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Abstract 20 

 21 

Intravital microscopy has revolutionized live cell imaging by allowing the study of spatial-temporal cell 22 

dynamics in living animals. However, the complexity of the data generated by this technology has limited 23 

the development of effective computational tools to identify and quantify cell processes. Amongst them, 24 

apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. 25 

Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of 26 

its spatial-temporal regulation. However, at present, no computational method can deliver label-free 27 

detection of apoptosis in microscopy time-lapses. To overcome this limitation, we developed ADeS, a 28 

deep learning-based apoptosis detection system that employs the principle of activity recognition. We 29 

trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in 30 

vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art 31 

solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic 32 

events in full microscopy time-lapses, surpassing human performance in the same task. We 33 

demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, 34 

and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage 35 

in vivo, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory 36 

dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and 37 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

mailto:santiago.gonzalez@irb.usi.ch
https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

2 

quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing 38 

insights into the complex spatial-temporal regulation of this process. 39 

  40 

 41 

Keywords: Apoptosis; Deep Learning, Transformers, Cell death, Intravital 2-photon microscopy; 42 

Bioimaging Analysis; Artificial Intelligence; Activity Recognition; Computer Vision; Spatial-temporal 43 

Dinamics.  44 

 45 

1. Introduction 46 

 47 

In the last two decades, Intravital microscopy (IVM) has revolutionized live-cell imaging by enabling 48 

microscopy acquisitions in situ across different organs, making it one of the most accurate model to 49 

describe cellular activities within a living host(Sumen et al. 2004). In particular, multiphoton intravital 50 

microscopy (MP-IVM) generates in-depth 3D data that encompass multiple channels for up to several 51 

hours of acquisition (x,y,z + t)(Secklehner, Celso, and Carlin 2017; Helmchen and Denk 2005; 52 

Rocheleau and Piston 2003), thus providing unprecedented insights into cellular dynamics and 53 

interactions(Pizzagalli et al., n.d.). The resulting MP-IVM data stream is a complex and invaluable 54 

source of information, contributing to enhance our understanding of several fundamental 55 

processes(Beltman et al. 2009; Sumen et al. 2004).  56 

 57 

Apoptosis is a form of regulated cell death(D’Arcy 2019; D. Tang et al. 2019) which plays a crucial role 58 

in several biological functions, including tissue homeostasis, host protection, and immune 59 

response(Opferman 2008). This process relies on the proteolytic activation of caspase-3-like 60 

effectors(Shalini et al. 2015), which yields successive morphological changes that include cell 61 

shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing(Galluzzi et al. 2018; 62 

Elmore 2007; Saraste and Pulkki 2000), and finally, apoptotic bodies formation(Coleman et al. 2001). 63 

Due to its crucial role, dysregulations of apoptosis can lead to severe pathological conditions, including 64 

cronic inflammatory diseases and cancer(Hotchkiss and Nicholson 2006; Fesik 2005). Consequently, 65 

precise tools to identify and quantify apoptosis in different tissues are pivotal to gain insights on this 66 

mechanism and its implications at the organism level. 67 

 68 

Traditional techniques to quantify apoptosis rely on cellular staining on fixed cultures and tissues(Loo 69 

2011; Kyrylkova et al. 2012; Atale et al. 2014; Vermes et al. 1995; Sun et al. 2008) or flow 70 

cytometry(Darzynkiewicz, Galkowski, and Zhao 2008; Vermes et al. 1995). However, these methods 71 

do not allow the temporal characterization of the apoptotic process. Moreover, they potentially introduce 72 

artifacts caused by sample fixation(Schnell et al. 2012). Live-cell imaging can overcome these limitation 73 

by unraveling the dynamic aspects of apoptosis with the aid of fluorescent reporters, such as Annexin 74 

staining(Atale et al. 2014) or the activation of Caspases(Takemoto et al. 2003). However, the use of 75 

biochemical reporters in vivo could potentially interfere with physiological functions or lead to cell 76 
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toxicity(Jensen 2012). For these reasons, label-free detection of apoptosis represent a critical 77 

advancement in the field of cell death.  78 

 79 

Computational methods could address this need by automatically detecting individual apoptotic cells 80 

with high spatial and temporal accuracy. In this matter, deep learning (DL) and activity recognition (AR) 81 

could provide a playground for the classification and detection of apoptosis based on morphological 82 

features(Poppe 2010). Accordingly, recent studies showed promising results regarding the 83 

classification of static frames(Kranich et al. 2020; Verduijn et al. 2021) or time-lapses(Mobiny et al. 84 

2020) portraying single apopotic cells. However, none of the available methods can apply for the 85 

detection of apoptosis in microscopy movies depicting multiple cells. Therefore we developed ADeS, a 86 

novel apoptosis detection system which employs a transformer DL architecture and computes the 87 

location and duration of multiple apoptotic events in live-cell imaging. Here we show that our 88 

architecture outperforms state-of-the-art DL techniques and efficiently detects apoptotic events in a 89 

broad range of imaging modalities, cellular staining, and cell types. 90 

 91 

2. Results 92 

2.1. An in vitro and in vivo live-cell imaging data. Curated and high-quality datasets containing 93 

numerous instances of training samples are critical for developing data-hungry methods such as 94 

supervised DL algorithms(Adadi 2021). To this end, we generated two distinct datasets encompassing 95 

epithelial cells (in vitro) and leukocytes (in vivo) undergoing apoptotic cell death. In addition, the two 96 

datasets include different imaging modalities (confocal and intravital 2-photon), biological models, and 97 

training-set dimensionalities. A meaningful difference between the datasets pertains to the staining 98 

methods and the morphological hallmarks, which define the apoptotic process in both models. In the in 99 

vitro model, the expression of nuclear markers allowed us to observe apoptotic features such as 100 

chromatin condensation and nuclear shrinkage(Saraste and Pulkki 2000), whereas in the in vivo model, 101 

cytoplasmic and membrane staining highlighted morphological changes such as membrane blebbing 102 

and the formation of apoptotic bodies(Saraste and Pulkki 2000). Accordingly, we have manually 103 

annotated these datasets based on the presence of the specific hallmarks, ensuring that each dataset 104 

includes two class labels depicting either apoptotic or non-apoptotic cells. These two datasets constitute 105 

the first step toward creating, testing, and validating our proposed apoptosis detection routine. 106 

 107 

To generate the in vitro dataset we used epithelial cells because, among the human tissues, they have 108 

the highest cellular turnover driven by apoptosis(Van Der Flier and Clevers 2009). Nevertheless, from 109 

the bioimaging perspective, the epithelium is a densely packed tissue with almost no extracellular 110 

matrix, making it extremely challenging to analyze. As such, in epithelial research, there is a pressing 111 

need for computational tools to identify apoptotic events automatically. To this end, we imaged and 112 

annotated the human mammary epithelial cells expressing a nuclear fluorescent marker (Fig.1A), 113 

obtaining 13120 apoptotic nuclei and 301630 non apoptotic nuclei image sequences (Fig. 1B-C, 114 

Supplementary 1A). Nuclear shrinkage and chromatin condensation, two of the most prototypical 115 

hallmarks of apoptosis (Fig. 1C), formed our criteria for manual annotation. We confirmed that non-116 
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apoptotic nuclei had constant area and chromatin density from the generated time-lapses. In contrast, 117 

apoptotic nuclei underwent a decrease in area and an increase in chromatin condensation (Fig. 1D). 118 

The resulting dataset captured the heterogeneity of apoptotic cells in epithelial tissue, including early 119 

nuclear fragmentation, a rapid shift along the x and y axes, and extrusion through the z dimension 120 

(Supplementary Fig. 1B–C). Moreover, our dataset incorporates the typical difficulties of automatically 121 

annotating apoptotic events from live microscopy of a densely packed tissue (Supplementary Fig. 1D) 122 

with the accumulation of apoptotic bodies (Supplementary Fig. 1E) and across multiple microscope 123 

hardware settings (Supplementary Fig. 1F).  124 

 125 

To generate an in vivo dataset, we focused on polymorphonucleated leukocytes (neutrophils and 126 

eosinophils) that expressed a fluorescent marker. In these early immune responders, apoptosis is a 127 

crucial process that orchestrates their disposal, consequently determining the duration of the 128 

inflammation(Fox et al. 2010). To acquire instances of apoptotic leukocytes, we performed MP-IVM in 129 

anesthetized mice by surgically exposing either the spleen or the popliteal lymph node (Fig. 1E-F). The 130 

resulting time-lapses (Fig. 1G) provided 3D imaging data encompassing consecutive multi-focal planes 131 

(3D) and multiple imaging channels. Then, from the generated MP-IVM movies, we generated cropped 132 

sequences of fixed size that tracked apoptotic cells for the duration of their morphological changes 133 

(59x59 pixels + time; Fig. 1H-I). This procedure was applied to 30 MP-IVM movies, generating 120 134 

apoptotic sequences (supplementary Fig. 1G). Furthermore, we annotated random instances of non-135 

apoptotic events, generating 535 cropped samples. To characterize the heterogeneity of the movies, 136 

we manually quantified the cell number per field of view (87 ± 76), the shortest distance between cells 137 

(21.2 M ± 15.4), and the signal-to-noise ratio (8.9 ± 3.6; supplementary Fig. 1 H–J). We assumed that 138 

the morphological changes associated with apoptosis occur within defined time windows for detection 139 

purposes. Hence, we estimated the median duration of the morphological changes corresponding to 8 140 

frames (supplementary Fig. 1K–L, respectively). In addition, to classify apoptotic cells within defined 141 

spatial regions, we considered them to be non-motile. This assumption was confirmed when we found 142 

that apoptotic cells exhibited a displacement and speed that were not significantly different from those 143 

of arrested cells (supplementary Fig. 1M).  144 

 145 

2.2. ADeS, a pipeline for apoptosis detection. Detecting apoptosis in live-cell imaging is a two-step 146 

process involving the correct detection of apoptotic cells in the movies (x,y) and the correct estimation 147 

of the apoptotic duration (t). To fulfill these requirements, we designed ADeS as a set of independent 148 

modules assigned to distinct computational tasks (Fig. 2). As an input, ADeS receives a 2D 149 

representation of the microscopy acquisitions (Fig. 2A) obtained from the normalization of 2D raw data 150 

or the maximum projection of 3D data(Shi et al. 2015). This processing step ensures the standardization 151 

of the input, which might differ in bit depth or acquisition volume. After that, we employ a selective 152 

search algorithm(Girshick 2015; Uijlings et al. 2013) to compute regions of interest (ROIs) that might 153 

contain apoptotic cells (Fig. 2B). For each ROI at time (t), ADeS extracts a temporal sequence of n 154 

frames ranging from t - n/2 to t + n/2 (Fig. 2C). The resulting ROI sequence is standardized in length 155 

and passed to a DL classifier (Fig. 3), which determines whether it is apoptotic or non-apoptotic. Finally, 156 
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each apoptotic sequence is depicted as a set of bounding boxes and associated probabilities (Fig. 2D) 157 

generated from the predicted trajectories (x, y, t, ID; Fig. 2E). From this readout, ADeS can generate a 158 

heatmap representing the likelihood of apoptotic events throughout a movie (Fig. 2F, left), together with 159 

a cumulative sum of the predicted cell deaths (Fig. 2F, right). 160 

 161 

For the classification of apoptotic sequences, we proposed a Conv-Transformer architecture (Fig. 3). In 162 

the proposed architecture, a convolutional module extracts the spatial features of the apoptotic cells, 163 

whereas attention-based nlocks evaluates the temporal relationship between consecutive frames.  164 

