of ΔL 

versus ΔC. g, Inactivation effect maps for individual muscles (top) and grid point-averaged muscle 

activity from control (gray, mean ± sem) and inactivation (cyan, mean) trials, for three example 

grid points. Panels g,i,k show representative results from one mouse. h, Aggregate effect size 

distributions for all grid points across all 8 mice. Control values in h,k are computed by replacing 

inactivation trials with a separate set of control trials without light. i, Maps of p-values computed 

for inactivation effects for individual muscles. j, Aggregate p-value distributions for all grid points 

across all 8 mice. k, Scatterplots of inactivation effect size versus muscle activity at light onset. 

Each point reflects a different grid point.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.18.545509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545509


CFA activity components align with inactivation effects 

In order to determine how CFA firing patterns covary with CFA influence on muscles, we used 

Neuropixels to measure the firing of CFA neurons in a subset of animals for which inactivation 

effect maps were computed (n = 3; Extended Data Fig. 5a). After completing collection of 

inactivation data for mapping influence in these mice, the next 3-4 daily behavioral sessions were 

devoted to neural recording in CFA with acutely-implanted Neuropixels. Template-based spike 

sorting yielded 366-684 units meeting our selection criteria per animal. Unit waveform centroid 

locations spanned all cortical layers, with the highest density of units found at depths 

corresponding to layer 5 (Extended Data Fig. 5b). Waveform-based grouping yielded 279-495 

wide-waveform, putative pyramidal neurons and 87-189 narrow-waveform, putative inhibitory 

interneurons per animal, in line with previously observed proportions41,45 (Extended Data Fig. 5c). 

To enable alignment with CFA influence, we measured variation in the firing of neurons across 

the muscle activity state maps used for quantifying inactivation effects (Fig. 3a). Segments of 

muscle activity (50 ms) collected as mice climbed during Neuropixel recordings, together with 

their first derivatives, were again assembled into vectors reflecting muscle activity state. These 

state vectors were mapped to two dimensions using the transformation previously computed with 

UMAP from inactivation and control trials for the given animal. This positioned vectors on the 

same maps used for quantifying inactivation effects. For each recorded neuron, average firing rates 

during the 50 ms epochs reflected in muscle activity state vectors were used to compute an average 

firing rate local to each grid point. As above, firing rate segments were weighted in averages by 

each corresponding muscle activity state vector’s distance from the given grid point. Registering 

a neuron’s firing to inactivation effect maps in this manner ensures that inactivation effects are 

matched with the neuron’s expected activity immediately prior to the onset of those effects. The 

resulting maps of neural firing over muscle activity states (neural activity maps) showed a wide 

array of muscle-state dependent firing patterns (Fig. 3b). Statistical testing through permuting trial 

identities revealed that 72-81% of neurons with mean firing rates above 1 Hz had firing rates that 

varied with muscle state in each animal. 

We used these neural activity maps to identify components of CFA firing that align across muscle 

activity states with CFA influence on muscles. We did so by combining singular value 

decomposition (SVD) and canonical correlation analysis (CCA) to align the neural activity maps 

with the inactivation effect maps computed for the same animals48-50. Neural activity maps for all 

wide-waveform neurons with overall mean firing rates above 0.1 Hz from a given mouse were 

converted into a grid points by neurons matrix, which was then replaced with a dimensionally-

reduced, grid points by neural singular vectors version computed via SVD (Fig. 3c). These 

dimensionally-reduced matrices were then aligned through CCA with grid points by muscles 

matrices formed from inactivation effect maps for the four recorded muscles (Fig. 3c-f). The 

resulting canonical variables reflect components of CFA firing patterns that maximally correlate 

with components of inactivation effects but are mutually uncorrelated with one another. For all 

three animals, neural and inactivation effect canonical variables were highly correlated, and the 
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inactivation effect variables captured substantial fractions of inactivation effect variance (for 

canonical variables 1 through 4, mean correlation = 0.99, 0.97, 0.92 and 0.86; mean effect variance 

capture = 0.29, 0.26, 0.18 and 0.11; Fig. 3g). Correlation values were significantly higher than that 

of control values computed after permuting the map locations of trials from the neural recordings 

(for canonical variables 1 through 4, mean control correlation = 0.74, 0.72, 0.69, 0.65; p = 0.001 

in all four cases). Plots of the cumulative variance captured across orthonormalized canonical 

vectors indicated that each inactivation effect variable captured a substantial amount of additional 

inactivation effect variance (Fig. 3h). Repeating CCA using the inactivation effect map of just one 

muscle found a CFA activity component highly correlated with the inactivation effects for the 

given muscle; this held for all muscles in each animal (median correlation = 0.97, range = 0.89 to 

0.99, 12 total muscles in 3 animals). These results were robust to the particular trials used for 

computing inactivation effects (Extended Data Fig. 6a,b) and to the number of neuronal singular 

vectors used (Extended Data Fig. 6c-h). Thus, neural canonical vectors span a neural activity 

subspace where activity aligns closely with inactivation effects (influence subspace). 

We examined the contribution of individual neuronal firing patterns to these influence subspaces. 

We used the weights of each neuron’s firing in the singular vectors, and the weights of these 

singular vectors in the neural canonical vectors, to compute the relative contribution of each 

neuron’s firing to each canonical vector. We then computed the norm of a vector composed of the 

four resulting weights for each neuron. The distributions of these vector norms across neurons 

were somewhat skewed (Fig. 3i), but the largest norm was never more than 5 times the median, 

and the middle half of neurons contributed almost as much aggregate weight as the top quarter of 

neurons (79.8-92.8% as much). Distributions of weights for individual muscles were somewhat 

more skewed, but still feature substantial contributions from a large fraction of neurons (Extended 

Data Fig. 6i). Thus activity components that align with inactivation effects involve substantial 

contributions from many CFA neurons.  
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Figure 3 | A CFA activity subspace that aligns with CFA influence. a, Schematic of the 

calculation of an activity map for each recorded neuron that is registered to inactivation effect 

maps. b, Example neural activity maps from one mouse. Red text is the maximum firing rate. c, 

