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Abstract14

Predicting reinforcement from the presence of environmental clues is an essential component15

of guiding goal-directed behavior. In insect brains, the mushroom body is central to learning16

the necessary associations between sensory signals and reinforcement. We propose a biologically17

realistic spiking network model of the Drosophila larva olfactory pathway for the association of18

odors and reinforcement to bias behavior towards approach or avoidance. We demonstrate that19

prediction error coding through the integration of currently present and expected reinforcement20

in dopaminergic neurons can serve as a driving force in learning that can, combined with a21

synaptic homeostasis mechanism, account for experimentally observed features of acquisition22

and loss of associations in the larva that depend on the intensity of odor and reinforcement and23

temporal features of their pairing. To allow direct comparisons of our simulations with behav-24

ioral data [1], we model learning-induced plasticity over the complete time course of behavioral25

experiments and simulate the locomotion of individual larvae towards or away from odor sources26

in a virtual environment.27
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Introduction28

Goal-directed behavior in dynamic situations benefits from the ability to predict future conditions29

in the environment from the occurrence of sensory clues. In insects, the mushroom body (MB) is30

the central brain structure for multi-sensory integration, involved in memory formation and recall31

[2, 3]. It is at the core of learning and retaining valuable associations between sensory inputs and32

reinforcement in the synapses between the MB intrinsic and its output neurons [4–7].33

One of the underlying mechanisms is associative learning, a process that gradually establishes a34

relationship between two previously unrelated elements. In classical conditioning, the conditioned35

sensory stimulus (CS) obtains behavioral relevance through its concurrence with the reinforcing36

unconditioned stimulus (US), an acquisition process depending dynamically on their spatiotemporal37

proximity. The temporal evolution of this process has been formalized in the Rescorla-Wagner (RW)38

model (eqn. 1) [8].39

∆V = α · (λUS − V (t)),

V (t+∆t) = V (t) + ∆V.
(1)

Here, a CS obtains predictive power of concurrent or successive US [8], that depends on the40

strength of the already acquired association between the CS and US V (t), allowing for anticipatory41

behavior to the expected US [9, 10]. The acquisition of this association terminates when the US is42

fully predicted. Until then, the change in associative strength ∆V is proportional to the difference43

between the maximum associative strength (or asymptote) λUS and the current associative strength44

V (t) (eqn. 1). The maximum associative strength is a property of the US, determined mainly by45

the intensity of the reinforcement. While the current associative strength V (t) is defined by the46

shared learning history of CS and US [8]. The concept of prediction error (PE) [11] is a derivative47

of the Rescorla-Wagner model [8]. The error signal equals the difference between the current λUS48

and the predicted value of US V (t). Over the course of the memory acquisition/training phase, the49

pace of learning, which can be formalized as the slope of the acquisition curve, decreases as the PE50

is reduced, minimizing the driving force for changes of the association [8, 11]. This difference is51

multiplied with a learning rate parameter (α), here combined for the CS and the US (eqn. 1).52

This continuous optimization of predictions, guided by the PE, could allow animals to efficiently53

adapt their goal-directed behavior in dynamic environments. Among the most relevant associations54

to be learned are those that enable the prediction of reward or punishment. Dopaminergic neurons55

(DANs) have long been known to encode information about reward and punishment. These types of56

neurons respond to the presence of rewards and punishments in the environment, both in vertebrates57

[12–17], as well as invertebrates [18–21]. The electrical stimulation or optogenetic activation of DANs58

induces approach or avoidance both in vertebrates [22–25] and invertebrates [20, 26–32]. In adult59

[5, 6, 33, 34] and larval [20, 35, 36] Drosophila this approach or avoidance learning is facilitated by60
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the modulation of MB output synapses by DAN activity. Ultimately DANs do not only signal the61

presence of rewards or punishments but have also been suggested to encode PE in various vertebrate62

species [16, 37–40] and might have a similar function in insects [19, 20, 32, 34, 41–44].63

We utilize our spiking model of the Drosophila larva MB in one brain hemisphere that forms64

associations of odors with reinforcement to further test the hypothesis that PE coding within this65

circuit takes place in DANs that receive input from the output neurons of the MB or their down-66

stream partners [20, 45–47], that might provide feedback to the DANs. Beyond the scope of similar67

models [20, 48–51](see Discussion, section: Comparison with other MB models), we demonstrate68

that this mechanism can reproduce the experimentally observed findings on the acquisition of asso-69

ciations of odors with reinforcement in a time-resolved manner [1]. To facilitate direct qualitative70

and quantitative comparisons with animal behavioral data, we couple this model with a realistic71

locomotory model of the larva [52] that captures the effects of learned associations on chemotactic72

behavior in individual animals.73

Results74

Connectome-based circuit model of the larval olfactory pathway75

The network architecture of our model (fig. 1A) is based on the anatomy of the olfactory pathway76

in one Drosophila larva brain hemisphere [20, 29, 53, 54] (for more details see Methods, section:77

Network model). Peripheral processing is carried out by 21 olfactory receptor neurons (ORNs), each78

expressing a different olfactory receptor type [53, 55, 56]. ORNs form one-to-one excitatory synaptic79

connections with 21 projection neurons (PNs) and 21 local interneurons (LNs) in the antennal lobe80

[53]. Each LN connects with all PNs via inhibitory GABAergic synapses, establishing a motif for81

lateral inhibition within the antennal lobe. The 72 mature larval Kenyon cells (KCs) [54] are the82

excitatory principal cells of the MB. Each KC receives excitatory input from 2-6 randomly selected83

PNs [54]. The KCs are subjected to feedback inhibition, provided via the GABAergic anterior paired84

lateral (APL) neuron, which receives input from all KCs [29]. Only mature KCs, characterized by85

a fully developed dendrite, are included in this model, yielding a complete convergent synaptic KC86

>APL connectivity. The output region of the MB is organized in compartments, in which the87

KC axons converge with the dendrites of one or few MB output neurons (MBONs) [20, 54]. Our88

model assumes two MBONs from two different compartments that are representative of two different89

categories of output neurons of the MB that mediate either approach or avoidance [4–6, 33, 35, 36,90

57–59] with a single MBON each. Both MBONs receive excitatory input from all of the KCs to91

fully capture the information that is normally represented by the complete set of MBONs. Each92

compartment is also innervated by a single DAN, signaling either reward or punishment and targeting93

the KC>MBON synapses to facilitate learning (for a discussion of all simplifications compared to94

the animal brain, see Methods, section: Network model).95
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Learning through KC>MBON plasticity96

We assume that the KC>MBON synapses undergo plasticity, based on strong experimental evidence97

in larval [20, 35, 36] and adult flies [5, 6, 34]. This plasticity requires the convergence of the sensory98

pathways in the form of KC activation and of the reinforcing pathway, mediated by neuromodu-99

latory DAN signaling at the synaptic site. We employ a two-factor learning rule (eqn. 2) at each100

KC>MBON synapse (fig. 1A,B). The first factor is expressed in the pre-synaptic KC activation by101

an odor, tagging the synapse eligible for modification. This is modeled via an exponentially decay-102

ing eligibility trace ei(t), which is set to a 1 whenever the respective KC elicits a spike (fig. 1B).103

The decay time constant determines the window of opportunity for synaptic change. The pres-104

ence of reinforcement (reward or punishment) constitutes the second factor and is signaled by the105

reward-mediating DAN+ or punishment-mediating DAN-, respectively. Spiking of the DAN provides106

a neuromodulatory reinforcement signal R(t) to the synaptic site. If a DAN spike coincides with107

positive eligibility at the synapse, the respective synaptic weight is reduced. At each synapse i, the108

reduction of synaptic weight ∆wi depends on the learning rate a (table S1) and is proportional to109

the amplitude of the eligibility trace ei(t) (fig. 1B):110

∆wi = −a · ei(t) ·R(t) ≤ 0. (2)

