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 29 
ABSTRACT 30 
A key feature of the fetal period is the rapid emergence of organised patterns of 31 
spontaneous brain activity. However, characterising this process in utero using functional 32 
MRI is inherently challenging and requires analytical methods which can capture the 33 
constituent developmental transformations. Here, we introduce a novel analytical 34 
framework, termed “maturational networks” (matnets), that achieves this by modelling 35 
functional networks as an emerging property of the developing brain. Compared to standard 36 
network analysis methods that assume consistent patterns of connectivity across 37 
development, our method incorporates age-related changes in connectivity directly into 38 
network estimation. We test its performance in a large neonatal sample, finding that the 39 
matnets approach characterises adult-like features of functional network architecture with a 40 
greater specificity than  a standard group-ICA approach; for example, our approach is able to 41 
identify a nearly complete default mode network. In the in-utero brain,  matnets enables us 42 
to reveal the richness of emerging functional connections and the hierarchy of their 43 
maturational relationships with remarkable anatomical specificity. We show that the 44 
associative areas play a central role within prenatal functional architecture, therefore 45 
indicating that functional connections of high-level associative areas start emerging prior to 46 
exposure to the extra-utero environment. 47 
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INTRODUCTION 48 
 49 
Does a ‘thing’ possess invariant properties that define its ‘being’, or does its essence reveal 50 
itself in the process of a perpetual change, i.e., in its ‘becoming’? This ancient intellectual 51 
dilemma, conceived by an early Greek philosopher Heraclitus, has been entwined in the 52 
centuries-long evolution of human knowledge1,2. At its core, it reflects a fundamental 53 
problem of selecting an appropriate representational framework for studying a 54 
phenomenon while offering a choice between two extreme alternatives. On the one hand, a 55 
description of invariant (canonical, typical) characteristics serves a purpose of giving a 56 
phenomenon a concrete definition and thus differentiating it from other things. On the 57 
other hand, representations that characterise a phenomenon as a process are more fitting if 58 
the phenomenon constitutes a sequence of superseding transient states with ill-defined 59 
invariant characteristics.  60 
 61 
The notion of functional networks in the fetal brain is a case in point for the latter. Evidence 62 
from animal models suggests that intrinsically generated neural activity in the prenatal brain 63 
first begins with local direct propagation before progressing to larger bursts of spontaneous 64 
activity which help to establish local circuitry3. At around 26 weeks of gestation, ex-utero 65 
functional MRI (fMRI) studies of very preterm infants4 show that spatially distinct resting-66 
state networks can be identified, initially consisting of local patterns of connectivity with a 67 
lack of long range interhemispheric or dorsocaudal connections. Towards term equivalent 68 
age, these networks evolve into a set of spatially distributed (multi-nodal) co-activation 69 
patterns resembling those seen in adults5,6, reflecting a generic drift of organic functions 70 
towards forming increasingly complex systems7. Such rapid developmental changes mean 71 
that functional networks in the prenatal period possess the attributes of an intrinsically non-72 
static entity, a characteristic example of Heraclitian “becoming”. 73 
 74 
Previous research has demonstrated that, despite enormous technological challenges, 75 
functional connectivity in utero can also be studied using resting-state fMRI8-12. This opens 76 
up an opportunity for the use of standard approaches to group-level fMRI network 77 
analyses13 such as group independent component analysis (group-ICA)14-16. The latter 78 
describes functional networks as a collection of spatial maps17, each of them charting areas 79 
linked together by the strength of covariation between the timecourses of their fluctuating 80 
intrinsic activity. However, utility of this method for application with fetal data remains an 81 
open question, both conceptually and when considering the unique signal properties of the 82 
data acquired in utero. Conceptually, an assumption embedded into this method is that a 83 
group-level spatial map characterises a canonical form of a functional network with respect 84 
to its individual manifestations, thereby downgrading developmental changes in its spatial 85 
layout to the status of non-systematic, and likely underestimated18, inter-subject variability. 86 
On a practical level, application of group-ICA to fetal data typically renders maps of poorly 87 
localised and segregated regions, lacking network-like features, such as the presence of 88 
spatially non-contingent brain areas13. This may be explained by the weakness of long-89 
distance connectivity in the fetal brain but may also be a consequence of inherently high 90 
levels of motion and low signal-to-noise ratio in this data, which adversely affects the 91 
detection of long-distance connections19,20.  As a result, coherent developmental features 92 
that are fundamental to both a definition and understanding of the neuroscientific basis of 93 
functional networks in utero are likely lost using this standard approach.  94 
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In this study, we hypothesised that a biologically-motivated analytical framework, that 95 
conceptualises functional brain network connectivity as a formative process, may provide a 96 
superior modelling alternative to the group-ICA for in-utero data. To this end, to capture the 97 
maturational transiency of connectivity states, we introduce an alternative perspective on 98 
resting-state functional networks, which we call “maturational networks”, or matnets for 99 
conciseness. The key feature of this framework is that it incorporates age-related changes in 100 
connectivity into network estimation, thereby characterising functional networks as an 101 
emerging property of the brain. At its core, it builds on Flechsig’s idea21, that functionally 102 
related areas mature together. In contrast to the standard analytical approach of ICA, which 103 
utilises correlational structure to factorise networks, our approach leverages age-related 104 
changes in correlations in order to characterise maturational modes of variation in the data. 105 
The utility of this approach is demonstrated in in-utero fMRI data acquired as part of the 106 
developing Human Connectome Project (dHCP)22,23, an open science initiative aiming to map 107 
brain connectivity across the perinatal period, that were reconstructed and preprocessed 108 
using specially developed methodologies24-26. We show that our approach overcomes 109 
inherent limitations of fMRI data acquired in-utero for characterising mid- and long-distance 110 
connectivity, and for inference about the developmental trajectory of the fetal functional 111 
connectome. Moreover, it enables factorisation of spatial patterns that fit better the 112 
concept of resting-state network as we understand it from the studies of more mature 113 
brains, that is, as spatially distributed configurations encompassing non-adjacent brain 114 
areas27,28. Finally, we show that maturational networks lead to new perspectives on the 115 
macro-scale developmental relationships in the human brain, the “maturational 116 
connectome” and “maturational hubs”. 117 
  118 
RESULTS 119 
 120 
Resting state fMRI data from 144 healthy fetuses with an age range between 25 and 38 121 
weeks gestation (Supplementary Fig. 1) were acquired over 12.8 mins on a 3T Philips Achieva 122 
system (Best, NL)29 as part of the developing Human Connectome Project (dHCP). All of the 123 
fetal brain images were clinically reported and showed appropriate appearances for their 124 
gestational age with no acquired lesions or congenital malformations. The data underwent 125 
dynamic geometric correction for distortions, slice-to-volume motion correction24,25 and 126 
temporal denoising26, followed by their registration to a common space to enable group-127 
level analyses6.  128 
 129 
The framework 130 
 131 
