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Abstract 41 
 42 
Transcriptome engineering technologies that can effectively and precisely perturb mammalian 43 
RNAs are needed to accelerate biological discovery and RNA therapeutics. However, the broad 44 
utility of programmable CRISPR-Cas13 ribonucleases has been hampered by an incomplete 45 
understanding of the design rules governing guide RNA activity as well as cellular toxicity 46 
resulting from off-target or collateral RNA cleavage. Here, we sought to characterize and 47 
develop Cas13d systems for efficient and specific RNA knockdown with low cellular toxicity in 48 
human cells. We first quantified the performance of over 127,000 RfxCas13d (CasRx) guide 49 
RNAs in the largest-scale screen to date and systematically evaluated three linear, two 50 
ensemble, and two deep learning models to build a guide efficiency prediction algorithm 51 
validated across multiple human cell types in orthogonal validation experiments 52 
(https://www.RNAtargeting.org). Deep learning model interpretation revealed specific sequence 53 
motifs at spacer position 15-24 along with favored secondary features for highly efficient guides. 54 
We next identified 46 novel Cas13d orthologs through metagenomic mining for activity and 55 
cytotoxicity screening, discovering that the metagenome-derived DjCas13d ortholog achieves 56 
low cellular toxicity and high transcriptome-wide specificity when deployed against high 57 
abundance transcripts or in sensitive cell types, including human embryonic stem cells, neural 58 
progenitor cells, and neurons. Finally, our Cas13d guide efficiency model successfully 59 
generalized to DjCas13d, highlighting the utility of a comprehensive approach combining 60 
machine learning with ortholog discovery to advance RNA targeting in human cells. 61 
 62 

* * * 63 

 64 
  65 
  66 
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Introduction 67 

The ability to perturb desired RNA molecules with high efficiency and specificity is required for 68 
functional elucidation of the transcriptome and its diverse phenotypes. Despite rapid progress in 69 
effective technologies for genome engineering, analogous systems for transcriptome 70 
engineering lag behind their DNA counterparts. While RNAi has long been used for RNA 71 
knockdown, it is challenging to engineer and suffers from widespread off-target effects (Jackson 72 
et al., 2003; Sigoillot et al., 2012) due to its important role in endogenous miRNA processing 73 
(Doench et al., 2003). The discovery and development of RNA-guided RNA-targeting CRISPR 74 
systems, such as Cas13 enzymes, provides an orthogonal and modular approach to overcome 75 
these limitations (Abudayyeh et al., 2016; East-Seletsky et al., 2016). Because CRISPR 76 
proteins are orthogonal to eukaryotic systems, they can be easily engineered to bind or cleave 77 
target RNA molecules. Further, their modular nature enables the facile fusion of effector 78 
domains to expand effector functionality. As a result, a broad suite of Cas13-based tools is now 79 
able to perturb RNA expression (Abudayyeh et al., 2017; Konermann et al., 2018) or splicing 80 
(Konermann et al., 2018), mediate RNA editing (Abudayyeh et al., 2019; Cox et al., 2017; Xu et 81 
al., 2021) or methylation (Wilson et al., 2020), as well as profile RNA-protein interactions (Han 82 
et al., 2020). These capabilities are now accelerating applications across the study of 83 
fundamental RNA biology, RNA-based therapeutics, and molecular diagnostics. 84 
 85 
The Cas13 family is unified by the presence of two conserved HEPN ribonuclease motifs, and 86 
these enzymes are activated by binding to cognate target RNA as specified by the Cas13 guide 87 
RNA (Abudayyeh et al., 2016; East-Seletsky et al., 2016; Slaymaker et al., 2021; Zhang et al., 88 
2018). Several subtypes have been defined on the basis of sequence diversity and domain 89 
architecture. Cas13d enzymes – in particular the engineered Cas13d from R. flavefaciens strain 90 
XPD3002 (CasRx) (Konermann et al., 2018) – are the smallest and most efficient Cas13 RNA 91 
targeting effectors in mammalian and plant cells reported to date (Wessels et al., 2020; Li et al., 92 
2021; Mahas et al., 2019), motivating their further characterization and optimization as RNA 93 
targeting tools. In order to successfully apply Cas13d in high-throughput applications, the ability 94 
to design highly effective guide RNAs is critical. Recent efforts to understand and predict 95 
Cas13d guide activity have taken a first step in this direction, by using a dataset of 2,918 guide 96 
RNAs across four transcripts to train a random forest model (Wessels et al., 2020) and by using 97 
combined datasets of 10,279 guides to train a deep learning model (Cheng et al. 2023). In 98 
addition to the relatively small datasets, the manual selection of guide sequence features 99 
(Wessels et al., 2020) or lack of secondary features (Cheng et al. 2023) has limited a broader 100 
understanding of Cas13d targeting preferences. 101 
 102 
Here, we conducted the largest Cas13d screen to date, quantifying CasRx guide efficiency 103 
across >127,000 guide RNAs tiling 55 essential transcripts by measuring their effects on cell 104 
proliferation in human cells. We systematically compared a series of computational models on 105 
this dataset to predict guide activity. A deep learning convolutional neural network (CNN) model 106 
was able to most accurately predict highly effective guides. Model interpretation enabled us to 107 
discover a preferred sequence motif at spacer position 15-24 along with a preference for low 108 
guide free energy and high target region accessibility for high efficiency guides. We validated 109 
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the model against orthogonal datasets and confirmed high accuracy across target transcripts 110 
and five different cell types. 111 
 112 
Across the Cas13 subtypes structurally characterized to date, the RNA cleavage site formed by 113 
the two HEPN domains is located distal to the guide binding groove (Liu et al., 2017; Slaymaker 114 
et al., 2021; Zhang et al., 2018), which can result in the cleavage of non-target bystander RNA 115 
molecules (known as ‘collateral’ cleavage) in vitro by the HEPN domains activated upon target 116 
RNA binding. Initial reports for Cas13a, b, and d systems in routinely used mammalian cell lines 117 
reported a low degree of off-target effects in eukaryotic cells (Abudayyeh et al., 2017; Cox et al., 118 
2017; Konermann et al., 2018). However, more recently, several groups reported cellular toxicity 119 
and more pronounced off-target effects of CasRx, LwaCas13a, and PspCas13b in sensitive cell 120 
types (Ai et al., 2022; Özcan et al., 2021), in vivo (Buchman et al., 2020), and when targeting 121 
highly expressed transcripts (Shi et al. 2023). 122 
 123 
To understand if this cellular toxicity is shared across Cas13 orthologs, we computationally 124 
identified 46 novel Cas13d orthologs from recently reported prokaryotic genomes and 125 
metagenomic contigs and screened them for target transcript knockdown activity and cytotoxic 126 
effects in human cells. We identified DjCas13d, a highly efficient ortholog with minimal 127 
detectable cellular toxicity when targeting highly expressed transcripts across multiple cell 128 
types, including human embryonic stem cells, neural progenitor cells, and neurons. 129 
Furthermore, we show that our CasRx-based guide design model extends to DjCas13d and 130 
accurately selects highly efficient guides, illustrating its generalizability across effectors and cell 131 
types. Overall, we advance the transcriptome engineering toolbox by developing a robust 132 
Cas13d guide design algorithm based on a high-throughput guide screen 133 
(https://www.RNAtargeting.org), and identifying a compact and high-fidelity Cas13d ortholog for 134 
efficient RNA targeting. Finally, we outline a strategy to systematically develop and interpret 135 
robust deep learning models for sequence-based classification. 136 

Results 137 

Deep learning of Cas13d guide RNA efficiency based on large-scale transcript 138 
essentiality screening 139 
In order to systematically understand factors impacting Cas13d guide efficiency, we generated a 140 
library of more than 100,000 RfxCas13d (CasRx) guide RNAs and evaluated their efficiency in a 141 
large-scale pooled screen. Reasoning that CasRx knockdown of essential transcripts would 142 
lead to the depletion of highly effective guides due to reduced cellular proliferation, we selected 143 
a set of 55 essential genes identified in three previously reported survival screens performed 144 
with RNAi and CRISPR interference (CRISPRi) in K562 cells (Hart et al., 2015; Horlbeck et al., 145 
2016; Luo et al., 2008) for a proliferation-based survival screen. K562 cells were selected due to 146 
their ease of use in pooled screens and our observation of variable CasRx-mediated 147 
endogenous protein knockdown in this cell line (Figures S1A, B). 148 
 149 
To perform the screen, we first generated stable K562 cell lines via transfection of an all-in-one 150 
plasmid encoding the CasRx effector, PiggyBac transposase, and an antibiotic selection 151 
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cassette. Next, we designed CasRx guides that tile the 5’ UTR, coding sequence (CDS), and 3’ 152 
UTR of the 55 essential transcripts with single nucleotide resolution. As controls, we designed 153 
guides tiling 5 non-essential transcripts as well as 3,563 non-targeting guides. The effector cell 154 
line stably expressing CasRx was transduced with a pooled lentiviral library containing all 155 
144,745 guide RNAs. Cells were cultured for 14 days, after which we analyzed guide 156 
abundances by NGS and computed a depletion ratio for each guide compared to its original 157 
abundance in the input library (Figure 1A). Analysis of the cumulative distribution of guide 158 
d14/input ratio demonstrated that the top 20th percentile of guides targeting essential transcripts 159 
are clearly separated from guides targeting non-essential transcripts or non-targeting guides 160 
(Figure 1B).  161 
 162 
Essential transcripts may vary in their magnitude of impact on cell proliferation and survival 163 
upon depletion. A transcript-level analysis of guide depletion confirmed this expectation (Figure 164 
S1C). In order to compensate for this in our analysis going forward, we selected the most 165 
effective guides for each individual transcript (see Methods for a full description of selection 166 
parameters) as high efficiency guides. A heat map representation of the positions of these high 167 
efficiency guides within each target transcript revealed a striking degree of clustering, leading to 168 
guide hot spots and deserts along the transcript and clearly deviating from a random distribution 169 
(Figure 1C). Multiple factors could be responsible for the observed clustering of high efficiency 170 
guides, including sequence-, structure-, or position-based effects of the guide RNA or target 171 
transcript. 172 
 173 
Prediction of CasRx guide activity based on guide RNA sequence alone 174 
We sought to systematically analyze these potential features that could distinguish high 175 
efficiency Cas13d guides and develop computational algorithms to predict guide efficiency. 176 
Initial analysis of the correlation of nucleotide identity with guide efficiency at each position 177 
along the 30 nt spacer showed a preference for G and C at the direct repeat-proximal spacer 178 
positions 15-24 (Figure S2A). Therefore, we reasoned that spacer sequence alone might be 179 
predictive of guide efficiency when used as model input. We then developed a series of 180 
computational models for prediction of guide efficiency based on one-hot encoding of the 30 nt 181 
guide spacer sequence without manual sequence feature selection. To understand the impact 182 
of computational model type, we systematically built and assessed the following models: 3 183 
linear models employing logistic regression (Lasso Regression (L1), Ridge regression (L2) or 184 
Elastic Net (EN)), 2 ensemble models (Random forest (RF) and Gradient-boosted tree (GBT)) 185 
and 2 deep learning models (convolutional neural network (CNN) and bidirectional long short-186 
term memory neural network (LSTM)) (Figure 1D).  187 
 188 
All of these models were trained to classify high efficiency guides for target transcripts. Due to 189 
the observed high degree of clustering of effective guides along a transcript (Figure 1C), 190 
models that are tested on held-out guides from the same transcripts they were trained on would 191 
potentially be subject to overfitting by learning the targeting hotspots specific to those 192 
transcripts. To alleviate overfitting and ensure model generalizability to other transcripts, we 193 
employed 9-fold cross-validation on the 54 target transcripts (leaving out RPS19BP1 as it 194 
clustered with non-essential transcripts (Figure S1C)), with models being trained and tested on 195 
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non-overlapping sets of transcripts. We compared the performance of all 7 models and 196 
observed high model performance for the gradient-boosting tree (GBT) and the two deep 197 
learning models based on Area Under the Receiver Operating Characteristic curve (AUROC), 198 
which evaluates prediction accuracy for both the positive class (high efficiency guides) and the 199 
negative class, and Area under the Precision-Recall Curve (AUPRC) metrics, which focuses 200 
primarily on the prediction accuracy of the positive class (high efficiency guides), across all 9 201 
fold splits (Figure 1E).  202 
 203 
Overall, the CNN model performed best with a high AUROC of 0.845 (relative to a baseline of 204 
0.5) and a high AUPRC of 0.541 (relative to a baseline of 0.18), so we chose this model for 205 
further refinement and evaluation. The high prediction accuracy of this model based on the 206 
spacer sequence alone indicates that sequence is a primary factor determining guide efficiency. 207 
We further determined that the addition of target flanking sequences of varying length from 1-7 208 
nt to the CNN model did not meaningfully improve model performance (Figure S2B), consistent 209 
with our previous biochemical studies suggesting a lack of strong flanking sequence 210 
requirements (Konermann et al., 2018). To understand the minimal spacer length required for 211 
accurate prediction, we computationally truncated the spacer sequence from the 3’ end in the 212 
CNN model input, and found only a minor impact on model accuracy until reaching a spacer 213 
length of 24 nt, after which a gradual drop in AUROC and AUPRC was observed (Figure S2C). 214 
We validated this experimentally, demonstrating decreasing target knockdown when using 215 
guides shorter than 24 nt in spacer length (Figure S2D). 216 
 217 
Addition of secondary features improves guide efficiency prediction accuracy 218 
Beyond guide sequence alone, secondary guide attributes such as guide unfolding energy or  219 
target site position (CDS or UTR) may impact guide performance. To understand their potential 220 
contribution, we first evaluated the correlation of such secondary features with guide efficiency 221 
(Figure 1F schematics, S3A-F). We found that higher predicted guide and target RNA 222 
unfolding energy, implying more highly structured RNA sequences, were predictive of poor 223 
guide efficiency. We also observed a preference for intermediate spacer GC content (45-55%), 224 
guides targeting the coding region (CDS), as well as guides targeting regions conserved across 225 
transcript isoforms.  226 
 227 
As most of the secondary features investigated exhibited a modest correlation with guide 228 
efficiency, we tested whether they would improve model performance when added to the spacer 229 
sequence-only CNN model. When adding these features individually, we found that the guide 230 
target site position had the most prominent effect, followed by target and guide RNA folding 231 
energy (Figure S3G). The addition of spacer GC content did not significantly improve model 232 
performance, consistent with our expectation that this feature has been successfully captured 233 
by the spacer sequence-only CNN model. Sequentially including each secondary feature ranked 234 
by their individual contribution into the sequence-only CNN model, we found that AUROC and 235 
AUPRC were improved with each addition, leading to a final model with a very high average 236 
AUROC of 0.875 and a high average AUPRC of 0.638 (Figure 1F and S3H-J for feature 237 
variations). Adding the same set of secondary features also improved the GBT model (Figure 238 
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S4), the best performing model not based on deep learning, indicating the contribution of these 239 
secondary features to guide efficiency. 240 
 241 
One of the key applications of a predictive model like this one would be to accurately predict the 242 
most effective guides in order to aid in guide and library design. The CNN model returns a float 243 
score ranging from 0 to 1 for every guide, and different thresholds can be chosen for high 244 
efficiency guide classification. To evaluate model performance for optimal guide selection, we 245 
set a high model score threshold of 0.8 and plotted the true percentile rank distribution of the 246 
guides above the score threshold. As expected, the guides were heavily skewed towards the 247 
highest efficiency ranks, with a true positive ratio of 0.83 (83% being true high efficiency guides 248 
(top 20th percentile)). Setting an even more stringent model score threshold to 0.9 further 249 
increased the true positive ratio to 93% (Figure S3K). 250 
 251 
Model interpretation reveals favored sequence and secondary features of high efficiency 252 
guides 253 
Having built high performance models that accurately predict efficient guides, we asked whether 254 
these models could help us understand the features contributing to guide efficiency by using 255 
three model interpretation methods. We first used an integrated gradients approach (IG) 256 
(Sundararajan et al., 2017) to provide observability for our CNN model. We began with the 257 
guide sequence preferences learned by the model, and IG analysis on each position in the 258 
guide spacer sequence nominated a core region of position 15-24 as a major contributor to 259 
guide efficiency (Figure 2A). Consistent with our original correlation analysis (Figure S2A), IG 260 
analysis on each positional nucleotide in the guide sequence revealed a clear preference for an 261 
alternating stretch of guanines, cytosines and guanines (G15-18C19-22G23-24) in this core region 262 
(Figure 2B).  263 
 264 
To confirm the favored sequence features across models and model interpretation methods, we 265 
further applied SHapley Additive exPlanations (SHAP), a game theoretic approach (Lundberg et 266 
al., 2020) to our GBT model, and a similar sequence preference in the same core region was 267 
observed (Figures S5A, B). In contrast, this unique sequence preference was not found for 268 
Cas13a when we performed a correlational analysis of available datasets (Abudayyeh et al., 269 
2017; Metsky et al., 2022) (Figure S6). Indeed, no consistent sequence preference or core 270 
region emerged across the Cas13a datasets analyzed, which could be due to intrinsic 271 
enzymatic properties of Cas13a or limitations in the size of available datasets. 272 
 273 
As our IG and SHAP analyses investigated each position in the guide sequence independently, 274 
we further sought to determine the role of specific motifs (nucleotide combinations) in guide 275 
efficiency. We employed Transcription Factor Motif Discovery from Importance Scores (TF-276 
MoDISco), an algorithm that identifies sequence patterns or motifs incorporated in deep learning 277 
models by clustering important sequence segments based on per-position importance scores 278 
(Shrikumar et al., 2018). We discovered a total of 14 distinct sequence patterns associated with 279 
high efficiency guides from the CNN model, with the top 5 patterns shown in Figure 2C. As TF-280 
MoDISco was initially applied for the identification of transcription factor binding motifs, it is 281 
designed to identify motifs in a position-independent manner. In our analysis, we noticed that all 282 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2021.09.14.460134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460134
http://creativecommons.org/licenses/by-nc-nd/4.0/


