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Abstract 

The factors driving initiation of pathological expansion of tandem repeats remain largely unknown. Here, 

we assessed the FGF14-SCA27B (GAA)•(TTC) repeat locus in 2,530 individuals by long-read and 

Sanger sequencing and identified a 5’-flanking 17-bp deletion-insertion in 70.34% of alleles (3,463/4,923). 

This common sequence variation was present nearly exclusively on alleles with fewer than 30 GAA-pure 

repeats and was associated with enhanced meiotic stability of the repeat locus. 

 

Keywords: FGF14; spinocerebellar ataxia 27B; ataxia; spinocerebellar ataxia; GAA repeat instability; 

trinucleotide repeats; meiotic instability; repeat expansion disorder  
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Main Text 

Dominantly inherited (GAA)•(TTC) repeat expansions in intron 1 of the fibroblast growth factor 14 

(FGF14) gene have recently been shown to cause spinocerebellar ataxia 27B (SCA27B; MIM: 620174)1,2. 

Initial observations suggest that expanded alleles are unstable during intergenerational transmission1, 

although the underlying mechanisms driving this instability remain unknown. Here, we provide large-scale 

evidence that a common sequence variation flanking the FGF14 repeat locus is present nearly 

exclusively on short GAA-pure alleles and is associated with enhanced meiotic stability of the repeat 

locus. 

 

We first analyzed the repeat length, motif content, and flanking sequences of the FGF14 repeat locus in a 

set of 541 alleles from 339 individuals of self-reported European ancestry (146 controls and 193 patients 

with late-onset ataxia, including 32 patients with SCA27B for whom results were independently validated 

by nanopore sequencing) using Sanger sequencing (see Online Methods). We defined the flanking 

sequences as the 25 nucleotides immediately adjacent to the FGF14 repeat locus (GRCh38, 

chr13:102,161,575-102,161,726) on both 5’ and 3’ ends. We found that only 2 of the 541 alleles (0.37%) 

perfectly matched the reference 5’-flanking sequence, while 186 additional alleles (34.38%) were within 3 

single nucleotide variations (substitution, insertion, or deletion) of the 25-bp reference 5’-flanking 

sequence. Though we will hereafter refer to both the 25-bp reference 5’-flanking sequence and its 

variants carrying no more than 3 single nucleotide variations as the reference 5’-flanking sequence (5’-

RFS), it is not the major allele at the FGF14 repeat locus. The majority of the 541 alleles (343, 63.40%) 

contained a 17-bp deletion-insertion (NC_000013.11: 

g.102161566_102161576delinsTAGTCATAGTACCCCAA) in the 5’-flanking sequence of the repeat 

locus. Only ten alleles (1.85%) had 5’-flanking sequences that did not contain the 17-bp deletion-insertion 

and differed by more than 3 single nucleotides from the 25-bp reference 5’-flanking sequence (Figure 1A 

and 1B). Remarkably, the 17-bp deletion-insertion common 5’-flanking variant (5’-CFV) was exclusively 

observed in alleles carrying fewer than 30 GAA-pure repeats whereas the 5’-RFS and other 5’-flanking 

sequences were only present in alleles with more than 30 repeats, of which only 31.81% (63/198) were 

GAA-pure (Figure 1C). Alleles shorter than 30 repeats were perfectly separated from longer alleles by the 

presence of the 5’-CFV, such that none of the expanded, pathogenic (GAA)≥250 alleles carried the 5’-CFV. 