In order to demonstrate the utility of our approach, we note that developmental changes in 132 
a spatial layout of functional networks can be modelled retrospectively within the standard 133 
group-ICA approach using several post-processing steps16, as shown in Fig. 1a. The results of 134 
this modelling can therefore serve as a reference for comparison with the results of matnets 135 
modelling. In brief, the conventional modelling approach involves the estimation of group-136 
level (“canonical”) spatial maps, followed by the two steps of dual regression (DR)16, i.e., a 137 
sequence of spatial and temporal regressions performed against individual data, in order to 138 
obtain subject-specific variants of the group maps, followed by a mass-univariate (i.e., 139 
voxelwise) modelling of the latter using age as a covariate. The key step is the dual 140 
regression step, that “permits the identification of between-subject differences in resting 141 
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functional connectivity based on between-subject similarities”16, where a subject-specific 142 
map represents the individualised manifestation of a group map.  143 
 144 
In contrast, our matnets approach, shown in Fig. 1b, attempts to derive maps of 145 
maturational modes of variation in a direct manner, in essence by reversing the order of 146 
operations while omitting the intermediate steps of dual regression; that is, we aim to derive 147 
spatial maps which themselves are the manifestations of age-related changes in functional 148 
connectivity. It runs as follows. At the first step, a dense N voxels by N voxels connectome is 149 
computed for each subject separately. Each element of the dense connectome is then fitted 150 
across subjects with age as covariate and converted using t-statistics into a maturational 151 
dense connectome, i.e., a matrix in which elements contain the estimates of the age effect. 152 
An ICA factorisation of the maturational dense connectome is then performed to obtain 153 
spatially independent matnet maps, each of them associated with a characteristic profile of 154 
emerging connectivity. In other words, as much as temporal correlations between voxels 155 
determines their participation in a particular group-ICA network, similarity in the age-related 156 
changes in connectivity between voxels determines their matnet participation.  157 
 158 

 159 
Fig. 1. Two approaches to maturational analysis of the functional networks. a Group-ICA + dual regression pipeline and its 160 
outputs. The pipeline allows modelling maturational changes in the spatial layout of the networks using mass-univariate 161 
analysis of the subject-specific variants of the group maps. The latter are derived using dual regression. b Pipeline for 162 
derivation of maturational networks. It directly leverages age-related changes to derive networks instead of estimating 163 
subject-specific variants of the group-level maps. In the current study: M = 25 (Ref 6), N = 53443, K = 144; se – standard 164 
error 165 

 166 
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Univariate spatial properties of group-average correlations and age-related differences in 167 
correlations 168 
 169 
The efficiency of either method for network analysis, for instance in terms of their ability to 170 
discover meaningful spatial relationships, is contingent on the relevant signal properties of 171 
the data, which remain poorly understood for the in-utero fMRI. A brief description of these 172 
properties would assist subsequent interpretations and inform analytical choices. 173 
Consequently, we provide a short summary of the univariate spatial properties of the two 174 
metrics that are expected to shape the results of the group-ICA and matnets analyses: 175 
respectively, group-average correlations and the effect of age (t-value) on the strength of 176 
correlations.  177 
 178 
The generic spatial structure of the two metrics can be easily appreciated by considering 179 
connectivity maps from seed regions to the whole brain (“seed-to-brain” maps). The maps of 180 
the group-average correlation for six cortical seeds (3 for each hemisphere; estimated from 181 
the correlation between the mean timecourse of voxels within a seed mask and timecourses 182 
of all voxels in the brain, and then averaged across subjects) are shown in Fig. 2a (left panel). 183 
The conspicuous feature of these maps is a presence of a strong distance dependent 184 
gradient, indicating signal smearing over the immediate neighbourhood of the seed. This 185 
effect transgresses anatomical boundaries, as demonstrated in a context of interhemispheric 186 
connectivity between homologous left and right voxels where the anatomical and purely 187 
spatial distances can be disentangled (Supplementary Fig. 2) and shows a spatially 188 
indiscriminate character as it could equally be replicated for seeds located in the white 189 
matter (Supplementary Fig. 3).  190 
 191 
In comparison, the configuration of the spatial maps for the age-related effect on correlation 192 
(that is, instead of being averaged across subjects, the seed-to-brain correlation maps were 193 
fitted voxel-wise with age as a covariate) for the same set of seeds reveals two components 194 
of relevance: a negative local component and a positive mid- and long-distance component 195 
(Fig. 2a, right panel). The negative local component is revealed by a distribution of high 196 
negative values in the proximity of the seed. This local component, which implies that the 197 
strength of distance-dependent gradients in connectivity structure is negatively associated 198 
with age at a short distance, occurs in a spatially indiscriminate manner, though less 199 
obviously in white matter (Supplementary Fig. 4), possibly due to a greater signal blurring 200 
within this tissue. Otherwise, the positive mid- and long-distance component is 201 
characterised by an age-related increase in correlation strength between seed and other 202 
grey matter regions.  203 
 204 
Furthermore, Fig. 2b shows the relationship between the spatial distance and the similarity 205 
(i.e., spatial correlation) between 44850 pairs of seed-to-brain maps, computed following 206 
the parcellation of the cortex into 300 clusters. The relationship was strong for group-207 
average correlation maps(r = - .80), which suggests that spatial distance may become a 208 
dominant factor for the fusion of the voxels into networks in analyses based on the 209 
correlational structure of the data, such as group-ICA. Conversely, the similarity between 210 
age-effect maps was more robust to the effect of distance between seeds used to produce 211 
these maps (r = -.42). This suggests that leveraging positive age-related associations for the 212 
network construction can potentially reveal a rich set of spatially distributed patterns with 213 
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improved specificity. In this view, matnets were derived using a factorisation of the 214 
positively thresholded maturational dense connectome. 215 

 216 
Fig. 2. Spatial properties of group-average correlations and age-related differences in correlations. a  seed-to-brain maps of 217 
group-average correlations (left) and it age-related changes (right). The two types of maps are shown as a mirror-like 218 
reflection of each other. Examples of 6 seeds are shown, 3 for each. b Distance vs spatial similarity relationship for pairs of 219 
seed-to-brain maps. 220 

 221 
Comparison of group-ICA and matnets in neonatal sample 222 
 223 
We first present evaluation of the performance of the matnet framework in the neonatal 224 
sample, where the standard approaches proved to be effective and hence meaningful 225 
comparisons can be made. For this we constructed a sample of 311 neonates 226 
(Supplementary Fig. 5) and obtained group-ICA and matnet factorisations, Fig. 3a and Fig. 227 
3b, respectively. The two methods show an excellent agreement with each other, oftentimes 228 
replicating not only the main network nodes but also agreeing on secondary clusters 229 
composed of a smaller number of voxels. The following differences can be distinguished 230 
qualitatively.  231 
 232 
Firstly, in several cases matnets revealed more left-right symmetrical maps than group ICA. 233 
The list includes: a bilateral auditory network (matnet #12) compared to its predominantly 234 