identified patterns were anchored to a specific position centered around guide spacer 283 
nucleotides 18-20 (Figure S7A), consistent with our prior observation of a core region.  284 
 285 
Strikingly, all top 5 sequence patterns contained a cytosine at position 21, with a single guanine 286 
at varying positions in the core region across the different patterns. Taken together, the 287 
identified motifs can be summarized as GNxC21 or NxC21G within the core region. Generally, the 288 
patterns were sparse and characterized by just two dominant bases (one G and one C), in 289 
contrast to the longer 10-base motif that the individual position-level analysis would have 290 
suggested (Figures 2B and S5B). Consistent with our results above, an analysis of enriched 291 
and depleted 3-mers in high efficiency guides across the spacer sequence revealed that 292 
enriched 3-mers were again clustered in the core region (position 15-24) (Figure S7B). In 293 
addition to the consistent finding of a prominent enrichment of C at position 21, they revealed a 294 
preference for A or T intercalated with G and C (Figures S7B, C), a finding that was obscured 295 
in the per-position analysis. Analysis of enriched and depleted 4-mers in high efficiency guides 296 
also led to a similar finding (Figure S7D). A/T substitutions within the 10-base motif (G15-18C19-297 
22G23-24) (Figure 2D) and analysis of the GC content in the core region (Figure 2E) for high 298 
efficiency guides further confirmed a preference for a medium GC content via A/T nucleotides at 299 
the N positions of the key GNxC21 or NxC21G motif. 300 
 301 
Next, we used IG and SHAP to investigate the contribution of secondary features in the CNN 302 
and GBT models. IGs revealed that targeting the beginning of the 5′ UTR and the end of the 3′ 303 
UTR was the most disfavored, while targeting the coding region (CDS) was generally favored, 304 
with a slight preference for the beginning of the CDS (Figures 2F, G). In agreement with our 305 
correlation analysis, guide and target unfolding energy also had a relatively high impact on 306 
guide efficiency, with lower unfolding energy favored by high efficiency guides (Figures 2H, I). 307 
SHAP analysis on our GBT model showed a consistent direction of feature contribution to guide 308 
efficiency (Figure S5C) and ranked spacer sequence composition as the most important 309 
feature.  310 
 311 
Taken together, our systematic model interpretation was consistent across models and analysis 312 
approaches, was able to rank features by their contribution toward guide classification, and 313 
significantly expanded our understanding of preferred longer-range sequence motifs that were 314 
missed by simpler correlational analyses.  315 
 316 
Systematic validation of the guide efficiency model across 5 cell types with endogenous 317 
protein knockdown 318 
Next, we sought to experimentally validate our model through CasRx-mediated knockdown of 319 
cell surface markers, reasoning that an orthogonal readout to transcript essentiality and cell 320 
survival would ensure generalizability of our model predictions to multiple readout modalities. To 321 
this end, we performed a screen using a library of 3,218 guides tiling the transcripts of two cell 322 
surface markers, CD58 and CD81, with single-nucleotide resolution. 10 days after lentiviral 323 
transduction of the guide library, cells were FACS sorted into 4 bins on the basis of target 324 
protein expression level (Figure 3A) and the enrichment of individual guides in the top and 325 
bottom bins (exhibiting the greatest or least magnitude of knockdown, respectively) was 326 
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assessed. We observed clear separation of the most efficient targeting guides from the non-327 
targeting guides based on the enrichment ratio, with zero non-targeting guides appearing in the 328 
top 20th percentile of guide efficiency (Figure 3B).  329 
 330 
We evaluated our CNN model’s performance on this new dataset and found that an ensemble 331 
CNN model comprising all 9 fold splits of the survival screen outperformed each individual split 332 
model (Figure S8A) and achieved high prediction accuracy for both CD58 (AUROC of 0.88 and 333 
AUPRC of 0.66) and CD81 (AUROC of 0.86 and AUPRC of 0.62) (Figure 3C). This 334 
performance is comparable to the model accuracy on held-out essential transcripts from our 335 
initial screen (Figure 1F), highlighting its generalizability. Compared with two existing Cas13d 336 
guide design models (Wessels et al., 2020, Cheng et al. 2023), our model showed the highest 337 
AUROC, AUPRC, and Spearman correlation. Importantly, we showed that at a 0.9 score cutoff, 338 
our model exhibited a very high true positive ratio of 0.93 and 0.9 for CD58 and CD81, 339 
respectively, in contrast to the Wessels et al. model (0.52 for both CD58 and CD81) and 340 
DeepCas13 (0.38 for CD58 and 0.35 for CD81) (Figure 3C). The far higher true positive ratio at 341 
high score cutoffs underlines the superior utility of our model for key applications such as 342 
predicting the top 3-10 guides per target transcript in individual targeting or library-based 343 
screening approaches. Illustrating this use case, we examined the true percentile rank of the top 344 
10 predicted high efficiency guides for CD58 and CD81, showing that 10/10 guides for CD58 345 
and 9/10 for CD81 were highly effective (Figure 3D). 346 
 347 
To assess generalizability to other cell types, we evaluated our model’s performance on a 348 
published CasRx guide tiling dataset (~3000 guides in HEK293FT cells from the Wessels et al. 349 
training dataset). Our model showed high AUROC (0.85, 0.88 and 0.85 for CD46, CD55 and 350 
CD71, respectively), AUPRC (0.59, 0.59 and 0.67), Spearman correlation (0.67, 0.69 and 0.66), 351 
and true positive ratio (0.76, 0.9 and 0.94 at a 0.9 score cutoff) (Figure 3E). Among the top 10 352 
predicted high efficiency guides, 90% were highly efficient (falling into the top 20% percentile of 353 
efficient guides) (Figure 3F). When compared against the Wessels et al. model on opposing 354 
datasets (Figure S8B), our model showed significantly higher prediction accuracy using all 355 
evaluation metrics (AUPRC: 0.617 vs 0.379; Spearman correlation rs: 0.675 vs 0.391; AUROC: 356 
0.873 vs 0.733; true positive ratio (0.9 cutoff): 87% vs 51%), further supporting the 357 
generalizability and high performance of our model.  358 
 359 
As a final test of the ability of our model to predict efficient guides for knockdown of desired 360 
transcripts in different cell types, we selected 5 top scoring guides and 5 low scoring guides 361 
(excluding the very bottom of our ranking) for two different transcripts (CD59 and CD146), and 362 
tested the knockdown efficiency of each guide in Hela, U2OS, and A375 cells (Figure 3G). 363 
Across all three cell lines, the top scoring guides showed very efficient target knockdown (72%-364 
98% with a median of 90%) while low scoring guides showed variable and significantly lower 365 
levels of knockdown (6%-70% with a median of 35%), confirming the utility and generalizability 366 
of our model across 5 cell types (K562, HEK293FT, Hela, U2OS, and A375). 367 
 368 
Discovery of DjCas13d, a high-efficiency RNA targeting enzyme with minimal cellular 369 
toxicity in human cells 370 
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In genome engineering, two of the most important features are efficiency and specificity. A key 371 
emerging limitation of several Cas13 systems is the induction, in certain contexts, of cellular 372 
toxicity by its RNA trans-cleavage activity (Ai et al., 2022; Buchman et al., 2020; Özcan et al., 373 
2021), hampering their application as a generalizable transcriptome engineering tool. In the 374 
context of this study, we also observed various degrees of cellular toxicity for CasRx when 375 
paired with highly efficient guides in the A375 cell line (Figure S9A). 376 
 377 
To address this, we reasoned that the evolutionary diversity of Cas13d enzymes may have 378 
already developed solutions to these challenges. To develop a more broadly useful 379 
transcriptome engineering tool, we sought to identify a Cas13d ortholog that combines the key 380 
positive traits of CasRx, like its small size and high targeting efficiency, with low cellular toxicity. 381 
We applied our previously described computational approach for Cas13d discovery (Konermann 382 
et al., 2018) to an expanded database of metagenomic datasets and discovered 46 previously 383 
uncharacterized Cas13d enzymes, expanding the known Cas13d family from 7 to 53 members 384 
(Figure 4A, Table S7). 385 
 386 
To evaluate these novel Cas13d enzymes for mammalian transcript knockdown, we 387 
synthesized human codon-optimized constructs of each enzyme with NLS (nuclear localization 388 
sequence) and NES (nuclear export sequence) fusions and measured their ability to knockdown 389 
the mCherry reporter transcript using a matched guide array containing two mCherry targeting 390 
guides. We identified 14 enzymes exhibiting >55% knockdown efficiency (Figure 4B) in this 391 
reporter assay. Because reporter knockdown is often weakly predictive of Cas13 performance 392 
on endogenous targets, we further tested the 14 orthologs on our shortlist for their knockdown 393 
efficiency when targeted to the endogenous CD81 transcript. With this more stringent test, 7 394 
orthologs exhibited >50% knockdown efficiency (Figure 4C), and we focused on these for 395 
further characterization. 396 
 397 
Having identified this shortlist of the most efficient Cas13d enzymes, we next evaluated their 398 
cytotoxic effects in human embryonic stem cells (hESC), since we previously observed issues in 399 
this cell type with CasRx. When targeting the non-essential transcript CD81 in this highly 400 
sensitive cell type, we were able to observe a significant reduction in viable cells expressing 401 
CasRx and most of the other Cas13d orthologs (Figure 4D), consistent with cytotoxic effects on 402 
other sensitive cell types reported in the literature (Özcan et al., 2021). Strikingly, two of the 403 
orthologs we tested (DjCas13d and Ga_0531) led to no detectable reduction of viable cell 404 
counts (Figure 4D). Of those two, we chose DjCas13d for additional characterization given its 405 
high knockdown efficiency (>80% in hESCs) (Figure 4E) and unusually small size (877aa, 406 
compared to 967aa for CasRx) (Figure 4C).  407 
 408 
In a further evaluation across three guides each for three transcripts in hESCs, DjCas13d 409 
showed no significant effects on viable cell counts in contrast to CasRx, which caused 410 
significantly reduced viable cell counts in eight out of nine guides (Figure 4F). In terms of 411 
knockdown efficiency, DjCas13d showed high knockdown efficiency of >70% for most guides 412 
tested (median of 71.5%) – efficiency that was comparable to CasRx (median of 77.4%) (Figure 413 
4F).  414 
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 415 
DjCas13d induces minimal cellular toxicity when targeting highly expressed transcripts 416 
Recent work (Ai et al. 2022; Shi et al. 2023) and our results in stem cells (Figure 4F) highlighted 417 
high target transcript abundance as a key variable for Cas13-mediated cellular toxicity in 418 
addition to the importance of cell type. In our own experiments in hESCs, we also observed the 419 
lowest survival rate for CasRx when targeting the most abundant transcript – CD24 – while no 420 
such impact was observed for DjCas13d (Figure 4F). In order to further compare CasRx and 421 
DjCas13d under conditions known to promote cellular toxicity, we targeted three previously 422 
described highly expressed transcripts (ACTG1, HNRNPA2B1, FTH1) (Shi et al. 2023) in 423 
HEK293FT cells and confirmed a significant reduction of the number of viable cells when using 424 
CasRx but not DjCas13d (Figure 4G, all guides significant at P<0.0001). We targeted three 425 
medium- and three low expression level transcripts, confirming that lower expression of the 426 
target transcript alleviated the toxicity induced by CasRx (Figure 4G), consistent with initial 427 
reports (Konermann et al., 2018). By contrast, we observed minimal impact on viable cell counts 428 
when using DjCas13d to target any of these transcripts (Figure 4G), despite comparable 429 
knockdown efficiency of DjCas13d (knockdown median of 88%) to CasRx (median of 84%). 430 
 431 
In a second head-to-head comparison, we tested DjCas13d against the recently reported Cas7-432 
11 enzyme, which does not belong to the Cas13 family of CRISPR enzymes and was reported 433 
to have no impact on cell viability due to its distinct RNA cleavage mechanism (Kato et al., 434 
2022; Özcan et al., 2021). We demonstrate that both DjCas13d and Cas7-11 have a 435 
comparably low impact on cell viability and proliferation (90% median cell count for DjCas13d 436 
across all targeting conditions, and 73% for Cas7-11) when targeting the same medium to 437 
highly expressed transcripts - in stark contrast to CasRx (46% median cell count). However, 438 
Cas7-11 suffered from diminished knockdown efficiency (median of 57%) compared to 439 
DjCas13d and CasRx (median of 88% and 84%, respectively) (Figure 4G).  440 
 441 
Overall, we conclude that DjCas13d combines the best features of CasRx and Cas7-11, 442 
exhibiting low cellular toxicity and high knockdown efficiency. 84% of guides tested with 443 
DjCas13d showed >80% survival rate and >60% knockdown, while only 32% of CasRx guides 444 
and no Cas7-11 guides met these cutoffs.  445 
 446 
DjCas13d activity can be accurately predicted with our guide efficiency model 447 
Given that DjCas13d belongs to the same subtype of CRISPR effectors as CasRx, we next 448 
sought to test whether our Cas13d guide design model could be successfully applied to this new 449 
Cas13d ortholog. Encouragingly, our data in Figure 4F and G demonstrated high efficacy of 450 
knockdown with guides recommended by the model when using DjCas13d across 12 transcripts 451 
of different expression levels and in different cell types. To further explicitly validate the model 452 
performance for DjCas13d, we selected a set of top and bottom scoring guides for a total of 453 
eleven transcripts across a range of expression levels in hESCs, HeLa, and U2OS cell lines. 454 
Across hESCs (Figure 4H) as well as Hela and U2OS cells (Figure 4I), the predicted high 455 
efficiency guides resulted in a significantly higher degree of protein knockdown (median of 456 
73.9%) compared with low-scoring guides (median of 19.7%) (Figures 4H, I). Altogether, these 457 
results demonstrate that our model generalizes to the novel DjCas13d ortholog, resulting in 458 
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reliable knockdown performance and lack of apparent cellular toxicity even in sensitive cell 459 
types and for highly abudant transcripts. Given that the sequence divergence between 460 
DjCas13d and CasRx (29.9%) is similar to the divergence between other Cas13d orthologs from 461 
our new metagenomic mining (~29.4% on average), we expect that our guide design model 462 
may generalize to other Cas13d effectors as well. 463 
 464 
DjCas13d exhibits high transcriptome-wide specificity 465 
The context-dependent cellular toxicity mediated by many Cas13 enzymes is hypothesized to 466 
result from collateral cleavage of bystander transcripts (Buchman et al. 2020; Özcan et al. 2021; 467 
Ai et al. 2022; Shi et al. 2023). This is consistent with the observation that cellular viability and 468 
proliferation are more noticeably impacted when targeting more abundant transcripts – which 469 
would result in a larger number of activated Cas13 enzymes per cell and therefore more 470 
potential collateral RNA cleavage. 471 
 472 
To investigate this hypothesis and compare the collateral and off-target effects between CasRx 473 
and DjCas13d, we performed RNA-seq two days after CasRx or DjCas13d-mediated 474 
knockdown of CD81 (307 Transcripts Per Million (TPM)), FTH1 (1219 TPM) and ACTG1 (3728 475 
TPM) in HEK293FT cells (Figure 5A). Our transcriptome-wide analysis revealed significantly 476 
more non-target transcripts affected by CasRx when targeting more highly expressed transcripts 477 
(ACTG1>FTH1>CD81), indicating greater levels of collateral or off-target effects (Figure 5A). In 478 
contrast, we observed minimal transcriptome-wide perturbation by DjCas13d apart from 479 
knockdown of the intended target transcript (Figure 5A). 480 
 481 
Next, we extended our RNA-seq analysis to assess consequences of CasRx and DjCas13d in 482 
more sensitive hESC cells when targeting genes with high (CD24), medium (CD81), or low 483 
(TFRC) expression levels. CasRx-mediated knockdown of high and medium expressed genes 484 
resulted in rampant loss of cell viability, making transcriptome analysis impossible in many 485 
samples. Consistent with the high survival of sensitive cell types following DjCas13d treatment 486 
above, this toxicity was not observed for DjCas13d targeting the same transcripts. Similar to the 487 
HEK293FT RNA-seq above, we observed a significant reduction in off-target transcriptome 488 
perturbations when using DjCas13d (0 off-targets for most guides tested, with a modest 7 and 489 
103 off-targets for the two guides targeting CD24) compared to CasRx (hundreds of off-targets 490 
even when targeting low- and medium-expression transcripts, and rampant cellular toxicity 491 
when targeting highly expressed transcripts) (Figure 5B).  492 
 493 
Importantly, in order to rule out transcriptome-wide depletion that would be difficult to detect via 494 
differential RNA-seq, we used defined concentrations of exogenous RNA spike-ins to assess 495 
total RNA amount per cell. While CasRx showed a significant decrease in total RNA abundance 496 
across guides targeting CD71, DjCas13d did not display significant global RNA depletion with 497 
any guide/target tested, consistent with its low off-targets and low toxicity (Figure S10A). As an 498 
additional measure of transcriptome integrity, we visualized total RNA extracted from these 499 
samples and showed that while RNA integrity for DjCas13d was intact, CasRx targeting resulted 500 
in the appearance of a smaller molecular weight band between the 28S and 18S for all targeting 501 
guides (Figure S10B), which has also been noted by other groups (Shi et al., 2023). 502 
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 503 
To distinguish between guide-specific off-target effects and universal sequence-indiscriminate 504 
collateral effects in our CasRx datasets, we analyzed the overlap between up- and down-505 
regulated transcripts among different guides, targets and cell types (Figures S10C, D, E, F). 506 
We found a meaningful overlap between the significantly upregulated transcripts across 507 
different CasRx conditions, with enrichment of the unfolded protein response signaling pathway, 508 
suggesting that CasRx mediated non-target-specific collateral activity may stimulate generalized 509 
cellular stress responses.  510 
 511 
DjCas13d is a effective tool for gene knockdown in many sensitive cell types 512 
Given the promise of DjCas13d as a high-fidelity and low-toxicity RNA targeting tool, we sought 513 
to apply DjCas13d to RNA targeting in sensitive biological processes and therapeutically-514 
relevant cell types. Our demonstration of CasRx toxicity in hESC cells led us to assess 515 
DjCas13d knockdown in the context of hESC differentiation into neuronal progenitor cells 516 
(NPC), hematopoietic progenitor cells (HPC), and neurons. DjCas13d was delivered via an 517 
inducible Piggybac system at the stem cell stage and induced during differentiation. In NPCs, 518 
we targeted five transcripts including highly-expressed genes like BSG and THY1, and lower 519 
expressed transcripts such as CD46 with one or two top-scoring guides per gene. We observed 520 
high cellular survival in all cases with no significant decrease relative to non-targeting 521 
conditions, and effective knockdown efficiencies in most cases, with a median of 63% (Figure 522 
6A). In HPCs, we observed 46-69% knockdown of the target proteins CD81 and TRFC in 523 
DjCas13d-expressing cells with no detectable survival defect (Figure 6B). In both of these 524 
cases, we confirmed that the expected markers of differentiation efficiency were not affected by 525 
DjCas13d targeting (SOX1 and PAX6 for NPC, CD43 for HPC) (Figures 11A,B). Finally, we 526 
differentiated hESCs to neurons using Neurogenin-2 (Ngn2) directed differentiation and 527 
assessed DjCas13d’s ability to knock down two proteins, CD81 and CD24, with 3 top-scoring 528 
guides each. We observed uniform knockdown of approximately 50% in all cases (measured at 529 
the protein level via FACS), coupled with high cell survival near 100% (median of 98%) (Figure 530 
6C). Altogether, these data illustrate the broad applicability of DjCas13d across multiple target 531 
genes in sensitive cell types of high biological and therapeutic interest.  532 
 533 
To support easy use of both DjCas13d and CasRx for RNA targeting, we created a freely 534 
accessible portal to run our model for Cas13d guide prediction on all human and mouse 535 
transcripts and custom target sequences. This community resource is available at 536 
http://RNAtargeting.org.  537 