We introduce a synaptic homeostasis mechanism (eqn. 3) that modulates the effects of plasticity111

at each KC>MBON synapse to account for the experimentally observed loss of a learned associ-112

ation when reinforcement is omitted [41, 60, 61] and to ensure continued input to both MBONs.113

With each MBON spike, the current weight wi of each respective KC>MBON synapse is increased,114

proportionally to the extent to which the weight differs from its original value winit (table S1) and115

multiplied with a homeostatic regulation factor h (table S1). This mechanism serves as an imple-116

mentation for the loss of the association when the reinforcement is omitted. While reinforcement117

is present, the learning curve will either continue to rise or remain at the asymptote if already118

saturated. The interaction of the two mechanisms of learning and unlearning at the level of the119

individual KC>MBON synapses allows to include the loss of learned associations, when continued120

reinforcement is omitted (see Discussion, section: A mechanistic implementation of the RW model)121

and also ensures continued input to the MBONs, despite the reduction of input weights over the122

course of the learning process (eqn. 2). The homeostatic factor h hereby serves as an implementation123

of a time constant of this exponential process. The interaction of synaptic plasticity and homeostatic124

regulation defines the magnitude of the weight at the next simulation timestep t+∆t as125

wi(t+∆t) = wi(t) + ∆wi + (winit − wi(t)) · h. (3)

It has been shown in behavioral experiments that specific MBONs encode a behavioral tendency126

to either approach or avoid a currently perceived stimulus, depending on the acquired stimulus127

valence [4–6, 36, 57, 58]. In the naive state of our model, all KC>MBON synapses have the same128
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initial weights winit (table S1), and hence the spiking activity of both MBONs is highly similar.129

Learning alters the KC>MBON synaptic weights and thus skews the previously balanced MBON130

output. This acquired imbalance between MBON outputs biases behavior towards the approach or131

avoidance of the conditioned odor. To quantify the effect of learning, we compute the behavioral132

bias BB (eqn. 4) from the firing rates of both MBONs over T = 1s as follows:133

BB =
MBON+ −MBON−

T
. (4)

Implementation of prediction error coding in the KC-MBON-DAN motif134

In the larva, many DANs and other modulatory neurons receive excitatory or inhibitory input135

from different MBONs, either in a direct manner or via one or two interneurons [20]. Based on136

this observation, we constructed our hypothetical feedback motif (for similar models see discus-137

sion section: Comparison with other MB models). In the model, DANs are activated by external138

reward/punishment signals and also receive excitatory and indirect inhibitory feedback from both139

MBONs (fig. 1A). As the initial balance between the two MBON outputs shifts over the course of140

the training process, the amount of excitatory and inhibitory feedback that DANs receive continues141

to diverge, allowing the DANs to access the model’s learning history. Ultimately DAN activation142

signals the difference between the current external activation and the expected activation based143

on prior learning, implemented as the difference between excitatory and inhibitory MBON>DAN144

feedback. Including this feedback leads to learning curves that saturate when the reward is fully145

predicted, and the prediction error approaches zero (fig. 2A,D). This effect disappears, when the146

feedback circuit is disabled (fig. 2A). In this case the behavioral bias quickly reaches the maximum147

value of the measure when the MBON- elicits no more spikes and can not encode further learning.148

Increasing reward intensity, learning rate or odor intensity (see Methods, section: Experimental149

protocols) foster a faster acquisition of the association and increases the maximum strength of the150

association at the same time (fig. 2A).151

Increasing the reward intensity after a 2.5min (black curve), or 5min (gray curve) of appetitive152

training, results in a steeper slope of the learning curve and also increases the maximum during153

training trials of 2.5min duration with increased reward intensity (fig. 2B). Higher intensity of the154

reward results in an average DAN spike rate of 39.14Hz(std = 1.27(standard deviation)) compared155

to 33.11Hz(std = 1.34).156

Additionally, we tested for loss of the acquired association as the reduction in behavioral memory157

expression, over the course of prolonged exposure to the CS without the US, following initial memory158

acquisition [8, 62]. We test this in our model experiments by presenting the odor, previously paired159

with reward, for an extended period of time, in the absence of reinforcement. During the test160

phase and without the presence of reward to trigger synaptic KC>MBON- weight reduction, the161

extinction mechanism is no longer outweighed by learning and drives each individual weight back162

towards winit (fig. 2C, upper panel). We also demonstrate the interaction of the learning rule with163
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this mechanism in figure S1, where the learning rate remains constant but the magnitude of the164

homeostatic regulation was manipulated to show that both mechanisms need to be in balance.165

Learned preference and behavior generalize to similar odors166

We trained our model by pairing a reward with a single odor for 4min. After the training procedure,167

we tested the behavioral bias either for the same or a different odor, following the experimental168

approach used in the larva [63]. Mimicking the experimental data, we show that the odor preference169

is highest if training odor and testing odor are identical in the case of training with 3-octanol. When170

amylacetate is used during training, 3-octanol preference is increased (fig. 3A). Since 3-octanol171

activates a subset of the ORNs activated by amylacetate (fig. 1D), some of which with higher rates172

than in the case of amylacetate, we also tested for generalization using a set of ORN activation173

patterns with a controlled degree of overlap (see Methods, section: Sensory input, fig. 1D) and174

show that with decreasing similarity, the generalization effect to a new odor is diminished (fig. 3A).175

Figure 3B shows the network response to 30sec stimulations with amylacetate and 3-octanol in a176

single exemplary model instance. On the level of the ORNs, 3-octanol merely activated a subset177

of the amylacetate-activated neurons. The uniqueness of the odor identities is enhanced in the KC178

population [64].179

The model reproduces temporal features in trace conditioning experiments180

Including an odor-evoked eligibility trace at the KC>MBON synapses allows the model to maintain181

the sensory odor representation for a time window, during which reinforcement will trigger synaptic182

change (fig. 1B). The time window between odor and reward onset (0, 10, 20, 30, 40, 50, 60, 120s)183

was varied for trace conditioning experiments with a 30s presentation of odor and reward that was184

repeated three times. A small inter-stimulus-interval (ISI) of 10 to 30s leads to an increase in185

behavioral bias compared to the complete overlap of odor and reinforcement (fig. 3C), using the186

extended window of opportunity for synaptic change triggered by each KC spike. Long ISIs do not187

lead to learning as the eligibility trace declines back to zero during this time (fig. 3C). These findings188

match observations from experiments in larvae [29, 65, 66] with the caveat that the trace in the real189

larva brain seems to extend for a slightly longer period of time, compared with our experiments.190

The model reproduces paired and unpaired associative conditioning ex-191

periments192

To test if learning, driven by prediction error, can account for learned larval behavior, we replicated193

single-trial conditioning experiments performed with larvae [1] in simulation. In these experiments,194

animals were trained with the odor amylacetate in a single trial of varying duration (1 − 8 min).195

To this end, larvae were placed on a Petri dish coated with an agar-sugar substrate and the odor in196
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two small containers for diffusion in the air (paired training). Either before or following this train-197

ing protocol, larvae underwent a single trial without sugar and odor. Afterward, the animals were198

transferred to a new dish with two odor containers placed on different sides (one of them contained199

amylacetate, and the other one was empty). This paired training was compared with an unpaired200

protocol with separate (randomized order) presentations of amylacetate and sugar. Following the201

paired training protocol (odor and reward are presented concurrently), the animals showed a ten-202

dency to approach the previously rewarded odor, as measured by the difference in the number of203

animals on each side at the end of a 3min test phase, divided by the total number of animals. Fol-204

lowing the experimental literature, we will refer to this measure as the preference index ([1] eqn. 15).205