left- and right-lateralised group-ICA counterparts (gica #6 and gica #8); matnet #6 (occipital 235 
pole) compared to gica #13 (right hemisphere dominance) and gica #16 (left hemisphere 236 
dominance); matnet #1 that for group-ICA fractionates into 3 - predominantly medial (#0), 237 
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predominantly right lateralised (#2) and predominantly left lateralised (#3) - components; a 238 
bilateral fronto-parietal matnet #2 (inferior parietal cortex + prefrontal + inferior temporal 239 
cortex), that combines areas delineated using 3 group-ICA components, left-dominant gica 240 
#12, right-dominant gica #9 and bilateral prefrontal gica #20.  241 
 242 
Secondly, matnets provided two non-cortical components, one in the cerebellum (#18) and 243 
the other in the brainstem extending into cerebellum (#8). A group-ICA component (#22), 244 
spatially similar to the latter, appears to be dominated by the signal originating in CSF and is 245 
unlikely to represent an exact match to its matnet counterpart.  246 
 247 
Thirdly, matnet #10 provides the most complete delineation of the default mode network in 248 
neonates, encompassing all of its critical nodes, including a small cluster in the posterior 249 
medial parietal cortex. These regions were contained within two group-ICA components 250 
(#18 and #21), one of which (#21) is likely to be contaminated by the signal originating in the 251 
CSF and/or vasculature.  252 
 253 
Finally, there was no exact match among matnets to gica #15 (superior medial occipital) and 254 
two pairs of matnets-gica components differed on the localisation of their nodes. A 255 
prefrontal matnet #9 is shifted anteriorly compared to gica #5 and lacks its posterior node 256 
the (secondary) frontal nodes of predominantly superior parietal matnet #5 are located 257 
dorsally in superior frontal gyrus, anteriorly to pre-central sulcus (supplementary motor 258 
area), whereas the frontal nodes of the matching gica #9 are shifted anteriorly and inferiorly 259 
to the middle frontal gyrus.  260 
 261 
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 262 
Fig. 3. Group-level network analyses in neonates. a Group-ICA. b Matnets 263 

 264 
Group ICA maps and estimated age-related differences in their layout 265 
 266 
The results of the conventional group-ICA factorisation in the in-utero sample are shown in 267 
Fig. 4a. The appearance of the spatial maps suggest that they inherit certain signal 268 
properties that had previously been revealed in the univariate analysis. Thus, their “blurry” 269 
appearance is reminiscent of the increased local signal correlations observed in univariate 270 
maps of seed-to-brain group-average correlations. In addition, the location of the peaks in 271 
many group-ICA maps tended to be biased away from the cortex towards the white matter 272 
and a local low-to-high ramp of the component values could often be traced along the 273 
boundary between grey and white matter tissues (Supplementary Fig. 6). Despite the above 274 
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characteristics, most components have anatomically plausible layouts, encompassing a 275 
diverse range of functionally relevant areas. The components where peaks were most firmly 276 
located within cortical ribbon, were found in sensorimotor and pre-motor areas (e.g., 277 
components #16,17, 23, 24).  278 
 279 
Meanwhile, the analysis of age-related changes in the spatial layout of the networks using 280 
the dual regression approach (mass-univariate modelling step in Fig. 1a) appear to be 281 
affected by a specific bias, as shown using the examples of the spatial maps of the first 3 282 
components and the corresponding maps of the age effect in Fig. 4b, demonstrating a 283 
negative effect of age (i.e., a decrease of connectivity with age) in the most representative 284 
component voxels. This somewhat counter-intuitive pattern was observed for all group-ICA 285 
components. As Fig. 4c shows, there was a high negative spatial correlation between 286 
component group-lCA component spatial maps and corresponding t-maps of the age effect. 287 
This pattern appears to be a direct consequence of the signal properties, intrinsic to these 288 
data and earlier highlighted in the context of the univariate analyses, showing that there is a 289 
negative association between age and strength of correlations for voxels surrounding a seed.   290 
  291 

 292 
Fig. 4. Results of group-ICA analysis. All spatial maps are shown in radiological orientation. a Z-scored group-level spatial 293 
maps. b Spatial maps of the first 3 components (upper row) and corresponding t-maps of age-related changes (lower row), 294 
corresponding to the output of the mass-univariate modelling step in Fig. 1a. A negative effect of age can be observed in 295 
the most representative component voxels. c Distribution of spatial correlations between component spatial maps and 296 
corresponding t-maps of age-related changes. The outlier is the component with likely vascular origin (component #5) 297 
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Maturational networks (matnets) 298 
 299 
The above analysis demonstrates an inability to reconstruct coherent maturational 300 
relationships in the fetal fMRI data using tools that are widely used in standard network 301 
analysis in pediatric and adult populations. In the current and the following sections, we will 302 
show that the matnet analysis, built around dense connectomes as an input, is able to 303 
overcome this issue and demonstrate comprehensive features of the emerging brain 304 
connectivity. 305 
 306 
Thus, results from the maturational network factorization, presented in Fig. 5a, reveal spatial 307 
configurations of a high anatomical validity, including locality within the grey matter 308 
(Supplementary Fig. 7). In order to ascertain the robustness of the method, we repeated the 309 
analysis in approximately age-matched split-half samples, computing matnets in each 310 
sample independently,  and found a good replicability of the component spatial properties 311 
(Supplementary Fig. 8-11).  312 
 313 
A qualitative comparison to the paired group-ICA components (for the complete set - 314 
Supplementary Fig. 12) demonstrates both the increased spatial specificity of the matnets 315 
approach and the differing sensitivity to interhemispheric and distal patterns of network 316 
participation. For instance (Fig. 5b), the main node of matnet #11 spatially overlapped with 317 
that of group-ICA #24 but in addition encompassed areas in lateral central and pre-motor 318 
cortices. Another example is the bilateral matnet component #7, in which the left-319 
hemisphere sub-division overlapped with a spatially compact group-ICA component #16. The 320 
more anatomically specific local variations of intensity compared to the group-ICA maps are 321 
reminiscent of the spatial specificity in the age-effect seed-to-brain maps from the 322 
univariate analyses. For instance, the matnet map #7 in Fig. 5b has multiple poles, 323 
distributed across the somatosensory, motor and premotor cortices, which suggests an early 324 
integration of local circuits supporting different functions. In contrast, group-ICA 325 
components were typically characterised by a tendency to have only one centre-of-gravity.  326 
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 327 
Fig. 5. Results of maturational network analysis. All spatial maps are shown in radiological orientation. a Z-scored spatial 328 
maps, thresholded at abs(z) = 3. b Examples of components from maturational and group-ICA analyses, showing that the 329 
former tends to show more anatomically specific variation in intensity than the latter. See Supplementary Fig. 12 for all 330 
pairs of group-ICA and matnet components. 331 

Whole-brain maturational relationships 332 
 333 
Earlier we noted a distinction between 1) matnets proper (i.e., spatially independent maps, 334 
obtained by factorisation of the dense maturational connectome) and 2) their emerging 335 
connectivity profiles (i.e., age-related changes in connectivity between matnets and all 336 
voxels in the brain), which differentiation effectively determines matnets partitioning. 337 
From a biological perspective, matnets delineate areas which have similar targets for their 338 
emerging functional connections. Alternatively formulated, matnets can be viewed as 339 