Schematic of computing the influence subspace. d, Cumulative variance captured versus singular 

vectors ordered by corresponding singular value, for three mice. Each connected set of dots is a 

separate mouse. e,f, Canonical variables for the inactivation effect (e) and neural activity (f) for 

one mouse. g, Correlation coefficient (black) and effect variance captured (red) for canonical 

variables. Each set of connected dots in g,h is from one animal. h, Cumulative variance captured 

by canonical variables after orthogonalizing their corresponding vectors. i, Distributions of the 

norms of vectors comprising the weights for the activity of individual neurons in the four canonical 

vectors (center line, median; box limits, 1st and 3rd quartiles; whiskers, minimum and maximum).  
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Influence subspace differs from muscle activity and limb kinematic equivalents 

We then measured the overlap between the influence subspace and analogous subspaces that align 

to muscle activity and limb kinematics. To align neural and muscle activity, we assembled maps 

of the average activity at each grid point for each muscle, in the same manner as for the neural 

activity maps described above. For each mouse, these muscle maps were converted to a grid points 

by muscles matrix and aligned via CCA with the matrix of dimensionally-reduced neural activity 

(Fig. 4a,b; Extended Data Fig. 7a,b). To align neural activity and limb kinematics, new state maps 

were defined by UMAP not with muscle activity, but with the horizontal and vertical positions of 

sites on the right forelimb tracked as mice climbed during neural recordings. Nearby points on 

these maps reflect 50 ms epochs of limb kinematics that are similar (Extended Data Fig. 7c,d). We 

then assembled maps of the average horizontal and vertical site positions for grid points defined 

across these kinematic state maps (Extended Data Fig. 7e). We similarly assembled neural activity 

maps for each neuron using corresponding segments of their firing rates (Extended Data Fig. 7f). 

These two sets of maps were aligned via SVD and CCA (Fig. 4e,f; Extended Data Fig. 7g). For 

both muscle activity and limb kinematics, substantial fractions of variance were captured by 

canonical variables that were highly correlated with their corresponding neural canonical variables 

(Fig. 4c,d,g,h). 

There is more overlap than would be expected by chance between influence and muscle activity 

subspaces, but the same is not true for their respective overlaps with limb kinematics subspaces. 

On a scale from 0 (no) to 1 (complete) overlap, subspace overlap between influence and muscle 

activity subspaces ranged from 0.343 to 0.497 across the three mice, while the overlap between 

influence and limb kinematics subspaces ranged from 0.017 to 0.025 and the overlap between 

muscle activity and limb kinematics subspaces ranged from 0.014 to 0.044 (Fig. 4i). Both of these 

ranges of overlap with limb kinematics subspaces were on par with those seen between subspaces 

defined at random while preserving the covariance captured by neural canonical variables. 

However, the overlap between influence and muscle activity subspaces was substantially above 

that of randomly-defined subspaces (Fig. 4i). The same relationships between subspaces were 

reflected in their principal angles as well (Fig. 4j-l).  

To further quantify the difference between influence subspace and those that align with muscle 

activity or limb kinematics, we compared the overlap between subspaces with that expected for a 

given subspace type if computed using separate sets of trials. When two subspaces of each type 

are computed using separate random halves of trials, the two subspaces are highly similar. For the 

three mice, the mean fractional subspace overlap for 300 random trial partitions ranged from 0.965 

to 0.995 for influence, 0.997 to 1.00 for muscle activity, and 0.849 to 0.895 for limb kinematics. 

However, when the same comparison using separate trials was done for different subspace types, 

the overlap was much lower. The mean overlap between influence and muscle activity subspaces 

ranged from 0.203 to 0.397 across animals, and the mean overlap between influence and 

kinematics subspaces ranged from 0.016 to 0.059 (Fig. 4m).  
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Figure 4 | Divergence between neural activity subspaces aligned with inactivation effects, 

muscle activity, and limb kinematics. a,b, Canonical variables for muscle activity (a) and neural 

activity (b) for one mouse. c, Correlation coefficient (black) and muscle activity variance captured 

(red) for canonical variables. Each set of connected dots in c,d are from one animal. d, Cumulative 

variance captured by canonical variables after orthogonalizing their corresponding vectors. e,f, 

Canonical variables for limb kinematics (e) and neural activity (f) for the mouse used in a-d. g, 

Correlation coefficient (black) and limb kinematics variance captured (red) for canonical variables. 

Each set of connected dots in g-m are from one animal. h, Cumulative variance captured by 

canonical variables after orthogonalizing their corresponding vectors. i, Overlap of different 

activity subspaces (black circles) compared to 300 estimates of the overlap expected by chance for 

each animal (gray dots). j-l, Principal angles for different activity subspaces (black circles) 

compared to 300 estimates of the principal angles expected by chance for each animal (gray dots). 

m, Overlap for subspaces defined from maps made with separate trials.  
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Discussion 

Our findings reconcile a prominent dichotomy in the literature between the selective apparent 

involvement of motor cortex during most mammalian motor behaviors1,10-20 and the prevalent 

focus on motor cortical firing that correlates with motor outputs like muscle activity or limb 

kinematics en masse4-9. During a naturalistic motor behavior, mouse motor cortex appears to exert 

a selective, state-dependent influence through a neural activity subspace distinct from those to 

which functional significance has previously been imputed8,35-39. Our observations lend significant 

support to two prominent hypotheses: first, that direct motor cortical influence on muscles is 

specific to certain muscle activity patterns2,3,21, and second, that this influence comes from a 

subspace of the overall motor cortical activity space, the “output potent” subspace39. 

Our first key result came from quantifying variation in the direct influence of motor cortical output 

on muscle activity during naturalistic climbing behavior. Until now, it had remained unclear 

whether in behavioral contexts such as this motor cortical output directly influenced muscle 

activity pervasively, selectively, or not all, since large motor cortical lesions do not abolish 

climbing and other basic motor behaviors in nonhuman primates, and the observed degradation of 

movement following lesion could stem from motor cortical involvement in motor learning and 

movement preparation/initiation, rather than movement execution. We found that CFA influence 

during climbing is selective to certain muscle activity states, varies in magnitude and direction 

across states, and exhibits a state dependence that itself varies across muscles. Moreover, this 

influence bears a complex dependence on muscle activity state, indicating that CFA informs 

muscle activity patterns. While previous results indicated that direct motor cortical influence could 

be selective for certain motor behaviors31, our results here reveal a finer granularity of influence, 

one that varies markedly within a particular motor behavior. Our results agree with the long-

standing hypothesis that during much of motor behavior, motor cortical output selectively drives 

specific muscle activity to broaden task capacity2. It remains to be seen whether this influence is 

better viewed as selectively adding muscle activity patterns or steering muscle activity state. 