The animals’ preference is relatively consistent across training trials of different duration. Prolonged206

paired training did not lead to an increase in preference (fig. 5A). These experiments did not in-207

clude a test for odor preference before training, but untrained larval odor preference of odors used in208

learning experiments has been demonstrated elsewhere [67–69]. This paired training was compared209

with an unpaired protocol with separate (randomized order) presentations of amylacetate and sugar.210

Here the extent to which animals preferred amylacetate over no odor varied with the duration of211

the training trial. The longer the duration of the training, the more the preference index decreased212

from an initially high value but saturated around 2.5min (fig. 5A).213

We aimed to replicate these behavioral experiments on two levels. Firstly, we focused on the214

direct model output that reflects the strength of the acquired association between amylacetate215

and reward (behavioral bias, eqn. 4) and later also simulated behavior based on these biases. We216

simulated both the paired and unpaired training protocol (fig. 4B). While the unpaired training217

yielded almost no behavioral bias, the models that underwent the paired training show an increased218

behavioral bias, that depended on the duration of the training and saturated for longer training219

duration (fig. 4B). The simulation results reported in figure 4B were obtained using odor-naive220

models that exhibited no odor preference, prior to training. To account for the experimental finding221

that real larvae often do have an odor preference even without any training [67–69], we readjusted222

our experiments to include a pre-training period of 10 minutes to start the conditioning experiments223

with the amylacetate-reward association already established. This adaptation of the protocol leads to224

results (fig. 4C) that match the results obtained in real behavioral experiments (fig. 5A). The paired225

condition in figure 4C shows that once the behavioral bias is saturated (fig. 2A), continued pairing226

maintains the association, without further increasing it. Unpaired training on the other hand, causes227

the behavioral bias to decrease and saturate at a lower level. For a discussion of different potential228

causes of a reinforcement expectation prior to training, please refer to the discussion (Comparison of229

modeling results to experimental findings). Figure 2A demonstrates that disabling MBON>DAN230

feedback leads to a learning curve that does not saturate but instead increases with a steep slope231

until it reaches the maximum value for the behavioral bias eqn. 4) with a MBON- rate of 0. To verify232

if this PE feedback mechanism is responsible for the difference between maintenance and loss of the233

association in figure 4C, we repeated the same experiment with disabled MBON>DAN feedback.234
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The behavioral bias overall is much higher, compared to the intact network (fig. 4B). The maximum235

is reached before the test phase of even the shortest 1min training experiment, with no MBON-236

spikes elicited.237

Secondly, since the effect of training in lab experiments is quantified behaviorally via spatially238

defined, group-level metrics (preference index and performance index (eqn. 15,eqn. 16), [1]), we239

performed behavioral simulations of the testing phase with groups of virtual larvae for both the240

paired and unpaired condition [1], allowing a straightforward comparison with the animal experi-241

ments (fig. 5A). To this end, we utilized a realistic model for the simulation of larval locomotion242

and chemotactic behavior [52] that uses the behavioral bias at the output of the MB model as243

a constant gain factor to modulate the locomotory behavior of individual larvae towards or away244

from a spatially placed odor source in a virtual arena (see Methods, section: Realistic modeling of245

larval locomotion). The resulting preference indices, acquired across groups of independently sim-246

ulated larvae (fig. 5C), can directly be compared to the experimentally obtained preference indices247

(fig. 5A). We also compare performance indices from our simulated experiments (fig. 5D) with those248

from the lab experiments (fig. 5B) and find that the model can replicate these when accounting for249

the odor preference at the beginning of the experiment.250

Discussion251

Seeking rewards and avoiding punishments by predicting change in the environment is a major252

motivator of animal behavior. Sensory clues can acquire the necessary predictive power to guide253

behavior through classical conditioning, an associative learning process potentially driven by re-254

ward/punishment PE [8, 11], as observed in vertebrates [16, 37–40]. To test the biological plausi-255

bility of the proposed PE coding motif in the larval MB and test its capacity to explain behavioral256

data we implemented a spiking network model of the olfactory pathway, coupled with a simulation257

of locomotory behavior [52]. We demonstrate that our model of PE coding results in saturating258

group-level and individual learning curves, where the slope and maximum of the learning curve are259

determined by the intensity of both the reward and the odor signal. Learning is also influenced by260

the timing of odor and reinforcement and can be extinguished if reinforcement is omitted during the261

presentation of the sensory clue. After verifying that this circuit motif enables learning as predicted262

by the PE theory, we show that it can also explain time-resolved larval behavior in conditioning263

experiments.264

A mechanistic implementation of the RW model265

A number of predictions can be derived from the phenomenological RW model [8] and tested in our266

mechanistic model thereof. We found that regardless of odor/reward intensity or the model’s learn-267

ing rate, the strength of the odor-reward association (quantified as the behavioral bias) saturates268

over time (fig. 2A), as the strength of the already acquired association V (t) approaches the maxi-269
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mum value supported by the given reinforcement input (λUS) (eqn. 1). Consequently, our model’s270

acquisition curve saturates at a higher value when the intensity of the reinforcement is increased271

(fig. 2A,B), as predicted by the RW model, in which a stronger US should result in a higher value272

of λUS [8]. In our model, a higher reinforcement intensity relates to a higher input rate into the273

respective DAN (see Methods, section: Sensory input) which translates into more frequent DAN274

spikes within a given window of 1 second, used to compute the behavioral bias (eqn. 4). This defines275

the asymptote of the learning curve. According to the RW model, increasing either the intensity of276

the odor or the learning rate α [8] should lead to faster acquisition of the association. In our model,277

the learning rate directly influences the increment of each respective synaptic weight ∆wi, while an278

increase of the odor intensity allows for a more frequent execution of the weight update routine, by279

influencing the eligibility trace (eqn. 2).280

The RW model predicts that the omission of reward should result in the loss of the learned281

association (eqn. 1, [8]). From the equation itself, we can not infer if this loss is due to extinction282

or forgetting. Extinction, characterized by the possibility of recovery of the association, after its283

temporary loss [70], has been demonstrated in adult [71, 72] but not larval Drosophila. To retain284

the association for recovery, extinction relies on the formation of parallel memory traces for the285

acquisition and the loss of the association [41, 60]. The mechanism implemented in our model is286

overwriting the association, since the homeostatic mechanism drives the synaptic weights toward287

their initial value, thereby deleting the learned association with no chance of recovery, but only in288

the presence of olfactory input, eliciting MBON spikes. The resulting behavior during the extinction289

phase of the experiments presents itself in a similar way, while the underlying mechanism is different.290

Comparison of modeling results to experimental findings291

A variety of experiments have demonstrated group-level acquisition curves that saturate over mul-292

tiple training trials or with increasing duration of a single trial in olfactory conditioning [1, 51,293

73–75]. To replicate larval behavior in reward learning experiments [1] with varying duration of the294

learning phase (fig. 5A,B) we trained our model with an odor and reward in a paired vs. unpaired295

fashion (fig. 4B). Real larvae show a strong odor preference even after a very short training and296

no significant increase in their preference when trained in a paired manner for longer periods of297

time [1, 67]. Instead, the animals trained in an unpaired protocol start out with a similarly high298

odor preference, which then decreases over time [1, 67]. This behavior is very counter-intuitive since299

the coincidence of odor and reward should yield an association of those two stimuli and thus an300

increased behaviorally expressed preference for the CS [8]. To resolve this contradiction, we include301

the observation that animals might not be naive to the training odor prior to the beginning of the302

experiments in the model. In that case, the animals would enter into the experiment with an already303

established reward prediction that would be violated during unpaired training. Three scenarios lend304

themselves as plausible causes of this effect: Firstly, accidental conditioning over the course of their305

lifespan during which they are raised on a food substrate while being exposed to air that carries306
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many different odorants. Alternatively, or in fact, additionally, the animals might exhibit an innate307

preference for many odors [76–78]. Finally, the presence of the reward during reward-only phases308

might lead to an association of the experimental context with that reward (previously discussed309

by Saumweber et al. [67]). The resulting reward expectation (solely based on the always present310

context), unmet during the odor-only phases could lead to a prediction error signal. All three candi-311

date explanations would yield a similar projection for the unpaired experimental protocol: A reward312

expectation acquired prior to the actual experiment would cause a violation of that expectation313

during odor-only trials of the unpaired experiments. In all three cases, the animal’s preferences314

might also generalize to a broader array of odors, leading to an overall preference for some odors, as315

observed experimentally. To test this hypothesis we pre-trained our model before simulating condi-316

tioning experiments (fig. 4C) and observed that this allows us to reproduce the animal experiments317