independent “sources” of emerging connectivity, where their linear mixture determines age-340 
related changes in connectivity of each voxel in the brain. The dichotomy between matnets 341 
and their connectivity profiles gives rise to a dual view on the maturation of functional 342 
connections which we now consider in detail.  343 
 344 
In an analogy to the computation of component temporal courses in the standard-approach 345 
using the DR1 step (Fig. 1a), emerging connectivity profiles associated with matnets are 346 
computed as a matrix (here M = 25 components by N = 53 443 voxels) of regression slope 347 
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coefficients by regressing matnet maps against columns of the thresholded maturational 348 
dense connectome (Fig. 6a). This matrix can be treated in two ways. 349 
 350 
Firstly, a matrix of pairwise correlations between rows of the connectivity profile matrix 351 
summarises a similarity between matnets emerging connectivity profiles, in a similar way as 352 
a matrix of correlations between component timecourses outputted by DR1 (so called 353 
“netmats”30) characterises functional connectivity between brain networks within the 354 
standard group-ICA+DR approach. This provides a whole-brain characterisation of the 355 
emerging functional architecture of the in-utero brain, which we call “maturational 356 
connectome” for conciseness (Fig. 6a). A three-dimensional embedding of the maturational 357 
connectome (Fig. 6b), allows one to appreciate its generic structure. Here a point in space 358 
indicates a relative location of a network with respect to other networks, with a shorter 359 
distance between networks being indicative of a greater similarity between their emerging 360 
connectivity profiles. Several groups of networks, based on the networks’ location in the 361 
embedded space, can be identified using hierarchical clustering (Fig. 6c). In further analyses 362 
we used a 5-group partitioning which was the finest partitioning that did not produce single-363 
network groups. The first group (coded brown) consisted of networks that combined the 364 
posterior and anterior peri-insular areas with occipital, auditory and ventral sensorimotor 365 
areas. The second group (coded green) consisted of two smaller sub-groups: one comprising 366 
dorsolateral pre-motor, dorsolateral prefrontal and medial pre- and supplementary motor 367 
areas; the other combining frontal anterior cingulate with inferior parietal and superior 368 
lateral occipital cortices, extending into medial posterior areas (precuneus). Adjacent to this 369 
group, there was a two-network group (coded blue), comprising dorsal sensorimotor areas. 370 
The fourth group (coded violet) comprised ventral frontal and orbitofrontal areas. Finally, 371 
the last group (coded purple) combined ventral occipito-temporal areas with dorsal parietal 372 
and sensorimotor areas. 373 
 374 
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 375 
Fig. 6. Maturational connectome. a  Pipelines for derivation of emerging connectivity profiles associated with matnets and 376 
(shown with arrows) the analysis of maturational connectome. b Maturational connectome embedding and their split into 377 
groups, based on hierarchical clustering. c Hierarchical clustering tree. 378 
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 379 
 380 
Secondly, the alternative view on the matrix of the connectivity profiles associated with 381 
matnets is made possible by the fact that one dimension of the estimated regression 382 
coefficient matrix is equal to the number of voxels and therefore this matrix represents a 383 
collection of complementary spatial maps, that depict targets to which corresponding 384 
matnets tend to develop connections to in an age-related manner, or to put it simply, the 385 
maps of the targets for their emerging connectivity. From this perspective, clustering 386 
matnets into 5 groups is determined by a spatial similarity of their complementary maps. 387 
This fact permits an identification of “maturational hubs” for each group as maps that 388 
characterise shared connectivity profiles within each group of matnets, for instance, by 389 
means of principle component analysis. 390 
 391 
Fig. 7a summarises these results by showing pairs of matnet-complimentary maps as well as 392 
the first principal component maps of complementary maps in each groups. Thus, one can 393 
observe a likely vascular contribution in group 1 and 2, evident by the fact that the maps 394 
contain areas overlapping with the circle of Willis. In parallel, both maps also contain brain 395 
areas which are spatially distinct from the areas reflecting vascular development. For group 396 
1, these areas are bilateral dorsal somatosensory and adjacent parietal cortices and bilateral 397 
cerebellum. For the group 2, prefrontal group, the hubs are located in bilateral IFG and 398 
superior bank of anterior STG, bilateral insula, bilateral STS. For the sensorimotor (3rd) group, 399 
the hubs are not expressed well but some preferential connectivity to right insula and 400 
(predominantly right) striatum and thalamus can be observed. For the 4th (ventral frontal 401 
and orbitofrontal) group, the hubs were located in the bilateral SFG and MFG. Finally, for 402 
group 5 (ventral visual stream areas), the hubs were located in (predominantly right) lateral 403 
parietal and dorsal parieto-occipital cortices and right posterior perisylvian cortices.  404 
 405 
Furthermore, as a proof-of-principle that maturational relationships are determined by an 406 
age-related increase of connectivity and as well as a demonstration of the potential 407 
application of the method to the study individual variability and inter-regional trajectories, 408 
the following result can be presented. Here, we estimated the temporal coupling between 409 
matnets and their complementary maps as a function of age. For this, both the matnets and 410 
their complementary maps were thresholded at z >5 in order to reduce a degree of potential 411 
spatial overlap between the two and their time courses were computed as weighted 412 
averages of the above-threshold voxels. Fig. 7b shows the results for two maturational 413 
groups, with differing age-related trajectories, whereas age-related trajectories for all 25 414 
components are shown in Supplementary Fig. 13.  415 
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 416 
Fig. 7. Matnets and their complementary maps. a Spatial maps of matnets (top), their complementary maps (bottom), and 417 
the 1st PC of the complementary maps (right) in each matnet group. b Examples of temporal correlations between time 418 
courses of matnets and their complementary map for two matnet groups (see Supplementary Fig. 13 for all maturational 419 
components). Lines represent the best-fitting polynomial models and shaded regions are confidence intervals (alpha=.05). 420 

 421 
DISCUSSION 422 
 423 
In this paper, we presented an analytical framework that characterises functional networks 424 
as an emerging property of the brain. Within this framework, the fusion of voxels into a 425 
network is determined by the similarity of their maturational profiles with respect to the rest 426 
of the brain. In effect, this represents a computational implementation of Flechsig’s 427 
principle21 that states that concordant maturation characterises functionally related areas. In 428 
an implicit form, Flechsig’s principle has been previously utilised in the studies of structural 429 
covariance31 in developmental cohorts32,33, including fetuses34. Here we apply the principle 430 
explicitly to the study of emerging functional organisation in the in-utero brain.  431 
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 432 
We also tested the performance of the framework in the neonatal dHCP sample. Overall,  433 
matnets showed excellent agreement with group-ICA analysis of the same data. 434 
Furthermore, matnets revealed features characteristic of more mature brains with a greater 435 
specificity, such as more symmetrically distributed patterns across the two hemispheres and 436 
a nearly complete default mode network. Conceptually, a greater fractionation of group-ICA 437 
neonatal networks is not surprising, because compared to the “connectivity-as-present” 438 
representation ICA provides, matnets reconstruct maps of “connectivity-in-making”. 439 
 440 
