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Maize is the most-produced cereal in the world, but its pro-1

duction faces constraints such as parasitic attacks from stem-2

borers. We evaluated the resistance of a core-collection of 183

maize lines by measuring their palatability to European Corn4

Borer (ECB) larvae fed on maize leaf discs. Using an original5

consumption test device that takes into account the variability6

of larvae behaviour, we were able to phenotype the resistance of7

the 18 maize lines. We matched consumption data to existing8

enzymatic and metabolomic data that characterized the maize9

core-collection and identified some metabolites such as caffeoyl-10

lquinate, trocopherol, digalactosylglycerol and tyrosine that are11

positively or negatively correlated with the palatability to ECB12

larvae. Altogether, our results confirm the metabolic complex-13

ity involved in the establishment of plant defenses. Metabolic14

changes associated to leaf palatability mostly concern mem-15

brane and cell wall composition. Some of them, pointing-out16

to the phenylpropanoids pathway, were observed independently17

of plant developmental pace and plant earliness.18
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Introduction22

Maize is the leading cereal in terms of production volume,23

before wheat and rice (24) and plays diverse roles in global24

agrifood systems, including human alimentation. Worldwide,25

6% to 19% of global maize production is lost each year due26

to insects and other herbivores preying (49). More than 9027

insect species are known to feed on cultivated maize (63).28

Among them European Corn Borer (ECB) Ostrinia nubilalis29

(Hübner), and Mediterranean corn borer (MCB) Sesamia30

nonagrioides, damage maize by boring tunnels within the31

stems of the plant. Fodder maize plots infested by the Eu-32

ropean Corn Borer can show up to 80% of plants and 40% of33

cobs damaged (7), while a single larvae per plant may cause34

6% loss in an average grain yield on maize hybrids (9).35

In the course of the evolutionary arms race between plants36

and pests, plants developed many different defense strate-37

gies, including physical defenses to minimize the entry of38

pathogens like cell wall or spines, and biochemical defenses39

that can be repulsive or toxic (66). They can be constitu-40

tive or induced with different resource allocation costs (51).41

The setting-up of chemical plant defenses is a paradigm of42

biological complexity. It begins with the exogenous signal43

perceived from the pathogen and continues with signal per-44

ception and signal transduction that may result in the repro-45

gramming of cellular metabolism towards the biosynthesis of46

secondary metabolites (58). Signal transduction is regulated47

by hormones (37) and results in a coordinated response medi-48

ated by a crosstalk between phytohormones and transcription49

factors (25, 46).50

Indeed, the setting-up of plant chemical defenses has a51

metabolic cost and mobilizes resources that could have been52

allocated to other functions like growth or reproduction53

(31, 32). It may result in trade-offs (28) between different54

life-history traits. The cost of defenses can affect the carbon-55

nutrient balance (52), the growth rate (67), or the growth-56

differentiation balance (61). Those hypotheses are difficult57

to test (62). Manifestation of detectable trade-offs may de-58

pend on the strength of resources limitation or other factors59

(72). For example, in brown algae, phlorotannins play a role60

in both primary and secondary metabolism and cannot serve61

as a reliable indicator (4). However, a recent meta-analysis62

over a wide range of plants species showed that herbivory re-63

duced growth, photosynthesis and reproduction, but not car-64

bohydrate contents (27).65

In maize, resistance to European Corn Borer encompasses66

both the synthesis of specific antibiosis molecules like DIM-67

BOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) (13,68

59) and changes in the molecular composition of cell wall.69

In particular, phenolic acids like ferulic or p-coumaric acids70

may increase leaf toughness (8). More generally, variations71

in cell-wall phenylpropanoids are associated with resistance72

to corn borers (29).73

One way to measure plant resistance to phytophageous in-74

sects is to measure leaf disks’ palatability to insect larvae.75

Such method can also be used to evaluate the antifeedent76

properties of specific chemicals (1, 40, 47, 48, 56). Feed-77

ing preference tests are efficient screen-tests to select resis-78

tant plant varieties (18, 64). For example, those methods79

have been used to measure the palatability of Brassicae plants80

for Microtheca punctigera larvae (44). They allowed for81

the identification of rice varieties resistant to the lepidoptera82

Cnaphalocrocis medinaiset (6).83

Prime to the identification of specific traits associated to84
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resistance or tolerance, it is necessary to evaluate the ex-85

