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28 Abstract
29 Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food 

30 security. Identifying and characterizing pathogens effectors is crucial towards their improved control. 

31 Because of their poor sequence conservation, effector identification in protein sequences predicted from 

32 genomes is challenging and current methods generate too many candidates without indication for 

33 prioritizing further experimental studies. In most phyla, effectors contain specific sequence motifs which 

34 influence their localization and targets in the plant. Although bacterial, fungal and oomycetes effectors 

35 have been studied extensively and conserved characteristic motifs have been identified, research on 

36 plant-parasitic nematode effectors (PPN) identified some enriched degenerate motifs in only one 

37 species so far. The different lifestyles of PPNs might reflect effectors with different functions according 

38 to the nematode's specific needs, thus presenting a high variety of characteristic motifs. 

39 To circumvent these limitations, we have developed MOnSTER a novel tool that identifies clusters of 

40 motifs of protein sequences (CLUMP) and associates a score to each CLUMP. This score encompasses 

41 the physicochemical properties of AAs and the motif occurrences. We built up our method to identify 

42 discriminant CLUMPs in effector proteins of plant-pathogenic oomycetes. We showed the reliability of 

43 MOnSTER by identifying five CLUMPs that correspond to the known motifs: RxLR, -dEER and 

44 LxLFLAK-HVLVxxP. Consequently, we applied MOnSTER on PPN effector proteins and identified 

45 peculiar motifs in their sequences. We identified six CLUMPs in about 60% of the known nematode 

46 effectors. Furthermore, we found that specific co-occurrences of at least two CLUMPs are present in 

47 PPN effector sequences bearing protein domains important for invasion and pathogenicity. 

48 The potentiality of this tool goes behind the effector proteins and can be used to easily cluster motifs 

49 and calculate the CLUMPs score on any set of protein sequences.

50

51 Keywords
52 Motif clustering – motif scoring – effectors – plant-parasite interaction –  oomycetes - nematodes 
53
54 Authors summary
55 Population growth, environmental degradation and climate change are already bringing harm 
56 to human communities and the natural world that needs to be addressed rapidly. Ensuring 
57 food security for a population that will exceed 9 billion people by 2050 while preserving the 
58 environment and biodiversity is a major challenge. Agricultural pathogens, to cause the 
59 infection, secrete effector proteins that promote colonization of the host plant. Identifying and 
60 characterizing pathogens' effectors is crucial towards understanding how they manipulate the 
61 plant and better combat them. Because of their poor sequence conservation, effector 
62 identification in protein sequences predicted from genomes is challenging and current methods 
63 generate too many candidates without indication for prioritizing further experimental studies. 
64 To address these challenges, we have developed a novel tool called MOnSTER, that identifies 
65 and score clusters of motifs of protein sequences (CLUMPs). MOnSTER is an easy to use tool 
66 that can be included in any pipeline needing motif calling and will be of great use to accelerate 
67 both computational and experimental studies relating to protein motif discovery. Altogether our 
68 findings provide improvements in the understanding of the mechanisms set up by the 
69 pathogens to infect the plant and can elucidate important signatures to block the development 
70 of plant-pathogen interactions and allow to engineer of durable disease resistance.
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71 Introduction
72 Plant pathogens are a major threat to global food security. To cause the infection, pathogenic organisms 

73 secrete effector proteins that promote colonization of the host plant by overcoming the physical barriers 

74 of plant cell-walls, suppressing or evading immune perception, and deriving nutrients from host tissues 

75 [1]. Therefore, identifying and characterizing pathogens effectors is crucial towards understanding how 

76 they manipulate the plant and better combat them. Effector proteins are often specific to pathogens and 

77 essential for causing plant pathology, constituting targets of choice for the development of cleaner and 

78 more specific control methods [2]–[4]. Because of their poor sequence conservation, effector 

79 identification among the set of predicted proteins from the genome (proteome) is challenging and current 

80 methods generate too many candidates without further indication for prioritizing experimental studies. 