(fig. 5A,B). Including odor preference at the beginning of the experiment ensures the model not only318

behaves in accordance with the RW model [8], but also fits the animal experimental results [1]. A319

possible alternative explanation could be a sensory habituation process to the odor that might cause320

odor preferences to decrease over time, resulting in the observed patterns for unpaired learning. In321

the paired condition this effect might be abolished by the continued presentation of odor and reward322

together [79].323

Thus far we have tested our model in experiments where the CS and US presentation were fully324

overlapping (paired conditions). We now consider different onset times, with the onset of the CS325

always preceding the onset of the US (fig. 3,C). For these experiments we used a shorter duration of326

30s for both CS and US presentation, repeated over three acquisition trials to mimic experimental327

conditions in larval experiments [29, 66] that used optogenetic activation of DANs as a proxy for328

sugar reward. Similar to their experiments we show that the behavioral bias clearly depends on the329

temporal delay between CS and US (fig. 3,C). Complete temporal overlap of CS and US (ISI=0)330

does not seem to expend the full potential of learning the association, instead partial overlap yields331

stronger associations due to the extended window of opportunity for synaptic change triggered by332

the odor’s eligibility trace. In our model, the eligibility trace e(t) represents a molecular process that333

maintains the odor signal locally in the KC>MBON synapses (eqn. 2). Zeng et al. [80] demonstrate334

that feedback from the serotonergic dorsal paired medial neuron onto the KCs directly influences335

the length of the KC eligibility trace, making it a candidate mechanism for associative learning with336

a delayed US. Appetitive and aversive trace conditioning experiments have been conducted with337

larvae [29, 65, 66] and adult flies and other insects [74, 81–83]. In all of these experiments where338

the CS is presented before the US demonstrate that longer inter-stimulus intervals abolish learning339

of the CS-US association when no KC odor representation persists during the reinforcement period.340

In the cases of shorter intervals, the experimental data is not entirely conclusive. Either the odor341

preference was higher for partial or no overlap, compared with complete overlap [29, 83] or highest342

for complete overlap [51, 66, 74].343

We also looked at the extent of reinforcement generalization to novel odors. Experiments have344
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shown that associations between an odor and reinforcement generalize, to a varying extent, to other345

odors, as shown in experiments [63, 84]. Previous modeling experiments have also shown that346

reinforcement generalization depends on odor similarity in adult insects [48, 85–87]. In our larval347

model, we also demonstrate both generalization to other odors, as well as a loss in strength, compared348

to the training odor (fig. 3A). We also show that the extent of the generalization depends on the349

similarity of the training and test odor, as measured by the overlap of the input patterns (fig. 1D).350

The larval pathway with its relatively small coding space [53, 55] might be especially prone to such351

poor discriminative abilities.352

0.1 Model predictions for behavioral experiments353

Our approach targets two hypotheses: Firstly, symmetrical inhibitory and excitatory feedback from354

MBONs to DANs should yield a circuit capable of saturating learning curves as predicted by the355

RW model [8], due to PE [11] driving the learning process, which has also been suggested by356

previous models [20, 48–51]. Secondly, saturating learning curves, driven by PE should translate357

into (simulated) animal behavior, when comparing different training duration and intensities of358

reinforcement. We were able to test these hypotheses in model experiments, on the level of MB359

readout (behavioral bias, eqn. 4, fig. 2, 4)) and through the comparison of animal and simulated360

behavior of artificial larvae (fig. 5). While the simulation results fit nicely with the real larval behavior361

in an experiment with a varied training duration ([1], fig. 5), ultimately, the role of MBON>DAN362

feedback needs to be tested in behavioral animal experiments, directly manipulating this feedback.363

Some specific predictions that could be tested in such experiments are:364

• Learning curves of individual animals should saturate over time when KC>MBON feedback365

is intact.366

• When the MBON>DAN feedback is removed after some training, the learning curve should367

increase with a steeper slope and might not saturate.368

• Increasing or decreasing the intensity of the odor or the reinforcement should lead to saturation369

on a higher or lower level, respectively.370

• The removal of the KC>MBON feedback should weaken or abolish the saturation of the371

learning curve over time.372

Based on our modeling results, we support the idea that the error computation between the373

prediction and reality of reinforcement is done in the DANs and relies on MBON>DAN feedback.374

Our hypotheses for experiments are based on this assumption. Nevertheless, some saturation, that375

is not based on PE, might still occur, even if MBON input to DANs is removed. The entire MB376

circuitry consists of many more elements than our model implementation and would presumably377

have additional mechanisms to ensure homeostatic balance and continued MBON input, potentially378

leading to some weaker form of saturation in the learning pro.379
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Comparison with other MB models380

Models of the learning in the MB, based on plasticity at the MB output synapses, without PE coding,381

have been around for some time, both for Drosophila [85, 87–89] and other insects [86, 90]. In all382

of these models, plasticity is mediated by the activity of modulatory neurons (e.g., dopaminergic),383

coinciding with either KC [86, 87] or coordinated KC and MBON activity [85, 88, 89]. These models384

can perform associative learning of a stimulus, paired with reinforcement [85–89], as well as more385

complicated forms of learning such as second order conditioning [89] and matching to sample [88] or386

reinforcement generalization tasks, the extent of which depends on the stimulus similarity [85, 86].387

Additionally, some models were successfully tested in patterning tasks [85, 86], where combinations388

of stimuli are reinforced, while their individual components are not or vice versa. Models in which389

synaptic plasticity is driven not solely by the activity of modulatory neurons, but by a prediction390

error signal lend themselves to studying the evolution of learning over time (either over several391

trials, or in a continuous manner), and its dependency on the learning history. We hypothesize that392

such mechanisms for PE coding in the MB involve the modulatory DANs [19, 20, 32, 34, 41–44]393

and are based on MBON feedback to the DANs, serving as a manifestation of previous learning.394

Recently a number of modeling approaches have targeted the idea of PE coding in DANs in the adult395

Drosophila [48–51] as well as in the larval MB [20]. In these models, some form of MBON>DAN396

feedback is implemented, allowing these models to fulfill some of the predictions of the PE theory [8,397

11]. One of the most fundamental predictions is the saturation of the learning curve across time, as398

the prediction error decreases, demonstrated in a trial-based manner in some of those models [48–51]399

as well as the loss of an acquired association [20, 48–50]. Some of the previously published models400

include mechanisms for either permanent loss of the association in memory or extinction (parallel401

associations in memory). Within the MB circuitry, the formation of a parallel extinction memory402

involves an additional DAN of opposite valence [20, 48–50], whereas complete loss is implemented403

as a process of changing the KC>MBON weights in the opposite direction of the learning process404

[51, 89], as done in our model. Additionally, some of these models capture temporal dynamics405

of learning experiments to some extent by utilizing eligibility traces in the KC>MBON synapses406