 165 

2.3. Training and deployment in vitro. As previously described, ADeS is a multiple-block pipeline, 166 

and its application and validation to detect apoptotic cells in live-cell imaging follow two main steps: (1) 167 

the training of the DL classifier with a target dataset and (2) its deployment on live-cell imaging 168 

acquisitions. As opposed to in vivo acquisitions, in vitro time-lapses are more homogeneous in their 169 

content and quality, thus representing the first dataset in order of complexity for the training of ADeS. 170 

For this reason, we formulated the learning problem as a binary classification task that assigned non-171 

apoptotic sequences to the class label 0 and apoptotic sequences to the class label 1 (Supplementary 172 

Fig. 2A). The class label 0 included instances of healthy nuclei and nuclei undergoing mitotic division 173 

(which can resemble apoptotic events).  174 

 175 

Successively, to validate the proposed Conv-Transformer architecture for apoptosis classification, we 176 

compared it with the performances of a CNN, a 3DCNN, and a Conv-LSTM. To this end, the four models 177 

were trained on a dataset containing 13.120 apoptotic and 13.120 non-apoptotic events, using a 0.12 178 

validation split (Table 1). Results show that the frame accuracy of the CNN is low, possibly due to 179 

morphological heterogeneity over consecutive frames, and therefore unsuitable for the task. By 180 

contrast, the 3DCNN and the Conv-LSTM displayed high sequence accuracy, F1 score and AUC, 181 

confirming that the temporal information within frames is pivotal to correctly classifying image 182 

sequences containing apoptotic cells. Nonetheless, the proposed Conv-Transformer outperformed both 183 

the 3DCNN and the Conv-LSTM, establishing itself as the final DL architecture at the chore of ADeS.  184 

 185 

Successively, we deployed a preliminary trained network on control movies withouth apoptotic events 186 

to collect false positives that we used to populate the class label 0, thus ensuring a systematic decrease 187 

in the misclassification rate (Supplementary Fig. 2B). Using the latter generated dataset, we trained the 188 

Conv-Transformer for 100 epochs using an unbalanced training set with a 1:10 ratio of apoptotic to non 189 

apoptotic cells (Fig. 4A). After deploying the trained model on 1000 testing samples, the confusion 190 

matrix (Fig. 4B) displayed a scant misclassification rate (2.68%), similarly distributed between false 191 

positives (1.04%) and false negatives (1.64%). Accordingly, the receiver operating characteristic (ROC) 192 

of the model skewed to the left (AUC = 0.99, Fig. 4C). This skew indicates a highly favorable tradeoff 193 

between the true positive rate (TPR) and false positive rate (FPR), which the overall predictive accuracy 194 

of 97.32% previously suggested (Fig. 4B). Altogether, these metrics suggest an unprecedented 195 

accuracy of the DL model in the classification of apoptotic and non-apoptotic sequences. However, they 196 
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only reflect the theoretical performances of the classifier applied to cropped sequences depicting a 197 

single cell at a time. 198 

 199 

To validate ADeS on full-length microscopy acquisitions, we deployed it on six testing movies that were 200 

not part of the training set. Each testing movie had been annotated manually and contained a variable 201 

number of ground-truth apoptosis (98 ± 21) and a comparable cell density (1705 ± 124). Moreover, all 202 

movies had identical magnification (20x), duration (21 h), and sampling rate (5 min). In order to test 203 

ADeS on these movies, we adopted an unbiased approach and we did not hard-tune the hyper-204 

parameters of the model (see Material and Methods), specifying only a stringent confidence threshold 205 

(0.995) and a temporal window based on the average duration of the nuclear hallmarks (9 frames). As 206 

a result, ADeS could predict the location and timing of the apoptotic nuclei (Fig. 4D, Supplementary 207 

Movie 1), enabling the detection of multiple apoptoses in a densely packed field of view (Fig. 4E–F). To 208 

quantify these performances, we compared the prediction of ADeS to the annotated ground truths 209 

(x,y,t). By doing this, we found that the average TPR, or sensitivity, was 82.01% (ranging from 77% to 210 

92%), while the average FPR was 5.95% (Fig. 4G). The undetected apoptotic events were likely a 211 

consequence of the heterogeneity of nuclear fragmentation, which can vastly differ in signal intensity, 212 

size, focal plane, and duration (Supplementary Fig.1). Nonetheless, hard tuning the model could further 213 

increase the sensitivity without additional training data, such as by adjusting the temporal interval or by 214 

lowering the confidence threshold. With respect to the false positives, most were mitotic cells, due to 215 

their morphological similarities with aoptotic nuclei. Nevertheless, the FPR was contained, translating 216 

into a new false positive every 4 frames (or 20 minutes of acquisition). This rate confirmed that ADeS 217 

is overall robust, especially in light of movies depicting 1700 cells per frame. 218 

 219 

Concerning the spatial-temporal dynamics, the apoptotic count over time highlighted a tight relationship 220 

between ground truth apoptosis and correct detections of ADeS (Fig. 4H). Accordingly, the two curves 221 

were divergent but highly correlative (Pearson r = 0.998), proving that ADeS can successfully capture 222 

cell death dynamics. A 2D scatterplot (x, y, t = radius; Fig. 4I) visually depicted the spatial-temporal 223 

proximity between ADeS and the ground truth, indicating overlap between the two scatter populations. 224 

Nearest neighbor (NN) analysis further captureed this relationship; the average distance between all 225 

ADeS predictions (true positives + false positives) and the NN in the ground truth was 30 pixels. In 226 

contrast, randomly generated predictions had a ground truth NN within a 52-pixel radius (Fig. 4J). 227 

Considering instead the true positives only, we observed that they were in close spatial proximity to the 228 

ground truth, with most predictions falling within a 20-pixel radius (Fig. 4K). The difference between the 229 

predicted timing of apoptosis and the one annotated in the ground truth was also slight, with an average 230 

discard of 3.46 frames (Fig. 4L). Interestingly, ADeS showed a bias toward late detections, which is 231 

explained considering that operators annotated the beginning of the apoptosis, whereas ADeS learned 232 

to detect nuclear disruption, occurring at the end of the process. Altogether, these quantifications 233 

indicate that ADeS detects apoptotic nuclei with high spatial and temporal accuracy, establishing a 234 

novel comparative baseline for this task. 235 

  236 
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2.4. 3D rotation of the in vivo dataset. Upon the successful application of ADeS in vitro, the next step 237 

in complexity was detecting apoptosis in vivo time lapses. The latter is inherently more challenging due 238 

to different factors, including high background signal, autofluorescence, and the presence of 239 

collagen(Pizzagalli et al. 2018), among others. For this purpose, we re-trained ADeS using the in 240 

vivo data described in Figure 1. However, one of the main limitations of supervised DL is the need for 241 

large datasets, and the finite number of MP-IVM acquisitions and apoptotic instances represented a 242 

bottleneck for the training of ADeS. To overcome this limitation, we implemented a custom data 243 

augmentation strategy that exploits 3D volumetric rotations, as previously performed in other studies 244 

(Zhuang et al. 2019; Xu, Li, and Zhu 2020). Accordingly, each 3D apoptotic sequence underwent 245 

multiple spatial rotations and was successively projected in 2D (Fig. 5A). This procedure enabled us to 246 

increase the dataset of a 100 fold factor withouth introducing imaging artifacts, as each volume rotation 247 

was a physiological representation of the cell (Fig. 5B). 248 

2.5. Training and deployment in vivo. To train ADeS using the latter rotated in vivo dataset, we 249 

defined a binary classification task in which ROIs containing apoptotic cells were assigned to the class 250 

label 1. In contrast, all remaining ROIs, including healthy cells and background elements, were assigned 251 

to the class label 0 (Supplementary Fig. 3A). Subsequently, we trained the DL classifier for 200 epochs. 252 

Finally, we performed 5-fold cross-validation according to the ID of the movies (Fig. 6A). The resulting 253 

confusion matrix demonstrated a classification accuracy of 97.80% and a 2.20% missclassification rate 254 

that is primarily due to type II error (1.80% false negatives) (Fig. 6B). Analogous to the tests in vitro, 255 

classification in vivo proved highly effective in predicting apoptotic and non-apoptotic instances. The 256 

ROC of the model, which indicated high sensitivity and a low FPR, supported this favorable result (Fig. 257 

6C).  258 

We then benchmarked ADeS in the detection task performed on a set of 23 MP-IVM acquisitions of 259 

immune cells undergoing apoptosis. Unlike in vitro settings, in vivo acquisitions displayed high variability 260 

in cell number, auto-fluorescence, signal intensity, and noise levels (Supplementary Fig. 3B). Still, ADeS 261 

correctly predicted the location and timing of cells undergoing apoptosis (Fig. 6H, Supplementary Movie 262 

2), indicating its robustness to increasingly populated fields of view (Supplementary Fig. 3C). In addition, 263 

we successfully applied the pipeline to neutrophils imaged in the lymph node (Fig. 6D) and eosinophils 264 

in the spleen (Fig. 6E). By comparing ADeS predictions with the annotated ground truths, we found that 265 

our pipeline detected apoptotic events with a TPR of 81.3% and an FPR of 3.65% (Fig. 6F). The 266 

detections, provided in the form of bounding boxes and trajectories, indicated the coordinates and 267 

duration of the events. Hence, to measure how close they were to the annotated trajectories, we 268 

employed the tracking accuracy metric (TRA), a compound measure that evaluates the similarities 269 

between predicted and ground truth trajectories. The average TRA was above 0.9, indicating the high 270 

fidelity of the trajectories predicted by ADeS (Fig. 6G).  271 

Next, we compared ADeS to human annotation performed by three operators on five testing movies. 272 