Further fractionation of the networks into separate areas was observed in the analysis of the 441 
fetal brain connectivity. Here the difference between a group-ICA and matnet approaches 442 
becomes even more prominent. We have showed that maturational networks (Fig. 5) permit 443 
identification of spatially distributed patterns of connections with a remarkable anatomical 444 
specificity for the in-utero data, owing to their reliance on the benign signal properties that 445 
reveal an age-dependent increase of mid- and long-distance connectivity in a spatially 446 
selective manner. We have also showed that maturational networks represent a coherent 447 
way of characterising maturational patterns in the context of fetal fMRI, compared to 448 
inference using the standard approach (Fig. 4), in which results appear to be affected by 449 
specific biases (we will discuss this below).  450 
 451 
Compared to ex-utero data, in-utero fMRI data inherently suffers from decreased signal-to-452 
noise and greater artefacts which contribute to difficulties identifying distributed networks 453 
in the fetal brain.  Nevertheless, the matnet results indicate that fundamental features of 454 
neonatal and even adult-like functional architecture occur prior to the exposure to 455 
extrauterine environmental influences. This is reflected in a range of motifs characteristic of 456 
the neonatal brain connectivity, which can be viewed as the eventual target for maturational 457 
processes in utero. Thus, several networks revealed a non-negligible bilateral component, 458 
that agrees with the studies of pre-term and term born babies4-6, as well as in-utero seed-459 
based connectivity fMRI studies8, suggesting that interhemispheric coupling becomes 460 
established during this period. The maturational networks also characterised a range of non-461 
trivial functional relationships that are similarly observed in neonatal data6, such as 462 
functional associations between the inferior parietal regions and precuneus; between the 463 
anterior cingulate cortex and lateral orbito-frontal cortex, between the medial and lateral 464 
(pre)-motor cortices; between the central sulcus and posterior insular cortex; or between 465 
the dorsal and ventral stream regions. This demonstrates that these emerging functional 466 
relationships across spatially distinct regions are an intrinsic property of the brain and 467 
provides crucial validation of the findings of neonatal studies where the complementary role 468 
of environmental influences had been unclear. 469 
 470 
An additional level of insight into the developmental sequelae of the fetal functional brain 471 
and the shaping of future network architecture is provided by considering matnets in 472 
association with their complementary maps, with the latter characterising the matnets’ 473 
emerging connectivity profiles. This leads towards two novel constructs: the maturational 474 
connectome, that summarises similarity of emerging connectivity profiles between pairs of 475 
matnets (Fig. 6), and maturational hubs, that represent common targets for the matnets’s 476 
maturing connections (Fig. 7). Together, their analyses allow us to characterise macroscopic 477 
patterns of connectivity that emerge during this critical stage of human development. 478 
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 479 
A conspicuous generic feature of the maturational connectome, revealed by its low-480 
dimensional embedding, is the tendency for homologous contralateral networks to cluster 481 
together. Overall, the clustering analysis identifies two larger groups that occupy the central 482 
location in the embedded space and three smaller, more peripheral, groups. Based on the 483 
areas that dominate their anatomical layout, the three smaller clusters of networks can be 484 
labelled as orbitofrontal, ventral visual and sensorimotor groups. Of the larger groups, one 485 
was dominated by the cortical nodes of perception and bodily sensation (occipital, auditory 486 
and somatosensory limbic areas) but also included nodes in the motor and motor limbic35 487 
(anterior cingulate and anterior insular) cortices. The other larger group was dominated by 488 
the functional nodes responsible for an environmental interaction through action 489 
(dorsolateral and medial pre-motor cortex and  pre-frontal areas), but also included a sub-490 
group of networks which spatially overlap with nodes of the future default mode 491 
networks27,36, such as  precuneus, anterior cingulate and angular gyrus. Notably, the location 492 
of the latter within the embedding space was midway between the notional perception 493 
group and the remaining networks of the notional action group, hinting both towards hub 494 
connectivity patterns and their apparent role in modulating internal and external inputs 495 
whilst mind-wandering or performing cognitively demanding tasks later in life37. 496 
 497 
The framework also allowed us to describe maturational hubs of the in-utero connectome, 498 
characterised as regions in which networks within a matnet group form preferential 499 
connectivity in an age-related manner. Areas in the dorsal somatosensory and adjacent 500 
parietal cortex which process sensation and spatial information, as well as the cerebellum, 501 
were identified as hubs for the first group of matnets, combining perception, bodily 502 
sensation and motor limbic areas located outside sensorimotor cortices, suggesting 503 
integration of information across different perceptual and limbic domains towards a central 504 
cortical processing unit. The analysis also reveals an important role of high-level associative 505 
areas within the brain connectome from the onset of the brain functional development. 506 
Thus, the hub for ventral occipital and temporal areas, which in the adult brain encodes 507 
representations of abstract visual information, is found in the posterior parietal cortex, 508 
including the right IPS and the posterior node of ventral attentional network (VAN)38. This 509 
supports evidence, similarly observed at the level of individual matnets (e.g., matnet #6), of 510 
an ongoing integration of the ventral and dorsal stream representations. We also observed 511 
an emergence of links between ventral action-related limbic areas, representing internal 512 
motives and drives in the adult brain39, and areas associated with encoding representations 513 
of abstract rules for goal-directed behavior and with executive control. This is made evident 514 
by the fact that the major hubs for the action group, which among others included networks 515 
in lateral prefrontal cortex, were located in the anterior perisylvian and insular cortices, 516 
posterior ventral orbitofrontal and anterior temporal cortices, overlapping with limbic and 517 
motor limbic cortices and the prefrontal hub of the adult VAN. Reciprocally, the dorsal 518 
prefrontal areas implemented in the adult dorsal attentional network (including frontal eye 519 
field), working memory and executive control were identified as a hub for ventral 520 
orbitofrontal matnet group, which in the adult brain are known to project feedback 521 
pathways to the dorsolateral prefrontal cortex, providing the latter with information on 522 
internal environment40. These findings indicate that the neural machinery for linking 523 
decisions and actions to internal wishes and motives start emerging as early as the fetal 524 
period in human life.  525 
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 526 
These results challenge the view that the transition from fetal to a more mature functional 527 
architecture is manifested by the shift of functional hubs from primary to associative 528 
areas41,42 and aligns with earlier studies of structural connectivity in full-term and preterm 529 
neonates showing that adult-like features of the structural connectome can already be 530 
observed at this early period43. They also align with a recent study showing an early 531 
patterning of deep projection neurons in the frontal lobe, which could provide a structural 532 
infrastructure for the functional connectivity of high-level associative areas44. The distinction 533 
between more mature and in-utero functional connectome features appear to be signified 534 
by a relative disconnection along posterior-anterior axis, such as between nodes of fronto-535 
parietal networks which are considered responsible for the integration of information across 536 