tent of genetic variability for this trait within the plant86

species/genetic group using a small number of varieties that87

represent the genetic diversity within a species or a collection88

(11, 22). In maize, the evaluation of a panel of 85 inbred lines89

representing the diversity of the varieties cultivated in Europe90

allowed for the identification of specific inbreds resistant to91

Sesamia nonagrioides and Ostrinia nubilalis after artificial92

infestation (42), but also for the identification of inbreds able93

to maintain the plant yield despite pest pressure (43).94

In the present study, we used a core-panel of 18 maize inbred95

lines chosen to represent the genetic diversity of maize vari-96

eties cultivated in Europe and North America (10), but also a97

range of variation for the resistance to European Corn Borer98

(3, 69) and for cell-wall digestibility (23, 71). Most of the99

inbred lines from the panel were already shown to present a100

wide genetic diversity for a large set of physiological, enzy-101

matic and metabolic data (17). We used an original consump-102

tion test (56) to measure the genetic variability of leaf-disks103

palatability to ECB larvae. Making use of the availability of104

this large dataset, the objectives of the present paper were105

(i) to assess the amount of genetic variability of maize leaf106

palatability to European Corn-Borer, and (ii) to seek for cor-107

relations between leaf palatability and metabolic or physio-108

logical traits that characterized the inbred lines.109

Methods110

Insects rearing. Ostrinia nubilalis Hbn.eggs were obtained111

from Bioline AgroSciences (France). Hatched larvae were112

maintained in Petri dishes on an artificial diet (1.32l water,113

27g agar powder, 224g corn flour, 60g dried yeast, 56g wheat114

germ, 12g L-ascorbic acid, 4g vitamin mixture and miner-115

als (Réf.0155200), 0.8g chlortetracycline, 2g hydroxyben-116

zoic acid methyl, 1.6g sorbic acid and 4g benzoic acid), under117

16 :8 (light: dark) photoperiod at 70% humidity and at 26°C.118

Second instar larvae (10 days old) were used for the feeding119

bioassays.120

Plant material: core collection. The plant material com-121

prised 18 maize inbred lines (Table 1). Thirteen of them be-122

long to a core-panel of 19 lines representative of the genetic123

diversity of modern varieties cultivated in North-America and124

Europe (10, 14). Those 13 lines were previously character-125

ized at two developmental stages for their variability for cen-126

tral carbon metabolism enzymes activities, metabolites con-127

centrations and a set of physiological traits (17). Among128

them, two inbred lines (B73, Mo17) are already known for129

their sensitivity to pyralids attacks (41, 69). The panel was130

completed with three inbred lines (F66, F271, CM494) ex-131

hibiting differences for cell wall digestibility (23, 71), and132

two inbred lines (F618, F918) known for their tolerance to133

pyralids attacks (3). All the lines are maintained in the Cen-134

tre de Ressources Biologiques INRAE des lignées de maïs at135

Saint Martin de Hinx, France. Female flowering time (FFT,136

TO:0000359 from the Plant Ontology (68)) was predicted by137

combining data from (10) and yearly measurements at the138

INRAE field station from Saint Martin de Hinx, France (see139

Supplementary Methods S1). It was measured in days after140

sowing. As shown in Table 1, the 18 inbred lines belong to141

four different maize genetic groups and show a wide range of142

flowering time variation.143

Plant material: growing conditions. To compare the in-144

bred lines at the same developmental stage, flowering time145

was used to constitute four different sowing groups (Table146

1) and to plan four different sowing dates by group, in order147

to constitute at least three blocks with all maize lines sam-148

pled at the same developmental stage. Altogether, sowing149

were realized between october 1st 2019 and november 1st150

2019 (Supplementary Methods S1). For each sowing date,151

six seeds per line were pre-germinated on sowing plates un-152

til 3-4 visible leaves. Then each plant was repoted in 4L pots153

containing Jiffy® premium substrate and deposited on a shelf154

that contained plants from the 18 inbred lines at the same de-155

velopmental stage and constitute a replicate for the feeding156

bioassays (Fig 1a). Plants were cultivated in a greenhouse157

under 16:8 (light: dark) photoperiod with 70% humidity and158

a temperature comprised between 21 and 24°C. Pots were159

watered two times a week. The position of the pots in the160

shelf was randomized.161

Feeding Bioassays. For enabling data comparison with162

metabolic and physiological data collected by (17), we163

chose to sample the vegetative developmental stage between164

GRO:0007011 (tassel initiation) and GRO:007013 (ear ini-165

tiation) from the Cereal Plant Development Ontology (68).166

This corresponds to plants having between 5 (V5) and 7 (V7)167

visible leaf collars.168

For each inbred line, 4 x 50 leaf disks were tested. 1 cm diam-169

eter leaf disks were punched from the 6th leaf of 3 plants of170

approximately the same developmental stage. Each leaf disk171

was quickly placed upon a 5 mm layer of 1% agarose within172

a cell from a 5 x 10 cells grid. Subsequently, one L2 instar173

larva was placed into each cell and its feeding activities were174

monitored during 48h. As our experimental setup allowed us175

to test simultaneously only 6 grids, the experiment was run176

as 4 repetitions x 3 batches x 6 inbred lines x 50 leaf disks177

(of 1 inbred line) (see Supplementary Methods S1).178

Leaf disc consumption by L2 larvae was monitored for each179

individual cell for 48h and using the recording system de-180

scribed by (56). Image stacks were analyzed using the plug-181

ins RoitoRoiArray and Areatrack developed in the laboratory182

(56) to run under the software Icy (19). These plugins were183

used respectively to delimit the position of each cell on the184

images and to evaluate the surface of each leaf disk across185

time. The measures (pixel per minute) for each leaf disc in186

each well were exported in an Excell spreadsheet. Data are187

converted into CSV flat files and further analyzed with the R188

software (50).189

Among the four blocks, one was discarded because larvae190

were not at the right L2 stage when the plants where at the191

correct V5-V7 developmental stage.192

Statistical analyses of feeding bioassays: behavioural193

types. As in (56), data analyses were conceived as a two-194
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Line Pedigree Group FFT
F64 Argentina PI 186223 EF 79L

SA24U Pop-corn CBD 77L

HP301 Supergold Pop-corn EF 76L

F918 F618 x F630 SS 75L

B73 Iowa Stiff Stalk synthetic BSSSC5 SS 74L

Lo32 Isola Basso EF 74L

Mo17 CI187-2 x C103 CBD 73SL

MBS847 Pioneer 3901 CBD 71SL

Lo3 Nostrano dell’Isola EF 71SL

F618 (A166 x B37) x B37 SS 70SL

NYS302 Black Mexican NF 66SE

C105 Purple Flour #626 x Ohio Early Yellow Dent inbred #25 NF 66SE

F252 F186 x Co125 -8.2.3.3.4 CBD 63E

F271 Co125 x W103 (19.3x8.5) -4.4.1.1.1.1 CBD 62E

Cm484 (Canada-Morden-1989)200-2-1 62E

F2 Lacaune -2.9.1.1.3 EF 61E

F66 Sost -15.8 EF 61E

ND36 Manitoba Yellow Flint NF 59E

Table 1. Description of the maize panel Pedigree and genetic group of each 18 inbred lines from the panel. Genetic groups are Corn Belt Dent (CBD), European Flint (EF),
Northern Flint (NF) or Stiff-Stalk (SS). Lines in bold were selected for their tolerance to pyralids attacks. The average female flowering time FFT is expressed in days after
sowing. The letter above indicates the sowing group for feeding bioassays (L = Late; SL = Semi Late; SE = Semi Early; E = Early).
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Fig. 1. Overview of the larvae feeding bioassays. (a) Plants from the 18 inbred lines of the panel were grown in a greenhouse. Delayed sewing allowed to sample plants
at the same developmental stage for each replicate. (b) For each inbred line/replicate, 50 leaf discs were arranged into a 50-cells plate. A single L2 larva was deposited into
each cell at the beginning of the monitoring. (c) The consumption of 50 leaf discs by L2 larvae was monitored during approximately 24h. Image analysis allowed to measure
the proportion of leaf discs consumed at each time step. (d) Clustering methods allowed to classify the consumption curves into six insect larvae behavioural groups, from
consumers (group A) to non-consumers (group F). (e) The output was the proportion of each behavioural type in each replicate. As an example, the three replicates from the
two most extreme lines F2 and Lo32 are shown

stage procedure. The first stage consisted in describing the195

variability of individual larvae feeding behaviours and clas-196

sifying them into six behavioural types. At the end of this197

stage, each replicate of each inbred line is characterized by198

a distribution of behavioural types among the 50-wells. The199

full procedure and corresponding R scripts are available on-200
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line (54).201