As a result, ADeS displayed an upward trend of the TPR and a downward trend of the FPR. However, 273 

we found no significant difference in the TPR and FPR (Fig. 6H). Regardless, ADeS performances 274 
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appeared to be distributed across two distinct groups: a large group with an average sensitivity of 100% 275 

and a smaller group with an average sensitivity of 53% (Fig. 6H). To understand this discrepancy, we 276 

applied hierarchical clustering to the testing videos according to their imaging properties and biological 277 

content (Fig. 6I), thus generating two major dendrograms. The first dendrogram mostly contained videos 278 

with reduced sensitivity (yellow) and was defined by a high cell number, high noise levels, short cell 279 

distance, and a saturated and fluctuating image signal. Most notably, the cell number played a crucial 280 

role in overall performance, as reflected in the fact that an increment of this parameter resulted in a 281 

pronounced decrease in the TPR and a moderate increase in the FPR (Fig. 6J). Incidentally, the positive 282 

predictive value (PPV) was significantly lower in videos with poor SNR and, although not statistically 283 

significant, the PPV was lower when the signal standard deviation was higher (Fig. 6K). Following these 284 

observations, we hypothesized that the quality of a movie predicts ADeS performance. Hence, we 285 

combined the parameters highlighted by the clustering analysis (Fig. 6I) into a single score ranging from 286 

zero to one (one indicating the highest and ideal score) and, in doing so, found there to be a weak 287 

correlation between the video quality and the sensitivity of ADeS (Fig. 6L). However, this trend was 288 

evident only when we considered videos with suboptimal sensitivity; indeed, in these cases, we found 289 

a strong correlation (0.72), confirming that the video quality partially explains the observed 290 

performances (Fig. 6M). 291 

 292 

Finally, we evaluated how the biological variability in vivo could affect the readout of ADeS, defining 293 

nine distinct biological categories, including apoptotic cells, healthy cells, and background elements. 294 

For all biological categories, the classification accuracy was above 80%, except for overlapping cells 295 

and cells with high membrane plasticity (Supplementary Fig. 3D).  296 

 297 

2.6. Comparison with the state-of-the-art. To compare the performance of ADeS with other state-of-298 

the-art algorithms for cell death quantification, we conducted a comprehensive literature review. For 299 

each study, we reported the attained classification accuracy, the experimental setup, the architecture 300 

of the classifier, the capability of detecting cell death events in movies, and the number of cell deaths 301 

in the training set (Table 2). Initial results indicate that ADeS achieved the highest classification 302 

accuracy, but a direct comparison in terms of accuracy is not meaningful due to the differences in 303 

datasets, including distinct cell types, different types of cell death, and varying dataset sizes. For a more 304 

appropriate benchmark, we refer to Table 1, which shows that our classifier outperformed the baseline 305 

re-implementations of the main classifiers used in other studies. 306 

 307 

From Table 2, we observe that ADeS is the only algorithm for cell death quantification that has been 308 

applied in vivo. Additionally, only ADeS and the study by Vicar and colleagues(Vicar et al. 2020) 309 

effectively detected apoptotic cells in fully uncropped microscopy movies, which is a significant 310 

achievement given the computational challenge associated with the task. However, Vicary and 311 

colleagues relied on the temporal analysis of cell trajectories, while ADeS used vision-based methods 312 

to directly analyze consecutive frames of a movie. As a result, ADeS offers a comprehensive and 313 
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pioneering pipeline for effectively applying vision-based classifiers to detect cell death in imaging time-314 

lapses. 315 

 316 

2.7. Applications for toxicity assay in vitro. A common application of cell death staining is the 317 

evaluation of the toxicity associated with different compounds(Schmid, Uittenbogaart, and Jamieson 318 

2007; Atale et al. 2014) or the efficacy of an apoptotic-inducing treatment. Here, we show that ADeS 319 

has analogous purposes and can effectively quantify the toxicity of different compounds in vitro. For 320 

this application, we grew epithelial cells in vitro, treating them with PBS and three increasing 321 

concentrations of doxorubicin, a chemotherapeutic drug that elicits apoptosis in the epithelium(Eom et 322 

al. 2005). Epithelial cells were seeded with the same density of cells per well, and all four conditions 323 

had the same confluence before the treatment. However, at 24 h. post-acquisition, the number of 324 

survivor cells was inversely proportional to the doxorubicin concentration (Fig. 7A). We confirmed this 325 

trend using ADeS (Supplementary Movies 3–6), which measured the lowest mortality after 24 h. in PBS 326 

(62 cells), followed by doxorubicin concentrations of 1.25 μM (95 cells), 2.50 μM (167 cells), and 5.00 327 

μM (289 cells). Moreover, ADeS predicted distinct pharmacodynamics (Fig. 7B), which can define the 328 

drug concentration and experimental duration required to reach a specific effect in the apoptotic count. 329 

To this end, each time point in Figure 7B also defines a dose-response relationship. Here we provide 330 

two dose-responses curves at 5 h. and 24 h. post-treatment, showing different pharmacodynamics 331 

(EC50 5h = 2.35, Hill slope 5h = 3.81, EC50 24h = 4.47, Hill slope 24h = 1.93, Fig. 7C–D). Notably, the 332 

fit can project the dose-responses for higher drug concentrations, predicting the maximum effect size 333 

at a given time. For instance, at 24 h. post treatment, a 10 μM titration attains 86% of the maximum 334 

effect (456 apoptotic cells), whereas a further increase in the concentration of the drug leads only to a 335 

moderate increase of the toxicity (Fig. 7E). We argue that this approach helps to maximize the effect of 336 

a drug on a designated target, while minimizing collateral damage done to non-target cells. For instance, 337 

in chemotherapies employing doxorubicin, apoptosis of epithelial cells is an undesired effect. Therefore, 338 

researchers can select a titration of the drug and a duration of the treatment that does not affect the 339 

epithelium yet still positively affects the tumor. Finally, we also demonstrated the reproducibility of the 340 

toxicity assay by targeting another cell type (T-cells) treated with a different apoptotic inducer 341 

(staurosporine, Supplementary Fig. 4). 342 

 343 

2.8. Measurement of tissue dynamics in vivo. To test the application of ADeS in an in vivo setting, 344 

we applied it to study the response of bystander cells following apoptotic events in the lymph nodes of 345 

mice treated with an influenza vaccine. We computed the spatial and temporal coordinates of a 346 

neutrophil undergoing apoptosis (Fig. 8A), which, combined with the tracks of neighboring cells, allowed 347 

us to characterize cellular response patterns following the apoptotic event. Among other parameters, 348 

we observed a sharp decrease in the distance between the neighboring cells and the apoptotic centroid 349 

(Fig. 8B) in addition to a pronounced increase in the instantaneous speed of the cells (Fig. 8C). 350 

 351 

Successively, we evaluated the detection of apoptotic cells following laser ablation in the spleen of an 352 

anesthetized mouse (Fig. 8D). Previous research has employed this method to study immune cell 353 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

10 

responses to tissue damage(Uderhardt et al. 2019). The insult caused prompt recruitment of 354 

neutrophils, leading to the formation of a local swarm (Fig. 8E, left). After that, the neutrophils within the 355 

swarm underwent apoptotic body formation in a coordinated manner (Fig. 8E, right). To quantify this 356 

event, we processed the generated time-lapse with ADeS, resulting in a probability map of apoptotic 357 

events throughout the acquisition (x,y,t,p; Fig. 8F). Accordingly, the location with the highest probability 358 

corresponded to the area damaged by the laser, while the visual representation of the probability map 359 

enabled us to infer the morphology and location of the swarm. This result demonstrates the potential 360 

application of ADeS in digital pathology, showing how the distribution of apoptotic events throughout 361 

the tissue can identify areas enriched by cell death events. 362 

 363 

3. Discussion 364 

Automated bio-image analysis obviates the need for manual annotation and avoids bias introduced by 365 

the researcher. In this regard, recent studies showed the promising usage of DL to classify static 366 

images(Verduijn et al. 2021; Jimenez-Carretero et al. 2018; Kranich et al. 2020) or time-lapses 367 

containing single apoptotic cells(Mobiny et al. 2020). However, these approaches are unsuitable for 368 

microscopy time-lapses because they do not address two fundamental questions: the location, over the 369 

whole field of view, at which an event occurs, and its duration. These questions define a detection 370 

task(Zhao et al. 2019) in space and time, which has a computational cost that can rapidly grow with the 371 

size and lenght of a movie. Moreover, live-cell imaging data present specific challenges which further 372 

increase the difficulty of detection routines, including densely packed fields of view, autofluorescence, 373 

and imaging artifacts(Pizzagalli et al. 2018).  374 

Consequently, computational tools to effectively detect apoptotic events in live-cell imaging remained 375 

unavailable. Thus, we created an apoptosis detection pipeline that could address the abovementioned 376 

challenges in vitro and in vivo. In this regard, ADeS represents a crucial bridge between AR and 377 

bioimaging analysis, being the first apoptosis detection routine with demonstrated applicability to full 378 

microcopy time-lapses. In addition, we presented two comprehensive and curated datasets 379 

encompassing multiple cell types, fluorescent labels, and imaging techniques to encourage 380 

reproducibility and foster the development of apoptosis detection routines. 381 

In human activity recognition benchmark, 3DCNNs(Vrskova et al. 2022), two-streams networks(Ye et 382 

al. 2019), and RNNs(Mohd Noor, Tan, and Ab Wahab 2022) have proved to score the highest accuracy 383 

on most kinetic datasets(Ullah et al. 2021). However, in most studies for the classification of apoptosis, 384 

authors unanimely employed RNNs such as Conv-LSTMs. This choice, although produced valid results, 385 

is not necessarily optimal for the task. In this regard, Ullah and colleagues highlighted that the 386 

performances of different DL architectures are highly dependent on the AR dataset(Ullah et al. 2021). 387 