[20, 50, 51], to our understanding, none have tested these predictions in continuous experiments407

with spiking dynamics. Therefore, beyond the scope of these contributions, we implemented PE408

coding mechanistically in a fully spiking network equipped with synaptic eligibility that we train409

and test in continuous experiments to allow for the assessment of dynamic change in the model’s410

odor preference. In combination with a time-continuous behavioral simulation [52] during memory411

retention tests, this allowed for straightforward comparison with larval experiments.412

Prediction error coding is not the only mechanism discussed in the literature to explain such413

phenomena in learning. Gkanias et al. tested a PE-based learning rule against a different dopamine-414

based learning rule that dos not require the presence of the CS as a reference point for expected415

reinforcement [87] in a more complex circuit model consisting of a number of interconnected micro-416

circuits. They show that both methods can produce a saturating learning curve across trials. Their417
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alternative learning rule, embedded in a multi-compartment structure of the MB can also explain418

extinction, blocking, and second order conditioning, by relying on interactions between different419

MBONs and DANs that encode different memory processes.420

Outlook421

Some experimentally observed effects in insect learning can not be captured by the RW model [8]422

and are thus not targeted by our model implementation. Among them are CS and US pre-exposure423

effects [91–94] that might be explained by changes either in attention to the CS or habituation to424

the CS or the US, caused by prolonged exposure prior to training, rather than changes in associative425

strength (for a review see [95]). Also interesting, but not directly predicted by the RW model [8]426

is the experimental observation of second order conditioning in adult Drosophila [96–99], where a427

second CS2 is paired with the CS, after this CS has acquired an association with the US. Through the428

CS2-CS pairing without the US, the CS2 acquires predictive power of the US. Different mechanisms429

have been proposed to be involved in causing this effect [98, 100]. Among them is an excitatory430

synaptic KC>DAN connection, strengthened during first order conditioning, that would allow the431

KC odor representation to activate the DAN as a substitute for reinforcement during the CS2-CS432

pairing. Exploring this phenomenon using network models could yield valuable insights into the433

Drosophila circuit, as well as aid in our general understanding of PE coding. Insect experiments434

have provided mixed evidence for other phenomena that can be predicted from the RW model, such435

as blocking [101–104] and hints at conditioned inhibition [105–107] that would be interesting to436

investigate. Furthermore, expanding the model to include different MB output compartments would437

offer a perspective to explore parallel associations regarding the same stimulus [41]. This could438

enable temporary loss of the learned association, while simultaneously retaining parallel memory439

for recovery (extinction vs. forgetting). Ultimately more possible directions arise from the major440

benefit of using a spiking model, which offers the potential to conduct experiments at high temporal441

resolution, instead of in a trial-based manner [20, 48–50]. In a future closed-loop approach that442

connects our continual learning MB model with the locomotory model in the full temporal resolution,443

we intend to simulate a behaving agent to investigate the temporal dynamics of adaptive behavior444

in analogy to the tracking experiments of real larva [73, 108–111].445

Methods446

Network model447

All neurons are modeled as leaky integrate-and-fire neurons with conductance-based synapses. They448

elicit a spike, whenever the threshold VT is crossed(parameters provided in table S1). Each neuronal449

membrane potential vi is reset to the resting potential Vr whenever a spike occurs, followed by an450

absolute refractory period of 2ms, during which the neuron does not integrate any inputs. Any451
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neuron from a given population (vO,vP,vL,vK,vA,vM,vD) is governed by the respective equation452

for ORNs, PNs, LNs, KCs, APL, MBONs and DANs (eqs. (5) to (11), fig. 1A). Depending on453

the neuron type, in addition to a leak conductance gL, the equations consist of excitatory ge and454

inhibitory synaptic input gi. In the case of the DANs, one excitatory gM∓D
e (EE−vDi ) and inhibitory455

gM±D
i (EI − vDi ) input represent the two types of MBON feedback for the reward and punishment456

encoding DAN, respectively. An additional spike-triggered adaptation conductance was implemented457

for ORNs, KCs, MBONs, and DANs (eqn. 12, [64]), in accordance with our current knowledge of the458

adaptive nature of ORNs in the larva [112] and the adult fly [113, 114]. Adaptation in KCs has so459

far only been demonstrated in other insects [115, 116]. In the model of these neurons, the adaptation460

conductance gIa is increased with every spike and decays over time with τIa. The mechanism of461

synaptic plasticity is described in the results section (Learning through KC>MBON plasticity).462

Cm
d

dt
vOi = gOL (EO

L − vOi ) + gInputOe (EE − vOi )− gIa(EIa − vOi ) (5)

Cm
d

dt
vLi = gLL(E

L
L − vLi ) + gOL

e (EE − vLi ) (6)

Cm
d

dt
vPi = gPL (E

P
L − vPi ) + gOP

e (EE − vPi )− gLP
i (EI − vPi ) (7)

Cm
d

dt
vKi = gKL (EK

L − vKi )− gAPLK
i (EI − vKi ) + gPK

e (EE − vKi )− gIa(EIa − vKi ) (8)

Cm
d

dt
vAi = gAL (E

A
L − vAi ) + gKAPL

e (EE − vAi ) (9)

Cm
d

dt
vMi = gML (EM

L − vMi ) + gKM
e (EE − vMi ) (10)

Cm
d

dt
vDi = gDL (ED

L − vDi )− g
M±D
i (EI − vDi ) + gM∓D

e (EE − vDi ) + gInputDe (EE − vDi ) (11)

d

dt
gIa = −gIa

τIa
. (12)

All code for the model implementation is accessible via463

https://github.com/nawrotlab/PEcodingDosophilaMB464

We based our circuit model on the larval connectome both in terms of connectivity as well as465

numbers of neurons in each population [20, 53, 54] and introduced simplifications to support the466

mechanic investigation of the MBON>DAN feedback circuit and its role in PE coding and excluded467

a number of connections that have been demonstrated in the larva. Due to limited availability of468
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anatomical, functional, and behavioral data most of our circuit implementation is based on the first469

instar larva [20, 53, 54], while the information on the APL connectivity within the circuit originates470

from studies on the third instar larva [29]. Behavioral experiments used for comparison with our471

simulation results were also performed with third instar larvae [1, 29, 66]. We demonstrate that our472

model based on the less developed circuit in the first instar larva is sufficient to reproduce animal473

behavior as observed in the older animals. From the anatomy of the first instar larva we excluded474

DAN>KC [54] and DAN>MBON synapses [54] that may play an additional role in learning-induced475

plasticity at KC>MBON synapses [54], the details of which are not fully known. Instead, we induce476

plasticity purely via the simulation of a neuromodulatory effect of the DANs onto the KC>MBON477

synapses ([54]). We also neglect recurrent interactions among KC themselves [54]. Many of these478

interactions affect KC that encode different sensory modalities, which are not included in our purely479

olfactory model. Furthermore, we simplified the connectivity between LNs and PNs [53] and between480

PNs and KCs to 2− 6 PN inputs per KC, which excludes the set of KCs in the larva that receives481

exclusive input from only one PN [54]. This modification supported model robustness with respect482

to odor encoding within the small set of 72 KCs. Finally, from the population of ≈ 25 larval MBONs483

we only modeled two and correspondingly adapted KC>MBON synapses to provide both MBONs484

with input from all KCs.485

Sparse odor representation486

We implemented four mechanisms supporting population- and temporal sparseness in the MB odor487

representation [64]. Population sparseness is defined as the activation of only a small subset of488

neurons by any given input [117]. In this circuit population sparseness is enhanced through lateral489

inhibition (via LNs), inhibitory APL feedback, and the divergent connectivity from PNs to a larger490

number of KCs [64]. Temporal sparseness indicates that an individual neuron responds with only a491

few spikes to a specific stimulus configuration [118–120], which supports encoding dynamic changes492

in the sensory environment [121, 122]. In our model temporal sparseness is facilitated by spike493

frequency adaptation, an adaptive process to prolonged stimulus exposure, in ORNs and KCs and494

by inhibitory feedback via the APL[64].495

Sensory input496

In the olfactory pathway of larval Drosophila any odor activates up to ≈ 1/3 of ORNs, depending on497

its concentration [112, 123]. We implemented receptor input with stochastic point processes to ORNs498

via synapses to mimic the noise in a transduction process at the receptors. Each of the 21 receptor499

inputs is modeled according to a gamma process (shape parameter k= 3). The spontaneous firing500

rate of larval ORNs has been measured in the range of 0.2− 7.9Hz, depending strongly on odor and501

receptor type [123, 124]. ORNs in our model exhibit an average spontaneous firing rate of 8.92Hz502