Briefly, the R scripts generates pdf files representing con-202

sumption curves for each larva in each well (Fig. 1c). Dif-203

ferent larvae are not expected to have exactly the same be-204

haviour even when submitted to the same conditions. A non-205

supervised hierarchical classification of the 2700 individual206

consumption curves corresponding to the 3 blocks of the 18207

inbred lines was realized using the SOTA algorithm (33). It208

ended-up with 14 clusters identified by a letter from a to n.209

To reduce the number of groups, each cluster was character-210

ized by summary statistics like the average times T20, T50211

and T80 to consume 20, 50 or 80% respectively of the leaf212

disc area, or the total consumption. Based on those sum-213

mary statistics, the Kmeans algorithm (30) along with some214

manual grouping were used to group the 14 clusters into six215

ordered feeding behavioural types, named from A to F . Av-216

erage feeding behavioural profiles and their range of variation217

are presented on Fig. 1d.218

• A, B, C behavioural types mainly differ in the exis-219

tence or not of a lag-time before consuming, and in220

the length of the lag-time. Generally, the leaf is fully221

consumed at the end of the experiment. A types corre-222

spond to fast consumers.223

• D, E, F behavioural types are reluctant to consume.224

Consumption rate is low. Generally, the leaf is not fully225

consumed. Type F larvae are non-consumers.226

At the end of the process, each consumption curve, corre-227

sponding to a single well in a single plate is attributed a be-228

havioural type, from A to F . For each inbred line i and each229

block j, the distribution of behavioural types can be counted.230

We called Zkij be the number of observations of behavioural231

type k ∈ {A,B,C,D,E,F} from inbred line i in replicate j.232

Fig. 1e shows three examples of the Zij distribution, corre-233

sponding to the three replicates from inbred line Lo32 and234

the three replicates from inbred line F618.235

Statistical analyses of feeding bioassays: AFratio.
Rigorously, we could use multinomial regression to test
whether line or block change the behavioural distribution.
However, the experimental set-up, with three replicates per
inbred line lacks of power. Instead, we proposed to build
quantitative statistics to measure consumption behaviour by
reducing the behaviours into two classes: consumers versus
reluctants:

CRratio= log(# consumers

# reluctants
)

There are many possible combinations to group six classes236

(A to F) into two (consumer, reluctant). Among all possible237

combinations, we decided to choose the one that allowed for238

the best discrimination between the inbred lines. For each239

possible combination, we ran a linear model240

CRratioij = µ+Linei+Blockj + εij (1)

and recorded the adjusted R2 for the model, as well as the
heritability of the line effect

H2 = MSL−MSE

3
where MSL is the mean square associated with the Line ef-241

fect, MSE is the error mean square and 3 is the number of242

blocks.243

Results are detailed in Supplementary Methods S2. The most244

discriminant combination was the AFratio, i.e the log-ratio of245

the proportion of A-type fast consumers over the proportion246

of F -type non-consumers:247

AFratioij = log

(
ZAij

ZFij

)
(2)

The anova model (eq 1) was used to compute the mean248

AFratio for each inbred line, ˆAFratioi , as well as confi-249

dence intervals. Comparison of inbred lines means were per-250

formed using Tukey Honest Significant Difference tests (70).251

Pearson’s correlation coefficient between AFratio and Flow-252

ering time (FFT) was also computed.253

Correlations with plant metabolism and physiology.254

Thirteen inbred lines from our panel were characterized at255

two developmental stages for a set of physiological, enzy-256

matic or metabolic data. We used the data available as Sup-257

plementary Dataset1 from (17) to compute the average value258

for each inbred line. In (17), the vegetative stage V was con-259

sidered as plants with 7 to 8 visible collar leaves. It roughly260

corresponded to the ear initiation stage (GRO:0007013 from261

the Cereal Plant Development Ontology) and is compara-262

ble to the developmental stage used in the present study.263

As in the present study, samples from the sixth leaf were264

used for enzymatic, metabolomic and physiological analy-265

ses. The second developmental stage was 15 calendar days266

after silking (15DAS). It corresponded to the blister stage267

(GRO:0007030). This stage is initiated when significant268

starch accumulation begins, approximately 12-17 days after269

pollination.270

Altogether, the dataset comprised enzymatic activity (Vmax)271

from 29 enzymes from central carbon metabolism and rela-272

tive concentration (nmol.mg−1leaf FW ) from 155 metabo-273

lites at two developmental stages (V and 15DAS). It also274

comprised the measurement of Yield, kernel number and275

Thousand Kernel Weight at maturity, as well as dry matter276

content, C/N ratio, and the C, N and nitrates content at the277

two developmental stages (V and 15DAS).278

Among the 383 traits measured, 228 were variable between279

the 13 lines of our panel. 139 traits showed a quantita-280

tive variation within our panel. Eighty-nine traits showed281

a qualitative variation (presence/absence or no more than282

three different abundance values). Among those 89 traits,283

27 were present or absent in a single inbred line and were284

subsequently discarded. The 62 remaining traits with pres-285

ence/absence were treated as qualitative variables. For each286

trait l, the abundance was transformed into a qualitative vari-287

able yli ∈ {0,1}. Its relationship with AFratio was analyzed288
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with a linear model :289

ˆAFratioi,yl
i

=m0 +yli ·∆l+ εi,yl
i

(3)

where m0 is the mean AFratio among the inbred lines290

where the trait is absent, and ∆l is the average effect of the291

presence of trait l.292

For the 139 traits with quantitative variation within the panel,293

Pearson’s correlation coefficient with AFratio and FFT was294

computed, as well as the corresponding pvalue. Traits with295

a pvalue < 0.05 were retained as associated. A Principal296

Component Analysis was run to explore the correlations be-297

tween quantitative traits that were found significantly associ-298

ated with AFratio.299

Results300

We used an original high-throughput design for feeding301

bioassays (56) to measure genetic variation of maize leaf302

palatability to second instar larvae from the european corn-303

borer Ostrinia nubilalis Hbn within a maize inbred lines core-304

panel. The maize panel covered the main maize genetic305

groups that represent the diversity of maize varieties culti-306

vated in Northern America and Europe (10). As shown in Ta-307

ble 1, the panel presented a wide range of variation for flow-308

ering time between ND36, that flowers 59 days after sowing,309

and F64 that flowers 79 days after sowing.310
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Fig. 2. Feeding bioassays a. Average distribution of behavioural types for each
of the 18 inbred lines from the core-panel. Colors are the same as in Figure 1.
Red is the proportion of A types, and blue the proportion of F types. b Range of
variation for the AFratio. Dots indicate the mean. Lines the 95% confidence interval
around the mean. Maize lines are ordered according to their mean AFratio. Colours
highlight groups of lines with significant differences.