behavioral domains in the adult brain. Similarly, consistent with previous findings in preterm 537 
neonates4, no strong evidence of the links between medial posterior and anterior nodes of 538 
the default mode network were observed, which at this period appear to be integrated, 539 
respectively, within parietal and frontal networks and lack a prominent role in the observed 540 
whole brain functional architecture. Interestingly, a nearly complete default mode network 541 
identified with matnets in neonates contained only a small cluster of voxels in the medial 542 
parietal cortex, supporting the evidence that a fully functional DMN may emerge only as late 543 
as at the age of 345. 544 
 545 
In-utero maturation is associated with competing physiological processes which may 546 
potentially leave a footprint on the properties of the fMRI signal46,47, thereby raising a 547 
question about the biological underpinnings of the age-related signal changes implicated in 548 
the derivation of maturational networks. For instance, one cannot exclude the possibility 549 
that changes in the long-distance connectivity, in the absence of a mature structural 550 
connectome, are in part due to the coordinated development of  the brain’s vasculature48. 551 
De-confounding the latter from the estimates of neural connectivity is a contentious issue 552 
even in the context of adult resting-state imaging49,50. In the fetal brain, the problem may be 553 
further exacerbated as the development of brain neural systems goes hand in hand with the 554 
development of other organ functions including the vasculature and thus are likely collinear 555 
to the degree that the two are indistinguishable at a level visible to fMRI. 556 
 557 
The effect of tissue composition on the T2* relaxation rate may also represent an intrinsic 558 
confound for our analysis. The dHCP acquisition utilises a substantially longer TE (60 ms) 559 
compared to a benchmark adult acquisition (e.g., HCP protocol: 33 ms51 in order to align 560 
with longer relaxation rates in the developing brain. However, assuming T2*=100 ms for 561 
neonates52 and that matching TE and T2* may (theoretically) provide higher SNR, the 562 
current TE may be a more “optimal” choice for the older fetuses, therefore, potentially 563 
biasing estimates of the age-effects. However, this is not supported by the observed 564 
tendency of white matter seeds/voxels to show a negative association with age compared to 565 
the cortical regions, given that age-related tissue changes are likely to be more pronounced 566 
in the white matter than in the cortex, as white matter maturation occurs throughout 567 
gestation and myelination does not commence in many regions until the early neonatal 568 
period53. One would then expect greater positive age-related changes for the white matter if 569 
the effect was due to the SNR-TE relationship. 570 
  571 
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Another potential confound is that fetuses tend to change position from pointing upwards to 572 
head-down position later in the gestation, potentially affecting the signal. However, this 573 
factor cannot explain age-related increases in connectivity leveraged by the matnet analysis, 574 
as the head-down position would result in a decrease in SNR and consequently decreased 575 
estimates of connectivity strength, due to the effects of the surroundings such as the 576 
adjacent bones and air-filled bowels. 577 
 578 
Finally, the registration accuracy represents a fundamental issue, that can never be 579 
completely resolved by nature of the changing fetal brain. To ameliorate this issue, we used 580 
a very comprehensive approach to the group-space registration, previously exploited for the 581 
neonatal data6, which avoids a necessity of computing large – and potentially error-prone – 582 
deformations and at the same time achieving a remarkable alignment even for 583 
morphologically distant brains (see Methods for the description). In general, we expect that 584 
inaccuracy in registration will to some degree be balanced out between ages by diverging 585 
factors: in younger a cause of misregistration is likely to be a simple brain morphology that 586 
lacks distinct landmarks; in older fetuses it is the unique complexity of gyrified brain that 587 
makes it difficult to fit a standard space. However, further work is needed to fully assess the 588 
effects of the template choices and registration procedures for this challenging type of data. 589 
 590 
Compared to maturational networks, group-ICA components identified with a standard 591 
group-ICA approach had diminished spatial complexity and anatomical specificity and were 592 
biased towards the white matter. Notably, the results of dual regression modeling showed 593 
that local connectivity within group-ICA networks diminishes with age. Such characteristics 594 
fit well those of the functional nodes described in the fetal animal studies, which center on 595 
the cortical subplate and act as local amplifiers of the thalamic activity with spread that does 596 
not conform to anatomical boundaries3,54. This may suggest that group-ICA and maturational 597 
networks truthfully reflect two different states of the fetal functional brain: a truly “fetal” 598 
subplate-centered55 and locally active state depicted by the group-ICA, that gives way to the 599 
adult-like cortex-centered and spatially distributed state of maturational networks. Against 600 
this intriguing interpretation, though not necessary incompatible with it, are the results of 601 
the univariate analysis of the connectivity metrics. The latter demonstrates that the 602 
correlational structure of the data, that underlies the derivation of the group-ICA 603 
components, is dominated by a spatially smooth and non-linear distance-dependent 604 
gradient, which scales negatively with age. The factors that make biologically-motivated 605 
interpretation of this gradient unlikely is the spatially indiscriminate character of these 606 
phenomena combined with a violation of anatomical boundaries, including the large 607 
connectivity distance between the two brain hemispheres which in reality are separated by 608 
a CSF filled inter-hemispheric fissure. 609 
 610 
An initial hypothesis to explain the origins of distance-dependent gradients and its 611 
interaction with age can be based on the potential contribution of two factors: motion and 612 
effective resolution. The role of motion on connectivity estimates has been demonstrated in 613 
adult imaging, where it has been shown to decrease long-range connectivity and 614 
overestimate local connectivity19,20. Although we used a comprehensive image processing 615 
pipeline to account for head motion during data acquisition, fetal imaging data is still 616 
especially susceptible to this effect as fetuses have virtually no motion-free periods. Even if 617 
the fetus stays still, maternal breathing cycles and endogenous motion in the non-rigid 618 
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tissues surrounding the fetal head continue to cause a constant change of position. Under 619 
these circumstances, effective resolution naturally leads to age-related differences in the 620 
effect, which likely explains the dual regression result showing a decrease in connectivity 621 
with age within the most representative component voxels. The brain undergoes a 3-fold 622 
growth in size over the studied period, which implies that real-world separation between 623 
pairs of voxels in a standard space is smaller for younger subjects than for older ones and 624 
thus a greater effect of distance as measured in the common space. In light of the 625 
differences in signal properties between the grey and white matter and their modulation by 626 
age, the possible contribution of other factors such as modulation of the BOLD signal itself 627 
and/or the role of age-related changes in tissue content also should not be disregarded. 628 
 629 
Below we outline several limitations of the study. First, the current study has the well-known 630 
limitations of cross-sectional analyses whereby between-subject variability can be 631 
confounded with aging effects. Nevertheless, cross-sectional data are expected to dominate 632 
fetal research for a foreseeable future, as scanning mothers during pregnancy on multiple 633 
occasions presents both ethical and practical challenges. In the meantime, one can strive for 634 