(std=0.2). We constructed realistic olfactory input across the ORN population for amylacetate and503
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3-octanol by estimating ORN spike frequency from the calcium signals measured in the receptor504

neurons [112] (dilution of 10-4 [112]), ensuring the spike rates would not exceed the rates reported505

by [123]. They showed that using an even stronger odor concentration (dilution 10-2) ORN never506

exceeded a frequency of 200Hz. Due to the lower concentration used for amylacetate and 3-octanol507

(fig. 1D) [112] in our experiments and because Kreher et al, 2005 measured only the first 0.5s508

after odor onset when the effects of spike frequency in ORNs are the weakest (leading to higher509

spike rates) we decided to use a maximum of 150Hz in odor activated ORNs. After generating the510

gamma process realizations we clipped multiple spikes occurring in each time step of the simulation511

discarding all but the first spike in each time step. Similar to the odor input, the presence of either512

reward or punishment in the experimental context was implemented as input to the DAN+/DAN-.513

Regular gamma spike trains (k = 10) were generated and clipped for the odor input.514

To assess the effects of odor similarity on generalization we in addition created four artificial515

odors (A,B,C,D) (fig. 1D) and quantified the pair-wise distances in ORN coding space using the516

cosine distance (eqn. 13), where vectors a and b each represent the input spike rate of two odors.517

Dcos = 1−
∑n

i=1 ai · bi√∑n
i=1 a

2
i ·

√∑n
i=1 b

2
i

. (13)

The cosine distance between odors A and B equals 0.21, 0.77 between odors A and C, and 0.99518

between odors A and D. The comparison of amylacetate and 3-octanol yields a distance of 0.16.519

Experimental protocols520

The experiments reported here belong to one of three categories. The first was performed to provide521

insight into the model and the effects of specific circuit functions on synaptic plasticity, and prediction522

error coding. To this end, we used amylacetate as the primary odor input. We varied the intensity523

of the reward via the frequency of gamma spike train, provided as input into the DAN+ (either524

500Hz or 550Hz, resulting in an average output spike rate of 33.11/39.14Hz), and the learning rate525

α(0.6nS or 0.8nS). Additionally, MBON>DAN feedback was either enabled or disabled (fig. 1A).526

Experiments belonging to the second category were designed to replicate larva lab experiments527

to allow for a direct comparison with our model results. With these comparisons, we aim to validate528

the model and show to what extent our assumptions about the circuit functions allow us to recreate529

experimental data (fig. 5). Replicating lab experiments also provide more insights into the circuit530

mechanisms and offers alternative interpretations of the phenomena observed in data from animal531

experiments. Our implementations of the lab experiments were set up following the general procedure532

described in the Maggot Learning Manual [125]. Regardless of the specific protocol used in different533

experiments, larvae are placed into Petri dishes in groups of 30 animals. They are allowed to move534

around freely on the substrate that contains reinforcing substances, such as sugar or bitter tastants.535

During the entire time, they are subjected to specific odorants, emitted from two small containers536

in the dish to create permanent and uniformly distributed odor exposure within the dish. In the537
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analogy of the experimental setting, in our simulated experiments, each model instance is trained538

individually through the concurrent presentation of olfactory stimulation and reward. One-minute539

intervals with only baseline ORN stimulation were included between training trials to simulate the540

time needed in the lab experiments for transferring larvae between Petri dishes. Unless otherwise541

specified and test phases refer to 3min, during which only odors are presented. All simulations were542

implemented in the network simulator Brian2 [126].543

Realistic modeling of larval locomotion544

Behavior during the testing phase of the olfactory learning experiment is simulated via the freely545

available python-based simulation platform Larvaworld (https://github.com/nawrotlab/larvaworld,546

[52]). A group of 30 virtual larvae is placed with random initial orientation around the center of547

a 100 mm diameter Petri dish and left to freely behave for 3 minutes. The previously conditioned548

odor is placed at one side of the dish, 10 mm from the arena’s boundary. Each larva features a549

bi-segmental body, supervised by a layered control architecture [52]. The basic layer of the control550

architecture is a locomotory model, capable of realistic autonomous exploration behavior. It consists551

of two coupled oscillators, one of which represents the crawling apparatus that generates forward552

velocity oscillations, resembling consecutive peristaltic strides [52]. The other oscillator generates553

alternating left and right lateral bending, manifested as oscillations of angular velocity [127]. The554

crawling and the bending oscillators are coupled via phase-locked suppression of lateral bending to555

capture the bend dependency on the stride-cycle phase during crawling (weathervaning). Finally,556

intermittent crawling is achieved by a superimposed intermittency module that generates alternating557

epochs of crawling and stationary pauses, with more headcasts for orientation during the latter [52].558

Modulation of behavior due to sensory stimulation is introduced at the second, reactive layer of559

the control architecture. An odor signal can transiently alter both, the amplitude and frequency560

of the lateral bending oscillator, which biases free exploration towards approach or avoidance along561

an olfactory chemical gradient. This modulation of behavior is directly influenced via top-down562

signaling from the third, adaptive layer of the control architecture. In our approach, the spiking563

MB model populates the adaptive layer and its learning-dependent output, defined as the behavioral564

bias BB (i.e. the difference in MBON firing rates, eqn. 4), provides the top-down signal [36]. We565

formalize the gain of behavioral modulation as566

G = g ·BB. (14)

which is directly proportional to the behavioral bias and the additional proportionality factor567

g = 0.5.568

A set of 10∗30 trained MB model instances is used to generate 10 groups of 30 simulated larvae.569

The preference index and the performance index [1] for these simulations are illustrated in figure 5.570

Preference indices (Pref) are computed individually for the paired and the unpaired experiments571
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[1], based on the number of animals on each side (odor vs. empty) of the Petri dish at the end of572

the test phase.573

Pref =
countodor − countno odor

countodor + countno odor
. (15)

The Performance indices (PI) are computed from the preference indices of the paired and unpaired574

experiments [1].575

PI =
Prefpaired − Prefunpaired

2
. (16)
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[1] Aliće Weiglein, Florian Gerstner, Nino Mancini, Michael Schleyer, and Bertram Gerber. “One-585

trial learning in larval Drosophila”. In: Learning & Memory 26.4 (2019), pp. 109–120. doi:586

/10.1101/lm.049106.118.587

[2] Martin Heisenberg. “Pattern recognition in insects”. In: Current Opinion in Neurobiology 5.4588

(1995), pp. 475–481. issn: 09594388. doi: 10.1016/0959-4388(95)80008-5.589

[3] Randolf Menzel. “The honeybee as a model for understanding the basis of cognition”. In:590

Nature Reviews Neuroscience 13.11 (2012), pp. 758–768. doi: 10.1038/nrn3357.591

[4] Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A Iyer, Teri-TB592

Ngo, Heather Dionne, LF Abbott, Richard Axel, Hiromu Tanimoto, et al. “The neuronal593

architecture of the mushroom body provides a logic for associative learning”. In: elife 3594