Classifying feeding behaviours. Maize leaf palatability311

was assessed during the vegetative growth stage, when plants312

exhibit between 5 and 7 visible leaf collars. Delayed sowing313

dates were used to sample plants from the different inbred314

lines at the same developmental stage. Feeding bioassays315

consisted in measuring the consumption of leaf discs from316

the sixth leaf by second instar pyralids larvae. Instructions317

for building-up the feeding consumption bioassays device are318

freely available (55). Image analysis was performed using319

plugins embedded into the image software Icy (19). R scripts320

for statistical analyses were deposited in (54). Fig. 1 gives321

a general overview of the process. Clustering methods were322

used to classify individual consumption curves into six or-323

dered behavioural types, named from A to F that captured324

both differences between leaf samples and behavioural dif-325

ferences between larvae. Fig. 1d, shows the percentage of in-326

tact leaf disc as a function of time for each behavioural type.327

Clearly A types are consumers that feed fast and consume all328

the leaf disc, while F types are reluctants that hardly feed on329

the leaf disc. In between, B to E behavioural types are in-330

termediate. B and C mainly differ from A by the existence331

of a lag-time: larvae wait before feeding. D and E mainly332

differ from F by the fact that at least part of the leaf disc is333

consumed at the end of the experiment. They differ from A,334

B or C by the consumption rate, which is always lower. The335

same range of variation of behavioural types were observed336

in (56), where larvae were confronted to leaf discs from a337

single maize variety treated with different concentrations of338

antifeedant molecular compounds. Here, in addition to the339

variability of larvae, the variability of behavioural profiles340

reflects natural variations for palatability between sam-341

pled leaf discs. Those differences may come either from342

growing conditions or from differences between the inbred343

lines.344

Assessing genetic differences for maize leaf palatabil-345

ity. In order to assess genetic differences between lines, the346

distribution of behavioural types was established for each in-347

bred line and each replicate by counting-out the number of348

leaf discs exhibiting the different behavioural types. Fig. 1349

shows the results for the three replicates from inbred lines350

Lo32 and F618. Clearly, there were variations between repli-351

cates. However, the proportion of A behavioural type is al-352

ways high in Lo32 and low in F618, while the proportion of353

F behavioural type is always low in Lo32 and high in F618.354

Fig. 2a shows the average distribution of behavioural types355

for each inbred line of the core-panel. The average propor-356

tion of A-type behaviours ranges from 12% in F618 to more357

than 40% in Lo32 and exhibits a quantitative variation within358

the panel . The average proportion of F -type behaviours de-359

creases with the average proportion of A-type behaviours. It360

ranges from 18% in F618 to 2% in Lo32. Hence, genetic361

differences between lines at least partly drive the observed362

differences between leaf discs.363

To test for differences between inbred lines, AFratio was364

computed as the log-ratio of the number of leaf discs at-365

tributed to the A behavioural type to the number of leaf discs366

attributed to the F behavioural type (eq 2). The AFratio367
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Fig. 3. Correlation between Flowering time and AFratio The scatterplot shows
the relation between the average AFratio estimated for each inbred line and its
average female flowering time FFT. The red lines corresponds to the regression
line.