Therefore, selecting the most suitable one is only possible after an extensive benchmark. In our 388 

comparison, we demonstrated for the first time that attention-based networks are suitable for the 389 

classification and detection of apoptotic events. Accordingly, our Conv-Transformer network 390 

outperformed DL architectures previously employed in other studies, including 3DCNNs and RNNs. 391 
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This result established a landmark in the application of attention-based networks in AR for live-cell 392 

imaging. Moreover, it suggests the possible benefits of employing transformers for the classification of 393 

different biological activities other than cell death.  394 

Similar to most diagnostic tools, ADeS displayed a tradeoff between sensitivity (TPR) and specificity (1 395 

- FPR), which is a known challenge in binary classification(Pang et al. 2021). This tradeoff can be 396 

attributed to the fact that apoptosis is rare in normal physiological conditions, leading to a high degree 397 

of class imbalance during training. As a result, the choice of the training set had a significant impact on 398 

the performances of ADeS. For instance, we highlighted the importance of a training and validation set 399 

that included challenges related to real live-cell imaging acquisitions, such as overlapping cells and low 400 

signal-to-noise samples. Including these challenges instances enabled ADeS to attain low 401 

misclassification rate and robust real-life performanes. Nonetheless, we observed residual 402 

misclassifications due to shared similarities between healthy and apoptotic cells. For instance, in vitro 403 

mitotic divisions could mislead the detection of apoptotic nuclei, while in vivo, overlapping cells were 404 

sometimes mistaken for apoptotic cells. Therefore, to effectively address these challenges, it is crucial 405 

to implement strategies to increase the representativeness of the dataset, such as integrating multiple 406 

data sources and data augmentation techniques.  407 

From a biological perspective, ADeS has multiple applications in fundamental and clinical research. 408 

Among other advantages, it can provide insights into pivotal cell death mechanisms, monitor the 409 

therapies used to modulate apoptosis in various diseases and characterize the toxicity of different 410 

compounds. In this regard, ADeS readout is analogous to standard fluorescent probes for apoptosis 411 

detection, with the advantage that it can be applied directly to nuclear or cytoplasmic staining without 412 

the need of additional fluorescent reporters. Therefore, ADeS avoids using any additional acquisition 413 

channel, which can be used for multiplexing purposes. Moreover, common probes(Loo 2011; Kyrylkova 414 

et al. 2012; Atale et al. 2014; Vermes et al. 1995; Sun et al. 2008) flag early apoptosis stages, activated 415 

up to several minutes before the point at which morphological changes in the cell(Green 2005; 416 

Takemoto et al. 2003); meanwhile, these cells can reverse the apoptotic process (Masri and 417 

Chandrashekhar 2008; Geske et al. 2001; H. L. Tang et al. 2009). By contrast, ADeS indicates the 418 

exact instant of cell disruption, thus adding specificity to the spatial-temporal dimension. For these 419 

reasons, we suggest that ADeS can complement the information provided by classic apoptotic 420 

biomarkers, which will prove advantageous in experimental assays where the temporal resolution 421 

delivers more information than the sole apoptotic count. Moreover, ADeS can be usefully applied in 422 

processing high-throughput live-cell imaging, minimizing annotation time and research bias. 423 

Finally, in tissue dynamics the spatial-temporal activity of cells can reveal connections between 424 

signaling pathways and the fate decision of individual cells, such as mitosis or apoptosis(Gagliardi et 425 

al. 2021). These intricate systems can display complex dynamics, which can be better comprehended 426 

incorporating spatial and temporal coordinates provided by ADeS. Consequently, we propose that 427 

integrating these spatial-temporal characteristics with experimental observations could lay the 428 

groundwork for understanding the mechanism governing complex signaling pathways. Furthermore, we 429 
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contend that this information has the potential to facilitate the development of predictive models, 430 

establishing a correlation between specific cell death dynamics and the underlying stimuli. This, in turn, 431 

could serve as the foundation for innovative diagnostic tools capable of inferring the cause of cell death. 432 

In conclusion, ADeS constitutes a novel solution for apoptosis detection that combines state-of-the-art 433 

microscopy and DL. Its successful implementation represents a step towards the general application of 434 

AR methods to live-cell imaging. By bridging these two distinct fields, ADeS leverages succesfully the 435 

benefits of automated routines. Further work could expand the proposed pipeline to encompass diverse 436 

cell populations, various types of cell death, and potentially broader cellular activities. 437 

4. Material and methods 438 

4.1. MCF10A cell line and image acquisition. The normal-like mammary epithelial MCF10A cells 439 

(provided by Joan Brugge(Debnath, Muthuswamy, and Brugge 2003)), stably expressing the nuclear 440 

marker, were generated as previously described(Gagliardi et al. 2021). Briefly, the nuclear marker H2B-441 

miRFP703, provided by Vladislav Verkhusha (Addgene plasmid # 80001)(Shcherbakova et al. 2016), 442 

was subcloned in the PiggyBac plasmid pPBbSr2-MCS. After cotransfection with the transposase 443 

plasmid(Yusa et al. 2011), cells were selected with 5 µg/ml Blasticidin and subcloned. For time-lapse 444 

imaging, the cells were seeded on 5 µg/ml fibronectin (PanReac AppliChem) coated 1.5  glass-bottom 445 

24 well plates (Cellvis) at 1 x 105 cells/well density. After 48 hours, when the optical density was 446 

reached, the confluent cell monolayer was acquired every 1 or 5 minutes for several hours with a Nikon 447 

Eclipse Ti inverted epifluorescence microscope with 640nm LED light source, ET705/72m emission 448 

filter and a Plan Apo air 203 (NA 0.8) or a Plan Apo air 403 (NA 0.9) objectives. The collection of 449 

biological experiments used in this study includes different stimulation of apoptosis, such as growth 450 

factors, serum starvation and doxorubicin at various concentrations. 451 

4.2. Apoptosis induction of MCF10A cells with doxorubicin. Normal-like mammary epithelial 452 

MCF10A cells were grown in 24 well glass coated with fibronectin with a seeding of 1x105 cells/well. 453 

After two days, cells were starved for three hours and treated with doxorubicin at 1.25, 2.50, and 5.00 454 

μM concentrations. 455 

4.3. Mice. Prior to imaging, mice were anesthetized with a cocktail of Ketamine (100 mg/Kg) and 456 

Xylazine (10 mg/Kg) as previously described(Sumen et al. 2004). All animals were maintained in 457 

specific pathogen-free facilities at the Institute for Research in Biomedicine (Bellinzona, CH). All the 458 

experiments were performed according to the regulations of the local authorities and approved by the 459 

Swiss Federal Veterinary Office. 460 

 461 

4.6. Intravital Two-Photon Microscopy. Surgery in the popliteal lymph node was performed as 462 

previously reported(Miller et al. 2004). The exposed organs were imaged on a custom up-right two-463 

photon microscope (TrimScope, LaVision BioTec). Probe excitation and tissue second-harmonic 464 

generation (SHG) were achieved with two Ti:sapphire lasers (Chamaleon Ultra I, Chamaleon Ultra II, 465 
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Coherent) and an optical oscillator that emits in the 1,010–1,340 nm range (Chamaleon Compact OPO, 466 

Coherent) and has an output wavelength between 690–1,080 nm.  467 

 468 

4.5. Neutrophil isolation from mouse bone marrow. Bone marrow samples were extracted via 469 

flushing with PBS from the long bones of UBC-GFP mice (https://www.jax.org/strain/004353). Then, the 470 

bone marrow was filtered through a 40um strainer and resuspended in PBS. Primary bone marrow 471 

neutrophils were isolated with Ficoll gradient and resuspended in PBS. 472 

 473 

4.6. T-cell culture in a 3D collagen matrix. Human CD4+ T cells were isolated from the PBMC fraction 474 

of healthy donors obtained from NetCAD (Canadian Blood Services). Cell purity was above 95%. Naïve 475 

CD4+ T cells were activated by adding Dynabeads coated with anti-human CD3e/CD28 antibody (1:1 476 

bead:cell ratio, Life Technologies Cat #11131D) in RPMI1640 supplemented with 10% FBS (VWR 477 

Seradigm Cat #1500-500), 2 mM GlutaMAX (Gibco Cat #3050-061), 1mM sodium pyruvate (Corning 478 

Cat #25-000-CI) and 10mM HEPES (Sigma-Aldrich Cat #H4034). After two days, beads were removed 479 

and cells were cultured for another 4-6 days in a medium containing 50 IU/mL human rIL-2 (Biotechne 480 

Cat #202-IL-500), keeping cell density at 2 x 105 cells/mL. Cells were used for all experiments between 481 

days 6 to 8. All work with human blood has been approved by the University of Manitoba Biomedical 482 

Research Ethics Board (BREB). 483 

4.7. Apoptosis live-cell imaging of T-cells in 3D collagen chambers. T cells were labeled at day 6-484 

8 using CMAC (10µM) cell tracker dye (Invitrogen) and glass slide chambers were constructed as 485 

previously described(Lopez et al. 2019; 2022). Briefly, 2 x 106 cells were mixed in 270µL of bovine 486 

collagen (Advanced Biomatrix cat #5005-100ML) at a final concentration of 1.7 mg/mL. Collagen 487 

chambers were solidified for 45 minutes at 37°C / 5% CO2 and placed onto a custom-made heating 488 

platform attached to a temperature control apparatus (Werner Instruments). For the induction of 489 

apoptosis, 1µM of Staurosporine (Sigma Cat #569397-100UG) and 800ng of TNF-a (Biolegend Cat 490 

#570104) in 100µL RPMI were added on top of the solidified collagen. Cells were imaged as soon as 491 

the addition of apoptosis inducers using a multiphoton microscope with a Ti:sapphire laser (Coherent), 492 

tuned to 800 nm for optimized excitation of CMAC. Stacks of 13 optical sections (512 x 512 pixels) with 493 

4 mm z-spacing were acquired every 15 seconds to provide imaging volumes of 44mm in depth (with a 494 

total time of 60 - 120 minutes). Emitted light was detected through 460 / 50nm, 525 / 70 nm, and 595 / 495 

50 nm dichroic filters with non-descanned detectors. All images were acquired using the 20 x 1.0 N.A. 496 

Olympus objective lens (XLUMPLFLN; 2.0mm WD). 497 

4.8. Data Processing and Image Analysis. The raw video data, composed by uint8 or uint16 TIFFs, 498 

were stored as HDF5 files. No video pre-processing was applied to the raw data before image analysis. 499 

Cell detection, tracking, and volumetric reconstruction of microscopy videos were performed using 500 

Imaris (Oxford Instruments, v9.7.2). The resulting data were further analyzed with custom Matlab and 501 