(2014), e04577. doi: 10.7554/eLife.04577.595

[5] Toshihide Hige, Yoshinori Aso, Mehrab N Modi, Gerald M Rubin, and Glenn C Turner.596

“Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila”. In: Neuron597

88.5 (2015), pp. 985–998. doi: /10.1016/j.neuron.2015.11.003.598

[6] David Owald and Scott Waddell. “Olfactory learning skews mushroom body output pathways599

to steer behavioral choice in Drosophila”. In: Current opinion in neurobiology 35 (2015),600

pp. 178–184. doi: /10.1016/j.conb.2015.10.002.601

[7] Martin F Strube-Bloss, Martin P Nawrot, and Randolf Menzel. “Mushroom body output602

neurons encode odor–reward associations”. In: Journal of Neuroscience 31.8 (2011), pp. 3129–603

3140. doi: 10.1523/JNEUROSCI.2583-10.2011.604

[8] Robert A Rescorla and Allan R Wagner. “A theory of Pavlovian conditioning : Variations605

in the effectiveness of reinforcement and non- reinforcement”. In: Classical Conditioning 2:606

Current Theory and Research. Ed. by William F. Black, Abraham H.; Prokasy. January 1972.607

New York, NY: Appelton-century-Crofts, 1972. Chap. 3, pp. 64–99.608

[9] Peter D Balsam and Randy C Gallistel. “Temporal maps and informativeness in associative609

learning”. In: Trends in neurosciences 32.2 (2009), pp. 73–78. doi: 10.1016/j.tins.2008.10.004.610

[10] Peter S Kaplan. “Importance of relative temporal parameters in trace autoshaping: From611

excitation to inhibition.” In: Journal of Experimental psychology: Animal behavior processes612

10.2 (1984), p. 113.613

[11] Leon Kamin. “Predictability, surprise, attention and conditioning”. In: Punsihment and aver-614

sive behavior. Ed. by Byron A. Campbell. New York: Appleton-Century-Crofts, 1969, 279–298.615

[12] Wolfram Schultz. “Responses of midbrain dopamine neurons to behavioral trigger stimuli in616

the monkey”. In: Journal of neurophysiology 56.5 (1986), pp. 1439–1461. doi: 10.1152/jn.617

1986.56.5.1439.618

[13] Genela Morris, David Arkadir, Alon Nevet, Eilon Vaadia, and Hagai Bergman. “Coincident619

but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons”. In:620

Neuron 43.1 (2004), pp. 133–143. issn: 0896-6273. doi: 10.1016/J.NEURON.2004.06.012.621

[14] Yoriko Takikawa, Reiko Kawagoe, and Okihide Hikosaka. “A possible role of midbrain dopamine622

neurons in short- and long-term adaptation of saccades to position-reward mapping”. In:623

Journal of Neurophysiology 92.4 (2004), pp. 2520–2529. doi: 10.1152/jn.00238.2004.624

20

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2022.12.21.521372doi: bioRxiv preprint 

https://doi.org//10.1101/lm.049106.118
https://doi.org/10.1016/0959-4388(95)80008-5
https://doi.org/10.1038/nrn3357
https://doi.org/10.7554/eLife.04577
https://doi.org//10.1016/j.neuron.2015.11.003
https://doi.org//10.1016/j.conb.2015.10.002
https://doi.org/10.1523/JNEUROSCI.2583-10.2011
https://doi.org/10.1016/j.tins.2008.10.004
https://doi.org/10.1152/jn.1986.56.5.1439
https://doi.org/10.1152/jn.1986.56.5.1439
https://doi.org/10.1152/jn.1986.56.5.1439
https://doi.org/10.1016/J.NEURON.2004.06.012
https://doi.org/10.1152/jn.00238.2004
https://doi.org/10.1101/2022.12.21.521372
http://creativecommons.org/licenses/by-nd/4.0/


[15] Takemasa Satoh, Sadamu Nakai, Tatsuo Sato, and Minoru Kimura. “Correlated Coding of625

Motivation and Outcome of Decision by Dopamine Neurons”. In: Journal of Neuroscience626

23.30 (2003), pp. 9913–9923. issn: 0270-6474. doi: 10.1523/JNEUROSCI.23-30-09913.2003.627

[16] Jeremiah Y Cohen, Sebastian Haesler, Linh Vong, Bradford B Lowell, and Naoshige Uchida.628

“Neuron-type-specific signals for reward and punishment in the ventral tegmental area”. In:629

Nature 482.7383 (2012), pp. 85–88. doi: 10.1038/nature10754.630

[17] Ariel Y Deutch, See-Ying Tam, and Robert H Roth. “Footshock and conditioned stress in-631

crease 3, 4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not sub-632

stantia nigra”. In: Brain research 333.1 (1985), pp. 143–146. doi: 10.1016/0006-8993(85)633

90134-9.634

[18] Scott Waddell. “Reinforcement signalling in Drosophila; dopamine does it all after all”. In:635

Current opinion in neurobiology 23.3 (2013), pp. 324–329. doi: 10.1016/j.conb.2013.01.005.636
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[51] Chang Zhao, Yves F Widmer, Sören Diegelmann, Mihai A Petrovici, Simon G Sprecher, and757

Walter Senn. “Predictive olfactory learning in Drosophila”. In: Scientific reports 11.1 (2021),758

pp. 1–17. doi: 10.1038/s41598-021-85841-y.759

[52] Panagiotis Sakagiannis, Anna-Maria Jürgensen, and Martin P Nawrot. “A realistic locomo-760

tory model of Drosophila larva for behavioral simulations”. In: bioRxiv (2021). doi: 10.1101/761

2021.07.07.451470.762

[53] Matthew E Berck, Avinash Khandelwal, Lindsey Claus, Luis Hernandez-Nunez, Guangwei763

Si, Christopher J Tabone, Feng Li, James W Truman, Rick D Fetter, Matthieu Louis, et al.764

“The wiring diagram of a glomerular olfactory system”. In: Elife 5 (2016). doi: /10.7554/765

eLife.14859.766

[54] Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey767

M Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber,768

Richard D Fetter, James W Truman, Carey E Priebe, L F Abbott, Andreas S Thum, Marta769

Zlatic, and Albert Cardona. “The complete connectome of a learning and memory centre in770

an insect brain”. In: Nature 548.7666 (2017), pp. 175–182. issn: 1476-4687. doi: 10.1038/771

nature23455.772

[55] Africa Couto, Mattias Alenius, and Barry J Dickson. “Molecular, anatomical, and functional773

organization of the Drosophila olfactory system”. In: Current Biology 15.17 (2005), pp. 1535–774

1547. doi: /10.1016/j.cub.2005.07.034.775

[56] Leslie B Vosshall and Reinhard F Stocker. “Molecular architecture of smell and taste in776