Discussion 538 

In this study, we applied CasRx for large-scale screening across 127,000 guides against 55 539 
target transcripts in human cells, a dataset that is >12 times larger than previous Cas13 guide 540 
design studies (Wessels et al. 2020; Cheng et al. 2023). Using this dataset, we developed a 541 
highly accurate, deep learning-based Cas13d guide efficiency model to nominate highly efficient 542 
guides for transcripts of interest. The model exhibits excellent performance across two screen 543 
modalities, nine cell types, and two diverse Cas13d orthologs, illustrating its generalizability for 544 
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predicting highly effective guides across different contexts. The major factors contributing to our 545 
model’s generalizability include its primary reliance on the guide RNA spacer sequence - a cell 546 
type-independent feature - as well as the 9-fold cross-validation of the model on non-547 
overlapping sets of transcripts, which alleviates overfitting to targeting hotspots specific to 548 
certain transcripts.  549 
 550 
Previous attempts to predict CRISPR guide efficiency have primarily relied on manual selection 551 
of a limited set of guide sequence features combined with simpler machine learning models, 552 
such as elastic nets (Horlbeck et al., 2016), SVM (Doench et al., 2016), or random forest 553 
approaches (Wessels et al., 2020). More recently, deep learning models, which are able to learn 554 
complex, high-order patterns and features automatically from raw data, have been employed to 555 
predict guide efficiency for Cas9 activity (Chuai et al., 2018; Kim et al., 2019; Xue et al., 2019), 556 
Cpf1 (Kim et al., 2018), base editors (Arbab et al., 2020; Koblan et al., 2021), Cas13a (Metsky 557 
et al., 2022) and Cas13d (Cheng et al. 2023).  558 
 559 
Here, we directly compared two deep learning models with linear and ensemble methods 560 
(elastic nets, random forest, and gradient-boosted trees) for guide efficiency prediction, finding 561 
that the deep learning model (CNN) outperformed the other approaches. This illustrates the 562 
power of deep learning models in sequence-based prediction tasks due to its automatic feature 563 
selection and ability to identify motifs or long-range interactions given a sufficiently large dataset 564 
(>100,000 guides). Furthermore, we show that our model significantly outperforms the current 565 
state-of-the-art models (Wessels et al. 2020; Cheng et al. 2023) (Figures 3C, S8B).  566 
 567 
While deep learning models can extract important higher-order features automatically from raw 568 
inputs, the interpretation of feature contributions is challenging. Prior deep learning models for 569 
Cas9 (Chuai et al., 2018; Xue et al., 2019) and other sequence-based applications (Alipanahi et 570 
al., 2015; Kelley et al., 2016; Lanchantin et al., 2016) mainly employed neuron visualization 571 
methods to unveil important motifs. These approaches are able to successfully identify patterns 572 
recognized by individual filters, but can suffer from redundancy of the identified motifs. Recently 573 
developed interpretation methods such as Integrated Gradients, SHAP, and TF-MoDISco, can 574 
address these limitations and have begun to be applied to identify consolidated and non-575 
redundant motifs for transcription factor binding (Avsec et al., 2021). In this report, we evaluated 576 
feature importance directly from the deep learning model using these new model interpretation 577 
approaches. This allowed us to discover a core region at guide spacer position 15-24 with a 578 
specific sequence composition predictive of high efficiency guides. Comprehensive motif 579 
analysis revealed a preference for GW1-4C21 or C21W0-2G motif. In contrast, analysis of base 580 
preference at individual positions and correlation-based evaluation of feature importance 581 
(Wessels et al., 2020) obscured this motif. This underscores the utility of the combination of 582 
deep learning models that are able to learn higher order sequence features along with 583 
advanced motif-discovery approaches for model interpretation such as TF-MoDISco used here 584 
– the first time, to our knowledge, that such an approach has been applied to CRISPR guide 585 
activity prediction models. 586 
 587 
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In addition to effective guide selection, cellular toxicity has emerged as a significant challenge 588 
for Cas13 applications, effects likely mediated by off-target and/or collateral RNA cleavage 589 
(Buchman et al. 2020; Özcan et al. 2021; Ai et al. 2022; Shi et al. 2023). Initial reports 590 
developing diverse Cas13 effectors for mammalian transcript knockdown demonstrated high 591 
specificity and lack of apparent cellular toxicity in HEK293FT cells, plants, and animal embryos 592 
(Abudayyeh et al., 2017; Cox et al., 2017; Konermann et al., 2018; Kushawah et al., 2020; 593 
Mahas et al., 2019). However, several recent studies have reported marked cellular toxicity of 594 
these effectors in other cell types or target contexts (Buchman et al., 2020; Özcan et al., 2021).  595 
 596 
Two recent studies aiming to reconcile these reports concluded that collateral RNA cleavage by 597 
Cas13 enzymes is correlated with the expression level of the target transcript, and that the 598 
effect on cellular toxicity is dependent on the cell type (Ai et al. 2022; Shi et al. 2023), indicating 599 
that highly expressed transcripts and sensitive cell types are prone to Cas13-mediated collateral 600 
cleavage and toxicity. Our data comparing CasRx’s effect across cell types and endogenous 601 
target RNAs with varying expression levels supports this conclusion. We reasoned that more 602 
robust CasRx RNase activation upon higher target transcript levels would result in a greater 603 
amount of collateral RNA cleavage, which in turn could activate cellular stress pathways and 604 
lead to toxicity. 605 
 606 
To advance Cas13 applications in sensitive cell types and therapeutic scenarios, our discovery 607 
of the DjCas13d ortholog promises to address current limitations of both CasRx (context-608 
dependent cellular toxicity) and Cas7-11 (efficiency and size). DjCas13d exhibits minimal 609 
cellular toxicity even in challenging conditions, and achieves high efficiency and transcriptome-610 
wide targeting specificity against highly expressed transcripts across various cell types. We 611 
further demonstrate efficient and high-viability endogenous RNA targeting with DjCas13d in 612 
hESC-derived neuronal progenitor cells (NPCs), hematopoietic progenitor cells (HPCs), and 613 
neurons. Therefore, DjCas13d is poised to overcome the limitations of previous tools. Future 614 
work characterizing mechanistic distinctions between CasRx and DjCas13d may reveal further 615 
protein engineering opportunities. 616 
 617 
Taken together, DjCas13d paired with our state-of-the-art Cas13d guide design model provides 618 
a comprehensive solution for 3 key challenges in the RNA targeting toolbox by enabling high 619 
efficiency, cell viability, and specificity. We further envision that the deep learning model 620 
architecture, systematic feature engineering, and model interpretation approach outlined in this 621 
study will be broadly applicable to other sequence-based tasks, such as the prediction of guide 622 
RNA activities for newly discovered CRISPR enzymes, DNA/RNA modifications, and DNA/RNA-623 
protein interactions. 624 
 625 
  626 
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Figures 627 