Python scripts (see code availability section). 502 

 503 
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4.9. Apoptosis annotation of epithelial MCf10A cells in vitro. We manually annotated apoptotic 504 

events of MCF10A cells by visual inspection of the movies. The annotation was done by observing the 505 

morphological changes associated with apoptosis (e.g. nuclear shrinkage, chromatin condensation, 506 

epithelial extrusion, nuclear fragmentation) across multiple consecutive frames. Using a custom 507 

Fiji(Schindelin et al. 2012) macro, we automatically stored x and y centroids of the apoptotic nucleus. 508 

The time t of each apoptotic annotation was defined as the beginning of nuclear shrinkage. 509 

 510 

4.10. Generation of the in vitro training dataset. The 16-bit raw movies were min-max scaled to the 511 

0.001 and 0.999 quantiles and downsampled to 8-bit resolution. Using the database of manually labeled 512 

coordinates of apoptotic events (x,y,t), we extracted crops with 59 x 59 pixels resolution (2x scaling for 513 

the FOVs acquired with the 20x objective). Seven time-steps of the same location were extracted, with 514 

linear spacing from -10 minutes to +50 minutes relative to the apoptosis annotation. This time frame 515 

was chosen to capture the cell before the onset of apoptosis, and the morphological changes associated 516 

with apoptosis (nuclear shrinkage, decay into apoptotic bodies, extrusion from epithelium). The resulting 517 

image cube has dimensions of 59 x 59 x 7. To create the training data for the non-apoptotic class, we 518 

excluded areas with an annotated apoptotic event with a safety margin from the movies. From the 519 

remaining regions without apoptoses, we extracted image cubes from cells detected with 520 

StarDist(Jacquemet et al. 2020) and from random locations. The random crops also included debris, 521 

apoptotic bodies from earlier apoptotic events, empty regions, and out-of-focus nuclei.  522 

  523 

4.11. Apoptosis annotation of leukocyte cells in vivo. Three operators independently annotated the 524 

videos based on selected morphological criteria. To label apoptotic cells, the annotators considered 525 

only the sequences of cells that displayed membrane blebbing followed by apoptotic bodies formation 526 

and cell disruption (Fig. 2B). For each frame in the apoptotic sequence, the operators placed a centroid 527 

at the center of the cell with the Imaris “Spots” function, generating an apoptotic track. Successively, 528 

ground truth tracks were generated according to a majority voting system, and 3D volume 529 

reconstruction was performed on ground truth cells using the Imaris “Surface” function. Nearby non-530 

apoptotic cells were also tracked. In addition, other non-apoptotic events were automatically sub-531 

sampled from regions without apoptotic cells. 532 

 533 

4.12. 3D rotation of the in vivo annotations. In vivo annotations presented a class unbalance in favor 534 

of non-apoptotic cells, with a relative few apoptotic instances. Hence, to compensate for this bias, we 535 

produced several representations of the raw data by interpolating the raw image stacks in 3D volumes 536 

and rotating them in randomly sampled directions, with rotational degrees between 0° and 45°. After 537 

each manipulation, the rotated volume underwent flattening by maximum projection and symmetric 538 

padding to preserve the original dimension. The 2D images were successively resized and cropped to 539 

match the 59 x 59 pixels input of the classifier. Finally, the training sequences were saved as uint8 gray-540 

scale TIFFs files. 541 

 542 
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4.13. Generation of the in vitro and in vivo training datasets. To detect apoptotic cells in microscopy 543 

acquisitions, we defined a 2D binary classification task in which apoptotic events are labeled with class 544 

1, while non-apoptotic events belonged to the class label 0. The resulting unprocessed data consisted 545 

of frame sequences composed of 3D crops. The content of the class label 0 in vitro included: healthy 546 

nuclei, background, cell debris and mitotic cells. The content of the class label 0 in vivo included: motile 547 

cells, arrested cells, highly deformed cells, overlapping cells, cell debris or blebs, empty background, 548 

noisy background, and collagen. 549 

 550 

4.14. Data augmentation and data loader. Given the varying length of the training sequences 551 

contained in the TIFFs, upon training, we used a custom data loader that uniformly samples the input 552 

data and produces sequences with a fixed number of frames. The fixed number of frames was set to 5, 553 

corresponding to the frame-length of the shortest apoptotic sequence. During training, each sample 554 

underwent horizontal shift, vertical shift, zoom magnification, rotation, and flipping. All data 555 

augmentations were performed in python using the Keras library. 556 

 557 

4.15. Deep learning architecture. As a deep learning classifier, we employed a custom architecture 558 

relying on time-distributed convolutional layers stacked on top of a transformer module (Conv-559 

Transformer). The input size consists of 5 single-channel images with 59x59 pixel size. The 560 

convolutional network has three layers of size 64, 128, and 256 length. Each layer has a 3x3 kernel, 561 

followed by Relu activation, batch normalization, and a dropout set to 0.3. The inclusion of padding 562 

preserves the dimension of the input, while 2D max-pooling is at the end of each convolutional block. 563 

After 2D max pooling, the output is passed to a transformer module counting 6 attention heads, and 564 

successively to a fully connected decision layer. The fully connected network has four layers with 1024, 565 

512,128, and 64 nodes, each one followed by Relu activation and a 0.3 dropout layer. The last layer is 566 

a softmax activation, which predicts a decision between the two classes.  567 

 568 

4.16. Training and hyper-parameters. Our model was trained in TensorFlow with Adam optimizer, 569 

using binary cross-entropy loss and an initial learning rate of 0.0001. The optimal mini-batch size was 570 

32, and the number of training epochs was 200. In training mode, we set a checkpoint to save the model 571 

with the best accuracy on the validation dataset, and a checkpoint for early stopping with patience set 572 

to 15 epochs. In addition, the learning rate decreased when attending a plateau. 573 

 574 

4.17. ADeS deployment For the deployment of the classifier on microscopy videos, we generative 575 

region proposals using the selective search algorithm, obtaining a set of ROIs for each candidate frame 576 

of the input movie. For each ROI computed by the region proposal at time t, a temporal sequence is 577 

cropped around t and classified with the Conv-Transformer. The resulting bounding boxes are filtered 578 

according to a probability threshold and processed with the non-maxima suppression utils from 579 

Pytorch. Consecutive bounding boxes classified as apoptotic are connected using a custom multi-object 580 

tracking algorithm based on Euclidean distance. The generated trajectories are filtered by discarding 581 

those with less than two objects. 582 
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 583 

4.18. Default and user-defined parameters. ROIs detected with the region proposal are filtered 584 

according to their size, discarding the ones with edges below 20 pixels and above 40 pixels. 585 

Furthermore, a threshold on intensity is applied to exclude uint8 patches with an average brightness 586 

below 40. Upon classification, a temporal window corresponding to the expected duration of the 587 

apoptotic event is set by the user (9 frames by default). This temporal window is subsampled to match 588 

the number of input frame of the classifier (5). The filtering of the predictions depends on a user-589 

specified threshold, which by default corresponds to 0.95 in vivo and 0.995 in vitro. Non-maxima 590 

suppression is based on the overlapping area between bounding boxes, set to 0.1 by default. The 591 

centroid tracking has the following adjustable parameters: gap and distance threshold. The "gap" 592 

parameter, set to three frames, specifies for how long a centroid can disappear without being attributed 593 

a new ID upon reappearance. A threshold on the distance, set by default to 10 pixels, allows the 594 

connection of centroids within the specified radius. All the reported quantifications had default 595 

parameters. 596 

4.19. Statistical analyses. Statistical comparisons and plotting were performed using GraphPad Prism 597 

8 (Graphpad, La Jolla, USA). All statistical tests were performed using non-parametric Kruskal-Wallis 598 

test or Mann-Witney test For significance, p value is represented as * when p < 0.05, ** when p < 0.005 599 

and *** when p < 0.0005.  600 

5. Aknowledgements 601 

We would like to thank Dr. Coral Garcia (IQS, Barcelona, Spain) for the support in generating graphical 602 

content. Moreover, we would like to aknowledge Gabriele Abbate (IDSIA, Lugano, Switzerland) for his 603 

help during an early implementation of the DL classifier. 604 

 605 

5.1. Funding   606 

Suisse National Science Foundation grant 176124 (AP, DU, MP, SG)  607 

Swiss Cancer League grant KLS-4867-08-2019, Suisse National Science Foundation grant Div3 608 

310030_185376 and IZKSZ3_62195, Uniscientia Foundation (PG, LH, OP)  609 

SystemsX.ch grant iPhD2013124 (DU, RK)  610 

Novartis Foundation for medical-biological Research, The Helmut Horten Foundation, SwissCancer 611 

League grant KFS-4223-08-2017-R (PA, MT)  612 

Canadian Institute for Health Research (CIHR) Project grants PJT-155951 (RZ, PL, TM)  613 

NCCR Robotics program of the Swiss National Science Foundation (AG, LG)   614 

Biolink grant 189699 (DU, PC)  615 

  616 

5.2. Authors contributions 617 

Conceptualization: SG, DU, AP 618 

Methodology: AP, DU  619 

Experiments: PG, PA, MP, RZ, PL  620 

Data annotation: PG, AP, LH, DU, PC  621 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

17 

Data analysis and visualization: AP, LH, AG 622 

Figures: AP, PG, LH  623 

Testing and validation: AP, LH, AG 624 

Supervision: SG, DU,  RK, LG, OP, TM, MT 625 

Writing—original draft: AP, PC, DU, PG  626 

Writing—review & editing: AP, SG  627 

 628 

5.3. Competing interests 629 

Authors declare that they have no competing interest.  630 

 631 

 632 

 633 

6. Bibliography 634 

 635 

Adadi, Amina. 2021. “A Survey on Data‐efficient Algorithms in Big Data Era.” Journal of Big Data 8 (1). 636 

https://doi.org/10.1186/s40537-021-00419-9. 637 

Atale, N., S. Gupta, U. C.S. Yadav, and V. Rani. 2014. “Cell-Death Assessment by Fluorescent and 638 

Nonfluorescent Cytosolic and Nuclear Staining Techniques.” Journal of Microscopy 255 (1): 7–19. 639 

https://doi.org/10.1111/jmi.12133. 640 

Beltman, Joost B, Athanasius F M Marée, Rob J de Boer, Athanasius F M Marée, Rob J de Boer, Athanasius F 641 

M Marée, and Rob J de Boer. 2009. “Analysing Immune Cell Migration.” Nature Reviews. Immunology 9 642 