was shown to be the most discriminant log-ratio among all368

possible ratios (Supplemental Methods S2). An analysis of369

variance taking into account the inbred line and the block ef-370

fects (eq 1) showed that both effects were significant: the371

line effect pvalue was 0.0015 and the block effect pvalue was372

0.007. Indeed, blocks 2 and 3 tended to have a higher AFratio373

than block 1 (Fig. 7 from Supplementary Methods S2). The374

between-line heritability was H2 = 0.40. Fig. 2b shows the375

mean AFratio and its confidence interval estimated for each376

inbred line of the panel. AFratio ranged from −1 (F-types377

were two times more frequent than A-types) in F618 and378

F2 to +2 (A-types were seven times more frequent than F-379

types) in Lo32. In B73, A-types were on average two times380

more frequent thant F-types. Inbred line NYS302 was close381

to F618 and F2 and significantly different from B73. Despite382

the lack of power to detect significant differences, AFratio383

showed a continuous variation between lines that reflects ge-384

netics differences of maize leaf palatability to European corn-385

borer.386

Fig. 3 shows the positive correlation between AFratio and387

flowering time (r=0.55, pvalue=0.017). Inbred lines that388

flower earlier seem to be less attractive to pyralids, with an389

excess of F behavioural types. However, notice that the four390

extreme lines for AFratio : F2, F618, B73 and Lo32 strongly391

depart from the regression line, suggesting that flowering392

time is not the sole determinant for the variation of AFratio.393

Correlation with metabolic and physiological traits.394

Thirteen inbreds lines of the panel were thoroughly charac-395

terized for a large set of enzymatic, metabolic and physio-396

logical traits (17) at two developmental stages : vegetative397

(V) and grain-filling (15DAS). The vegetative stage, around398

rapid stem elongation and ear initiation was the same as the399

one targeted in the present study for feeding bio-assays. We400

took the opportunity of the availability of the data to explore401

the relationships between maize leaf palatability measured402

by AFratio and metabolic or physiological characteristics403

of the inbred lines.404

Among the 62 qualitative traits that were either present or ab-405

sent and where analyzed by anova using (eq 3), four metabo-406

lites and one amino-acid concentrations showed a signifi-407

cant effect on AFratio and were reported in Table 2. They408

all belong to the phenylpropanoid pathway (3). Notice that409

the average effect associated with the presence of the com-410

pound was important and corresponded to almost half of411

the differences in leaf palatability between the two most ex-412

treme lines. Presence/absence of the compound defines two413

groups of lines, one always comprising the less palatable414

line F2, and one always comprising the most palatable line415

B73. The presence of Tyrosine, Coumaroylquinate, and To-416

copherol in the F2 group is associated with a decrease of leaf417

palatability. The presence of Caffeoylquinate.trans and Caf-418

feoylquinate.cis in the B73 group is associated to an increase419

of leaf palatability. Notice that the number of maize lines420

composing the two groups changes depending on the com-421

pound. While the organic acid Coumaroylquinate was only422

present in the three less attractive inbred lines of the sub-423

panel (F2, ND36, NYS302), the effect of the presence of the424

other compounds seems to be less clearcut, suggesting that425

the modulation of leaf palatability has complex mechanisms.426

Among the 139 traits with a quantitative variation within the427

sub-panel, 17 were significantly correlated to AFratio, while428

13 of them were also significantly correlated to flowering429

time (Table 3). Fig. 4 shows the correlations between those430

17 traits and flowering time in the form of a principal compo-431

nents’ analysis. The first PCA axis explains 62% of the total432

inertia and separates inbred lines according to their flowering433

time. It is mainly driven by differences between the late Lo32434

and SA24U and the early F2, that were also the most extreme435

for leaf palatability. Traits correlated to PCA axis1 were436

mainly traits measured at a late developmental stage (15DAS)437

during grain filling. Early inbred lines are associated with438

higher activity of enzymes involved in carbon fixation and439

nitrogen assimilation 15 days after silking (15DAS). This re-440

sults in a higher percentage of nitrogen and nitrates, and a441

lower C/N ratio. For those traits, causal relationships with442

AFratio are difficult to disentangle from a pleiotropic effect443

of phenology. The second PCA axis explains 8% of the total444

inertia and separates lines that belong to the group with a high445

AFratio (C105, MO17, B73) from lines that belong to the446

group with a lower AFratio (SA24U, HP301, ND36). Traits447

correlated to PCA axis 2 were mainly traits measured dur-448

ing the vegetative development (V). In particular, PCA axis 2449

shows a strong positive correlation with caffeoylquinate, an450

organic acid involved in the biosynthesis of lignin (phenyl-451

propanoids) that belong to plant secondary metabolism.452

Altogether, among the 201 variable traits, 22 of them were453

found associated to AFratio at the 5% level, which is two454

times more than expected under the null hypothesis because455

of multiple testing. Indeed, the False Discovery Rate com-456

puted from the observed distribution of the pvalues is around457

0.45. The functional annotation of all metabolites from Ta-458

ble 2 and Table 3 was achieved using the MetaCyc (16) and459

KEGG (36) databases and presented in Supplementary Data460

S3. It shows that the associated traits were enriched in traits461

linked with the phenylpropanoid pathway.462
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Trait ∆ (pvalue) Lines
DAS.Tyrosine -0.96 (0.011) F2, F64, MBS847, ND36, NYS302
V.4.Caffeoylquinate.trans 0.85(0.045) F2, F252, F64
V.3.Caffeoylquinate.cis 0.79(0.050) B73, C105, Lo32, MBS847, MO17
DAS.Coumaroylquinate... -1.11 (0.011) F2, ND36, NYS302
DAS.Tocopherol -1.61 (0.031) Lo32, SA24

Table 2. Association between AFratio and qualitative traits ∆ is the average effect of the presence of the trait on AFratio (eq 2). Pvalues are between brackets. When
inbred line names are emphasized, this means that the compound is absent. Otherwise, list of the inbred lines where the compound is present. Abbreviated traits names are
the same as in (17).

Trait rAF ratio(pval) rF T T (pval)
V.PFK.Pi 0.64 (0.018) 0.39 (0.192)
V.AlaAT 0.75 (0.003) 0.65 (0.016)
V.5.Caffeoylquinate.trans 0.69(0.009) 0.46 (0.117)
V.Glycerate -0.55 (0.049) -0.42 (0.148)
DAS.NADPH.ME -0.60 (0.030) -0.62 (0.023)
DAS.NADH.MDH -0.76 (0.003) -0.78 (0.002)
DAS.NADPH.MDH -0.66 (0.013) -0.62 (0.024)
DAS.NADH.ME -0.61 (0.026) -0.57 (0.044)
DAS.PPDK -0.58 (0.038) -0.84 (3e − 04)
DAS.AspAT -0.68 (0.010) -0.72 (0.005)
DAS.GS -0.57 (0.041) -0.64 (0.018)
DAS.cnratio 0.63 (0.022) 0.80 (0.001)
DAS.npercen -0.63 (0.022) -0.78 (0.002)
DAS.nitrates -0.68 (0.011) -0.70 (0.008)
DAS.Digalactosylglycerol -0.75 (0.003) -0.43 (0.141)
DAS.Quinate -0.67 (0.012) -0.74 (0.004)
TKW -0.61 (0.026) -0.64 (0.017)

Table 3. Correlation between AFratio, FTT and quantitative traits For each trait,
Pearson pairwise correlation coefficient with AFratio (eq 2) and flowering time (FTT),
respectively. Corresponding pvalues are given between brackets. Traits names
were the same as in (17).

Discussion463

We used a new feeding consumption test (56) to evaluate464

maize leaf discs’ palatability to European Corn Borer larvae465

within a core panel of 18 temperate maize inbred lines. The466

objectives were to assess the extent of genetic variability for467

palatability within the panel, and to link those variations to468

plant metabolism.469

Most consumption tests characterize leaf consumption470

through time by a single instant parameter like the time to471

consume half of the leaf disk (20, 44, 57). Those tests typ-472

ically lack of power for two reasons. First, they fail to take473

into account the natural variability of individual larvae be-474

haviours (6). Second, because larvae may change their be-475

haviour through time (34) and (Fig1d). Our experimental476

set-up bypasses both drawbacks. First, it allows for the obser-477

vation of the feeding behaviour of a large number of individ-478

ual larvae (50) within each biological replicate. Second, in-479

stead of summarizing the behaviour by an instant or average480

value, it proposes an original method to classify individual481

consumption curves into ordered feeding behavioural types.482

In this study, we observed six main feeding behaviours that483

go from the immediate consumption of the whole leaf disc484

(A type) to the absence of consumption (F type). Interme-485

diate behaviours correspond to lag-time before consumption486

(B and C types) or slower consumption rates (E type) with487

breaks (D type). In a previous study, we demonstrated the488

link between larvae behavioural type and leaf palatability by489

using antifeedant molecules (56). Here, we observe the same490
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kind of variability for larvae behaviour when confronted to491