Drosophila”. In: Annual review of neuroscience 30 (2007), pp. 505–533. doi: 10.1146/annurev.777

neuro.30.051606.094306.778

[57] Yoshinori Aso, Divya Sitaraman, Toshiharu Ichinose, Karla R Kaun, Katrin Vogt, Ghis-779
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Figure 1: Network mechanisms. (A) Network model of the Drosophila larva olfactory pathway
including all neurons and connections implemented. One-to-one feed-forward connections between 21
olfactory receptor neurons (ORN) and 21 projection neurons (PN)/local interneurons (LN) and from
2-6 PN to each of the 72 Kenyon cells (KC). Lateral inhibition from each LN innervates all PNs and
recurrent feedback inhibition from the anterior paired lateral (APL) neuron is provided onto all KCs.
The MB output region is organized in two distinct compartments. The upper compartment holds
the approach encoding MBON+ and is innervated by the punishment mediating DAN-, the lower
compartment holds the avoidance mediating MBON- and is innervated by the reward mediating
DAN+. Each DAN can exert a neuromodulatory effect on the plastic KC>MBON synapses within
its compartment. MBONs provide excitatory and inhibitory (via gray interneurons) feedback to
the DANs. (B) Sketch of synaptic weight change at a single KC>MBON synapse with respect to
the synaptic eligibility trace elicited by KC spikes and the occurrence of reward-triggered spikes in
DAN+. Amylacetate is paired with a reward for 2s (gray shaded area). (C) To generate simulated
larval behavior in the petri dish during the test phase of the learning experiments, we utilized our
locomotory model [52], based on the behavioral bias (eqn. 4) acquired by the MB model during the
training phase. The behavioral bias is used directly as input to the locomotory model. (D) All odors
(see Methods, section: Sensory input) were used in the experiments. Naturalistic odor patterns
for amylacetate and 3-octanol as well as four artificial patterns (odorA,odorB,odorC,odorD) with
varying distances (see Methods, section: Sensory input) from odorA. Each odor activates a different
set of input neurons with a different spike rate, as indicated by the color bar.
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Figure 2: Learning with prediction errors. (A) N = 30 model instances were trained with the
odor amylacetate (CS) and reward (US, blue background). MBON>DAN feedback, the reward/odor
intensity, and the learning rate were manipulated in separate experiments. The odor preference
(behavioral bias, eqn. 4) was measured continuously in windows of 1 sec and averaged over all
model instances. (B) N = 30 model instances were trained during three trials with amylacetate
and reward (blue background). Reward intensity was either constant across the three training trials
(white curve), or enhanced during the third (gray) or the second and third trials (black). The training
was followed by a 3 min test phase with odor only (gray background). (C)N = 30 model instances
were trained with amylacetate and reward (blue background) and then underwent an extended test
phase (gray background). (D) Individual acquisition curves for N = 30 model instances (standard
experiment fig. 2A).
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Figure 3: Reward generalization and trace conditioning. (A) The behavioral bias generalizes
to odors that differ from the training odor after a 4min training (3min test phase). We conducted
simulation experiments with different combinations of training and testing odor, each for 10 groups
(gray circles represent the mean of a single group) of N = 30 larvae, and red lines indicate the
mean between groups. The behavioral bias is highest when the training and the testing odor are
the same. (B) Spiking activity in the network during the presentation of amylacetate (left) and
3-octanol (right) in a single naive model instance. (C) Simulated trace conditioning experiments
with odor (amylacetate) and reward. Inter-stimulus interval (ISI) indicates the time between odor
and reward onset. The black line displays the mean, gray lines the std over N = 10 groups of 30
model instances each. Conditions circled in red correspond to the conditions also used in animal
experiments [29, 66]

.
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Figure 4: Paired and unpaired learning in the MB model. (A) Schematic overview of the
paired vs. unpaired training protocol. (B) The model’s behavioral bias for training with amylacetate
and reward for N = 10 paired (dark gray, mean in red) and N = 10 unpaired (light gray, mean
in blue) experiments with groups of 30 modeled larvae each. In the unpaired condition, half of the
groups were trained with the odor preceding the reward, for the other half, the reward preceded
the odor. (C) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired
experiments with randomized order of odor and reward. Prior to the conditioning experiment the
model instances underwent a 10min pre-training period, during which odor and reward were paired.
(D) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments
with randomized order of odor and reward. The MBON>DAN feedback was disabled. Prior to the
conditioning experiment the model instances underwent a 10min pre-training.
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Figure 5: Replicating behavioral experiments with paired and unpaired training. (A)
Experimental preference indices for amylacetate for 20 groups of 30 real animals each for paired and
unpaired experiments with randomized order of odor and reward [1]. (B) Experimental performance
indices for amylacetate computed between preference in paired and unpaired real animal experiments
[1]. (C) The simulated behavior is based on the protocol in A. Simulated preference indices for
amylacetate for N = 10 paired and N = 10 unpaired experiments with varied order of odor and
reward. (D) Simulated performance indices for amylacetate computed between preference in paired
and unpaired simulation experiments.
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Figure S1: The effect of the homeostatic mechanism on the learning curve. (A) N = 30
model instances were trained with the odor amylacetate (CS) and reward (US, blue background).
The odor preference (behavioral bias) was measured continuously in windows of 1 sec and averaged
over all model instances. The learning rate was the same in all three experiments, while the mag-
nitude of the homeostatic regulation h (eqn. 3,table S1) was either at its default value, at 0, or at
half or twice the magnitude of the default value.
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Neuron Parameters

Capacitance ORN CO
m 100pF

Capacitance PN CP
m 30pF

Capacitance LN CL
m 50pF

Capacitance KC CK
m 30pF

Capacitance APL CA
m 200pF

Capacitance MBON CM
m 100pF

Capacitance DAN CD
m 100pF

Leak Conductance ORN gOL 5nS

Leak Conductance PN gPL 2.5nS

Leak Conductance LN gLL 2.5nS

Leak Conductance KC gKL 5nS

Leak Conductance APL gAL 5nS

Leak Conductance MBON gML 5nS

Leak Conductance DAN gDL 5nS

Leak Potential ORN EO
L -60mV

Leak Potential PN EP
L -59mV

Leak Potential LN EL
L -59mV

Leak Potential KC EK
L -55mV

Leak Potential APL EA
L -60mV

Leak Potential MBON EM
L -60mV

Leak Potential DAN ED
L -60mV

Threshold Potential ORN V O
T -35mV

Threshold Potential PN V P
T -30mV

Threshold Potential LN V L
T -30mV

Threshold Potential KC V K
T -35mV

Threshold Potential APL V A
T -30mV

Threshold Potential MBON V M
T -30mV

Threshold Potential DAN V D
T -30mV

Resting Potential ORN V O
r -60mV

Resting Potential PN V P
r -59mV

Resting Potential LN V L
r -59mV

Resting Potential KC V K
r -55mV

Resting Potential APL V A
r -60mV

Resting Potential MBON V M
r -60mV

Resting Potential DAN V D
r -60mV

Refractory Time τref 2ms
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Synaptic Parameters

Excitatory Potential EE 0mV

Inhibitory Potential EI -75mV

Excitatory Time Constant τe 5ms

Inhibitory Time Constant τi 10ms

Plasticity Parameters

Eligibility Trace Time Constant τeligibility 5s

Learning Rate α 0.3nS

Synaptic Weights

Weight Input-ORN wORNinputORN 3nS

Weight ORN-PN wORNPN 10nS

Weight ORN-LN wORNLN 4nS

Weight LN-PN wLNPN 1nS

Weight PN-KC wPNKC 1nS

Weight KC-APL wKCAPL 20nS

Weight APL-KC wAPLKC 50nS

Weight KC-MBON wKCMBON 80nS

Weight Input-DAN wDANinputDAN 2.5nS

Excitatory Weight MBON-DAN wMBONDANex 4nS

Excitatory Weight MBON-local interneuron wMBONMBONLN 35nS

Inhibitory Weight local interneuron-DAN wMBONDANin 70nS

Normalization Factor KC-MBON normalizationfactor 0.0001

Adaptation Parameters

Adaptation Time Constant τIa 1000ms

Adaptation Reversal Potential EIa -90mV

Increase of Spike Frequency Adaptation Conductance ORN ORNSFA 0.1nS

Increase of Spike Frequency Adaptation Conductance KC KCSFA 0.02nS

Increase of Spike Frequency Adaptation Conductance MBON MBONSFA 0.1nS

Increase of Spike Frequency Adaptation Conductance DAN DANSFA 0.1nS

Simulation Parameters

Time Step dt 0.1ms
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Table S1: Network parameters.
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