 

We next sought to replicate these findings using whole-genome PacBio HiFi sequencing in 2,191 

individuals (4,382 alleles) spanning a wide range of genetic ancestries. See the Online Methods for a 

description of this cohort. We found that 874 alleles (19.95%) carried the 5’-RFS, of which only 6 alleles 

(0.14%) perfectly matched the 25-bp reference 5’-flanking sequence. The 17-bp deletion-insertion 5’-CFV 

was observed in 3,120 alleles (71.20%). As in the Sanger data, the 5’-CFV was consistently present in 
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alleles with smaller repeat lengths than the alleles containing the 5’-RFS. Specifically, 3,103 (99.46%) of 

the 3,120 alleles containing the 5’-CFV had fewer than 30 GAA repeats and 3,120 (100.00%) of them 

were GAA-pure, while 871 (99.66%) of the 874 alleles containing the 5’-RFS had more than 30 triplets 

and 652 (74.60%) of them were GAA-pure (Figure 1D). These data show that the 5’-CFV is strongly 

associated with alleles carrying fewer than 30 GAA repeats compared to the 5’-RFS (odds ratio, 44,158; 

95% confidence interval, 13,981 to 139,474; Chi-square test, p=0). Finally, the 5’-flanking sequence in the 

remaining 388 alleles (8.85%) not carrying the 5’-CFV nor the 5'-RFS displayed a range of variations that 

form another 6 groups (see Supplementary Results).  

 

In a further analysis, we observed no relationship between variants in the 3’-flanking sequence of the 

FGF14 repeat locus and the GAA repeat length, suggesting that only variants in the 5’-flanking region 

impact the FGF14 repeat locus stability (Supplementary Results and Supplementary Figure 2). Since 

Friedreich ataxia is the only other known disease caused by intronic (GAA)•(TTC) repeat expansions, 

which are thought to arise from long normal alleles containing 12 or more triplets, but not from shorter 

alleles3, we analyzed the flanking sequence surrounding the FXN repeat locus in 1,027 individuals (2,054 

alleles) for evidence of variants that distinguish distributions of repeat lengths. While we observed a 

variety of 5’- and 3’-flanking variants ranging from 1 to 11 nucleotide changes from the reference 

sequence, no clear segregation of allele sizes by flanking variants was observed (Supplementary Figure 

3A-B).  

 

We next studied the intergenerational transmission of the FGF14 repeat locus in a total of 470 meiosis 

events by Sanger sequencing (67 events) and PacBio sequencing (403 events) (Figure 2A,B, 

Supplementary Results, and Supplementary Figures 4A,B and 5A-F). In this analysis, all alleles with 

fewer than 30 repeats carried the 17-bp deletion-insertion 5’-CFV, while larger alleles carried the 5’-RFS. 

We observed that 283 of 297 alleles (95.29%) with the 5’-CFV were stably passed from parent to 

offspring (Figure 2A,B). All of these 297 alleles were GAA-pure. Of the 14 non-stably transmitted alleles 

with the 5’-CFV, 12 differed in size by a single triplet in the offspring compared to the parent and 2 

differed in size by two triplets. We did not observe a single meiotic event involving deletion of part or all of 

the 5’-CFV upon transmission. On the other hand, we found that alleles lacking the 5’-CFV exhibited an 

increasing degree of instability upon intergenerational transmission proportional to their length (Figure 

2A,B). Alleles with 30 to 75 triplets and containing the 5’-RFS were stably transmitted in 50 of 99 alleles 

(50.51%). In this size range, 40.30% (27/67) of GAA-pure repeats were stably transmitted compared to 

71.88% (23/32) of non-GAA-pure alleles. Larger alleles with 75 to 250 triplets and containing the 5’-RFS 

were stably transmitted in only 2 of 35 alleles (5.71%), both of which were non-GAA-pure. Finally, none of 

the 39 alleles larger than 250 repeats with the 5’-RFS were passed stably (Figure 2A,B). The greatest 
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degree of instability was observed in GAA-pure alleles, with expansions observed in the female germline 

and contractions in the male germline, similar to what has previous been observed in Friedreich ataxia4. 

Together, these data show that the 17-bp deletion-insertion 5’-CFV is associated with greater meiotic 

stability than the 5’-RFS (odds ratio, 47.04; 95% confidence interval, 25.24 to 85.15; Chi-square test, 

p=2.44x10-51), which may account for the smaller repeat sizes associated with this flanking sequence. 