different maize inbred lines. The distribution of the different492

feeding behaviour types within a biological replicate takes493

into account natural variability between individual larvae and494

measures the average palatability of the sample. We pro-495

pose here a quantitative measure of leaf palatability, named496

AFratio, and computed as the log-ratio of the two most ex-497

treme behaviours, A and F. We found genetic variability498

for AFratio between inbred lines within the panel with a499
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broad-sense heritability aroundH2 = 0.40 and confirmed500

the interest of the method for consumption tests.501

While our data clearly show genetic variation for leaf palata-502

bility to ECB, we only have indirect evidence concerning the503

link between leaf palatability and the setting-up of plant de-504

fenses in the field. However, our results can be compared505

to experimental evidences concerning tolerance/sensitivity to506

ECB. Classically, tolerance to ECB is assessed through the507

measurement of plant damages after artificial field infesta-508

tion. Our panel comprised a few inbred lines for which tol-509

erance/sensitivity to ECB have already been assessed in field510

experiments. The tolerant line F618 (3) is the less palat-511

able from our panel while the sensitive line B73 (41, 69) is512

amongst the lines with the highest AFratio (Fig 2). Mo17513

is reputed to be sensitive and stands in the top 6 inbred lines514

with the highest AFratio. In the same line, the relative or-515

dering of the lines B73 (36% of A types and 3% of F types),516

HP301 (35% of A types and 8% of F types) andMo17 (31%517

of A types and 11% of F types) is similar to the one obtained518

by measuring S. frugiperda Smith larvae growth rates on leaf519

disks (35). However, the link between leaf palatability and520

the amount of plant damages in the field stays complex. The521

inbred line F918 shows a moderately high palatability while522

it was derived from F618 and selected for tolerance. Alto-523

gether, our new feeding consumption test allowed us to524

classify the panel inbred lines for leaf palatability. Lines525

Lo32 and B73 were the most palatable, and lines F618,526

F2 and NY S302 the less palatables.527

Interestingly, the link between leaf palatability and earli-528

ness is not straightforward. There is a moderate positive529

linear correlation between earliness and AFratio (r = 0.55,530

pvalue = 0.018, Fig 3). Fast development tends to be asso-531

ciated with a higher level of defenses when measured during532

the vegetative plant stage, in contradiction with the growth533

or defend trade-off (31). However, Late lines exhibit a wider534

range of variation for leaf palatability and comprise both the535

tolerant poorly palatable F618 and the sensitive highly palat-536

ables B73 and Lo32. Such patterns can be explained by gain537

or losses of metabolic functions due to random genetic drift538

or selection history (remember that F618 have been selected539

for tolerance to ECB (3)). The relatively high palatability540

of early maize inbreds could be explained by local adapta-541

tion between plant and insect phenology: in environments542

favorable to the culture of early maize varieties, insect phe-543

nology leads to earlier attacks and resulted in the selection544

of plant lines able to mobilize their defenses at earlier devel-545

opmental stages. This hypothesis could have been tested by546

setting-up leaf consumption tests at different plant develop-547

mental stages.548

In maize, there is a long standing literature about genetic549

variability for plant defenses against herbivores that concerns550

both induced and constitutive defenses. For example, maize551

inbred lines differ for the volatile compounds emissions in-552

duced by injection of Sprodoptera littoralis regurgitant (21).553

Genes involved in the phenylpropanoid pathway were shown554

to be polymorphic (2). Within the phenypropanoid pathway,555

QTLs were found for stem-wall hydroxycinnate contents556

Fig. 5. Metabolic pathways associated to maize leaf palatability: phenyl-
propanoids. Enzymes (rectangles) are given their EC number or their abbrevi-
ated name. Straight lines indicate a direct relation between enzymes and sub-
strates/products and arrows the main direction of the reaction. Dashed lines in-
dicate the link to a pathway. Point lines indicate an hypothetical direct reaction.
Colors indicate a significant positive (red) or negative (blue) association with maize
leaf palatability.

like p-coumaric or ferulic acids (38), but also for resistance557

to lepodiptera Spodoptera frugiperda Smith and coleoptera558

Sitophilus zeamais (5). Using a MAGIC population of 408559

recombinant inbred lines, (39) showed that a greater concen-560

tration of p-coumaric acid was associated to a higher resis-561

tance to corn-borers, measured by tunnel length in infested562

plants, and also a lower yield. Altogether, those studies ev-563

idence the metabolic complexity of plant defenses and pinn-564

point the central role of phenylpropanoid pathway (58).565

Here, we benefited from the availability of the metabolomic566

and enzymatic characterization of 13 of our 18 core panel in-567

bred lines (17) to investigate the metabolic bases of maize568

leaf palatability. Among the 201 variable metabolic traits,569

only 22 were found significantly associated to variations in570

maize leaf palatability. Interestingly, those 22 metabolic571

traits were clustered into a small number of metabolic572

pathway according to https://metacyc.org: chloro-573

genic acids pathways, chorismate-tyrosine pathway, malate574

metabolism, hydroxilated fatty-acids pathway, all involved575

in the establishment of plant defenses. Besides, maize leaf576

palatability is associated with a high C:N ratio and a low577

concentration of nitrogen and nitrates, as well as with a low578

yield. In tomato, C:N ratio was considered as a good indica-579

tor of secondary compounds concentrations, especially those580

involved in the chemical defenses (52).581

Digalactosil-glycerol is a glycolipid specific from plant582

plasma membrane possibly associated to host-pathogens in-583

teractions (65). A high level of this compound or its pre-584
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cursor glycerate (Fig S8) is associated with a low palata-585