Our second key result came from identifying a subspace where CFA activity closely covaries with 

its influence on muscles. We silenced motor cortical activity at a broad diversity of activity states, 

driving it towards a state of generally low activity in which a subset of inhibitory interneurons are 

highly active31,45. These activity perturbations are thus diverse in their directions through neural 

activity space. The observation that perturbations induce muscle effects of widely varying 

magnitudes, including essentially no effect at all, is consistent with the idea that only some activity 

space dimensions drive muscle activity39,51. However, the influence subspace we identified here 

from aligning CFA activity with inactivation effects differs from previous definitions of an “output 

potent” subspace, and this influence subspace is distinct from those that align with muscle activity 

or limb kinematics. This indicates that motor commands emanating from motor cortex during a 

dexterous ethological behavior like climbing do not match muscle activity or limb kinematics in 

total, in agreement with a selective and limited motor cortical influence across muscle activity 

states.  
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The divergence between subspaces that align with influence, muscle activity, or limb kinematics 

suggests that the ability to predict muscle activity and limb kinematics from motor cortical activity 

reflects processes other than the direct driving of muscles, like monitoring or predicting body 

state33,34 for computing motor errors. The orthogonality of the kinematics subspace to the other 

two subspaces has important implications for the functional interpretation of kinematics-related 

neural activity. This is a significant revelation given the contemporary prevalence of video-based 

kinematic tracking for measuring nervous system output.  
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All experiments and procedures were performed according to NIH guidelines and approved by the 

Institutional Animal Care and Use Committee of Northwestern University. 

Experimental Animals 

A total of 50 adult male mice were used, including those in early experimental stages to establish 

methodology. Strain details and number of animals in each group are as follows: 44 VGAT-ChR2-

EYFP line 8 mice (B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories stock 

# 014548); and 6 C57BL/6J mice (Jackson Laboratories stock #000664). 

All mice used in experiments were individually housed under a 12-hour light/dark cycle in a 

temperature- and humidity-controlled room with ad libitum access to food and water, except 

during experiments. At the time of the measurements reported, animals were 12-18 weeks old. 

Animals weighed 24–30 g. All animals were being used in scientific experiments for the first time. 

This included no previous exposure to pharmacological substances or altered diets. 

METHOD DETAILS 

Climbing apparatus  

The climbing apparatus (Extended Data Fig. 1) was housed inside a sound attenuating chamber 

(H10-24A, Coulbourn). Experimental control was performed using the Matlab Data Acquisition 

Toolbox, the NI PCI-e-6323 DAQ, and two Arduino Duos. The climbing apparatus itself consisted 

of a 3D-printed cylindrical wheel with alternating handholds positioned 12 degrees apart from 

each other. The right handholds were affixed to linear actuators (L-12-30-50-12-I, Actuonix) while 

the left handholds were statically positioned. A ratchet mechanism was used to ensure 

unidirectional turning of the wheel. One end of the wheel was supported by a shaft angular encoder 

(A2-A-B-D-M-D, U.S. Digital). Angular position signals were sent to the Arduinos to track the 

location of each handhold. When each right handhold reached a position 180° away from the 

mouse, the linear actuator moved the handhold to a new, randomly chosen mediolateral position. 

The other end of the wheel was supported by a slip ring (SR20M-LT, Michigan Scientific) that 

carried voltage signals to and from the actuators embedded in the wheel. Water rewards were 

dispensed with a solenoid valve (161T012, NResearch) attached to a lick tube (01-290-12, Fisher), 

and this dispensation was controlled by Matlab through the NI PCI-e-6323 DAQ. A speaker was 

used to play a 5 kHz tone for 200 ms whenever rewards were dispensed. 

Training  

Under anesthesia induced with isoflurane (1–3%), mice were outfitted with titanium or plastic 

head plates affixed to the skull using dental cement (Metabond, Parkell). Headplates had an open 

center that enabled subsequent access to the skull, which was covered with dental cement. During 

headplate implantation, the position of bregma relative to marks on either side of the headplate 

was measured to facilitate the positioning of craniotomies during later surgeries. After recovery 

from headplate implantation surgery, mice were placed on a water schedule in which they received 
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1 ml of water per day. 

At least four days after the start of the water schedule, mice were acclimated to handling by the 

experimenter following established procedures52. After acclimation to handling, mice were 

acclimated to head-fixation over two daily sessions during which they were placed in a 3D printed 

hutch positioned directly in front of the climbing wheel apparatus and provided water rewards (3 

μl per reward) at regular intervals.  

Following acclimation, mice underwent daily hour-long training sessions on the wheel apparatus. 

Training involved an initial stage (1-3 sessions) aimed at training mice to grab for and pull the 

handholds in order to rotate the wheel downward and receive water rewards. Mice were head-fixed 

in an upright position facing the front of the wheel so that all four limbs could easily grab onto the 

handholds, and the right handholds remained fixed. Rewards were triggered by an experimenter’s 

key press whenever a mouse performed any slight rotation of the wheel downward towards his 

body, and longer or faster bouts were rewarded with additional rewards. Over the course of these 

sessions, the mice generally learned to associate rotating the wheel with a water reward and began 

iteratively rotating the wheel.  