Our data also extend and confirm previous findings showing that GAA repeat length and purity are major 

factors contributing to meiotic instability5.  

 

In summary, the current reference 5’-flanking sequence is in fact a minor allele at the FGF14 repeat locus 

and appears to confer a risk of developing SCA27B as it is associated with enhanced meiotic instability of 

the repeat locus. Conversely, the 5’-CFV appears to stabilize the repeat locus and represents the major 

allele despite being absent from the GRCh38.p14 and T2T-CHM13v2.0 assemblies. Our data showing 

near-perfect separation of short (<30 GAA repeats) from long (>30 GAA repeats) alleles by the presence 

of the 5’-CFV suggest that deletion of this variant is likely to lead to further expansion, rather than its 

deletion resulting from expansion of the repeat locus. The 5’-CFV may be aiding meiotic stability via a 

hitherto unknown molecular mechanism, potentially linked to the formation of a DNA secondary structure 

that is less prone to expansion and contraction during DNA replication and transcription (see 

Supplementary Results and Supplementary Figure 6A-C). This variant may also represent a cis-element 

to which trans-acting proteins bind to regulate GAA repeat stability6. Irrespective of the mechanism, the 

5’-CFV may represent an evolutionary protective genomic element insulating the highly mutagenic 

FGF14-SCA27B locus. 

 

Here, we have presented evidence that a sequence variant upstream of the FGF14-SCA27B locus is 

associated with enhanced meiotic stability and thereby appears to offer a protective effect on lineages by 

reducing the likelihood of expansion. Further study of the FGF14 flanking variants and identification of 

additional similar variants across the genome will likely yield further insight into the mechanisms initiating 

tandem repeat expansion.  
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Figure Legends 

Figure 1: A common 5’-flanking sequence variant is associated with smaller FGF14 GAA repeat 

size.  

A) Diagram of the FGF14 gene with the location of the (GAA)n•(TTC)n repeat locus in the first intron. The 

reference 5’-flanking sequence (5’-RFS) and the 17-bp deletion-insertion common 5’-flanking variant (5’-

CFV) are shown. The portion of the 5’-RFS deleted in the 5’-CFV is shown in blue. The 5’-CFV consists of 

a 17-bp deletion-insertion (NC_000013.11: g.102161566_102161576delinsTAGTCATAGTACCCCAA), 

shown in orange. The 5’-flanking sequence is presented relative to the positive strand for clarity. B) Pie 

chart of allele frequency of the 5’-RFS, 5’-CFV, and other flanking variants in 541 alleles analyzed by 

Sanger sequencing. C) Swarmplot of GAA repeat size as estimated by Sanger sequencing for 541 alleles 

shows that the 5’-CFV is consistently associated with alleles containing fewer than 30 GAA repeats while 

the 5’-RFS is associated with larger alleles, including pathogenic ones. Each of the two alleles of patients 

with SCA27B are shown in either the 5’-RFS or 5’-CFV categories, even though only (GAA)≥250 alleles are 

pathogenic (all carrying the 5’-RFS). The color of the data points is a function of the GAA repeat motif 

purity, with dark green indicating pure and lighter green impure motif (a hue scale is shown on the top 

right corner of the graph). Motif purity of the repeat locus was assessed using the following ordinal scale: 

impure (non-GAA motif), low purity (<75% GAA motif), mostly pure (75-99% GAA motif), and pure (100% 

GAA motif). D) Swarmplot of GAA repeat size as estimated by PacBio HiFi sequencing for 3,995 alleles 

shows a similar pattern. Alleles possessing any other flanking sequences and two alleles of over 800 

repeat units carrying the 5’-RFS were excluded (see Supplementary Figure 1). The color of the data 

points is a function of the GAA repeat motif purity, with dark blue indicating pure and lighter blue impure 

motif (a hue scale is shown on the right y axis). 

 

Figure 2: The common 5’-flanking variant enhances meiotic stability of the FGF14 repeat locus.  