bility, while a high enzymatic activity of phosphofructok-586

inase (PFK), which mediates carbon allocation to pentose-587

phosphates, sucrose or hydroxilated fatty acids is associated588

with higher palatability. Malate metabolism is at a crossroads589

between gluconeogenesis and the biosynthesis or aromatics590

amino-acids (15). We found five enzymes from C4 dicar-591

boxilic acid cycle and nitrogen assimilation that lead to ty-592

rosine biosynthesis and were associated to maize leaf palata-593

bility (Fig5). A high level of activity for those enzymes is594

associated with a lower leaf palatability and a higher tyrosine595

concentration, except for alanine-aminotransferase. Note that596

alanine-aminotrasferase is at a crossroads between tyrosine597

and alanine biosynthesis. Chorismate-tyrosine pathway is598

another regulatory hub that was shown to control vitamine599

E content in tomato (12). In our study, both tyrosine and600

trocopherol concentrations were found negatively correlated601

with maize leaf palatability. Trocopherol is an amphiphilic602

lipid with vitamine E activity. It protects membranes against603

oxidative stress with a special role associated with the pro-604

tection of plant photo-system II (45). Trocopherol biosyn-605

thetic pathway modulates salicylic acid accumulation and af-606

fects basal resistance against Pseudomonas siryngae in the607

model plant Arabidopsis thaliana (60). Finally, we found608

three metabolites from the chlorogenic acids pathway which609

concentration was associated to leaf palatability : coumaroyl-610

quinate, caffeoyl-quinate and quinate. Those metabolites are611

substrate and products of two successive enzymatic reac-612

tions (Fig 5) and possibly linked to trocopherol biosynthe-613

sis through quinate degradation. The enzyme that transforms614

coumaroyl-quinate into caffeoyl-quinate have been identified615

as p-coumarate 3-hydroxylase (C3H) found in the ref8 mu-616

tant in Arabidopsis thaliana (26). ref8 plants deposit an617

unusual lignin enriched in p-hydroxyphenyl sub-units and618

are prone to fungal attacks. It was suggested that phenyl-619

propanoid pathway products downstream of REF8 may be620

required for normal plant development and disease resis-621

tance. Altogether, our results confirm the biological com-622

plexity of the metabolic response associated to plant de-623

fenses (58). However, all metabolic changes related to leaf624

palatability seem to be related to changes in membrane625

and cell-wall composition.626

Conclusions627

The original consumption test used in this study allowed-us628

to highlight genetic variability of leaf palatability to Euro-629

pean Corn Borer within a core-panel of maize inbred lines630

representative of the varieties cultivated in temperate areas.631

Our results are in accordance with existing data about toler-632

ance/sensitivity of the inbred lines observed in the field. Cor-633

relation analyses between leaf palatability and the concentra-634

tion of metabolites and enzymes points out candidate maize635

metabolic pathway that could be explored through functional636

analyses.637
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Supplementary Data S1: Feeding bioassay experimental set-up

Flowering time and precocity groups For each inbred line, data about flowering time came either from (10) or from the
yearly recordings of the INRAE field station at St Martin de Hinx, with 10 out of the 18 lines having records for both. In (10),
female flowering time (FFLW) was recorded in sum of temperatures while data from St Martin de Hinx (FFT) were recorded
in days after sewing. A linear regression was performed on the set of common lines to predict the FFT from the lines that were
not measured at St Martin de Hinx. Hence, the flowering time (FFT) presented in Table 1 results either from observation at the
INRAE field station or from predictions. FFT data were used to group the maize lines of the panel into four sewing groups,
labelled from A to D. All available information is summarized in Table S4

Line FFLW FFTa LFNB FFTb sewing group
ND36 194 NA 13 59.25 A
F2 196 61 14 61 A
F66 NA 61 NA 61 A
F271 198 NA 15 62.02 A
Cm484 NA 62 NA 62 A
F252 199 63 16 63 A
ND283 204 NA 16 66.19 B
NYS302 207 66 15 66 B
C105 204 66 18 66 B
F618 NA 70 18 70 C
MBS847 210 71 18 71 C
Lo3 209 71 17 71 C
Mo17 217 73 17 73 C
B73 217 74 21 74 D
Lo32 215 74 17 74 D
F918 NA 75 20 75 D
HP301 218 NA 20 75.91 D
SA24U 220 NA 20 77.3 D
F64 218 79 19 79 D

Table 4. Flowering time informations.

Shifted sewing dates Because we wanted all plants to be sampled at comparable developmental stage for the feeding bioas-
says, lines from each sewing group were sewed at different dates. At each date, six seeds per lines for all lines belonging to the
same sewing groups were sewed. Below are the different sewing dates and the sewing groups that were concerned.

Date L SL SE E
2019-10-01 X
2019-10-04 X
2019-10-07 X X
2019-10-11 X X
2019-10-14 X X
2019-10-18 X X
2019-10-21 X X
2019-10-25 X X
2019-10-28 X
2019-11-01 X

Experimental design for feeding bioassays Each block consisted in three batches of six maize inbred lines. Plants from
the different lines were chosen to be at the same developmental stage, between five and seven visible leaf collars. Lines were
randomly assigned to batches, that were launched every successive day, so that full data from one block were obtained in three
days. For each batch, lines were randomly given a plate number (from a to f ). A plate was filled with 50 leaf discs from the
sixth leaf of the three plants from the same inbred line sewed at the same date. The developmental stage (number of visible leaf
collars) and the number of days after sewing (DAS) was recorded.
The table below summarizes the experimental design.
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block 1 block 2 block 3
Line stage DAS b1.1 b1.2 b1.3 stage DAS b2.1 b2.2 b2.3 stage DAS b3.1 b3.2 b3.3
F64A V5 44 d V6 45 c V6 44 d
SA24UA V6 43 e V6 44 a V7 44 a
HP301A V6 43 f 6 44 d V6 44 c
F918A V5 43 d V6 44 f V7 44 b
B73A V6 43 c V6 44 b V7 44 e
Lo32A V6 43 a V6 44 e V6 44 f
M017B V5 41 c V5 42 e V5 42 b
MBS847B V5 41 b V6 42 a V6 41 e
Lo3B V5 41 e V5 42 b V5 41 d
F618B V5 41 a V6 42 f V5 41 c
NYS302C V5 38 f V6 39 d V6 41 b
C105C V6 37 b V6 38 c V6 39 f
F252D V5 35 d V5 36 e V5 39 a
F271D V5 35 b V5 36 d V5 36 d
Cm484D V5 35 e V5 36 c V5 36 e
F2D V5 35 c V5 36 f V5 36 a
F66D V5 35 f V5 36 b V5 36 c
ND36D V5 35 a V5 36 a V5 36 f
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Supplementary Data S2: Choosing the most discriminant model for CRratio
Feeding bioassays allowed to classify larvae preferences into six ordered behavioural types, named from A to F . Clearly A
types are consumers that feed fast and consume all the leaf disc, while F types are reluctants that hardly feed on the leaf disc.
In between, B to D behavioural profiles are intermediate. B and C mainly differ from A by the existence of a lag-time. D and
E mainly differ from F by the fact that at least part of the leaf disc is consumed at the end of the experiment, but at a lower
pace than in A, B or C.
In order to find significant differences between behavioural profiles, the variable CRratio was used to transform the data and
analyze them on a logarithmic scale