During the next stage of training (4-10 sessions, median 5), right handholds were kept fixed and 

mice were encouraged to rotate the wheel for increasingly longer bouts. Here, rewards were 

dispensed for continuous climbing bouts exceeding a threshold distance, after the bout ended.  The 

first ten times during a training session that the threshold distance was met, mice automatically 

received a water reward. Subsequently, the total distance traveled was compared to those from the 

previous 10 bouts. If the distance was above the 25th percentile value for the previous 10 bouts, 

the mouse received one water reward. If it was above the 60th percentile value, the mouse received 

two water rewards. And if it was above the 90th percentile value, the mouse received four water 

rewards. Otherwise, the mouse received no water reward. The threshold distance was adaptively 

adjusted to maintain the reward rate such that the mouse received approximately 1 ml of water 

over each training session. As a result, if the recent reward rate was too low, the threshold distance 

was lowered, and if the recent reward rate was too high, the threshold distance was raised. During 

all subsequent training sessions, the right handhold positions were randomly repositioned along 

the horizontal axis after rotating past the mouse, though the same reward scheme was used.  

Electromyographic recording  

Electromyographic (EMG) electrode sets were fabricated for forelimb muscle recording using 

established procedures31,42,43. Briefly, each set consisted of four pairs of electrodes. Each pair was 

comprised of two 0.001″ braided steel wires (793200, A-M Systems) knotted together. On one 

wire of each pair, insulation was removed from 1 to 1.5 mm away from the knot; on the other, 

insulation was removed from 2 to 2.5 mm away from the knot. The ends of the wires on the 

opposite side of the knot were soldered to an 8-pin miniature connector (11P3828, Newark). 

Different lengths of wire were left between the knot and the connector depending on the muscle a 

given pair of electrodes would be implanted within: 3.5 cm for biceps and triceps, 4.5 cm for 
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extensor carpi radialis and palmaris longus. The ends of wires with bared regions had their tips 

stripped of insulation then were twisted together and crimped inside of a 27-gauge needle that 

facilitated insertion into muscle. 

Mice were implanted with EMG electrodes during the surgery in which headplates were attached. 

The neck and right forelimb of the mouse were shaved, and incisions were made above the muscle 

to be implanted. Electrode pairs were led under the skin from the incision on the scalp to the 

incision at the site of implantation. Using the needle, electrodes were inserted into muscle, and the 

distal portion of the electrodes was knotted. The needle and excess wire were then cut away. 

Incisions were sutured and the connector was affixed with dental cement to the posterior edge of 

the headplate. 

EMG recordings were amplified and digitized using a 16-channel bipolar amplifying headstage 

(C3313, Intan Technologies). Data was acquired at 4 kHz using the RHD2000 USB interface board 

(Intan Technologies). 

Optogenetic inactivation  

After a VGAT-ChR2-EYFP mouse completed a few climbing sessions with randomly positioned 

handholds, dental cement above the skull was removed and a 2 mm diameter craniotomy was made 

above the left caudal forelimb area centered at 1.5 mm lateral and 0.25 mm rostral of bregma. A 

thin layer of Kwik-Sil (World Precision Instruments) was applied over the dura, and a 3 mm 

diameter #1 thickness cover glass (Warner Instruments) was placed on the Kwik-Sil before it 

cured. The gap between the skull and the cover glass was then sealed with dental cement around 

the circumference of the glass. A custom stainless steel ferrule guide (Ziggy’s Tubes and Wires) 

was then cemented to the headplate a certain distance above the surface of the brain. This distance 

was set to ensure that the cone of light emanating from a 400 μm core, 0.50 NA optical patch cable 

terminating in a 2.5 mm ceramic ferrule (M128L01, Thorlabs) would project a spot of light 2 mm 

in diameter onto the surface of the brain (Fig. 2a). The ferrule guide enabled quick and reliable 

positioning of the ferrule above the brain surface so that a large expanse of cortex could be 

illuminated. In previous experiments using this method for inactivation, control experiments in 

wildtype mice showed no discernible muscle activity perturbation in response to light31. Moreover, 

the short latency at which we measure effects here would preclude visually-driven responses. 

To attenuate firing throughout motor cortical layers, we used a 450 nm laser (MDL-III-450, Opto 

Engine) to sporadically apply a 25 ms light pulse at an intensity of 10 mW/mm2 to the brain 

surface. During each session that involved this inactivation, trials were initiated after the current 

bout distance exceeded a random threshold between 0° and 20°, provided the mouse was still 

actively climbing. This ensured that trials were broadly distributed across the muscle activity states 

that occur during climbing. Light pulses were applied during a random third of trials, while the 

remaining trials served as controls (no light). This ratio of control trials to inactivation trials 

afforded equivalent statistical power in comparing light effects (inactivation vs. control) to effects 

expected by chance (control vs. control). Inactivation trials were never triggered less than 5 
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seconds apart to allow ample time for recovery. Counting both inactivation and control, a total of 

2292-5115 trials (median = 2715) were collected in each mouse, spanning 11-37 (median = 18.5) 

climbing sessions.  

Neural recording  

For some mice, optogenetic inactivation sessions were followed by 3-4 daily neural recording 

sessions that typically lasted an hour each. One day prior to the first neural recording session, the 

cover glass and Kwik-Sil were removed, a small durotomy was made in the craniotomy center, 

and a Pt/Ir reference wire was implanted to a depth of 1.5 mm in left posterior parietal cortex. 

Opaque silicone elastomer (Kwik-Cast, World Precision Instruments) was used to cover the 

craniotomy after surgery and between recording sessions. At the time of recording, the exposed 

brain surface was covered with agarose and silicone oil or liquid paraffin oil. A Neuropixel (IMEC) 

was subsequently inserted to a depth of 1.5 mm into the brain (Extended Data Fig. 5a) at a rate of 

3-5 μm/s using a motorized micromanipulator (MP-225A, Sutter Instrument). Electrode voltages 

were acquired at 30 kHz and bandpass filtered at 0.3 to 10 kHz using SpikeGLX (Bill Karsh, 

https://github.com/billkarsh/SpikeGLX), and then sorted with Kilosort 2.054 

(https://github.com/MouseLand/Kilosort2). 