Strip plots of meiotic events grouped by parental allele size, 5’-flanking sequence group (5’-RFS or 5’-

CFV), and GAA repeat purity as estimated by A) Sanger sequencing for 67 meioses and B) PacBio 

sequencing for 403 meioses. The y-axis shows the change in repeat length from parent to child. 

Contractions are plotted below the dashed lines while expansions are plotted above them. Random noise 

was applied across the x-axis within each category to allow visualization of as many data points as 

possible. Red dots are alleles transmitted from mother to child, while blue dots represent alleles 

transmitted from father to child. 
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Online Methods 

Institutional review board approval 

The institutional review board of the Montreal Neurological Hospital, Montreal (MPE-CUSM-15-915), the 

Centre Hospitalier de l’Université de Montréal, Montreal (ND02.045), Clinical Trials Ontario (REB# 1577 

CTO), the Children’s Mercy Kansas City (Study #11120514), the Centre Hospitalier Régional Universitaire 

de Nancy, Nancy (2020PI220), the Center for Neurology, Tübingen (598/2011BO1), and the University of 

Western Australia, Perth (RA/4/20/1008) approved this study. 

 

Sanger sequencing 

Sanger sequencing of PCR amplification products7 was performed at the Centre d’expertise et de 

services Génome Québec using the ABI3730xl DNA Analyzer (Applied Biosystems) and in the 

Laboratoire de Génétique du Centre Hospitalier Régional Universitaire de Nancy using the ABI3130xl 

DNA Analyzer (Applied Biosystems). Sequences were analyzed using SnapGene v.5.0.8 software 

(Dotmatics). A total of 339 samples (146 controls and 193 patients with late-onset ataxia) were 

sequenced. The sequences of 541 of the 678 alleles could be accurately determined and were kept for 

downstream analysis. Alleles were assessed for the presence of sequence variants in the 5’ and 3’ 

flanking regions. Motif purity of the FGF14 GAA repeat locus was assessed using the following ordinal 

scale: impure (non-GAA motif), low purity (<75% GAA motif), mostly pure (75-99% GAA motif), and pure 

(100% GAA motif).  

 

Sizing of expanded FGF14 alleles 

We measured the size of expanded FGF14 alleles by capillary electrophoresis of FAM-labelled long-

range PCR amplification products, as described previously7. Amplification products were analyzed on an 

ABI 3730xl DNA Analyzer (Applied Biosystems) with a 50-cm POP-7 capillary using the GeneScan 1200 

Liz Dye Size Standard (catalog no. 4379950, Applied Biosystems). Results were analyzed using the 

GeneMapper software using the built-in microsatellite default settings (version 6.0, Applied Biosystems). 

 

Targeted nanopore sequencing 

Results of Sanger sequencing for samples carrying an FGF14 expansion were confirmed by means of 

targeted long-read nanopore sequencing. Nanopore sequencing was performed on 47 individuals with 

alleles longer than 250 repeat units, as described previously1. Among this set, 32 individuals had 

SCA27B. PCR amplification products were selected for molecular size >400bp using SPRIselect 

paramagnetic beads for DNA size-selection following manufacturer’s protocol (Beckman Coulter Life 
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Sciences). Pre-sequencing size selection was performed to increase coverage depth of larger alleles. 

Amplicons were normalized to 150 ng/µl and then multiplexed using native barcoding expansion PCR-

free library preparation kits and the SQK-LSK109 sequencing kit as per manufacturer’s instructions, 

multiplexed and sequenced on the MinION or PromethION platform using the R9.4.1 flow cell (Oxford 

Nanopore Technologies). Each run included a libprep negative control. Reads were basecalled and 

demultiplexed with stringent barcodes_both_ends setting using Guppy 5.0.13. Sequences were aligned to 

the GRCh37 reference human genome using Minimap2-2.17 with the predefined settings for nanopore 

data. STRique-v0.4.2 was then used to count the number of repeated units observed for each read 

spanning the FGF14 tandem repeat site. Motif purity was calculated for each sequencing read as the 

number of GAA units observed in the portion of the repeat locus-spanning segment of the read divided by 

the STRique estimation of the total number of repeat units for that read.  