(11): 789–98. https://doi.org/10.1038/nri2638. 643 

Coleman, Mathew L., Erik A. Sahai, Margaret Yeo, Marta Bosch, Ann Dewar, and Michael F. Olson. 2001. 644 

“Membrane Blebbing during Apoptosis Results from Caspase-Mediated Activation of ROCK I.” Nature Cell 645 

Biology 3 (4). https://doi.org/10.1038/35070009. 646 

D’Arcy, Mark S. 2019. “Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy.” Cell 647 

Biology International. https://doi.org/10.1002/cbin.11137. 648 

Damián La Greca, Alejandro, Nelba Pérez, Sheila Castañeda, Paula Melania Milone, María Agustina Scarafía, 649 

Alan Miqueas Möbbs, Ariel Waisman, et al. 2021. “Celldeath: A Tool for Detection of Cell Death in 650 

Transmitted Light Microscopy Images by Deep Learning-Based Visual Recognition.” PLoS ONE 16 (6 651 

June). https://doi.org/10.1371/journal.pone.0253666. 652 

Darzynkiewicz, Zbigniew, Dariusz Galkowski, and Hong Zhao. 2008. “Analysis of Apoptosis by Cytometry Using 653 

TUNEL Assay.” Methods 44 (3). https://doi.org/10.1016/j.ymeth.2007.11.008. 654 

Debnath, Jayanta, Senthil K. Muthuswamy, and Joan S. Brugge. 2003. “Morphogenesis and Oncogenesis of 655 

MCF-10A Mammary Epithelial Acini Grown in Three-Dimensional Basement Membrane Cultures.” 656 

Methods. https://doi.org/10.1016/S1046-2023(03)00032-X. 657 

Elmore, Susan. 2007. “Apoptosis: A Review of Programmed Cell Death.” Toxicologic Pathology. 658 

https://doi.org/10.1080/01926230701320337. 659 

Eom, Young Woo, Mi Ae Kim, Seok Soon Park, Mi Jin Goo, Hyuk Jae Kwon, Seonghyang Sohn, Wook Hwan 660 

Kim, Gyesoon Yoon, and Kyeong Sook Choi. 2005. “Two Distinct Modes of Cell Death Induced by 661 

Doxorubicin: Apoptosis and Cell Death through Mitotic Catastrophe Accompanied by Senescence-like 662 

Phenotype.” Oncogene 24 (30). https://doi.org/10.1038/sj.onc.1208627. 663 

Fesik, Stephen W. 2005. “Promoting Apoptosis as a Strategy for Cancer Drug Discovery.” Nature Reviews 664 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

18 

Cancer. https://doi.org/10.1038/nrc1736. 665 

Flier, Laurens G. Van Der, and Hans Clevers. 2009. “Stem Cells, Self-Renewal, and Differentiation in the 666 

Intestinal Epithelium.” Annual Review of Physiology. 667 

https://doi.org/10.1146/annurev.physiol.010908.163145. 668 

Fox, Sarah, Andrew E. Leitch, Rodger Duffin, Christopher Haslett, and Adriano G. Rossi. 2010. “Neutrophil 669 

Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease.” Journal of Innate 670 

Immunity. https://doi.org/10.1159/000284367. 671 

Gagliardi, Paolo Armando, Maciej Dobrzyński, Marc Antoine Jacques, Coralie Dessauges, Pascal Ender, 672 

Yannick Blum, Robert M. Hughes, Andrew R. Cohen, and Olivier Pertz. 2021. “Collective ERK/Akt Activity 673 

Waves Orchestrate Epithelial Homeostasis by Driving Apoptosis-Induced Survival.” Developmental Cell 56 674 

(12). https://doi.org/10.1016/j.devcel.2021.05.007. 675 

Galluzzi, Lorenzo, Ilio Vitale, Stuart A. Aaronson, John M. Abrams, Dieter Adam, Patrizia Agostinis, Emad S. 676 

Alnemri, et al. 2018. “Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature 677 

Committee on Cell Death 2018.” Cell Death and Differentiation. https://doi.org/10.1038/s41418-017-0012-4. 678 

Geske, F. J., R. Lieberman, R. Strange, and L. E. Gerschenson. 2001. “Early Stages of P53-Induced Apoptosis 679 

Are Reversible.” Cell Death and Differentiation 8 (2). https://doi.org/10.1038/sj.cdd.4400786. 680 

Girshick, Ross. 2015. “Fast R-CNN.” In Proceedings of the IEEE International Conference on Computer Vision. 681 

https://doi.org/10.1109/ICCV.2015.169. 682 

Green, Douglas R. 2005. “Apoptotic Pathways: Ten Minutes to Dead.” Cell. 683 

https://doi.org/10.1016/j.cell.2005.05.019. 684 

Helmchen, Fritjof, and Winfried Denk. 2005. “Deep Tissue Two-Photon Microscopy.” Nature Methods. 685 

https://doi.org/10.1038/nmeth818. 686 

Hotchkiss, Richard S., and Donald W. Nicholson. 2006. “Apoptosis and Caspases Regulate Death and 687 

Inflammation in Sepsis.” Nature Reviews Immunology. https://doi.org/10.1038/nri1943. 688 

Jacquemet, Guillaume, Elnaz Fazeli, Nathan H. Roy, Gautier Follain, Romain F. Laine, Lucas von Chamier, 689 

Pekka E. Hänninen, John E. Eriksson, and Jean Yves Tinevez. 2020. “Automated Cell Tracking Using 690 

StarDist and TrackMate.” F1000Research 9. https://doi.org/10.12688/f1000research.27019.1. 691 

Jensen, Ellen C. 2012. “Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations.” Anatomical 692 

Record. https://doi.org/10.1002/ar.22602. 693 

Jimenez-Carretero, Daniel, Vahid Abrishami, Laura Fernández-de-Manuel, Irene Palacios, Antonio Quílez-694 

Álvarez, Alberto Díez-Sánchez, Miguel A. del Pozo, and María C. Montoya. 2018. “Tox_(R)CNN: Deep 695 

Learning-Based Nuclei Profiling Tool for Drug Toxicity Screening.” PLoS Computational Biology 14 (11). 696 

https://doi.org/10.1371/journal.pcbi.1006238. 697 

Jin, Jenny, Kenji Schorpp, Daniel Samaga, Kristian Unger, Kamyar Hadian, and Brent R. Stockwell. 2022. 698 

“Machine Learning Classifies Ferroptosis and Apoptosis Cell Death Modalities with TfR1 Immunostaining.” 699 

ACS Chemical Biology 17 (3). https://doi.org/10.1021/acschembio.1c00953. 700 

Kabir, Md Alamgir, Ashish Kharel, Saloni Malla, Zachary Joseph Kreis, Peuli Nath, Jared Neil Wolfe, Marwa 701 

Hassan, et al. 2022. “Automated Detection of Apoptotic versus Nonapoptotic Cell Death Using Label-Free 702 

Computational Microscopy.” Journal of Biophotonics 15 (4). https://doi.org/10.1002/jbio.202100310. 703 

Kranich, Jan, Nikolaos Kosmas Chlis, Lisa Rausch, Ashretha Latha, Martina Schifferer, Tilman Kurz, Agnieszka 704 

Foltyn-Arfa Kia, Mikael Simons, Fabian J. Theis, and Thomas Brocker. 2020. “In Vivo Identification of 705 

Apoptotic and Extracellular Vesicle-Bound Live Cells Using Image-Based Deep Learning.” Journal of 706 

Extracellular Vesicles 9 (1). https://doi.org/10.1080/20013078.2020.1792683. 707 

Kyrylkova, Kateryna, Sergiy Kyryachenko, Mark Leid, and Chrissa Kioussi. 2012. “Detection of Apoptosis by 708 

TUNEL Assay.” Methods in Molecular Biology 887. https://doi.org/10.1007/978-1-61779-860-3_5. 709 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

19 

Loo, Deryk T. 2011. “In Situ Detection of Apoptosis by the TUNEL Assay: An Overview of Techniques.” Methods 710 

in Molecular Biology 682. https://doi.org/10.1007/978-1-60327-409-8_1. 711 

Lopez, Paul, Oluwaseun Ajibola, Amelie Pagliuzza, Romaniya Zayats, Wan Hon Koh, Alon Herschhorn, Nicolas 712 

Chomont, and Thomas T. Murooka. 2022. “T Cell Migration Potentiates HIV Infection by Enhancing Viral 713 

Fusion and Integration.” Cell Reports 38 (8). https://doi.org/10.1016/j.celrep.2022.110406. 714 

Lopez, Paul, Wan Hon Koh, Ryan Hnatiuk, and Thomas T. Murooka. 2019. “HIV Infection Stabilizes 715 

Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread.” Journal of Virology 93 (18). 716 

https://doi.org/10.1128/jvi.00805-19. 717 

Masri, Carolina, and Y. Chandrashekhar. 2008. “Apoptosis: A Potentially Reversible, Meta-Stable State of the 718 

Heart.” Heart Failure Reviews. https://doi.org/10.1007/s10741-007-9069-3. 719 

Miller, Mark J., Arsalan S. Hejazi, Sindy H. Wei, Michael D. Cahalan, and Ian Parker. 2004. “T Cell Repertoire 720 

Scanning Is Promoted by Dynamic Dendritic Cell Behavior and Random T Cell Motility in the Lymph Node.” 721 

Proceedings of the National Academy of Sciences of the United States of America 101 (4). 722 

https://doi.org/10.1073/pnas.0306407101. 723 

Mobiny, Aryan, Hengyang Lu, Hien V. Nguyen, Badrinath Roysam, and Navin Varadarajan. 2020. “Automated 724 

Classification of Apoptosis in Phase Contrast Microscopy Using Capsule Network.” IEEE Transactions on 725 

Medical Imaging 39 (1): 1–10. https://doi.org/10.1109/TMI.2019.2918181. 726 

Mohd Noor, Mohd Halim, Sen Yan Tan, and Mohd Nadhir Ab Wahab. 2022. “Deep Temporal Conv-LSTM for 727 

Activity Recognition.” Neural Processing Letters 54 (5). https://doi.org/10.1007/s11063-022-10799-5. 728 

Opferman, J. T. 2008. “Apoptosis in the Development of the Immune System.” Cell Death and Differentiation. 729 

https://doi.org/10.1038/sj.cdd.4402182. 730 

Pang, Guansong, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021. “Deep Learning for Anomaly 731 