Video recording and analysis 

A high-speed, high-resolution monochrome camera (Blackfly S USB 3.0, 1.6 MP, 226 FPS, Sony 

IMX273 Mono; Teledyne FLIR, Wilsonville, OR) with a 12 mm fixed focal length lens (C-Mount, 

Edmund Optics) was positioned to the right of the head-fixed mouse during inactivation and neural 

recording sessions, and videos were acquired under a near-infrared light source at 100 frames per 

second with a resolution of 400 by 400 pixels. During optogenetic inactivation sessions, the camera 

was triggered to start recording using StreamPix software (NorPix, Inc; Montreal, Quebec, 

Canada) 20 ms before each inactivation or control trial. Each recording lasted 500 ms beyond 

trial/light onset. Annotation of behavior was accomplished using DeepLabCut44. To enable better 

markerless tracking, the right forelimbs of recorded mice were shaved and tattooed (Black tattoo 

paste, Ketchum Mfg., Lake Luzerne, New York) at several sites along the right arm. All videos 

were also adjusted with ffmpeg (ffmpeg.org) to improve brightness and contrast. In DeepLabCut, 

we provided manually labeled locations of the eight forelimb sites on ~4000 randomly sampled 

video frames across mice and sessions for training: shoulder, two sites between the shoulder and 

elbow, elbow, two sites between the elbow and wrist, wrist, and last digit (Extended Data Fig. 2a).  

DeepLabCut’s ResNet-50 neural network with an Adam optimizer was trained on the annotated 

images for 1,030,000 iterations. The training set comprised 80% of the labeled frames.  

All DeepLabCut-tracked forelimb site trajectories were then exported to Matlab for further post-

processing to remove outliers (Extended Data Fig. 2b-c). First, sites in each video time series that 

were assigned a likelihood lower than 0.75 by DeepLabCut (i.e., its confidence that a site was 

correctly labeled) were replaced with an interpolated value using the median of the ten previous 

and ten following values (Matlab function fillmissing). Outlier sites in the time series were also 

identified using the median absolute deviation (MAD), and these were replaced with an 
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interpolated value using a moving median of window length 10. Shoulder coordinates were 

constrained to lie within 1.5 scaled MAD from their median, digit coordinates to be within 3 MAD 

from their median, and all other joints to be within 2 MAD from their respective medians. Lastly, 

limits were imposed on the pairwise distances and angles between neighboring joints (the 

shoulder-elbow, the elbow-wrist, and the wrist-digit tip) such that the angle between shoulder-

elbow and elbow-wrist could not extend 180 degrees, and the distances between each of these 

joints were within 2 MAD of their medians (e.g., the length of a line connecting the shoulder to 

the elbow should stay relatively constant throughout the videos recorded from a single session).  

EMG preprocessing 

For both optogenetic inactivation and Neuropixel recording sessions, EMG measurements were 

high-pass filtered at 250 Hz, rectified, and convolved with a Gaussian kernel having a 10 ms 

standard deviation but amplitudes for times < 0 – its “backwards-in-time” side – set uniformly to 

zero. This latter feature ensured causal filtering to enable precise assessment of perturbation 

latencies. EMG traces were then z-scored across time and downsampled to 1 kHz.  

Muscle activity state maps 

To obtain 2D muscle activity state maps on which nearby states are highly similar, UMAP was 

applied to segments extracted from EMG time series and their corresponding first derivatives. For 

each control or inactivation trial, we extracted 13 overlapping 50 ms segments centered every 10 

ms from -55 ms to 75 ms from trial/light onset. For each segment, we averaged the EMG traces 

for each muscle over 5 ms bins and concatenated the EMG segments for the four muscles and their 

corresponding first derivatives, yielding one 80 by 1 vector. In these vectors, the first 40 values 

reflect the EMG signals from four muscles, and the last 40 values reflect their first derivatives 

(Fig. 2b). UMAP (Matlab function run_umap, from the Matlab File Exchange, n_neighbors = 30, 

n_components = 2, min_dist = 0.3, metric = Euclidean) was applied to all vectors, including those 

from both inactivation and control trials, to get the muscle activity state maps (Figs. 2c-d). Using 

two dimensions here simplified subsequent quantification of inactivation effects across muscle 

activity states. Using overlapping segments ensured that segments from individual trials formed 

continuous trajectories across the resulting maps (Fig. 2c).  

Muscle inactivation effects 

To quantify the influence of CFA inactivation on muscles across the muscle activity state map, we 

first excluded outlier segments. A segment was considered an outlier if its median/mean distance 

from other segments on the map was more than 3 times the standard deviation of all the pairwise 

distances between all pairs of segments. We then defined uniformly spaced grid points across each 

map and proceeded to quantify the effect of inactivation at each grid point. Since the number of 

grid points of a fixed spacing across a map would depend on the scale of the map, which could 

vary between maps, we rescaled the coordinates of each map 𝑟𝑑 to  𝑟𝑑𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑟𝑑−𝑚𝑒𝑎𝑛(𝑟𝑑) 

𝑠𝑡𝑑(𝑟𝑑)
∗

10 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑎 ∗ 2, with 𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑎 = 5. 𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑎 controls the standard deviation of a 

Gaussian function for defining the weights used to weight trials in computing the inactivation 
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effect size at each grid point. For each grid point, we calculated the L2 distance between each 

segment on the map and the grid point, and then took the sum of a Gaussian function of each of 

these distances to obtain ∑ 𝑊𝑔,𝑖𝑖 , where 𝑊𝑔,𝑖 = 𝑒𝑥𝑝 (−
𝐿2(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠𝑔−𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠𝑖)

2

2∗𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑎2 ) , 𝑖  is the 

segment index, and 𝑔 is the grid point index. A grid point was designated as “valid” if  ∑ 𝑊𝑔,𝑖𝑖  > 

10; grid points not designated as valid were ignored in subsequent calculations as they had few 

segments nearby. 

Next, we calculated the trial averaged EMG for each muscle and for each grid point separately for 

the inactivation and control trials. For each muscle, we extracted a segment of the EMG time series 

associated with each trial, from -10 ms to 30 ms relative to trial/light onset. We then took a 

weighted average of these segments around each grid point, where each was weighted by 𝑊𝑔,𝑖 , 

with i set to the index of the embedded segment from the given trial that spanned from -40 to 10 

ms relative to pulse onset. This results in control and inactivation trial averages for each muscle 

and for each grid point where each trial is effectively weighted by the distance from the grid point 

to its muscle activity state just prior to any inactivation effect. Finally, we quantified the size of 

the CFA inactivation effect at each valid grid point by comparing the rates of change (slopes) in 

inactivation and control trial averages across a 20 ms window spanning from 0 ms to 20 ms from 

pulse onset (Fig 2e). Quantifying the inactivation effect by taking the ratio or difference between 

the control and inactivation slopes returned qualitatively similar results. We used the difference 

because it was more easily interpretable (Fig. 2e,f). 