 

Pacific Biosciences High Fidelity sequencing 

The 2,191 samples whose long-read sequencing data was used in this study were drawn from three 

sources: 1,126 samples spanning 525 families from the Children’s Mercy Research Institute’s Genomic 

Answers for Kids program, 1,027 samples spanning 1,027 families from the All of Us Long Reads 

Program Phase 1, and 38 samples spanning 12 families from the Care4Rare Canada research program’s 

Care4Rare-SOLVE study. The Genomic Answers for Kids dataset included 224 trios, from which 411 

meiotic transmission events were able to be confidently resolved. The Genomic Answers for Kids dataset 

included persons from a wide range of genetic ancestries and largely focused on children with rare 

diseases and their unaffected family members. The All of Us Long Reads Program Phase 1 dataset was 

composed of adults unrelated to each other and not known to have a rare disease. All persons in that 

dataset self-reported as black or African-American. The Care4Rare Canada dataset was mostly of 

European-descent individuals with various unsolved rare genetic diseases (no patient with SCA27B was 

included in this dataset) and their relatives, who were often unaffected. Samples from the Genomic 

Answers for Kids program were sequenced to a coverage of approximately 8-25x using one (most 

parents) to three (most probands) SMRT cells per sample on a Sequel IIe platform at Children’s Mercy 

hospital. The All of Us Long Reads Phase 1 Program samples were sequenced to a coverage of 

approximately 8x using a single SMRT cell per sample on a Sequel IIe platform at the Hudson Alpha 

Institute. The Care4Rare Canada samples were sequenced to a coverage of approximately 30x for 

affected individuals (n=26) using three SMRT cells per sample and a minimum of 10x for unaffected 

family members (n=12) using a single SMRT cell per sample on a Sequel IIe platform at the Pacific 

Biosciences Applications lab in Menlo Park, California, USA.  

All samples were aligned to the GRCh38 build of the human genome. TRGT v0.3.3 or v0.3.4 software8 

was then run on each sample using default parameters to resolve the sequences of the two alleles in 

each person. The repeat specification given to TRGT was for the genomic region chr13:102161544-
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102161756 which includes the FGF14 GAA repeat locus along with 25-bp of flanking sequence on each 

side. The alleles called by TRGT were then analyzed for variants in the flanking regions as well as the 

sequence content of the repetitive region. The repetitive regions were segmented based on fuzzy 

matching of the repeat motifs, such that up to 1 off-pattern nucleotide was tolerated every 12bp. Then, the 

GAA purity of each allele was calculated as the proportion of the allele (excluding the flanking sequence) 

that was spanned by segmentations carrying the GAA motif. The threshold for an allele to be considered 

GAA-pure was set at 95% purity.  

 

Data availability 

Genomic data from Sanger sequencing have not been consented for sharing. The data created through 

the All of Us Long Reads Phase 1 Program is available to All of Us Research Program researchers. The 

Care4Rare-SOLVE data is available through Genomics4RD (https://www.genomics4rd.ca) via controlled 

access requests. The data created as part of Genomic Answers for Kids is available through NIH/NCBI 

dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002206.v4). Code for 

running TRGT and analyzing its output alleles will be made available upon request. 

 

Web resources 

TRGT software: Dolzhenko, E. PacificBiosciences/trgt: Tandem repeat genotyping and visualization from 
PacBio HiFi data. Available at: https://github.com/PacificBiosciences/trgt. (Accessed: 21st  
February 2023) 

RNAStructure Web Server: Bellaousov, S., Reuter, JS., Seetin, MG., Matthews, DH. RNAStructure: web 
servers for RNA secondary structure prediction and analysis. Available at:  
http://rna.urmc.rochester.edu/RNAstructure.html (Accessed: 21st February 2023) 
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