Detection: A Review.” ACM Computing Surveys. https://doi.org/10.1145/3439950. 732 

Pizzagalli, Diego Ulisse, Yagmur Farsakoglu, Miguel Palomino-Segura, Elisa Palladino, Jordi Sintes, Francesco 733 

Marangoni, Thorsten R. Mempel, et al. 2018. “Data Descriptor: Leukocyte Tracking Database, a Collection 734 

of Immune Cell Tracks from Intravital 2-Photon Microscopy Videos.” Scientific Data 5: 1–13. 735 

https://doi.org/10.1038/sdata.2018.129. 736 

Pizzagalli, Diego Ulisse, Alain Pulfer, Marcus Thelen, Rolf Krause, and Santiago Fernandez Gonzalez. n.d. “A 737 

Review on Activities of Immune Cells Observed via Intravital Microscopy.” In Preparation. 738 

Poppe, Ronald. 2010. “A Survey on Vision-Based Human Action Recognition.” Image and Vision Computing 28 739 

(6): 976–90. https://doi.org/10.1016/j.imavis.2009.11.014. 740 

Rocheleau, Jonathan V., and David W. Piston. 2003. “Two‐Photon Excitation Microscopy for the Study of Living 741 

Cells and Tissues.” Current Protocols in Cell Biology 20 (1). 742 

https://doi.org/10.1002/0471143030.cb0411s20. 743 

Saraste, Antti, and Kari Pulkki. 2000. “Morphologic and Biochemical Hallmarks of Apoptosis.” Cardiovascular 744 

Research. https://doi.org/10.1016/S0008-6363(99)00384-3. 745 

Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, 746 

Stephan Preibisch, et al. 2012. “Fiji: An Open-Source Platform for Biological-Image Analysis.” Nature 747 

Methods. https://doi.org/10.1038/nmeth.2019. 748 

Schmid, Ingrid, Christel Uittenbogaart, and Beth D. Jamieson. 2007. “Live-Cell Assay for Detection of Apoptosis 749 

by Dual-Laser Flow Cytometry Using Hoechst 33342 and 7-Amino-Actinomycin D.” Nature Protocols 2 (1): 750 

187–90. https://doi.org/10.1038/nprot.2006.458. 751 

Schnell, Ulrike, Freark Dijk, Klaas A. Sjollema, and Ben N.G. Giepmans. 2012. “Immunolabeling Artifacts and the 752 

Need for Live-Cell Imaging.” Nature Methods. https://doi.org/10.1038/nmeth.1855. 753 

Secklehner, Judith, Cristina Lo Celso, and Leo M. Carlin. 2017. “Intravital Microscopy in Historic and 754 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

20 

Contemporary Immunology.” Immunology and Cell Biology. https://doi.org/10.1038/icb.2017.25. 755 

Shalini, S., L. Dorstyn, S. Dawar, and S. Kumar. 2015. “Old, New and Emerging Functions of Caspases.” Cell 756 

Death and Differentiation. https://doi.org/10.1038/cdd.2014.216. 757 

Shcherbakova, Daria M., Mikhail Baloban, Alexander V. Emelyanov, Michael Brenowitz, Peng Guo, and Vladislav 758 

V. Verkhusha. 2016. “Bright Monomeric Near-Infrared Fluorescent Proteins as Tags and Biosensors for 759 

Multiscale Imaging.” Nature Communications 7. https://doi.org/10.1038/ncomms12405. 760 

Shi, Xingjian, Zhourong Chen, Hao Wang, Dit Yan Yeung, Wai Kin Wong, and Wang Chun Woo. 2015. 761 

“Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting.” In Advances in 762 

Neural Information Processing Systems, 2015-Janua:802–10. 763 

Sumen, Cenk, Thorsten R. Mempel, Irina B. Mazo, and Ulrich H. Von Andrian. 2004. “Intravital Microscopy: 764 

Visualizing Immunity in Context.” Immunity. https://doi.org/10.1016/j.immuni.2004.08.006. 765 

Sun, Lei, Tongsheng Chen, Longxiang Wang, and Huiying Wang. 2008. “Analysis of Caspase3 Activation in 766 

ChanSu-Induced Apoptosis of ASTC-a-1 Cells by Fluorescence Techniques.” In Biophotonics and Immune 767 

Responses III. Vol. 6857. https://doi.org/10.1117/12.761422. 768 

Takemoto, Kiwamu, Takeharu Nagai, Atsushi Miyawaki, and Masayuki Miura. 2003. “Spatio-Temporal Activation 769 

of Caspase Revealed by Indicator That Is Insensitive to Environmental Effects.” Journal of Cell Biology 160 770 

(2). https://doi.org/10.1083/jcb.200207111. 771 

Tang, Daolin, Rui Kang, Tom Vanden Berghe, Peter Vandenabeele, and Guido Kroemer. 2019. “The Molecular 772 

Machinery of Regulated Cell Death.” Cell Research. https://doi.org/10.1038/s41422-019-0164-5. 773 

Tang, H. L., K. L. Yuen, H. M. Tang, and M. C. Fung. 2009. “Reversibility of Apoptosis in Cancer Cells.” British 774 

Journal of Cancer 100 (1). https://doi.org/10.1038/sj.bjc.6604802. 775 

Uderhardt, Stefan, Andrew J. Martins, John S. Tsang, Tim Lämmermann, and Ronald N. Germain. 2019. 776 

“Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage.” 777 

Cell 177 (3). https://doi.org/10.1016/j.cell.2019.02.028. 778 

Uijlings, J. R.R., K. E.A. Van De Sande, T. Gevers, and A. W.M. Smeulders. 2013. “Selective Search for Object 779 

Recognition.” International Journal of Computer Vision 104 (2): 154–71. https://doi.org/10.1007/s11263-780 

013-0620-5. 781 

Ullah, Hadiqa Aman, Sukumar Letchmunan, M. Sultan Zia, Umair Muneer Butt, and Fadratul Hafinaz Hassan. 782 

2021. “Analysis of Deep Neural Networks for Human Activity Recognition in Videos - A Systematic 783 

Literature Review.” IEEE Access. https://doi.org/10.1109/ACCESS.2021.3110610. 784 

Verduijn, Joost, Louis Van der Meeren, Dmitri V. Krysko, and André G. Skirtach. 2021. “Deep Learning with 785 

Digital Holographic Microscopy Discriminates Apoptosis and Necroptosis.” Cell Death Discovery 7 (1). 786 

https://doi.org/10.1038/s41420-021-00616-8. 787 

Vermes, István, Clemens Haanen, Helga Steffens-Nakken, and Chris Reutellingsperger. 1995. “A Novel Assay 788 

for Apoptosis Flow Cytometric Detection of Phosphatidylserine Expression on Early Apoptotic Cells Using 789 

Fluorescein Labelled Annexin V.” Journal of Immunological Methods 184 (1). https://doi.org/10.1016/0022-790 

1759(95)00072-I. 791 

Vicar, Tomas, Martina Raudenska, Jaromir Gumulec, and Jan Balvan. 2020. “The Quantitative-Phase Dynamics 792 

of Apoptosis and Lytic Cell Death.” Scientific Reports 10 (1). https://doi.org/10.1038/s41598-020-58474-w. 793 

Vrskova, Roberta, Robert Hudec, Patrik Kamencay, and Peter Sykora. 2022. “Human Activity Classification 794 

Using the 3DCNN Architecture.” Applied Sciences (Switzerland) 12 (2). 795 

https://doi.org/10.3390/app12020931. 796 

Xu, Ju, Mengzhang Li, and Zhanxing Zhu. 2020. “Automatic Data Augmentation for 3d Medical Image 797 

Segmentation.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 798 

Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS:378–87. https://doi.org/10.1007/978-3-030-799 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.11.23.517318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517318
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

21 

59710-8_37. 800 

Ye, W., J. Cheng, F. Yang, and Y. Xu. 2019. “Two-Stream Convolutional Network for Improving Activity 801 

Recognition Using Convolutional Long Short-Term Memory Networks.” IEEE Access 7. 802 

https://doi.org/10.1109/ACCESS.2019.2918808. 803 

Yusa, Kosuke, Liqin Zhou, Meng Amy Li, Allan Bradley, and Nancy L. Craig. 2011. “A Hyperactive PiggyBac 804 

Transposase for Mammalian Applications.” Proceedings of the National Academy of Sciences of the United 805 

States of America 108 (4). https://doi.org/10.1073/pnas.1008322108. 806 

Zhao, Zhong Qiu, Peng Zheng, Shou Tao Xu, and Xindong Wu. 2019. “Object Detection with Deep Learning: A 807 

Review.” IEEE Transactions on Neural Networks and Learning Systems. 808 

https://doi.org/10.1109/TNNLS.2018.2876865. 809 

Zhuang, Xinrui, Yuexiang Li, Yifan Hu, Kai Ma, Yujiu Yang, and Yefeng Zheng. 2019. “Self-Supervised Feature 810 

Learning for 3d Medical Images by Playing a Rubik’s Cube.” In Lecture Notes in Computer Science 811 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11767 812 

LNCS:420–28. https://doi.org/10.1007/978-3-030-32251-9_46. 813 

 814 

7. Tables 815 

 816 

Table 1. Comparison of deep learning architectures for apoptosis classification. Comparative table reporting 817 

accuracy, F1 and AUC metrics for a CNN, 3DCNN, Conv-LSTM, and Conv-Transformer. The classification 818 

accuracy is reported for static frames or image-sequences. N.A. stands for non applicable. The last column shows 819 

which cell death study employed the same baseline architecture displayed in the table.. 820 

Classifier 
architecture 

Frame accuracy Sequence 
accuracy 

F1 AUC Study 

CNN 74 %  ± 1.3 
 

N.A. 0.77 0.779 (Damián La Greca et al. 
2021; Verduijn et al. 2021) 

3DCNN N.A. 91.22 %± 0.15 0.91 0.924 - 

Conv-LSTM N.A. 97.42 % ± 0.09 0.97 0.994 (Mobiny et al. 2020; Kabir 
et al. 2022) 

Conv-Transformer N.A 98.27 % ± 0.25 0.98 0.997 Our 

 821 

 822 
Table 2. Comparison of cell death identification studies. Table reporting all studies on cell death classification 823 
based on machine learning. For each study, we included the reported classification accuracy, the experimental 824 
conditions of the studies, the target input of the classifier, and the capability of performing detection on static frames 825 
or microscopy time-lapses. Met conditions are indicated with a green check. Moreover, for each study we reported 826 
the architecture of the classifier and the number of apoptotic cells in the training set. N.A. stands for not available 827 
and indicates that the information is not reported in the study. 828 

Study Input of the 
classifier 

Reported 
classification 

accuracy 

In vitro In vivo Detection 
In frame 

Detection 
in movies 

Classifier 
architecture 

N cell death 

Our Frame 
sequence 

98.27 % ✓ ✓ ✓ ✓ 
Conv-

Transformer 
13’120 

 

(Jin et al. 
2022) 

Frame 93 % ✓ ✘ ✘ ✘ Logistic 
regression 

N.A. 