Testing significance of inactivation effects 

To determine which muscle activity states were significantly influenced by CFA inactivation, we 

performed a two-tailed nonparametric permutation test at each grid point by computing the 

probability of obtaining the observed inactivation effect size by chance. For each animal and each 

grid point, 300 permutations were performed by first randomly splitting control trials into two 

groups, each with a number of trials equal to the number of inactivation trials. The number of trials 

in both the control or inactivation trials groups was such that if 𝑁𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛𝑡𝑟𝑜𝑙/2 >

𝑁𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 , we would set 𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑁𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ; otherwise, 𝑁𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  = 

𝑁𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛𝑡𝑟𝑜𝑙/2. Since our experiments were designed to collect twice as many control trials as 

inactivation trials, control trials could be sampled without replacement during the splitting process. 

For each grid point and for each permutation, we calculated the inactivation effect size using the 

control trial average for one randomly selected group of control trials and the inactivation trial 

average, both computed as above. For each permutation, and at each grid point, we also calculated 

the effect size expected by chance (null) using trial averages for the two control trial groups (Fig. 

2e-i; Extended Data Fig. 4). Then, at each valid grid point, we randomly picked one inactivation 

effect size from the 300 permutations and compared that with all 300 null effect sizes. To calculate 

the p-value, we compared the 300 null effects with the randomly chosen inactivation effect, 

calculated the fractions of the null effects where the null effects were smaller than or greater than 

the inactivation effect, and multiplied the smaller fraction by 2 as the p-value (Fig. 2j). To correct 
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for multiple comparisons, p-values for each valid grid point were subject to the Benjamini-

Hochberg method to control the false discovery rate (Matlab function fdr_bh; q<0.05 as the 

criteria). The effect size at each grid point was considered to be statistically significant if the FDR-

corrected p-value was less than 0.05.  

Neural activity maps 

To compare firing in CFA to inactivation effects, we generated maps of the average firing rate 

across muscle activity states (grid points) for each recorded neuron. Since Neuropixel recordings 

and optogenetic inactivations were carried out in separate sessions, the first step for revealing the 

association was to align muscle activity states obtained from the neural recording sessions and the 

optogenetic inactivation sessions by embedding them on the same 2D map. Thus we extracted 

10,000 50 ms segments of the EMG time series during climbing bouts from the Neuropixel 

recording sessions. First, peaks of the summed EMG traces across muscles were detected (using 

the Matlab function findpeaks, where a peak is identified if a sample in the time series surpasses a 

threshold of the mean + ½*std). Second, two time points were randomly selected around each 

peak, with two mean distances of ±50 ms respectively, as “onset points”. Next, any onset point 

was eliminated if its distances to its two neighbors were smaller than 50 ms. This step ensured that 

the onset points were sufficiently spaced apart from each other. For each remaining onset point, 

the EMG segment spanning from -45 ms to +5 ms relative to the onset point was selected. Each 

recording session typically yielded upwards of 30,000 segments. Of these, 10,000 were randomly 

selected to limit compute time for subsequent calculations. 

We embedded the 10,000 segments from each neural recording session onto the muscle activity 

state maps defined using the UMAP template obtained from the inactivation sessions (Fig. 3a, 

middle; see above). We then extracted the corresponding segments of neuronal firing rate time 

series corresponding to these EMG segments. For each neuron and at each valid grid point, the 

firing rate segments were averaged with the weights defined by the Gaussian function of their 

distance on the map to the grid point with 𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑎 = 5. The resulting trial-averaged firing 

rates were then averaged across time, yielding a single scalar firing rate value for each neuron at 

each grid point (Fig. 3a, right, and b).  

For analysis described below, only putative pyramidal neurons were included here. To select for 

these putative pyramidal neurons, we pooled the spike widths of all neurons and obtained a 

bimodal distribution, which separated putative pyramidal neurons and interneurons. Neurons with 

narrower spike widths were considered to be interneurons and were excluded from further analyses 

(Extended Data Fig. 5b). 

To estimate the number of neural activity maps that showed significant variation across muscle 

activity states, we generated an empirical null distribution for the degree of variation across neural 

activity maps separately for each neuron. To do so, we reassigned each EMG segment from neural 

recording sessions to the location of a different, randomly selected segment on the map, doing so 

500 times to yield 500 permuted maps. For each one, we recomputed the neural activity map as 
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described above. The skewness of the original neural activity map and the 500 permuted neural 

activity maps were calculated (Matlab function kurtosis) as 𝑘 =
𝐸(𝑥−𝜇)4

𝜎4 , where 𝑥 is the set of map 

values, 𝜇 is the mean of 𝑥, 𝜎 is the standard deviation of 𝑥, and 𝐸(⋅) represents the expected value. 

Significance was assessed using a p-value, defined as  
𝑁𝑘𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒>𝑘𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙

𝑁𝑘𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒

. With p-values 

calculated, we calculated the fraction of false null hypotheses (Matlab function mafdr) and used 

this as the fraction of cells with behaviorally-dependent firing.  