CRratio= log(# consumers

# reluctants
)

All possible grouping combination were explored and tested for the ability of the new variable CRratio to discriminate between
inbred lines and replicates. For example,

CRratio
ABC/DEF
ij = log

(
ZAij +ZBij +ZCij

ZDij +ZEij +ZFij

)

For each grouping combination, the following linear model was run:

CRratioij = µ+Linei+Blockj + εij

where Linei is the inbred line effect, and Blockj is the Block effect. Summary statistics were compiled and the graph of
residuals versus fitted values was checked. Results are summarized in the table below

Model pval(block) pval(line) σ̂2 R2 h2
AB/CDEF 2e-09 0.0100 0.135 0.65 0.07
A/CDEF 3e-06 0.0028 0.278 0.57 0.19
A/BCDEF 1e-04 0.0014 0.264 0.54 0.20
AB/F 6e-04 0.0032 0.256 0.49 0.17
A/F 0.007 0.0015 0.528 0.48 0.40
A/EF 0.003 0.0074 0.505 0.43 0.28
AB/DEF 1e-04 0.0670 0.323 0.41 0.09
A/DEF 0.002 0.0301 0.557 0.38 0.21
AB/EF 0.005 0.0401 0.816 0.34 0.28
ABC/F 0.821 0.0180 1.222 0.28 0.54
ABC/EF 0.210 0.0811 0.869 0.21 0.22
ABC/DEF 0.061 0.2357 0.276 0.15 0.03

Table S2. Summary statistics. pval(block) is the pvalue of the block effect. pval-line) is the pvalue of the inbred line effect.
σ̂2 is teh residual variance. R2 is the adjusted model determination coefficient. h2 is the line heritability.
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Fig. 6. Differences between lines according to the grouping choices Barplot representation of the variable CRratio for each maize
inbred line. Grouping models have been range according to their anova R2 value.
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Supplementary Data S3: Functional annotation of enzymes and metabolites associated with
AFratio variations
We used the MetaCyc (16) and KEGG (36) databases to complete the annotation of the 15 enzymes and metabolites that were
found associated to AFratio variations. Below are the names and identifiers of the molecular compounds in KEGG, PubChem
and CHEBI

Abbreviation Name KEGG PubChem ChEBI
AlaAT Alanine aminotransferase 2.6.1.2
AspAT Aspartate aminotransferase 2.6.1.1
GS Glutamine synthetase 6.3.1.2
NADPH-ME malate dehydrogenase (NADP+, decarboxylating) 1.1.1.40
NADH-ME malate dehydrogenase (oxaloacetate-decarboxylating) 1.1.1.38
NADPH-MDH Malate dehydrogenase (NADP+) 1.1.1.82
NADH-MDH NAD-L-malate dehydrogenase 1.1.1.37
PPDK Pyruvate, phosphate dikinase 2.7.9.1
PFK-Pi inorganic pyrophosphate-dependent phosphofructokinase 2.7.1.90
Glycerate D-Glycerate C00258 439194 32398
Digalactosylglycerol Digalactosyl-diacylglycerol C06037
Tyrosine Tyrosine C00082 6057 17895
5-Caffeoylquinate-trans trans-5-O-caffeoyl-D-quinate C00852 1794426 57644
3-Caffeoylquinate-cis 3-Caffeoylquinate-cis
4-Caffeoylquinate-trans 4-Caffeoylquinate-trans
3-Caffeoylquinate-trans 3-Caffeoylquinate-trans
Coumaroylquinate 3061.9/345 trans-5-O-(4-coumaroyl)-D-quinate C12208 40466964 57575
Quinate Quinate C00296 3590 17521
Tocopherol α-Tocopherol C02477 14985 18145

Metabolic pathway databases were also used to refine the functional categories. Altogether, the 15 compounds belonged to five
different main pathways that were used on Figure 4.

Abbreviation Class Functional cat. Pathway
AlaAT Enzyme Nitrogen assimilation Nitrogen
AspAT Enzyme Nitrogen assimilation Nitrogen
GS Enzyme Nitrogen assimilation Nitrogen
NADPH-ME Enzyme Carbon fixation (mal > pyr) Carbon
NADH-ME Enzyme Pyruvate metabolism (mal -> pyr) Carbon
NADPH-MDH Enzyme Carbon fixation (mal -> oaa) Carbon
NADH-MDH Enzyme Carbon fixation (mal -> oaa) Carbon
PPDK Enzyme Carbon fixation (pyr -> pep) Carbon
PFK-Pi Enzyme Glycolysis/Gluconeogenesis Glycolysis/Gluconeogenesis
Glycerate Carboxylic Acid Glycerolipid metabolism Glycerolipids
Digalactosylglycerol Glycolipid Glycerolipid metabolism Glycerolipides
Tyrosine Amino Acid Phenylpropanoid biosynthesis Phenylpropanoids
5-Caffeoylquinate-trans Organic Acid Phenylpropanoid biosynthesis Phenylpropanoids
3-Caffeoylquinate-cis Organic Acid Phenylpropanoids
4-Caffeoylquinate-trans Organic Acid Phenylpropanoids
3-Caffeoylquinate-trans Organic Acid Phenylpropanoids
Coumaroylquinate 3061.9/345 Organic Acid Phenylpropanoid biosynthesis Phenylpropanoids
Quinate Organic acid Phenylpropanoid biosynthesis Phenylpropanoids
Tocopherol Quinone Quinate degradation pathway I Phenylpropanoids

Figure 5 shows the link between carbon fixation, nitrogen assimilation and the phenylpropanoid biosynthesis pathway. Thfig-
urere below shows the position of Glycerate, Digalactosilglycerol and the enzyme PFK-Pi in central carbon metabolism.
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Hydroxilated fatty acid
biosynthesis

Digalactosil-
glycerol Glycerate Glucose

3.1.3.9

Glucose-6P 5.4.2.2

Glucose-1P

5.3.1.9

Fructose-6P

PFK-Pi
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Fig. 8. Metabolic pathways associated to maize leaf palatability: central carbon metabolism. Enzymes (rectangles) are given
their EC number or their abbreviated name. Straight lines indicate a direct relation between enzymes and substrates/products and
arrows the main direction of the reaction. Dashed lines indicate the link to a pathway. Line colors correspond to a pathway among
glycolysis (black), pentose-phosphate (orange) or glycerolipids (green). Enzyme/metabolites colors indicate a significant positive (red)
or negative (blue) association with maize leaf palatability.
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