 628 
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Figure 1: Deep learning of Cas13d guide RNA efficiency based on large-scale transcript 629 
essentiality screening 630 
A. Schematic of the pooled CasRx guide tiling screen for essential transcript knockdown as a 631 
readout of per-guide knockdown efficiency. Over 127,000 targeting guide RNAs were included. 632 
B. Cumulative distribution of the ratio of relative guide abundance at day 14 compared to the 633 
input library across guides targeting essential gene transcripts (blue), non-essential gene 634 
transcripts (orange), and non-targeting guides (green). The red dashed line indicates the ratio at 635 
the top 20th percentile of essential transcript targeting guides. C. Heat map of the positional 636 
distribution of high efficiency guides along each transcript. From here forward, high efficiency 637 
guides are defined as the top 20% guides within each transcript with a d14/input ratio lower than 638 
0.75 after essential off-target filtering. Heat map color indicates the number of overlapping high 639 
efficiency guides at each nucleotide position along the transcript, and the inlaid histogram 640 
depicts the observed frequency distribution of these data (blue) as compared to a random 641 
distribution of 20% of guides in the library (orange curve). D. Schematic of the computational 642 
algorithms assessed in this study to predict guide efficiency based on spacer sequence alone. 643 
E. Comparison of prediction accuracy between linear, ensemble and deep learning models 644 
across 9-fold splits of held-out transcripts. Averages of Area Under the Receiver Operating 645 
Characteristic curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC) across test 646 
sets from all 9 folds are shown ± SD. LR - L1, logistic regression with L1 regularization (Lasso 647 
Regression); LR - L2, logistic regression with L2 regularization (Ridge regression); LR - EN, 648 
logistic regression with elastic net regularization (Elastic Nets) ; GBT, Gradient-Boosted Tree; 649 
RF, Random Forest classifier; CNN, Convolutional Neural Network; biLSTM, Bidirectional long 650 
short-term memory neural network. Note that the baseline for AUPRC is equal to the fraction of 651 
positive class (high efficiency guides), in this case 0.18. F. Secondary features were evaluated 652 
for their ability to improve sequence-only model performance. Each secondary feature (or 653 
feature group) was added to the CNN model sequentially, ordered by its individual contribution 654 
to model performance in Figure S3G. AUROC and AUPRC (mean ± SD) of all test sets from the 655 
9-fold split of transcripts are shown. 656 
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 657 
Figure 2: Deep learning model interpretation reveals favored sequence motifs and 658 
secondary features of high efficiency guides 659 
A. Evaluation of the importance of each position in the guide spacer sequence in the CNN 660 
model using Integrated Gradients (IG). Higher absolute gradient values indicate greater 661 
importance for predicting a high efficiency guide. The gray box highlights the identified core 662 
region (position 15-24). B. Evaluation of the importance of each positional nucleotide in the 663 
guide sequence in the CNN model by IG. C. Top 5 sequence patterns identified by TF-MoDISco 664 
(Transcription Factor Motif Discovery from Importance Scores) in the CNN model. Patterns are 665 
aligned to the 30 nt spacer according to the mode position of the seqlets (sequence regions with 666 
high importance based on IG scores) in each pattern (Figure S7A). D. Fraction of high 667 
efficiency guides that contain the 10-base motif shown in panel B and A/T substitutions within 668 
the 10-base motif. E. Fraction of high efficiency guides across different core region GC content. 669 
Guides were divided into eleven bins based on the GC content in their core region (position 15-670 
24), and the fraction of high efficiency guides belonging to each bin is plotted. F. Contribution of 671 
target transcript region (5’ UTR, CDS, or 3’UTR) to guide efficiency in the CNN model. The bar 672 
plots indicate average IGs of all test samples with different target position flags. G. Contribution 673 
of position within each transcript target region to guide efficiency in the CNN model. The scatter 674 
plots indicate individual IG values against individual input values across all test samples. The 675 
reference points are set to 0 for each transcript region. H. Contribution of predicted guide 676 
unfolding energy to guide efficiency in the CNN model. The reference point is set to 0. I. 677 
Contribution of predicted target unfolding energy to guide efficiency in the CNN model. The 678 
reference point is set to 0.  679 
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Figure 3: Systematic validation of the guide efficiency model across 5 cell types with 681 
endogenous protein knockdown 682 
A. Schematic of the pooled CasRx guide tiling screen targeting CD58 or CD81 transcripts in 683 
K562 cells followed by flow cytometry-based readout of cell-surface CD58 or CD81 protein 684 
abundance. B. Cumulative distribution of guide enrichment ratios for CD58, CD81 and non-685 
targeting guide categories, calculated as the ratio of guide percentage in bin 1 (greatest 686 
knockdown) relative to the sum in bin 1 and bin 4 (least knockdown). Red dashed lines indicate 687 
the ratio for the top 20th percentile of targeting guides. C. Model comparison on CD58 and 688 
CD81 guides. CNN, the ensemble CNN model built on the survival screen data in this work; 689 
Wessels et al. model, a previously published CasRx random forest model (Wessels et al., 690 
2020); DeepCas13, a previously published CasRx deep learning model (Cheng et al. 2023). 691 
Model performance is evaluated by AUROC, AUPRC, Spearman's correlation coefficient (rs) 692 
and true positive ratio at 0.8 and 0.9 model score cutoffs across guides targeting CD58 (left 693 
panel) and CD81 (right panel). D. True percentile rank of the top 10 predicted high efficiency 694 
guides for CD58 and CD81. The red dashed line indicates the top 20th percentile of CD58- or 695 
CD81-targeting guides. E. Performance of the ensemble CNN model on a published CasRx 696 
guide tiling dataset of three CD transcripts (CD46, CD55, and CD71) in HEK293FT cells 697 
(Wessels et al., 2020). Model AUROC, AUPRC, Spearman's correlation coefficient (rs), and true 698 
positive ratio at 0.8 and 0.9 model score cutoffs are shown for each transcript. F. True percentile 699 
rank of the top 10 predicted guides by our model for three transcripts in a published CasRx 700 
guide tiling dataset in HEK293FT cells (Wessels et al., 2020) predicted by the ensemble CNN 701 
model. The red dashed lines indicate the top 20th percentile of targeting guides. G. Knockdown 702 
efficiency of the predicted 5 top scoring guides and 5 low scoring guides for two transcripts 703 
(CD59 and CD146) measured by flow cytometry in Hela, U2OS, and A375 cells. Heat map color 704 
indicates the mean knockdown efficiency for each guide across n = 3 biological replicates. The 705 
top scoring guides and low scoring guides were significantly different at P<0.0001 for Hela, 706 
U2OS and A375 cells based on Welch’s t test.  707 
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Figure 4: Discovery of DjCas13d, a high-efficiency RNA targeting enzyme with minimal 709 
cellular toxicity in human cells 710 
A. Phylogenetic tree of Cas13 enzymes including the expanded Cas13d subtype clade (yellow). 711 
46 additional Cas13d orthologs were identified through mining of recent metagenomic datasets. 712 
The 7 previously identified Cas13d orthologs including CasRx (red) are shown in bold text. The 713 
newly discovered ortholog DjCas13d is shown in blue. All the ortholog sequences are provided 714 
in Table S7. B. Evaluation of the knockdown efficiency of all Cas13d orthologs shown in panel A 715 
on an mCherry reporter transcript in HEK293FT. Horizontal green dashed line denotes our 716 
selected cutoff of >55% knockdown efficiency; the hits are color-coded for further study. C. 717 
Evaluation of the knockdown efficiency of the selected 14 Cas13d orthologs on an endogenous 718 
transcript, CD81, as measured by flow cytometry-based readout of protein abundance. The 719 
horizontal green dashed line denotes a 50% knockdown efficiency cutoff. Cas13d enzymes are 720 
plotted in order of their protein size on the x-axis (small to large). D-E. Evaluation of cell viability 721 
(panel D) and knockdown efficiency (panel E) of cells expressing each of the top seven most 722 
efficient Cas13d orthologs in H1 hESCs along with a CD81-targeting guide. The horizontal 723 
green dashed line in panel E denotes an 80% knockdown efficiency cutoff. Orthologs are 724 
ordered by their size and color-coded as in panel C. Values are shown as mean ± SEM for n = 3 725 
replicates. F. Evaluation of cellular viability (y axis) and knockdown efficiency (x axis) of 726 
DjCas13d and CasRx across three transcripts in the hESC line, H1. Three top guides were 727 
picked for each transcript based on the CNN model score. Each dot on the scatter plot 728 
represents one guide’s survival rate and knockdown (mean for n = 3 replicates). The dots are 729 
colored by the effector used (CasRx: red, DjCas13d: blue), and the color gradients denote the 730 
expression level of the target transcript relative to GAPDH (log2 relative expression) in the 731 
hESC line H1 based on qPCR. The dashed box denotes guides with >80% survival rate 732 
and >60% knockdown. 89% of DjCas13d guides are within the box while only 11% of CasRx 733 
guides are within the box. G. Evaluation of cellular viability (y axis) and knockdown efficiency (x 734 
axis) of DjCas13d, CasRx, and Cas7-11 across nine transcripts of different expression levels in 735 
HEK293FT using the same spacer sequences across all three enzymes. Three top guides were 736 
picked for each transcript based on the CNN model score. Each dot on the scatter plot 737 
represents one guide’s survival rate and knockdown (mean for n = 3 replicates). The dots are 738 
colored by the effector used (CasRx: red, DjCas13d: blue, Cas7-11: grey), and the color 739 
gradients denote the expression level (TPMs (transcript per million), log2(TPM+1)) of the target 740 
transcript. As in panel F, the dashed box denotes guides with >80% survival rate and >60% 741 
knockdown. 84% of DjCas13d guides are within the box while 32% of CasRx guides and 0 742 
Cas7-11 guides are within the box. H. Knockdown efficiency of DjCas13d paired with 3 top 743 
scoring guides and 3 low scoring guides from the CNN model prediction on nine transcripts of 744 
different expression levels in H1 hESCs. Heat map color indicates the mean extent of 745 
knockdown for each guide across n = 3 biological replicates. The top scoring guides and low 746 
scoring guides were significantly different at P<0.0001 based on Welch’s t test. I. Knockdown 747 
efficiency of DjCas13d paired with 5 top scoring guides and 5 low scoring guides from the CNN 748 
model prediction on two transcripts (CD59 and CD146) in Hela and U2OS cells. Heat map color 749 
indicates the mean knockdown efficiency for each guide across n = 3 biological replicates. The 750 
sets of top scoring guides and low scoring guides were significantly different at P<0.0001 in 751 
Hela and P<0.001 in U2OS based on Welch’s t test.  752 
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 753 
Figure 5: DjCas13d exhibits high transcriptome-wide specificity 754 
A. Volcano plots of differential transcript levels between targeting guide conditions and non-755 
targeting (NT) guide control for CasRx (top) and DjCas13d (bottom) in HEK293FT cells using 756 
two top-scoring guides for each target transcript (CD81 (medium expression level), FTH1 (high 757 
expression level), and ACTG1 (high expression level)). Red dots denote significantly affected 758 
transcripts with adjusted p value < 0.1 and beta value > |0.5|. Green dots denote target 759 
transcript isoforms, with darker green dots denoting the most abundant target transcript isoform, 760 
and lighter green dots denoting other significantly changed target transcript isoforms. N=3 761 
biological replicates. B. Volcano plots of differential transcript levels between targeting guide 762 
conditions and non-targeting (NT) guide control for CasRx (top) and DjCas13d (bottom) in hESC 763 
(H1) cells with two top-scoring guides for each target transcript (TFRC (low expression), CD81 764 
(medium expression) and CD24 (high expression)). Red dots denote significantly affected 765 
transcripts with adjusted p value < 0.1 and beta value > |0.5|. Green dots denote target 766 
transcript isoforms, with darker green dots denoting the most abundant target transcript isoform, 767 
and lighter green dots denoting other significantly changed target transcript isoforms. N=3 768 
biological replicates. 769 
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 770 
Figure 6: DjCas13d enables toxicity-free RNA perturbation in various sensitive cell types  771 
DjCas13d-mediated RNA targeting in A: hESC-derived neuronal progenitor cells (NPCs); B: 772 
hESC-derived hematopoietic progenitor cells (HPCs); C: hESC-derived neurons. Left panel, 773 
schematic of the experimental workflow. Right panel, scatter plot of cellular viability (y axis) and 774 
knockdown efficiency (x axis) across five transcripts of different expression levels in NPCs and 775 
two transcripts of different expression levels in HPCs and neurons. Each dot on the scatter plot 776 
represents one guide’s survival rate and knockdown (mean ± SEM for n = 3 replicates). The 777 
dots are colored by the target transcript listed in the legend. The target transcripts are ranked by 778 
expression levels (high to low). The dots are colored by target transcripts. The black dashed line 779 
indicates a survival rate of 1.0 relative to the average of NT guides, and the shaded box 780 
indicates the SEM of the survival rate for NT guides.   781 
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Data and Code Availability 782 