Neural activity subspace for inactivation effects 

Separately for each animal (n = 3 mice), neural activity subspaces were identified using singular 

vector canonical correlation analysis (SVCCA50) with the averaged neural firing rates and the 

muscle inactivation effects across a time window (0 ms to 20 ms) for all the valid grid points. A 

singular value decomposition (SVD)-based approach was taken here because the number of 

recorded neurons was much larger than the number of recorded muscles. Pyramidal neurons with 

mean firing rates lower than 0.1 Hz over the 10,000 embedded segments were excluded. This firing 

rate threshold was selected to lie within a range where the number of singular vectors required to 

capture 95% variances was relatively stable. Two matrices were generated for alignment with 

SVCCA. One matrix had a column for each neuron generated by vertically concatenating the 

successive columns of that neuron’s neural activity map. The resulting matrix had dimensions of  

𝑁𝑔𝑟𝑖𝑑  by 𝑁𝑛𝑒𝑢𝑟𝑜𝑛  , where 𝑁𝑛𝑒𝑢𝑟𝑜𝑛  is the number of neurons recorded in given mouse across 

recording sessions (putative pyramidal, mean firing rate over 0.1 Hz) and 𝑁𝑔𝑟𝑖𝑑 is the number of 

valid grid points. The second matrix was made in similar fashion by vertically concatenating the 

successive columns of the inactivation effect map for each muscle. This matrix had dimensions of 

𝑁𝑔𝑟𝑖𝑑  by 4 since there were 4 muscles recorded. 

SVCCA was conducted in two steps (Fig. 3c-d). Neural activity values were first soft normalized53 

using a soft normalization constant of 5 Hz. SVD was performed using numpy.linalg.svd in Python 

to decompose the neural activity into left singular vectors, a diagonal matrix containing singular 

values, and right singular vectors. Then a truncated diagonal matrix with the top 20 values was 

multiplied with the corresponding top 20 right singular vectors, resulting in a reduced, 20-

dimenional matrix of neural activities. CCA was applied to this matrix and the 𝑁𝑔𝑟𝑖𝑑 by 4 matrix 

of inactivation effects. Twenty dimensions were retained here because the amount of variance 

captured and CCA alignment quality (canonical variable correlation) saturated at around 20 

dimensions. This process was also repeated with individual columns of the matrix of inactivation 

effect sizes in place of the full matrix to show that there were CFA activity components highly 

correlated with the inactivation effects for each individual muscle. 

To visualize the goodness of fit, neural canonical vectors were projected back onto the embedding 

map. To compute additional variance capture by sequential canonical vectors, canonical vectors 

were orthogonalized with the Gram-Schmidt process. In addition, we randomly shuffled the neural 

firing rate segments relative to the EMG segments on the maps to generate shuffled neural activity 
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maps, and performed SVCCA again as a negative control. The highest correlations between these 

canonical neural and effect vectors for all animals were less than 0.75. To further verify the 

effectiveness of SVCCA, separately for each mouse we split the inactivation and control trials 

from inactivation experiments randomly into two groups, calculated the separate inactivation 

effect maps for each group, used SVCCA to find neural activity subspaces where CFA activity 

aligns with each of them, and calculated the principal angles between the two resulting neural 

activity subspaces. This procedure was repeated 300 times (Extended Data Fig. 3c). 

Using the CCA results obtained with individual columns of the matrix of inactivation effect sizes, 

we computed the effective weight of each neuron’s activity in each canonical variable by matrix 

multiplying the neuron to singular vector coefficients and the singular vector to canonical vector 

coefficients. The four individual muscle effect size vectors yielded four sets of effective weights 

for each neuron (Extended Data Fig. 5e, h).  

Overlap between subspaces 

To find a neural activity subspace that aligned with muscle activity itself, we again performed 

SVCCA using the 𝑁𝑔𝑟𝑖𝑑  by 𝑁𝑛𝑒𝑢𝑟𝑜𝑛  matrix of mean firing rates. In place of the matrix of 

inactivation effect sizes, however, an 𝑁𝑔𝑟𝑖𝑑 by 4 matrix was used where each entry reflected the 

average muscle activity at each grid point for one of the four muscles, computed in the same way 

as described above for the neural activity maps. Similar methods were used to find a neural activity 

subspace that aligned with limb kinematics. Here instead of four dimensions, we began with 16 – 

horizontal and vertical coordinates for the eight positions tracked along the right forelimb. Since 

the 16 kinematic variables were highly correlated, SVD was also used on this matrix to reduce its 

dimensionality to 7 before performing CCA (Fig. 4e-h). 

To compute principal angles between neural activity subspaces, we orthonormalized each 

subspace, built a matrix of inner products of the basis vectors from the two subspaces, performed 

SVD on this matrix, and calculated the inverse cosine of the singular values in degrees54. We also 

measured the degree of overlap between two neural activity subspaces using the metric 𝑂𝐿 given 

by 𝑂𝐿 =
∑ 𝑣𝑎𝑟(𝑀𝑟𝑒𝑝𝑟𝑜𝑗𝑠2

𝑖 )𝑅
𝑖=1

∑ 𝑣𝑎𝑟(𝑀𝑝𝑟𝑜𝑗
𝑖 )𝑅

𝑖=1

, where 𝑀 is the original data matrix, 𝑀𝑖 is the 𝑖𝑡ℎ row of 𝑀, 𝑅 is the 

number of rows in 𝑀, 𝐶𝑠1 and 𝐶𝑠2 are matrices comprising orthonormal coefficient vectors that 

define the two subspaces, 𝑀𝑝𝑟𝑜𝑗 = 𝐶𝑠1 ∗ 𝑀 (i.e., the projection onto the first subspace), 𝑀𝑟𝑒𝑝𝑟𝑜𝑗 =

𝐶𝑠1
𝑇 ∗ 𝑀𝑝𝑟𝑜𝑗  (i.e., the pseudo-full rank matrix projected back from the first subspace), and 

𝑀𝑟𝑒𝑝𝑟𝑜𝑗𝑠2
= 𝐶𝑠2 ∗ 𝑀𝑟𝑒𝑝𝑟𝑜𝑗  (i.e., the projection of 𝑀𝑟𝑒𝑝𝑟𝑜𝑗  onto the second subspace).  