better estimates of cross-sectional trajectories, using improved modelling and larger data 635 
samples. Our results are based on one of the largest fetal fMRI data sets both in terms of the 636 
number of subjects and the number of volumes per subject. However, further improvements 637 
in modelling can be achieved when data for the full fetal dHCP cohort will be made openly 638 
available to the neuroscientific community in the coming year. This would increase the 639 
current data sample by a factor of nearly 2.  640 
 641 
The second limitation concerns generalization of our conclusions to other data samples, 642 
especially in the context of fetal fMRI as a novel field, where norms of data acquisition are 643 
yet to be established. Unfortunately, fetal fMRI has not as yet stepped in into the age of 644 
normative open-access big data56 which has enabled recent progress in the study of ex-utero 645 
connectivity, (e.g.,51). However, the qualitative comparison of our results with the results 646 
drawn from other studies gives us a certain confidence that our results are not specific to 647 
our sample. For instance, there was a remarkable similarity between our group-ICA results 648 
and the group-ICA results reported in a recent paper13, despite considerable differences in 649 
the acquisition sequence (multi- vs single-band), spatial image corrections (dynamic 650 
distortion and slice-to-volume corrections vs volumetric alignment only) and de-noising 651 
pipelines (predominantly motion parameter-based vs. ICA-based). Furthermore, the 652 
qualitative characteristics of group-ICA components as well as the dominance of distance-653 
dependent gradient over the correlational structure also appear to be reproducible across 654 
the studies13.  655 
 656 
In conclusion, we describe a novel framework that delineates the emergence of resting state 657 
networks in the fetal human brain with remarkable spatial specificity and provides a 658 
comprehensive model of inter-areal maturational relationships, assigning a central role to 659 
the brain regions associated with active environmental interaction through perceptual and 660 
motor-planning mechanisms. A discerning feature of this maturational network framework is 661 
a prospective incorporation of the variable-of-interest (here, age) into network estimation. 662 
This can potentially make the method adaptable to other applications, such as studying early 663 
human development through childhood, network maturation in neurodevelopmental 664 
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disorders such as autism, ageing and exploring the connectivity underpinnings of changing 665 
patterns of behavior across the lifespan. 666 
 667 
 668 
METHODS 669 
 670 
Data 671 
 672 
Participants were prospectively recruited as part of the developing Human Connectome 673 
Project, a cross-sectional Open Science initiative approved by the UK National Research 674 
Ethics Authority (14/LO/1169). Written informed consent was obtained from all participating 675 
families prior to imaging. At the time of the study initiation, resting-state fMRI data were 676 
acquired in 151 fetuses older than 25 weeks of gestation (62 females, 77 males, 5 unknown), 677 
median age = 29.5w, range = [25 38], with Philips Achieva 3T system (Best, NL) and a 32-678 
channel cardiac coil using a single-shot EPI (TR/TE = 2200/60) sequence consisting of 350 679 
volumes of 48 slices each, slice grid 144 x 144, isotropic resolution = 2.2 mm, multi-band 680 
(MB) factor = 3 and SENSE factor = 1.429. All fetal brain images were reported by a 681 
neuroradiologist as showing appropriate appearances for their gestational age with no 682 
acquired lesions or congenital malformations of clinical significance. Data from 7 fetuses did 683 
not pass visual quality assessment due to excessive motion and failure in image 684 
reconstruction. 685 
 686 
The data of the remaining 144 fetuses were preprocessed using a dedicated pipeline24-26. In 687 
brief, the data underwent MB-SENSE image reconstruction, dynamic shot-by-shot B0 field 688 
correction by phase unwrapping and slice-to-volume (S2V) motion correction24. The data 689 
were then temporally denoised using several sets of confound regressors, aiming to address 690 
various types of artefacts. The denoising model combined volume censoring regressors, 691 
aiming to reject volumes (at a heuristically selected threshold) (Supplementary Fig. 14), 692 
highpass (1/150 Hz) filtering regressors of direct cosine transform matrix in order to remove 693 
slow frequency drift in the data, 6 white matter and cerebrospinal fluid component 694 
timecourses (obtained using subject-level ICA within a combined white matter + CSF mask, 695 
(e.g.,57), and 3 variants of voxelwise 4d denoising maps in order to account for the local 696 
artefacts in the data: 1) folding maps (N=2) which aggregate time courses of voxels linked in 697 
multiband acquisition to voxels in the original data, aiming at filtering out leakage artefacts; 698 
2) density maps, representing temporal evolution of an operator that compensates for the 699 
volume alterations a result of distortion in phase encoding direction, and aiming to filter out 700 
residual effects of distortion correction on the voxel timecourses; and 3) motion-parameter-701 
based regressors, expanded to include first and second order volume-to-volume and slice-702 
to-slice differentials as well as their square terms, aiming to remove motion-related 703 
artefacts58,59. 704 
 705 
Neonatal sample and data 706 
 707 
The characteristics of the scanning sequence for the neonatal data, which were acquired 708 
using the same hardware as the fetal data, are described elsewhere5,6. The data were 709 
preprocessed using dHCP neonatal pipeline6. For the current analyses we created a sample 710 
which ages were symmetrically distributed around 37.5 gestation weeks, i.e., approximately 711 
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the age of the oldest subjects in the fetal sample (mean age 37.27, sd = 3.98). The complete 712 
dHCP cohort is not symmetrical (Supplementary Fig. 5) and heavily skewed to the older ages. 713 
To compensate for this, we included all participants that were younger than 37 gestation 714 
week old and then randomly sampled participants of older ages to create a near-715 
symmetrical distribution. 311 participants were selected for the analysis. 716 
 717 
Registration to the group space 718 
 719 
A 4D atlas of the developing brain (available at https://brain-development.org/brain- 720 
594 atlases/fetal-brain-atlases/)60 was used as a template space for data registration. A 721 
schematic depiction of the registration to a common template space is shown in 722 
Supplementary Fig. 15a. The mapping between a functional native space and the common 723 
template space is constructed as the concatenation of several intermediate transformations, 724 
which ascertain a gradual alignment between spaces to minimise risks of gross misalignment 725 
as a result of the substantial differences in the brain topology across the range of gestation 726 
ages (Supplementary Fig. 15b)6: 1) rigid alignment between mean functional and anatomical 727 
scans calculated using FLIRT boundary-based registration61; 2) a non-linear transformation 728 
between an anatomical T2 scan and an age-matched template calculated using dual-channel 729 
(T2w and cortex) ANTs62 ; 3) a sequence of non-linear transformations between templates of 730 
adjacent ages (e.g., 24 and 25, 25 and 26, etc.), also calculated by ANTs. These 731 
transformations were concatenated to create a one-step mapping between functional and 732 
group template space, that allows us to project between native and template spaces with a 733 
single interpolation. The template corresponding to GA=37 weeks was selected as a 734 
common space for group analysis based on the considerations that it has a greatest effective 735 
resolution and topological complexity. An additional group space was created by 736 
symmetrizing the GA=37 week template with respect to the brain midline, with appropriate 737 
adjustment of the mapping from native spaces, that included an additional non-linear 738 
transform from non-symmetrical-to-symmetrical template spaces. After registering the 739 
functional MRI data to the template space, they were smoothed using 3mm Gaussian kernel. 740 
No lowpass filtering was applied in the temporal dimension. 741 