The model is freely accessible at http://RNAtargeting.org. The CasRx screen data and code for 783 
this manuscript is available on Github https://github.com/jingyi7777/CasRx_guide_efficiency. 784 
The RNAseq data is available at the NCBI Sequence Read Archive (SRA): PRJNA857683. 785 
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Methods 821 

Plasmid design 822 
For the CasRx expression vector, we designed a piggyBac-based all-in-one plasmid containing 823 
the CasRx effector, piggyBac transposase, and antibiotic selection cassette: PB_EF1a-CasRx-824 
msfGFP-2A-Blast. The CasRx effector is fused to msfGFP at the C terminus and under the 825 
control of a constitutive EF1a promoter. A nuclear localization signal SV40 NLS was added to 826 
both the N and C terminus of CasRx-msfGFP. The antibiotic selection cassette, blasticidin S 827 
deaminase, is linked with CasRx-msfGFP via a P2A self-cleaving peptide.  828 
 829 
For the CasRx guide cloning vector, we designed a lentiviral vector: hU6-(CasRx DR)-EF1a-830 
Puro-WPRE. The CasRx DR is a 36-base direct repeat 831 
(CAAGTAAACCCCTACCAACTGGTCGGGGTTTGAAAC) for CasRx pre-gRNA (Konermann et 832 
al., 2018). The 30 nt guide spacer sequence is cloned into the vector through Gibson cloning 833 
using two BsmBI cleavage sites. For individual guide truncation and individual guide validation 834 
experiments, we designed a piggyBac-based all-in-one plasmid containing the CasRx effector, 835 
guide DR, piggyBac transposase, and antibiotic selection cassette: hU6-(CasRx DR)-TRE-836 
CasRx-msfGFP-EF1a-rtTA-2A-Puro-CMV-transposase.  837 
  838 
Guide library design 839 
For the survival screen, we selected 55 essential genes from the intersection of the essential 840 
hits in three previous survival screens performed in K562 cells (Hart et al., 2015; Horlbeck et al., 841 
2016; Luo et al., 2008). We selected the major transcript isoform of these genes from the 842 
Refseq database and designed guides that tile these transcripts with single nucleotide 843 
resolution. A total of 127,071 targeting guides were generated for the 55 essential transcripts. In 844 
addition, we designed 14111 guides tiling 5 non-essential control transcripts (CTCFL, SAGE1, 845 
TLX1, DTX2, OR2C3). Along with 3563 non-targeting guides, we constructed a pooled library of 846 
144745 guides. 847 
 848 
For the validation screen on cell surface markers, 3218 guides were designed that tiled CD58 849 
transcripts (NM_001779.3, NM_001144822.2) and CD81 transcripts (NM_004356.4, 850 
NM_001297649.2) with single nucleotide resolution. The targeting guides were pooled with 851 
1186 non-targeting guides to create the final library.  852 
  853 
Guide library synthesis, cloning, and library amplification  854 
For each guide spacer sequence in the guide library, we added a constant left overhang 855 
(“AACCCCTACCAACTGGTCGGGGTTTGAAAC”) and a right overhang 856 
(“TTTTTTTTGAATTCAAGCTTGGCGTAACTAGA”) to facilitate cloning. The resulting libraries 857 
were synthesized as oligo pools by Twist Biosciences, and then PCR amplified using the primer 858 
pair: Lib_F 859 
(“TCTTGTGGAAAGGACGAAACACCGCAAGTAAACCCCTACCAACTGGTCGGGGTTTG”) and 860 
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Lib_R 861 
(“AGAGCTAGCCAGACGTGTGCTCTTCCGATCNNNNNNNNNTCTAGTTACGCCAAGCTTGA862 
ATTC”)  (Table S1). The PCR reaction was performed using NEBNext High Fidelity PCR 863 
Master Mix (NEB, catalog no. M0541L) for 20 cycles. The amplified library was gel-purified and 864 
cloned into the BsmBI digested guide cloning vector (hU6-(CasRx DR)-EF1a-Puro-WPRE) 865 
through Gibson assembly. The cloned guide library was then purified and concentrated by 866 
isopropanol precipitation.  867 
 868 
For guide library amplification, the library plasmid was electroporated to Endura 869 
electrocompetent E. coli cells (Lucigen, catalog no. 60242-2) at 50–100 ng/ul. After 870 
electroporation, cells were recovered in LB medium for 1h, and then plated on LB agar plates 871 
with 100 ug/mL carbenicillin at 37°C for 12-14h. The colonies were then harvested at a 872 
coverage of > 500 colonies per guide. The amplified guide library plasmid was extracted using 873 
the Macherey-Nagel NucleoBond Xtra Maxi EF Kit (Macherey-Nagel, catalog no. 740424.10). 874 
To determine guide RNA representation, we PCR amplified the guide region using customized 875 
NGS primers containing Illumina adaptor sequences (Table S1). NextSeq sequencing was 876 
performed to determine guide RNA representation in the guide library. We verified that the 877 
library had >87% perfectly matching guides, <0.5% undetected guides, and a skew ratio (90th 878 
percentile:10th percentile read number) of less than 10.  879 
 880 
Lentivirus production 881 
To produce lentivirus for the guide library, HEK293FT cells, purchased from Thermo Fisher (Cat 882 
# R70007) were grown in DMEM supplemented with 10% FBS (D10 media) at 37 °C with 5% 883 
CO2. Cells were passaged at a ratio of 1:2 using TrypLE (Gibco) and seeded 20–24 h before 884 
transfection at 1.8 × 107 cells per T225 flask. For lentiviral plasmid transfection, the guide library 885 
plasmid was mixed with psPAX2 (Addgene, catalog no. 12260) and pMD2.G (Addgene, catalog 886 
no. 12259) in Opti-MEM, and transfected to HEK293FT using Lipofectamine 2000 (Thermo 887 
Fisher, catalog no. 11668027) and PLUS reagent (Thermo Fisher, catalog no. 11514015). 888 
Medium was replaced 4 hours after transfection with fresh, prewarmed D10 medium. Two days 889 
after the start of lentiviral transfection, the supernatant from the HEK293FT cells was harvested 890 
and filtered using a 0.45um Stericup filter. The lentiviral titer was determined through spinfection 891 
on K562 cells prior to the screen.  892 
  893 
Cell culture and CasRx cell line generation  894 
K562 cells were purchased from ATCC (CCL-243), and cultured in RPMI 1640 medium with 895 
GlutaMAX™ supplement (Thermo Fisher, catalog no.61870036), 10% FBS, and Penicillin-896 
Streptomycin at 37 °C with 5% CO2. To generate a stable CasRx-expressing K562 cell line, we 897 
transfected K562 cells with the piggyBac-based all-in-one CasRx expression vector (PB_EF1a-898 
CasRx-msfGFP-2A-Blast) using Lipofectamine 3000 Transfection Reagent (Thermo Fisher, 899 
catalog no. L3000001). Two days after transfection, we selected the cells with 10 μg/ml 900 
blasticidin S (Thermo Fisher, catalog no. A1113903). After selection for 1-2 weeks, we checked 901 
the percentage of CasRx-expressing cells using flow cytometry and confirmed that more than 902 
95% of cells expressed CasRx-GFP. 903 
  904 
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Survival screen 905 
The guide library for the survival screen was lentivirally transduced at MOI=0.2 by spinfection 906 
into the stable CasRx-expressing K562 cell line. We ensured the guide library had a coverage 907 
of >1000 cells per guide. Two days after transduction, cells were selected with 1 μg/ml 908 
puromycin to ensure guide expression and further cultured for 14 days. Cells were harvested at 909 
day 14 (end of the screen), and the genomic DNA was extracted using Zymo Research Quick-910 
gDNA MidiPrep (Zymo Research, cat. no. D4075). The guide region was PCR amplified using 911 
customized NGS primers containing Illumina adaptor sequences. The resulting PCR products 912 
were gel purified and quantified with Nanodrop and Qubit dsDNA HS Assay Kit (Thermo Fisher 913 
Scientific, cat. no. Q32851). Pooled guide libraries were sequenced on Illumina NextSeq, with 914 
80 cycles of read 1 (forward) and 8 cycles of index 1. Three biological replicates were 915 
performed for the survival screen.  916 
 917 
Validation screen on CD58 and CD81 918 
The guide library for the validation screen on CD81 and CD58 was lentivirally transduced at 919 
MOI=0.1 by spinfection into the stable CasRx-expressing K562 cell line. 45 million cells per 920 
biological replicate were transduced to ensure coverage of >1000 cells per guide. After 921 
spinfection, cells were selected with 1 μg/ml puromycin and further cultured for 10 days. At the 922 
end of the screen, cells were divided into two pools and stained with CD58 antibody (BD 923 
Biosciences, catalog no. 564363) or CD81 antibody (BD Biosciences, catalog no. 561958) and 924 
analyzed using FACSAria II (Figure S11). Following calibration with unstained controls, each 925 
cell pool was sorted into four bins based on target gene expression level indicated by antibody-926 
conjugated fluorescence intensity. Specifically, cells were first gated by forward and side scatter 927 
to select for live, single cells. Next, cells were gated on GFP to select for CasRx-expressing 928 
cells. This final population was sorted into four bins based on the intensity of CD58 or CD81 929 
antibody-conjugated fluorescence intensity. As high efficiency guides were defined as the top 930 
20% for each gene, we set the bin with the lowest target gene expression (bin 1) at 7-8%, which 931 
is equal to the fraction of the target gene’s high efficiency guide number in the whole library: 932 
1600*0.2/4401. The rest of the population was equally divided into three bins of the same size 933 
(~30%). The genomic DNA for cells in each bin was extracted and sequenced as in the survival 934 
screening. Four biological replicates were performed for the validation screen.  935 
 936 
Data preprocessing and definition of high efficiency guides 937 
For each guide RNA we calculated the fraction in the day 14 guide pool and the input library 938 
pool. Guide efficiency was evaluated by the ratio of guide percentage in the day 14 pool to the 939 
input pool (Table S3). Guides targeting each transcript were ranked based on their average 940 
ratio across the three replicates, and we defined high efficiency guides for each transcript, 941 
taking into account three parameters: 1) the top 20% guides per transcript; 2) no essential off-942 
targets predicted by BLAST (see the ‘Off-target filtering’ section below and Figure S1D for 943 
details); and 3) with a d14/input ratio lower than 0.75 (the ratio at 5th percentile of the guides for 944 
targeting control genes). Guides targeting the transcript RPS19BP1 were excluded because 945 
they clustered with non-essential controls (most guides were not effectively depleted in the 946 
screen).  947 
 948 
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For the validation screen, we first filtered guides with less than 200 counts in all CD58 bins and 949 
CD81 bins. Less than 1.5% of guides were removed by this filter. We then calculated each 950 
guide’s distribution across the 4 bins and used the ratio of guide percentage in bin 1 (greatest 951 
knockdown) to the sum of its percentage in bins 1 and 4 (least knockdown) for evaluation of 952 
guide efficiency. We then ranked guides within each gene based on their average ratio of the 953 
four replicates, and we defined the top 20% guides for each gene as high efficiency guides.  954 
 955 
Off-target filtering 956 
We performed BLAST to identify potential off target matches for our guides. As the first 24 957 
nucleotides from the 5’ end of the CasRx guides were shown to be most indicative of guide 958 
targeting ability (Figure S2C), we took the first 24 nucleotides of each guide as BLAST input. 959 
BLAST was performed using a generous E value of 1 (e=1) against the Gencode V33 database. 960 
BLAST results were parsed and off target genes were identified as those with up to three 961 
mismatches to the guide input. To check the essentiality of the off-target genes, we made an 962 
essential gene list by combining the essential gene hits from the three previous survival screens 963 
in K562 cells and we compared the off-target genes with the essential gene list. Guides with 964 
predicted off-targets in essential genes were filtered, as we reasoned they may interfere with the 965 
interpretation of our survival screen readout. For our survival screening, 6790 guides were 966 
filtered and 120281 guides remained for further analysis (Figure S1D, Table S4). For the 967 
validation screen, the filtered dataset is provided in Table S5. 968 
 969 
Analysis of the positional distribution of high efficiency guides 970 
For each transcript, we calculated the number of high efficiency guides overlapping each 971 
position on the transcript, and plotted the results using a heatmap. We further summarized the 972 
distribution of high efficiency guides across all transcripts and positions with a histogram. In 973 
theory, a particular nucleotide position would have at most 30 guides covering it, so the number 974 
of efficient guides ranges from 0 to 30 for each position. We compared the results with a 975 
randomly sampled distribution, which is simulated using 100 random samplings of 20% of the 976 
guides in the library. In theory, the randomly sampled distribution would show a peak at 6 977 
(30*20%), which agrees with our simulation results. 978 
  979 
Data splits  980 
For model hyperparameter tuning and evaluation, we split our 54 essential transcripts into 9 981 
folds, each containing a unique and non-overlapping set of 6 test transcripts. The 54 transcripts 982 
were distributed evenly across the 9 folds according to their high efficiency guide percent to 983 
make the 9-fold split balanced. Using the predefined transcript splits, we performed 9-fold cross-984 
validation to tune model hyperparameters and compare prediction accuracy between models. 985 
  986 
Feature calculation and model inputs 987 
For the sequence input, each 30 nt guide spacer was one-hot encoded into four binary vectors 988 
of length 30 to represent the nucleotide identity at each position. 989 