 

To compute the overlap of randomly chosen neural activity subspaces that preserved the 

covariance captured by neural canonical variables, we recomputed the overlap 100 times after 

permuting the order of coefficients in the vector 𝐶𝑠2 to get 𝐶𝑠2, and only using 𝐶𝑠2 for which the 

total variance of 𝐶𝑠2 ∗ 𝑀 was between 0.8 - 1.2 times the total variance of 𝐶𝑠2 ∗ 𝑀. This ensured 
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that the variance captured by these sets of permuted vectors was similar to that of the original 

subspace. We also calculated subspace overlap for subspaces that were each computed using just 

one half of the total segments from the neural recording for 300 random parcellations of the 

segments.  
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Extended Data Figure 1 | Head-fixed climbing paradigm. a, 3D illustration of the climbing 

apparatus, including the lick tube manipulator with lick tube, mounts for head fixation, and 

cameras. b, Side view photo of a head-fixed mouse during a climbing session. c, 3D exploded 

illustration of the wheel with the separate components visible, showing the slip ring, actuators, and 

3D printed parts. d, Same as c, but without actuators and handholds. e, The two types of 3D printed 

handholds. Actuated handholds slide onto actuators. Static handholds attach to the wheel body 

between actuators. f, Flow chart illustrating data acquisition and experimental control. Blue arrows 

indicate command output signals. Black arrows indicate measured signals. g, Example time series 

during climbing: solenoid command for dispensing reward, wheel angle from optical encoder, and 

four channels of EMG.   
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Extended Data Figure 2 | Video processing to extract forelimb kinematics. a, DeepLabCut-

labeled video image, showing the eight sites along the right forelimb that were tracked (ES1,2: 1st 

and 2nd sites between elbow and shoulder joints, WE1,2: 1st and 2nd sites between wrist and elbow 

joints). b, Example time series for the finger site from post-hoc processing of DeepLabCut labels 

to correct outliers. Raw is the time series output by DeepLabCut. c, Scatter plot of X and Y 

coordinates of the finger site tracked in b, showing fewer outliers after correction. d, Example X 

and Y coordinate traces for site positions after post-hoc processing, with colors corresponding to 

the labels shown in a.  
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Extended Data Figure 3 | Effect of CFA inactivation on muscle activity. a, Mean ± sem muscle 

activity for control (gray) and inactivation (cyan) trials for the recorded forelimb muscles in 3 

individual mice. Vertical cyan bars indicate the 25 ms epoch of blue light applied to CFA. Gray 

dotted lines are 10 ms after light onset. b, Absolute difference between inactivation and control 

trial averages summed across all four muscles. Light gray lines are individual animals, and the 

solid black line is the mean across animals. For baseline subtraction, control trials were resampled 

to estimate the baseline difference expected by chance. c, Absolute difference between inactivation 

and control trials at 25, 50, and 100 ms after trial/light onset for individual animals (black circles) 

and the mean across animals (red bars).   
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Extended Data Figure 4 | CFA inactivation effects across muscle activity state space. a, 

Inactivation effect maps and corresponding p-value maps for each of the four muscles in three 

different animals. b, Estimated fraction of rejected null hypotheses from testing effect significance 

at each grid point, for each muscle. Circles are individual animals, and red bars are the means 

across animals. c, Scatterplots of inactivation effect size versus muscle activity at light onset, for 

four muscles in three different animals. Each point reflects a different grid point.   
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Extended Data Figure 5 | Recording neural activity in CFA. a, Schematic coronal section 

showing placement of the Neuropixel in CFA. The Neuropixel was inserted at an angle of 30° with 

respect to the midline. b, Histogram showing the depth below pia of recorded neurons, as assigned 

by Kilosort. c, Histogram of waveform widths for recorded neurons, showing the bimodal 

distribution of narrow and wide waveforms. Dotted line shows the threshold above which neurons 

were considered wide waveform.  
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Extended Data Figure 6 | CFA neural activity subspaces that align with CFA influence. a, 

Canonical variables for the inactivation effect maps resulting from CCA with neural activity maps, 

using effect maps computed with separate halves of trials. b, Mean ± standard deviation for 

principal angles between subspaces spanned by the neural canonical vectors from CCA that used 

effect maps computed with separate, randomly-chosen halves of trials, over 300 iterations. c-e 

show results when SVD is used to reduce neural activity dimensionality to 10. c, Correlation 

coefficient (black) and effect variance captured (red) for canonical variables. Each set of connected 

dots in c,d is from one animal. d, Cumulative variance captured by canonical variables after 
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orthogonalizing their corresponding vectors. e, Distributions of the norms of vectors comprising 

the weights for the activity of individual neurons in the four canonical vectors (center line, median; 

box limits, 1st and 3rd quartiles; whiskers, minimum and maximum). f-h, Same as c-e, but when 

SVD is used to reduce neural activity dimensionality to 30. i, Distributions of weights for the 

activity of individual neurons in canonical vectors defined by CCA using the inactivation effect 

maps of individual muscles (box plot elements as defined in e).  
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Extended Data Figure 7 | Extracting neural activity subspaces aligned with muscle activity 

and limb kinematics. a, Grid point-averaged muscle activity maps for an example animal. b, Grid 

point-averaged muscle activity maps are used to create a grid points by muscles matrix that, 

together with a grid points by 20 neural singular vectors matrix, serve as inputs to CCA. CCA then 

yields the canonical variables illustrated in Figure 4a,b. c, Time series of limb kinematics data and 

the corresponding first derivatives from CFA inactivation sessions are windowed into overlapping 

segments that are used to create a 2D embedding via UMAP. d, Example map of limb kinematics 

state vectors for an example animal, along with the trial-averaged positions of the forelimb sites at 

selected grid points within the map (red circles). e, Grid point-averaged position maps for the eight 
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tracked sites along the right forelimb for an example animal. f, Site positions tracked during neural 

recording sessions are embedded into the 2D limb kinematics state map, and the neural activity 

corresponding to the embedded segments is used to calculate grid point-averaged neural activity 

maps. g, The maps in e can be collapsed into a grid points by position variables matrix which is 

then dimensionally reduced to a grid points by 7 position singular vectors matrix using SVD. This 

matrix, together with the grid points by neural singular vectors matrix obtained from the neural 

activity maps, serve as input to CCA, which then identifies the canonical variables shown in Figure 

4e,f.  
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Supplementary Movie.mp4
 

Supplementary Movie | Head-fixed climbing. An example of a mouse climbing in our paradigm. 

The bird’s-eye view towards the end makes apparent the stagger of the handholds on the mouse’s 

right; this stagger itself is ever changing and thus unpredictable.  
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