(Verduijn 
et al. 
2021) 

Frame 87 % ✓ ✘ ✘ ✘ VGG-19 19’339 
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(Kabir et 
al. 2022) 

Frame 
sequence 

93 % ✓ ✘ ✘ ✘ ResNet101-
LSTM 

3’172 

(Damián 
La Greca 

et al. 
2021) 

Frame 96.58 % ✓ ✘ ✘ ✘ ResNet50 11’036 

(Mobiny et 
al. 2020) 

Frame 
sequence 

93.8 % ✓ ✘ ✘ ✘ CapsNet-LSTM 41’000 

(Kranich 
et al. 
2020) 

Frame 93.2 % ✓ ✘ ✘ ✘ CAE-
RandomForest 

27’224 

(Vicar et 
al. 2020) 

Frame 
sequence 

N.A. ✓ ✘ ✓ ✓ 
biLSTM 1’745 

(Jimenez-
Carretero 

et al. 
2018) 

Frame N.A. ✓ ✘ ✓ ✘ R-CNN 255’215 

 829 

8. Figures 830 
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 831 

 832 

Figure 1: Generation of in vitro and in vivo live-cell imaging data. A.  Micrographs depicting mammary 833 

epithelial MCF10A cells transduced with H2B-miRFP703 marker and grown to form a confluent monolayer. The 834 

monolayer was acquired with a fluorescence microscope for several hours with 1-, 2- or 5-min time resolution. B. 835 

The centroid (x, y) and the time (t) of apoptotic events were annotated manually based on morphological features 836 

associated with apoptosis. Non-apoptotic cells were identified by automatic segmentation of nuclei. C. Image time-837 

lapses showing a prototypical apoptotic event (upper panels), with nuclear shrinkage and chromatin condensation, 838 

and a non-apoptotic event (bottom panels). D. Charts showing the quantification of nuclear size (left) and the 839 

standard deviation of the nuclear pixel intensity (right) of apoptotic and non-apoptotic cells (n = 50). Central darker 840 

lines represent the mean, gray shades bordered by light colored lines represent the standard deviation. E. 841 

Simplified drawing showing the surgical set-up for lymph node and spleen. F-G. Organs are subsequently imaged 842 
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with intravital 2-photon microscopy (IV-2PM, F), generating 3D time-lapses (G). H. Representative IV-2PM 843 

micrograph and I. selected crops showing GFP-expressing neutrophils (white) undergoing apoptosis. The 844 

apoptosis sequence is depicted by raw intensity signal (upper panels) and 3D surface reconstruction (bottom 845 

panels).  846 

 847 

 848 

 849 

Figure 2. ADeS, a pipeline for apoptosis detection. A. ADeS input consists of single channel 2D microscopy 850 

videos (x,y,t) B. Each video frame is pre-processed to compute the candidate Regions of Interest (ROI) with a 851 

selective search algorithm. C. Given the coordinates of the ROI at time t, ADeS extracts a series of snapshots 852 

ranging from t-n to t+n. A deep learning network classifies the sequence either as non-apoptotic (0) or apoptotic 853 

(1). D. The predicted apoptotic events are labelled at each frame by a set of bounding boxes which, E. are 854 

successively linked in time with a tracking algorithm based on euclidean distance. F. The readout of ADeS consist 855 

of bounding boxes and associated probabilities, which can generate a probability map of apoptotic events over the 856 

course of the video (left) as well as providing the number of apoptotic events over time (right). 857 

 858 
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 859 

Figure 3. Conv-Transformer architecture at the chore of ADeS. Abstracted representation of the proposed 860 

Conv-Transformer classifier. The input sequence of frames is processed with warped convolutional layers, which 861 

extract the features of the images. The extracted features are passed into the 4 transformer modules, composed 862 

of attention and feedforward blocks. Finally, a multi layer perceptron enables classification between apoptotic and 863 

non-apoptotic sequences. 864 

 865 
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 866 

 867 

Figure 4. Training and performance in vitro. A. Confusion matrix of the trained model at a decision-making 868 

threshold of 0.5. B. Receiver operating characteristic displaying the false positive rate (specificity) corresponding 869 

to each true positive rate (sensitivity). C. Training accuracy of the final model after 100 epochs of training. D. 870 

Representative example of apoptosis detection in a time-lapse acquired in vitro. E. Multiple detection of nuclei 871 

undergoing apoptosis displays high sensitivity in densely packed field of views. F. Heatmap representation 872 

depicting all apoptotic events in a movie and the respective probabilities. G. Bar plots showing the true positive 873 

rate (TPR) and false positive rate (FPR) of ADeS applied to five testing movies, each one depicting an average of 874 

98 apoptosis. H. Time course showing the cumulative sum of ground truth apoptosis (blue) and correct predictions 875 

(red). I. 2D visualization of spatial-temporal coordinates of ground truth (blue) and predicted apoptosis (red). In the 876 

2D representation, the radius of the circles maps the temporal coordinates of the event. J. Pixel distance between 877 

ADeS predictions and the nearest neighbor (NN) of the ground truth (left) in comparison with the NN distance 878 

obtained from a random distribution (right). The plot depicts all predictions of ADeS, including true positives and 879 

false positives. K. Scatterplot of the spatial distance between ground truth and true positives of ADeS. Ground truth 880 

points are centered on the X = 0 and Y = 0 coordinates. L. Distribution of the temporal distance (frames) of the 881 
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correct predictions from the respective ground truth nearest neighbor. Statistical comparison was performed with 882 

Mann-Whitney test. Columns and error bars represent the mean and standard deviation respectively. Statistical 883 

significance is expressed as: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). 884 

 885 

 886 

Figure 5. 3D rotation of the in vivo dataset. A Depiction of a 3D volume cropped around an apoptotic cell. Each 887 

collected apoptotic sequence underwent multiple 3D rotation in randomly sampled directions. The rotated 3D 888 

images were successively flattened in 2D. B. Gallery showing the result of multiple volume rotations applied to the 889 

same apoptotic sequence. The vertical axis depicts the sequence over time, whereas the horizontal describes the 890 

rotational degree applied to the volumes. 891 
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 892 

 893 

Figure 6. Training and performance in vivo. A. Confusion matrix of the trained model at a decision-making 894 

threshold of 0.5. B. Receiver operating characteristic displaying the false positive rate (FPR) corresponding to each 895 

true positive rate (TPR). C. Training accuracy of the final model trained for 200 epochs with data augmentations. 896 

D. Image gallery showing ADeS classification to sequences with different disruption timing. The generated heatmap 897 

reaches peak activation (red) at the instant of cell disruption D. Representative snapshots of a neutrophil 898 

undergoing apoptosis. Green bounding boxes represents ADeS detection at the moment of cell disruption E. 899 

Representative micrograph depicting the detection of two eosinophil undergoing cell death in the spleen (left) and 900 

the respective probability heatmap (right). F. ADeS performances expressed by means of true-positive rate (TPR) 901 

and false-positive rate (FPR) over a panel of 23 videos. G. TRA measure distribution of the trajectories predicted 902 

by ADeS with respect to the annotated ground truth (n = 8) H. Comparison between human and ADeS by means 903 

of TPR and FPR on a panel of 5 randomly sampled videos I. Hierarchical clustering of several video parameters 904 

producing two main dendrograms (n = 23). The first dendrogram includes videos with reduced sensitivity and is 905 

enriched in several parameters related to cell density and signal intensity. J. Graph showing the effect of cell density 906 

on the performances expressed in terms of TPR and FPR (n = 13).  K. Comparison of the positive predictive value 907 
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between videos with large and small signal to noise ratio (left), and videos with large and small shortest cell 908 

distance (right). L-M. Selected video parameters are combined into a quality score that weakly correlates with the 909 

TPR in overall data (M, n = 23) and strongly correlates with the TPR in selected underperforming data (N, n = 8). 910 

Statistical comparison was performed with Mann-Whitney test. Columns and error bars represent the mean and 911 

standard deviation respectively. Statistical significance is expressed as: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), 912 

p ≤ 0.0001 (****). 913 

 914 

 915 

 916 

Figure 7. Applications for toxicity assay in vitro. A. Representative snapshots depicting epithelial cells in vitro 917 

at 0 and 24 hours after the addition of PBS and three increasing doses of doxorubicin, a chemotherapeutic drug 918 

and apoptotic inducer B. Plot showing the number of apoptotic cells detected by ADeS over time for each 919 

experimental condition. C-D. Dose-response curves generated from the drug concentrations and the respective 920 

apoptotic counts at 5 h. and 24 h.post-treatment. Vertical dashed lines indicates the EC50 concentration. E. Dose-921 

response curve projected from the fit obtained in (D). The predicted curve allows to estimate the response at higher 922 

drug concentrations than the tested ones. 923 

 924 
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 925 

 926 

Figure 8. Measurement of tissue dynamics in vivo. A. Intravital 2-photon micrographs showing ADeS detection 927 

of an apoptotic neutrophil (Blue, left) and the subsequent recruitment of neighboring cells (right) in the popliteal LN 928 

at 19 h. following influenza vaccination. B. Plot showing the distance of recruited neutrophils with respect to the 929 

apoptotic coordinates over time (n = 22) C. Plot showing the instantaneous speed of recruited neutrophils over time 930 

(n = 22). The dashed vertical lines indicate the instant in which the apoptotic event occurs. D. Schematic drawing 931 

showing the intravital surgical set up of a murine spleen after inducing a local laser ablation. E. Intravital 2-photon 932 

micrographs showing the recruitment of GFP-expressing neutrophils (Green) and the formation of a neutrophil 933 

cluster (red arrows) at 60 min after photo burning induction. F. Application of ADeS to the generation of a 934 

spatiotemporal heatmap indicating the probability of encountering apoptotic events in the region affected by the 935 

laser damage. The dashed circle indicates a hot spot of apoptotic events. 936 
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