To predict guide unfolding energy, we used LinearFold, a linear-time RNA secondary structure 990 
prediction algorithm (Huang et al., 2019) on the full-length guide sequence (36nt DR +30nt 991 
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spacer). We started with the default parameters and the CONTRAfold v2.0 model (Do et al., 992 
2006; Lorenz et al., 2011; Wayment-Steele et al., 2020) provided by the LinearFold software at 993 
https://github.com/LinearFold/LinearFold. We subtracted the predicted MFE (minimum free 994 
energy) with the baseline energy (MFE of the unstructured guide with the 30 nt spacer unfolded) 995 
to calculate guide unfolding energy. We also tested the Vienna RNAfold model in LinearFold as 996 
a comparison. To determine whether using the ensemble guide unfolding energy instead of 997 
MFE could improve model prediction, we further tested three RNA structure prediction 998 
algorithms (Contrafold2, Eternafold, Vienna) wrapped by Arnie 999 
(https://github.com/DasLab/arnie) to calculate the ensemble guide unfolding energy with the 1000 
partition function (Do et al., 2006; Lorenz et al., 2011; Wayment-Steele et al., 2020). For the 1001 
Vienna package, we tested different temperature(T) settings: 37°C , 60 °C, and 70 °C. In our 1002 
final model, we used the guide unfolding energy calculated by LinearFold’s default CONTRAfold 1003 
v2.0 model as it improved model prediction accuracy to the greatest extent. 1004 

To calculate target unfolding energy, we first used LinearFold’s CONTRAfold v2.0 model to 1005 
predict MFE of the native local target region using the local target sequence. We then predicted 1006 
MFE of the guide unwound local target region by supplying the algorithm with the constraint that 1007 
the 30 nt guide-binding site is unpaired. (This can be achieved by feeding in an additional 1008 
constraint structure with the guide-binding site annotated with “.”). We then subtracted the 1009 
former MFE (MFE of the native target region) by the latter (MFE of the guide unwound target 1010 
region) to estimate local target unfolding energy. The local target region was defined as the 30 1011 
nt guide-binding site with 15 nt flanking sequence on both sides. Flanking sequences of different 1012 
lengths were compared, and the length 15 was chosen for the final model as it improved model 1013 
prediction accuracy to the greatest extent. 1014 
  1015 
To calculate the percentage of isoforms targeted by each guide, we obtained all transcript 1016 
isoforms for each gene from the Refseq database and evaluated the percentage of isoforms 1017 
matched for each 30nt guide target (using perfect matches). 1018 
   1019 
To calculate the three position flags, we obtained Refseq’s annotations of the 5′ UTR, CDS, or 1020 
3′ UTR region for our target transcripts. Guides that target the 5′ UTR, CDS, or 3′ UTR region 1021 
have a flag value of 1 for that correspondent feature, and 0 for the other two flag features. To 1022 
calculate the three position floats (5′ UTR position,CDS position,3′ UTR position), we calculated 1023 
the relative position of the guide target site in the 5′ UTR, CDS, or 3′ UTR region. Guides 1024 
located out of the region have a flag value of 0 for the correspondent feature.  1025 
  1026 
Model architecture 1027 
Sequence-only models 1028 
For linear models and ensemble models, the one-hot encoded guide sequence was flattened 1029 
and converted to 30*4= 120 flag features. The features are then fed into the models to generate 1030 
the output. For the CNN model, the one-hot encoded guide was treated as a 4-channel image, 1031 
and a few 1D convolutional layers were applied to generate a feature map, which was flattened 1032 
and passed to a dense layer to generate the final output. For the biLSTM model, the guide 1033 
sequence was treated as a sentence with four characters, and two LSTMs, each processing the 1034 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2021.09.14.460134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460134
http://creativecommons.org/licenses/by-nc-nd/4.0/


input sequence in one direction (forward or backward), were applied to generate sequence 1035 
representations. The resulting vectors were merged, flattened, and passed to a dense layer to 1036 
generate the final output.  1037 
 1038 
Full model with secondary features 1039 
For the CNN model with secondary features, the one-hot encoded guide was passed to a few 1040 
convolutional layers as in the sequence-only model. The output from the CNN layers was 1041 
flattened and concatenated with the normalized secondary features. The concatenated feature 1042 
vector was sequentially passed to a dense layer, a recurrent dense layer and a final dense layer 1043 
of 1 unit to generate the output. All dense layers use leaky ReLU as the activation function. The 1044 
CNN layer kernel size, unit number, layer number and the dense layer unit number were defined 1045 
after hyperparameter tuning.  1046 
For the Gradient-boosted classification tree, the one-hot encoded guide sequence was flattened 1047 
and converted to 30*4= 120 flag features. The sequence features are concatenated with the 1048 
normalized secondary features, and then fed into the model to generate output.  1049 
  1050 
Model training, hyperparameter tuning and evaluation 1051 
All models were trained to solve a binary classification task – predicting high efficiency guides, 1052 
and the model output is the probability that a guide is a high efficiency guide.  1053 
The linear models and ensemble models were trained in scikit-learn 0.24 and the deep learning 1054 
models (LSTM and CNN) were trained in TensorFlow 2.3.1. For the deep learning models, we 1055 
used binary cross-entropy as the loss function and applied the Adam optimizer for model 1056 
training. Early stopping was used to prevent model overfitting. 1057 
For all models, the prediction accuracy is evaluated by AUROC (Area Under the Receiver 1058 
Operating Characteristic curve) and AUPRC (The Area Under Precision-Recall Curve).  1059 
 1060 
To tune hyperparameters and evaluate model performance, we used 9-fold cross-validation 1061 
over the hyperparameter space. For linear models and ensemble models, we used the 1062 
“GridSearchCV” function in scikit-learn to perform a grid search over the hyperparameter set. 1063 
For deep learning models, we used the Hyperband tuner in TensorFlow to select top models 1064 
quickly by filtering poor models during training.   1065 
  1066 
The hyperparameter sets for all models are listed below: 1067 

● logistic regression with L1 regularization: regularization strength - logarithmic in (10!", 105)) 1068 

● logistic regression with L2 regularization: regularization strength - logarithmic in (10!", 105)) 1069 

●  logistic regression with elastic net regularization: regularization strength - logarithmic in (10!#, 1070 
104)), L1 ratio - equally spaced from 0.1 to 1. 1071 

● Gradient-boosted classification trees: number of trees – 1072 
[100,200,400,800,1000,1200,1500,1800,2000], maximum depth of a tree – [2,4,8], the number of 1073 
features to consider when looking for the best split - all, sqrt(n_features), log2(n_features).  1074 

● Random forest (RF): number of trees – [100,200,400,800,1000,1200,1500,1800,2000], number of 1075 
features to consider when looking for the best split - all, sqrt(n_features), log2(n_features).  1076 

● Long short-term memory recurrent neural network (LSTM): LSTM units - [16, 32,64,128], dense 1077 
layer units – [8, 16, 32], recurrent dense layer number – [0,1,2,3], dropout rate - [0.0, 0.1, 0.25] 1078 
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● Convolutional neural network (CNN): CNN layer kernel size – [3,4,5], CNN units- [8,16,32,64], 1079 
CNN layer number – [3,4,5], dense layer units - [8,16,32,64], recurrent dense layer number – 1080 
[0,1,2,3] 1081 