 742 
Univariate data analyses 743 
 744 
For the illustrative analyses, presented in Fig. 2a and Supplementary Fig. 3 & 4, the seeds for 745 
the seed-to-brain analysis were determined empirically using the results of modelling age-746 
related changes in interhemispheric connectivity between pairs of homologous voxels 747 
(Supplementary Fig. 16), performed in the symmetrical template space63. The subject-748 
specific maps of homologous voxel connectivity were obtained by calculating the correlation 749 
between timecourses of homologous voxels in the two hemispheres. The age-effect map 750 
was obtained via a voxel-wise regression with age as a covariate. The seeds for grey matter 751 
were created by thresholding the age-effect map from the above analysis at z > 3, which 752 
rendered 3 sizable clusters of voxels (14, 32, and 45 voxels). Given the absence of positive 753 
age-related increase in connectivity between homologous voxels for white matter areas, the 754 
white matter seeds were created by thresholding the age-effect map of interhemispheric 755 
connectivity negatively at z < -3, and then manually adjusting clusters to fit the size of the 756 
grey matter clusters. Because the seeds were defined in the symmetrical template space, 757 
the seed-to-brain connectivity analysis was also performed in this space. The seed-to-brain 758 
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group-average correlation map was calculated by first calculating individual maps of 759 
correlations between time course of a seed and time courses of all voxels in the brain and 760 
then averaging these maps across subjects. The age-effect map was obtained by fitting 761 
individual maps voxelwise using age as a covariate.  762 
 763 
For the analysis of the relationship between similarity of seed-to-brain maps and the 764 
distance between them, cortical mask was parcellated into 300 clusters with k-means 765 
algorithm using voxel coordinates as input. The seed-to-brain group-average correlation and 766 
age-effect maps were calculated as above. Spatial distance between a pair of parcels was 767 
computed as a distance between their centres-of-gravity.  768 
 769 
Group-ICA 770 
 771 
The derivation of group-average modes-of-variation and their subject-specific variants was 772 
performed using the protocol of FSL MELODIC for group-ICA analyses17, including FSL 773 
MELODIC’s Incremental Group Principal component analysis (MIGP step)14, and the standard 774 
procedure of dual regression, implemented in FSL64. The number of derived components 775 
was set to 25, in accordance with the published research in neonates6. 776 
 777 
Maturational modes of variation 778 
 779 
The pipeline for derivation of maturational modes of variation is shown in Fig. 1b. First, a 780 
symmetrical matrix of correlations between each pair of voxels in the brain mask was 781 
calculated, aka “dense connectome”, for each subject separately. Each element of the dense 782 
connectome was fitted across subjects with age as covariate, rendering a voxel-by-voxel 783 
matrix of age-effect beta coefficients. The matrix was then converted into t-values, 784 
rendering maturational dense connectome, subsequently thresholded at 0 in order to 785 
leverage the age-dependent increases in correlations in network estimation. The rationale 786 
for positive thresholding is described in the Results section. In order to perform connectome 787 
factorisation, an intermediate step of dimensionality reduction, analogous to the MIGP14 788 
step of the group-ICA, was applied. For this, the maturational dense connectome (size: N 789 
voxels by N voxels) was split column-wise into 200 blocks (size: N voxels by N voxels/200. At 790 
the initial step, a matrix consisting of the first two blocks was formed and subsequently 791 
reduced to 500 components using singular value decomposition. An iterative procedure was 792 
then run that consisted of concatenating the current matrix of 500 components with a 793 
following block and subsequent reduction to 500 components by SVD, until all blocks were 794 
exhausted. The output of this procedure was used to obtain the final factorisation of 25 795 
components using FSL MELODIC.   796 
 797 
We also considered whether a measure of a global motion (framewise displacement (FD)) 798 
needs to be included as a covariate, given that the motion of older fetuses may be 799 
constrained by their own size and upside-down position. For this, a global measure of frame-800 
wise displacement (FD) was calculated in the following steps. First, a mean of absolute FD for 801 
each motion parameter was calculated across time (altogether 96 values: 6 rotations + 802 
translations times 16 multiband stacks) in each subject. These means were collected into a 803 
144 (number of subjects) x 96 matrix, which was then z-scored across rows (subjects). 804 
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Finally, the first principal component was computed and used as a measure of global 805 
between-subject variation in motion.   806 

We found that a small-effect correlation between age and FD, r = - 0.25. Consequently, we 807 
analysed whether a potential confounding effect of FD alters age-effect statistics in a 808 
spatially varying manner, to which, unlike to a global effect, the ICA factorisation would be 809 
sensitive. An alternative hypothesis is that FD is not an independent factor but alters age-810 
related statistics only because it is collinear with age. For this we considered age-related 811 
changes in interhemispheric connectivity between homologous left and right voxels.  812 
 813 
First, we found that the maps of age-effect statistics computed with and without global FD 814 
as a covariate are highly correlated, r = 0.98. Furthermore, the inclusion of FD as a covariate 815 
resulted in a graded decrease of estimates of age-effect statistics with respect to the 816 
magnitude of the estimated age-effect (spatial correlation between age-effect t-map 817 
calculated without FD as a covariate  and the difference between maps calculated with and 818 
without FD as a covariate : r = - 0.49). In other words, the FD inclusion makes negatively 819 
values less negative and vice versa for positively values. Finally, we note the age effects tend 820 
to be tissue specific, i.e., tended to be more positive in the cortex and more negative in the 821 
white matter (Supplementary Fig. 16), which is not expected if the source of association was 822 
motion. Taking together, the above observations can be explained  based on the hypothesis 823 
of FD-age collinearity, whereas an alternative interpretation presuming an independent 824 
effect of FD entails a complex interaction between tissues, age and motion, for which we do 825 
not have substantial evidence. These considerations serve as a justification for not inclusion 826 
of FD in the downstream modelling. 827 
 828 
Maturational connectome analysis 829 
 830 
The pipeline for derivation of the maturational connectome is shown in Fig. 5a. It consists of 831 
the regression of the maturational networks against the maturational dense connectome in 832 
order to obtain #networks by #voxels matrix of regression coefficients. Correlations between 833 
each pair of rows of the matrix were then estimated, collected into a matrix which 834 
constitutes the maturational connectome. In order to reveal a structure of the whole-brain 835 
maturational relationships, the maturational connectome matrix was embedded into 3-836 
dimensional space using an eigendecomposition of a graph normalised Laplacian. A point in 837 
the embedding space indicates a relative location of a network with respect to other 838 
networks (i.e., a shorter distance means closer maturational ties). A partition of networks 839 
into groups of networks was performed using the Ward method of hierarchical clustering65, 840 
based on the network coordinates in the embedding 3D space.  841 
 842 
Statistics and Reproducibility 843 
 844 
In order to ascertain the robust performance of matnets factorisation, the analysis was 845 
performed  in the neonatal sample, comparing the results to the results of group-ICA. In 846 
fetuses, we ran additional analyses in approximately age-matched (mean age: 30.50 (3.23) 847 
and 30.42 (3.50), t (142) = 0.14, p = .89, two-tailed) split-half samples. 848 
 849 
 850 
 851 
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