  1082 
For all models, we chose the hyperparameter set with the highest average AUROC across all 1083 
test sets in the 9-fold splits, and evaluated the final model performance using both the average 1084 
AUROC and average AUPRC across test sets.  1085 
  1086 
Secondary feature selection 1087 
For the CNN model, we added each secondary feature individually to guide sequence features 1088 
and calculated the change in model performance. We selected features that successfully 1089 
improved model performance, and added these features sequentially upon guide sequence 1090 
features to check feature redundancy. We also tried removing individual features from the final 1091 
model to confirm the necessity of the features.  1092 
For the Gradient-boosted tree, besides the above methods, we also used Boruta, an all-relevant 1093 
feature selection method that aims to find all features useful for prediction (Kursa et al., 2010). 1094 
We implemented it using BorutaPy, the Python implementation of Boruta 1095 
(https://github.com/scikit-learn-contrib/boruta_py) on our Gradient-boosted tree. 1096 
 1097 
Model interpretation and feature contributions 1098 
For the CNN model, we applied “Integrated Gradients” (IG) to investigate feature contributions 1099 
in the model. “Integrated Gradients” is an attribution method that evaluates feature importance 1100 
by integrating the gradient of output to input features along the straightline path from the 1101 
baseline input to the actual input value (Sundararajan et al., 2017). Due to the non-linearity of 1102 
the deep learning model, we applied “Integrated Gradients” to the best-performing individual 1103 
CNN model on CD genes rather than the ensemble model. To compute integrated gradients, we 1104 
first set all-zero baselines for the sequence input, position flags and position floats, and used 1105 
average baselines for other features. Next, we generated a linear interpolation between the 1106 
baselines and the inputs using 50 steps. We then computed gradients using the 1107 
“tf.GradientTape” function in TensorFlow for the interpolated points, and approximated the 1108 
gradients integral with the trapezoidal rule. To evaluate the relative importance of each position 1109 
on the guide, we averaged the absolute integrated gradient values at each position across all 1110 
test sequences. To evaluate the contribution of each nucleotide at each position, we averaged 1111 
the integrated gradients for that nucleotide across all test sequences.  1112 
For the Gradient-boosted tree, we applied SHAP (SHapley Additive exPlanations) to investigate 1113 
feature contributions in the model. SHAP is a game theoretic approach that estimates how each 1114 
feature contributes to the model output by providing the SHAP value for each input feature 1115 
(Lundberg et al., 2020). We implemented the SHAP package from 1116 
https://github.com/slundberg/shap, and applied it to our Gradient-boosted tree. To evaluate the 1117 
relative importance of each position on the guide, we averaged the SHAP values at each 1118 
position across test sequences. To evaluate the contribution of each nucleotide at each position, 1119 
we averaged the SHAP values for that nucleotide across test sequences.  1120 
  1121 
Cas13a guide sequence contribution to guide efficiency 1122 
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We analyzed three Cas13a guide efficiency datasets: 1) the Luciferase knockdown dataset 1123 
containing 186 LwaCas13a guides for Gaussia luciferase (Gluc) and 93 guides for Cypridina 1124 
Luciferase (Cluc) (Abudayyeh et al., 2017); 2) the endogenous gene knockdown dataset 1125 
containing 93 LwaCas13a guides for each of KRAS, PPIB and MALAT1 (Abudayyeh et al., 1126 
2017); and 3) the ADAPT dataset containing 85 perfect match LwaCas13a guides for virus 1127 
detection (Metsky et al., 2022). We calculated the Pearson correlation between each nucleotide 1128 
at each position with guide efficiency to evaluate the sequence contribution.  1129 
 1130 
Motif discovery  1131 
For motif discovery, we used TF-MoDISco (Transcription Factor Motif Discovery from 1132 
Importance Scores), an algorithm that discovers motifs by clustering important regions in 1133 
sequences using per-base importance scores (Shrikumar et al., 2018). We implemented TF-1134 
MoDISco from https://github.com/kundajelab/tfmodisco using the integrated gradients of all high 1135 
efficiency guides in our training data as input. We ran TF-MoDISco with a sliding window size of 1136 
7 and a flank length of 2. For final motif processing, we trimmed the clustered motifs to a 1137 
window size of 6, added an initial flank length of 2 and a final flank length of 3 to get the final 1138 
motifs. The top 5 active motifs are picked and aligned to the 30 nt spacer according to the mode 1139 
position of sequences in each motif. 1140 
  1141 
Nmer analysis 1142 
To identify enriched or depleted positional nmers, we divided our survival screen data to 9 folds 1143 
as in the model training workflow and calculated the ratio of all possible positional nmers’ 1144 
percentage in high efficiency guides to non-high efficiency guides in the training set and test set, 1145 
respectively, for each fold. We identified enriched (or depleted) nmers based on their ratio in the 1146 
training set with a predefined ratio cut-off. We selected the nmers identified as enriched (or 1147 
depleted) across all folds, and ranked them by their average percent in high efficiency guides in 1148 
the test sets across all folds. The initial ratio cut-off is set as 2 for enriched nmers and 0.5 for 1149 
depleted nmers. The cut-off is adjusted during the nmer identification process so that the 1150 
percent of guides with enriched nmers are ~20% and the percent of guides with depleted nmers 1151 
are ~40%. We mainly focused on 3-mers and 4-mers in this paper.  1152 
  1153 
Final model and model testing on the validation screens 1154 
We chose the CNN model as our final model after hyperparameter tuning and model 1155 
comparison. We re-trained the model using all of the survival screen data. To prevent 1156 
overfitting, we split out a validation set during model training as in the previous 9-fold cross-1157 
validation split. We built 9 individual models using different validation sets from the 9-fold split of 1158 
essential transcripts, and we compared their performance on the two cell surface markers, 1159 
CD58 and CD81. We further built an ensemble model that averaged the prediction of all the 1160 
individual models. We found that the ensemble model outperformed all individual models on the 1161 
two CD genes, so we set the ensemble CNN model as our final model. As a comparison, we 1162 
also retrained the best non-deep learning model, the Gradient-boosted tree (GBT), using all of 1163 
the survival screen data. We tested the model on the two CD genes and evaluated model 1164 
performance using AUROC and AUPRC. 1165 
  1166 
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Model comparison with Wessels et al. model and DeepCas13 1167 
We tested the performance of the Random forest model from Wessels et al. on our CD genes 1168 
and essential genes using the web server https://cas13design.nygenome.org (Wessels et al. 1169 
2020; Guo et al. 2021). We evaluated the model performance using AUROC, AUPRC, 1170 
Spearman's correlation coefficient, rs and true positive ratios at 0.8 and 0.9 model score cutoffs. 1171 
As the Random forest model is designed for 23 nt long guides, we extended the guides from 1172 
their model output to 30 nt (extends toward the 3′ end) to be in accordance with our screen 1173 
data. For comparison, we retrieved the CasRx guide tiling screen dataset on three genes, 1174 
CD46, CD55, and CD71, from Wessels et al. and tested our model’s performance. We adjusted 1175 
the guide length to 23 nt in our model to be in accordance with their screen data, and we set the 1176 
top 20% guides for each gene as “high efficiency guides”. The model performance was also 1177 
evaluated by AUROC, AUPRC, Spearman's correlation coefficient, rs and true positive ratios at 1178 
0.8 and 0.9 model score cutoffs.  1179 
 1180 
We tested the performance of DeepCas13 (Cheng et al. 2023) on our CD genes using the web 1181 
server http://deepcas13.weililab.org. We evaluated the model performance using AUROC, 1182 
AUPRC, Spearman's correlation coefficient, rs and true positive ratios at 0.8 and 0.9 model 1183 
score cutoffs.  1184 
 1185 
Cas13d guide efficiency prediction tool and website 1186 
A website-based Cas13d guide efficiency prediction tool was developed using our CNN model 1187 
for Cas13d guide design across model organism transcriptomes and custom RNA sequences. 1188 
For model organism Cas13d guide design, we precomputed the Cas13d guide efficiency for all 1189 
coding and non-coding genes of each model organism. Briefly, reference transcriptome 1190 
sequences and annotations were obtained from the UCSC Table Browser (Karolchik et al., 1191 
2004) with the NCBI RefSeq track. All possible 30 nt Cas13d guide spacers were extracted from 1192 
the transcriptome sequences with single nucleotide resolution. Secondary features were 1193 
calculated for each guide as described in the ‘Feature calculation and model inputs’ section 1194 
above. The final CNN model was applied to all guides for prediction of their efficiency, and the 1195 
guides were ranked within each gene based on the model prediction scores.  1196 
 1197 
For custom sequence guide design, all possible 30 nt Cas13d guide spacers are extracted from 1198 
the input custom RNA sequences with single nucleotide resolution. Guide unfolding energy and 1199 
target unfolding energy are calculated as described in the ‘Feature calculation and model 1200 
inputs’ section above. A CNN model that uses guide sequence, guide unfolding energy and 1201 
target unfolding energy as inputs, trained on the survival screen dataset, is applied to the 1202 
custom sequence guides for prediction of their efficiency. Guides are ranked based on the 1203 
model prediction scores.  1204 
 1205 
The Cas13d guide efficiency prediction tool is freely available on a public, user-friendly website: 1206 
https://www.RNAtargeting.org. 1207 
 1208 
Computational identification of novel Cas13d orthologs through metagenomic database 1209 
mining 1210 
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We applied our previously described pipeline for novel CRISPR effector discovery (Konermann 1211 
et al., 2018) to incompletely assembled metagenomic contigs in addition to whole genome, 1212 
chromosome, and scaffold-level prokaryotic and metagenomic sample assemblies from the 1213 
NCBI Genome database (https://www.ncbi.nlm.nih.gov/), the Gigadb repository 1214 
(http://gigadb.org/), as well as the JGI Genome portal (https://genome.jgi.doe.gov/portal/). 1215 
Putative effectors encoded near identified CRISPR arrays (<kb distance) were assigned to 1216 
previously identified Cas13 families via tBLASTn analysis, where a bit score of at least 60 to any 1217 
prior Cas13 subfamily member was required for cluster assignment. As a second round of 1218 
discovery independent of CRISPR array identification, tBLASTn was performed on all original 1219 
and predicted Cas13d effectors from the first round against all public metagenome whole 1220 
genome shotgun sequences without predicted open reading frames (ORFs) from all three 1221 
sources listed above. New full-length homologs and homologous fragments were aligned using 1222 
Clustal Omega and clustered using PhyML 3.2 (Guindon et al., 2010). All the Cas13d ortholog 1223 
sequences are provided in Table S7. 1224 
 1225 
Construction of Cas13 phylogenetic tree  1226 
A custom sequence database of bacterial isolate and metagenomic sequences was constructed 1227 
by aggregating publicly available sequence database, including NCBI, UHGG (Almeida et al., 1228 
2021), JGI IMG (I.-M. A. Chen et al., 2021), the Gut Phage Database (Camarillo-Guerrero et al., 1229 
2021), the Human Gastrointestinal Bacteria Genome Collection (Forster et al., 2019), MGnify 1230 
(Mitchell et al., 2020), Youngblut et al animal gut metagenomes (Youngblut et al., 2020), 1231 
MGRAST (Meyer et al., 2008), and Tara Oceans samples (Sunagawa et al., 2015). Cas13 1232 
sequences from other Cas13 families were identified by searching representative members of 1233 
each clade (Cas13a/b/bt/c/x/y) against a collection of protein representatives (clustered at 30% 1234 
identity) derived from the custom sequence database using hmmsearch from the hmmer 1235 
package (HMMER, n.d.). Selected Cas13a, Cas13b, Cas13c, Cas13d representatives were 1236 
LbuCas13a, BzoCas13b, AspCas13c, and CasRx respectively. The Cas13bt representative was 1237 
collected from (Kannan et al., 2022), and the Cas13X and Cas13Y representatives were 1238 
collected from (Xu et al., 2021). All hits that met E < 1e-6 and were 75%-125% the length of the 1239 
representative sequence were retained. Sequences were assigned to the best matching 1240 
representative. Sequences were then clustered at the 50% identity level along 80% of both 1241 
sequences using the mmseqs package (Steinegger & Söding, 2017). Sequences were then 1242 
aligned using the MAFFT algorithm mafft-linsi (Katoh et al., 2002). PhyML was used to generate 1243 
phylogenetic trees with default parameters (Guindon et al., 2010). Trees were visualized using 1244 
the ggtree package in R (Yu, 2020). 1245 
 1246 
Cloning of Cas13d orthologs and Cas7-11 1247 
For initial testing and efficiency screening, human codon optimized Cas13d sequences, flanked 1248 
by two nuclear localization or export sequences, were cloned into a backbone derived from 1249 
pXR001: EF1a-CasRx-2A-EGFP (Addgene #109049) to replace the CasRx coding sequence. 1250 
Guide sequences targeting mCherry or CD81 were cloned into a backbone derived from 1251 
pXR003: CasRx gRNA cloning backbone (Addgene #109053) with 5′ full-length direct repeat 1252 
(DR) sequences for each Cas13d ortholog. For testing the seven high efficiency Cas13d 1253 
orthologs in stem cells, the Cas13d coding sequences and respective mature DR guide scaffold 1254 
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sites were cloned into the inducible piggyBac-based all-in-one plasmid containing the Cas13d 1255 
effector, guide DR, piggyBac transposase, and antibiotic selection cassette: hU6-DR-TRE-1256 
Cas13d-T2A-msfGFP-EF1a-rtTA-T2A-Puro-CMV-transposase. Human codon optimized 1257 
DisCas7-11 protein sequence and the mature DR guide scaffold with golden gate sites were 1258 
PCR amplified from Addgene plasmids # 172507 and #172508, a gift from Omar Abudayyeh & 1259 
Jonathan Gootenberg, and cloned to the constitutive piggyBac-based all-in-one backbone 1260 
plasmid as mentioned before. Guide spacers were position matched to CasRx and DjCas13d’s 1261 
guide spacers and were cloned into the backbone plasmid using Golden Gate cloning. All 1262 
individual guide sequences are provided in Table S6. 1263 
  1264 
Cell culture for individual guide testing 1265 
HEK293FT cells were purchased from Thermo Fisher (Cat # R70007) and grown in DMEM 1266 
supplemented with 10% FBS (D10 media) at 37 °C with 5% CO2. Cells were passaged at a 1267 
ratio of 1:2 using TrypLE (Gibco). Hela and A375 cells were gifts from the Howard Chang lab 1268 
and Scott Dixon lab, respectively. They were both cultured in DMEM supplemented with 10% 1269 
FBS (D10 media) at 37 °C with 5% CO2. Cells were passaged at a ratio of 1:2 using TrypLE 1270 
(Gibco). U2OS cells were a gift from the Chang lab and grown in McCoy's 5A (modified) 1271 
Medium (Thermo Fisher, catalog no. 11668027) supplemented with 10% FBS at 37 °C with 5% 1272 
CO2. Cells were passaged at a ratio of 1:2 using TrypLE (Gibco). Stem cell line H1 were 1273 
purchased from WiCell (Cat # WA01). Cells were maintained in mTeSR™ Plus media (Catalog 1274 
# 100-0276, STEMCELL Technologies) on Matrigel-coated 6-well plate and passaged 1:12 with 1275 
ReLeSR™ (Catalog # 05872, STEMCELL Technologies) every four days. 1276 
  1277 
Transfection of human cell lines 1278 
For initial testing and efficiency screening of Cas13d orthologs, HEK293FT cells were plated at 1279 
20,000 cells per well in a 96-well plate, then transfected at >80% confluence with 192 ng 1280 
Cas13d-2A-EGFP plasmid, 192 ng of crRNA expression plasmid, and 12 ng of mCherry 1281 
expression plasmid using Lipofectamine 2000. Cells were harvested 48 hours after transfection 1282 
for flow cytometry analysis of mCherry expression. For CD81 knockdown experiments, 1283 
HEK293FT cells were transfected with 200 ng Cas13d-2A-EGFP plasmid and 200 ng guide 1284 
RNA expression plasmid using Lipofectamine 2000. Cells were harvested 48 hours after 1285 
transfection for staining and flow cytometry analysis of CD81 expression. 1286 
 1287 
For experiments comparing CasRx, DjCas13d, and Cas7-11 in HEK293FT cells, cells were 1288 
plated at 16,000 cells per well in a 96-well plate and transfected at > 80% confluence with 100 1289 
ng of all-in-one PiggyBac plasmids containing CasRx, DjCas13d, or Cas7-11 using 1290 
Lipofectamine 2000 (Life Technologies). Cells were selected with 1 μg/ml puromycin 24h after 1291 
transfection. 24 hours after selection, cells were harvested for RNA extraction and downstream 1292 
processing. 1293 
 1294 
For individual guide testing in Hela cells, low passage cells were plated at a density of 15,000 1295 
cells per well in a 96-well plate and transfected at > 80% confluence with all-in-one PiggyBac 1296 
plasmids containing CasRx or DjCas13d using FuGENE® HD Transfection Reagent (E2311, 1297 
Promega) according to the manufacturer’s protocol. Cells were selected with 1 μg/ml puromycin 1298 
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and induced with Doxycycline (D3072, Sigma) for CasRx or DjCas13d expression 48h after 1299 
transfection. Flow analysis was performed seven days after induction. 1300 
 1301 
For individual guide testing in U2OS cells, low passage cells were plated at a density of 15,000 1302 
cells per well in a 96-well plate and transfected at > 80% confluence with all-in-one PiggyBac 1303 
plasmids containing CasRx or DjCas13d using ViaFect™ Transfection Reagent (E4981, 1304 
Promega) according to the manufacturer’s protocol. Cells were selected with 0.75 μg/ml 1305 
puromycin and induced with Doxycycline (D3072, Sigma) for CasRx or DjCas13d expression 1306 
48h after transfection. Flow analysis was performed seven days after induction. 1307 
 1308 
For individual guide testing in A375 cells, low passage cells were plated at a density of 25,000 1309 
cells per well in a 96-well plate and transfected at > 80% confluence with all-in-one PiggyBac 1310 
plasmids containing CasRx using TransIT-X2 (MIR 6003, Mirus) according to the 1311 
manufacturer’s protocol. Cells were selected with 0.5 μg/ml puromycin and induced with 1312 
Doxycycline (D3072, Sigma) for CasRx expression 48h after transfection. Flow analysis was 1313 
performed seven days after induction. 1314 
 1315 
For enzyme comparison and individual guide testing in H1 cells, low passage cells were 1316 
passaged with Accutase (Innovative Cell Technologies) and plated into a Matrigel-coated 96-1317 
well plate with mTESR media containing ROCK inhibitor Y-27632 (10 uM, Abcam) at 30,000 1318 
cells per well one day before transfection. On day 1, cells were transfected at > 80% confluence 1319 
with all-in-one PiggyBac plasmids containing different Cas13d orthologs using FuGENE® HD 1320 
Transfection Reagent (E2311, Promega) according to the manufacturer’s protocol. Cells were 1321 
selected with 0.5 μg/ml puromycin 48h after transfection. 5-7 days after selection, Cas13d 1322 
expression was induced with Doxycycline (D3072, Sigma). Flow cytometry analysis was 1323 
performed three days after induction. 1324 
 1325 
For RNAseq experiments in H1 cells, low passage cells were passaged with Accutase 1326 
(Innovative Cell Technologies) and plated into Cultrex (R&D Systems 343400502)-coated 96-1327 
well plates with mTESR media containing ROCK inhibitor Y-27632 (10 uM, Abcam) at 25,000 1328 
cells per well one day before transfection. On day 1, cells were transfected at > 80% confluence 1329 
with all-in-one PiggyBac plasmids containing different Cas13d orthologs using FuGENE® HD 1330 
Transfection Reagent (E2311, Promega) according to the manufacturer’s protocol. Cells were 1331 
split and selected with 0.75 μg/ml puromycin 24h after transfection. Puromycin concentration 1332 
was increased to 1ug/ml the next day. 72h after transfection, cells were harvested for RNA 1333 
extraction and downstream processing. 1334 
 1335 
 1336 
Staining and flow cytometry 1337 
For cell surface protein staining, cells were harvested and dissociated with TrypLE, followed by 1338 
two washes in cold FACS buffer (DPBS + 2 mM EDTA + 0.02% BSA), and then blocked with 1339 
Human TruStain FcX (Biolegend) for 10 minutes. Cells were then stained with target antibodies 1340 
for 1 hour at 4°C in the dark, followed by two washes using the FACS buffer, and then analyzed 1341 
by flow cytometry.  1342 
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 1343 
For intracellular staining, cells were dissociated with Accutase and resuspended in DMEM/F12 1344 
with GlutaMAX (ThermoFisher, Cat #10565018) with 20% trypsin inhibitor. Cells were then fixed 1345 
with Cytofix/Cytoperm solution (BD) at 4°C for 20 minutes, followed by washes with Perm/Wash 1346 
solution (BD). Cells were then stained with target antibodies for 45 minutes at 4°C in the dark, 1347 
followed by two washes with the FACS buffer, and then analyzed by flow cytometry. 1348 
 1349 
RT-qPCR 1350 
Cells were lysed with BME-supplemented RLT buffer and total RNA was extracted with the 1351 
RNeasy Plus 96 Kit (Cat #74192, QIAGEN). The extracted RNA was then reverse transcribed 1352 
using RevertAid RT Kit (Thermo Fisher, Cat # K1691) with random hexamer primers at 25°C for 1353 
5 min, 42°C for 60 min, and 70°C for 5 min. qPCR was then performed using Taqman Fast 1354 
Advanced Master Mix (Thermo Fisher, Cat # 4444965) and Taqman probes for GAPDH control 1355 
(Thermo Fisher, Cat # 4326317E) and target genes (IDT, custom gene expression assays). 1356 
Custom Taqman probe and primer sets were designed to amplify target regions spanning the 1357 
guide target sites. qPCR was performed in 384-well plates using the LightCycler 480 Instrument 1358 
II (Roche). Target gene expression change was calculated relative to non-targeting controls 1359 
using the ddCt method. 1360 
 1361 
Cell viability assays 1362 
For cell viability assays in HEK293FT, cells were plated at 9,000 cells per well in a 96-well plate 1363 
the day before transfection. Cells were transfected with 100 ng of all-in-one PiggyBac plasmid 1364 
containing constitutive CasRx, DjCas13d, or Cas7-11 using Lipofectamine 2000 (Life 1365 
Technologies). 72 hours after transfection, cell viability was measured using WST-1 reagent 1366 
(5015944001, Sigma) with an incubation time of 2 hours and measurement of absorbance at 1367 
440nm. Cell viability of targeting guide groups for each effector was compared relative to the 1368 
corresponding non-targeting guide group. Three biological replicates were performed. 1369 
 1370 
To measure cell viability in stem cells, Hela, U2OS and A375 cells, cells were transfected with 1371 
the inducible all-in-one PiggyBac plasmids containing inducible CasRx, DjCas13d, or other 1372 
Cas13d orthologs. After selection for plasmid integration with 1 μg/ml puromycin for 5-7 days, 1373 
cells were induced for effector (CasRx, DjCas13d or other Cas13d orthologs) expression using 1374 
Doxycycline (D3072, Sigma). 3-5 days after induction, flow analysis was performed to quantify 1375 
the percent of cells expressing the effector in each experimental group using the GFP reporter. 1376 
The GFP+ percentage of cells with targeting guide groups for each effector was normalized to 1377 
that of the corresponding non-targeting guide group for evaluation of cell viability upon target 1378 
RNA knockdown. Three biological replicates were performed. 1379 
 1380 
To measure cell viability in stem cell derived NPCs, HPCs, or neurons, we transfected stem 1381 
cells with the inducible all-in-one PiggyBac plasmids containing inducible DjCas13d and 1382 
selection with 1 μg/ml puromycin for 7 days to ensure plasmid integration. Differentiation 1383 
procedures were then initiated and cells were induced for DjCas13d expression using 1384 
Doxycycline (D3072, Sigma) at the middle time point of differentiation. 5-7 days after induction, 1385 
flow analysis was performed to quantify the percent of cells expressing the effector in each 1386 
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experimental group using the GFP reporter. The GFP+ percentage of cells with targeting guide 1387 
groups for each effector was normalized to that of the corresponding non-targeting guide group 1388 
for evaluation of cell viability upon target RNA knockdown. Three biological replicates were 1389 
performed. 1390 
 1391 
RNA-seq library preparation and sequencing 1392 
For HEK293FT cells, total RNA was extracted with the RNeasy Plus 96 Kit (Cat #74192, 1393 
QIAGEN) 48h after transfection. For H1 cells, cell numbers were counted and normalized 1394 
between different samples (different effectors, guides and replicates) 72h after transfection, and 1395 
total RNA was extracted with the RNeasy Plus 96 Kit (Cat #74192, QIAGEN). Stranded mRNA 1396 
libraries were prepared using the NEBNext II Ultra Directional RNA Library Prep Kit (NEB, Cat# 1397 
E7760L) and NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, Cat #E7490). The 1398 
libraries were sequenced on a partial NovaSeq lane with 150 nt paired end reads. ~20M reads 1399 
were demultiplexed per sample. 1400 
  1401 
RNA-seq analysis and pathway analysis of CasRx off targets 1402 
Sequencing reads were aligned to the hg38 Ensembl transcriptome using Kallisto (Bray et al., 1403 
2016). Mapping was carried out using default parameters except for a b value (number of 1404 
bootstraps) of 100. Differential transcript expression was performed with Sleuth (Pimentel et al., 1405 
2017) using triplicates to compare between targeting and non-targeting conditions. Significantly 1406 
differentially expressed transcripts were defined as having an adjusted p value < 0.1 and a beta 1407 
value > 0.5. Volcano plots were generated in R using the package EnhancedVolcano (Blighe et 1408 
al., 2019). Pathway analysis of CasRx off targets was performed using Enrichr (E. Y. Chen et 1409 
al., 2013; Kuleshov et al., 2016; Xie et al., 2021) with the Molecular Signatures Database 1410 
(MSigDB).  1411 
 1412 
RNA-seq Spike-In for total RNA quantification  1413 
To quantify total RNA amount accurately and determine if uniform transcriptome depletion has 1414 
occurred following CasRx- or DjCas13-mediated transcriptome targeting, an equal amount of 1415 
ERCC RNA Spike-In Mix (ThermoFisher, Cat #4456740) was added to the total RNA extracted 1416 
from cell number-normalized H1 samples using the recommended dilution ratio before library 1417 
preparation. After library preparation and NGS sequencing, the ratio of experimental reads to 1418 
spike-in reads was calculated for all samples, and then normalized to the ratio of control 1419 
samples (non-targeting guides) to get the total RNA amount relative to NT.   1420 
 1421 
RNA integrity analysis 1422 
To examine RNA integrity, electrophoresis was performed on the extracted RNA and the 1423 
electrophoresis graphs were visualized on high sensitivity RNA chips using either Bioanalyzer 1424 
(Agilent 2100 Bioanalyzer, G2939BA) (for experiments in HEK293FT) or TapeStation (Agilent 1425 
4200 TapeStation system, G2991AA) (for experiments in H1).  1426 
 1427 
 1428 
Stem cell differentiation to NPC, HPC, neurons and RNA targeting experiments 1429 
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For RNA targeting experiments in NPC and HPC, human embryonic stem cells (hESCs, H1 line, 1430 
WiCell) were first transfected with inducible piggyBac-based all-in-one DjCas13d plasmids 1431 
containing a puromycin resistance gene as mentioned above. For RNA targeting experiments in 1432 
neurons, H1s were first transfected with inducible piggyBac-based all-in-one DjCas13d plasmids 1433 
containing neomycin resistant gene by replacing the puromycin resistance gene in the 1434 
piggyBac-based all-in-one DjCas13d plasmid with a neomycin resistance gene. After selection 1435 
for plasmid integration with 1 μg/ml puromycin (NPC and HPC) or 100 μg/ml G418 Sulfate 1436 
(neurons) for 7 days, differentiation procedures were performed as outlined below.  1437 
 1438 
For differentiation to NPC, stem cells were passaged with Accutase (Innovative Cell 1439 
Technologies) and plated at 30,000 cells per well into Matrigel-coated 96-well plates with N2B27 1440 
media (DMEM/F12 (Thermo Fisher) + N2 (100x, Thermo Fisher) + B27 without vitamin A (50x, 1441 
Thermo Fisher)) containing ROCK inhibitor Y-27632 (10 uM, Abcam) and bFGF (40 ng/mL, 1442 
Corning). The following day (day 0), media was replaced with N2B27 media containing AZD-1443 
4547 (50 nM, Abcam, Cat# ab216311), LDN-193189 (250 nM, Sigma, Cat# SML0559), A83-01 1444 
(250 nM, Sigma, Cat# SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897) to achieve dual 1445 
SMAD and Wnt inhibition. Media was changed daily. On day 3, AZD-4547 was removed. On 1446 
day 4, cells were passaged with Accutase (Innovative Cell Technologies) at 1:3 and plated 1447 
again onto Matrigel-coated 96-well plates in N2B27 media containing ROCK inhibitor Y-27632 1448 
(10 uM, AbAcam), LDN-193189 (250 nM, Sigma, Cat# SML0559), A83-01 (250 nM, Sigma, 1449 
Cat# SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897). Media was replaced the next 1450 
day with N2B27 containing LDN-193189 (250 nM, Sigma, Cat# SML0559), A83-01 (250 nM, 1451 
Sigma, Cat# SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897). Media was changed 1452 
daily and cells were induced for DjCas13d expression using Doxycycline (D3072, Sigma) on 1453 
day 5. On day 8, all drugs were removed and the media was changed with N2B27 only 1454 
(DMEM/F12 + N2 (100x) + B27 without vitamin A (50x)). On day 10, the cells were assayed for 1455 
target knockdown and NPC marker expression (Pax6 and Sox1) using flow cytometry.  1456 
 1457 
For differentiation to HPC, stem cells were passaged with ReLeSR (StemCell Technologies) 1458 
and plated at ~40 colonies per well into Matrigel-coated 12-well plates with mTesR media 1459 
(StemCell Technologies) containing ROCK inhibitor Y-27632 (10 uM, Abcam). The following day 1460 
(day 0), media was replaced with 2 mL Hematopoietic Media A (STEMdiff Hematopoietic Basal 1461 
Media (StemCell Technologies) with STEMdiff Hematopoietic Supplement A (200x, StemCell 1462 
Technologies)). On day 2, a half-media change with Hematopoietic Media A was performed. On 1463 
day 3, the media was fully replaced with 2 mL Hematopoietic Media B (STEMdiff Hematopoietic 1464 
Basal Media (StemCell Technologies) + STEMdiff Hematopoietic Supplement B (200x, 1465 
StemCell Technologies). On day 5, there was a half-media change with Hematopoietic Media B, 1466 
and cells were induced for DjCas13d expression using Doxycycline (D3072, Sigma). On day 7 1467 
and day 10, 1 mL fresh Hematopoietic B media was added but no media was removed. On day 1468 
12, the cells were assayed for target knockdown and HPC marker expression (CD43) using flow 1469 
cytometry.  1470 
 1471 
For differentiation to neurons, hESCs (H1) were passaged with Accutase (Innovative Cell 1472 
Technologies) and plated at 12,000 cells per well into Cultrex (R&D Systems 343400502)-1473 
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coated 96-well plates with mTeSR media (StemCell Technologies) containing ROCK inhibitor Y-1474 
27632 (10 uM, Abcam). The following day cells were infected with lentivirus containing a 1475 
doxycycline-inducible Ngn2 cassette in mTeSR media (StemCell Technologies) containing 1476 
polybrene (10 mg/mL, Santa Cruz Biotechnology sc-134220). Following infection, media was 1477 
changed daily to mTeSR media (StemCell Technologies). When cells reached 70% confluency, 1478 
they were passaged with Accutase (Innovative Cell Technologies) and re-plated at 12,000 cells 1479 
per well into Cultrex-coated 96-well plates with mTeSR media (StemCell Technologies) 1480 
containing ROCK inhibitor Y-27632 (10 uM, Abcam). The day of passage was designated as 1481 
day 0 of the differentiation protocol. The following day (day 1), media was replaced with mTeSR 1482 
media (StemCell Technologies). On day 2, cells were induced for Ngn2 and DjCas13d 1483 
expression using 2 ug/mL Doxycycline (2 ug/mL, Sigma D3072). On day 3, media was replaced 1484 
with neural induction media (NIM, DMEM/F12 (Gibco 11330032) +  Penicillin-Streptomycin 1485 
(Gibco 15140122) + Doxycycline (2 ug/mL, Sigma D3072) + Laminin (1.2 ug/mL, Sigma L4544) 1486 
+ Insulin (5 ug/mL, Roche 11376497001) + BSA (10 mg/mL, Sigma A4161) + Apo-transferrin 1487 
(10 mg/mL, Sigma T1147) + Putrescine (1.6 mg/mL, Sigma P57800) + Progesterone (0.00625 1488 
mg/mL, Sigma P8783) + Sodium selenite (0.00104 mg/mL, S5261) + BDNF (10 ug/mL, Sigma 1489 
B3795) + Puromycin (10 ug/mL, Life Technologies A1113803)). Media was changed daily. After 1490 
3 days of puromycin selection, cells were passaged with Accumax (Innovative Cell 1491 
Technologies) and plated at 87,500 cells per well with neural maturation media (Neurobasal 1492 
differentiation media (Neurobasal Media (Gibco 21103049) + DMEM Media (Gibco 10569010) + 1493 
HEPES (0.5x, Gibco 15630130) + Penicillin-Streptomycin (Gibco 15140122) + Glutamax (1 mM, 1494 
Gibco 35050061)) + Doxycycline (2 ug/mL, Sigma D3072) + Laminin (2.4 ug/mL, Sigma L4544) 1495 
+ BDNF (10 ug/mL, Sigma B3795) + dbCAMP (49.14 ug/mL, Sigma Aldrich D0627) + B27 with 1496 
vitamin A (1x, Gibco 17504044) + N-acetyl cysteine (5 ug/mL, Sigma A9165) containing ROCK 1497 
inhibitor Y-27632 (10 uM, Abcam). Media was changed daily. On day 8, media was replaced 1498 
with neural maturation media containing AraC (2.4 ug/mL, Sigma Aldrich C1768) to remove any 1499 
post-mitotic neurons from the culture. On day 11, the cells were assayed for target knockdown 1500 
using flow cytometry.  1501 
 1502 
 1503 
 1504 
  1505 
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