81 Classically, effector proteins are indirectly identified among the predicted secretome based on the 

82 presence of a signal peptide for secretion and a lack of transmembrane region [5], [6] . However, these 

83 criteria alone suffer from two main limitations. On one side, the secretome comprises many proteins that 

84 are not effectors, on the other side some known effectors do not possess signal peptides for secretion. 

85 In most phyla, effectors contain specific sequence motifs which target host proteins with distinct roles in 

86 the infection process and control virulence [7]. The best-studied example is effectors secreted via the 

87 type III secretion system (T3SS) class of Gram-negative bacterial pathogens which are characterized 

88 by a specific motif/domain conferring a repertoire of molecular determinants with important roles during 

89 infection [8], [9]. However, these features are not conserved in other bacteria. Indeed, gram-positive 

90 pathogens and certain phloem- and xylem-colonizers, such as Candidatus liberibacter and Xylella spp., 

91 do not encode the T3SS. In these bacteria, effector delivery is dependent on the presence of the N-

92 terminal signal peptide, which is required for protein secretion [10]. In fungi, two motifs have been 

93 identified in effectors, namely the cysteine-rich motifs and the MAX motif [11]. Another well-

94 characterized example are the effectors of the oomycetes pathogens. Oomycetes are eukaryotic 

95 filamentous and heterotrophic microorganisms among which, more than 60% of them parasitize plants 

96 [12]. Well-known plant pathogens in oomycetes include late blight of potato, sudden oak death, root rot 

97 agents (Phytophthora species), and downy mildew Peronospora and Bremia species [13], [14]. These 

98 pathogens code for two notable classes of effector proteins RxLR and Crinkler (CRN), that can be 

99 predicted by the occurrence of the related motifs, RxLR, -dEER and LxLFLAK-HVLVxxP in the N-

100 terminal region downstream the signal peptide [15]–[17].

101 Although bacterial, fungal and oomycetes effectors have been studied extensively and characteristics 

102 motifs have been identified [18], [19], research on Plant-Parasitic Nematode effectors (PPN)  did not 

103 identify any consensus motif, conserved across multiple species. The most economically important 

104 PPNs are the sedentary Root-Knot Nematodes (RKNs) and cyst nematodes [20]. These sedentary 

105 parasites induce the formation of a feeding structure that serves as a constant food source for the 

106 nematode. Other PPN are migratory and a whole spectrum of variations exists between endo and ecto 

107 parasites, with semi-endoparasites an intermediate between the two extremes [21]. The different 

108 lifestyles of PPNs are expected to be reflected in their secretions, which presumably contain effectors 

109 with different functions according to the nematode's specific needs, thus presenting a high variety of 

110 characteristic motifs complicating their identification.
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111 A first step toward the identification of motifs characteristics of RKN effectors was performed by Vens et 

112 al. [22]. The authors developed a bioinformatic tool, called MERCI, to identify motifs with high 

113 occurrences in a positive dataset (known effector sequences) and absent in the negative one (non-

114 effector sequences). MERCI uses a graph-based approach incorporating physicochemical features of 

115 the amino acids composing protein sequences. By analyzing the known effector sequences of the RKN 

116 species Meloidogyne incognita, one of the most important known crop pathogens among all [23], they 

117 identified 4 motifs. However, at the time of their publication, very few genomes for RKN species were 

118 available, and the study was therefore conducted on one single RKN species. Furthermore, the genome 

119 used at that time was later shown to be partially incomplete [24]. These limitations prevent the 

120 generalization of the previous findings.  Therefore, there is an urgent need for a novel study of the 

121 properties of PPN effector sequences and motif research.

122 By taking advantages of the multitude of proteomes available nowadays for several PPN, we developed 

123 a comprehensive motif mining analysis to identify characteristic motifs of effector sequences of these 

124 species. Sequence motifs are usually of constant short size and are often repeated and conserved. 

125 Typically, motifs conform to a particular sequence pattern, where certain positions can be constrained 

126 to a specific amino acid, whereas others are not [25]. This confers a high degeneration of the motifs  

127 yielding to a huge list of non-redundant motif sequences and consequently some motifs that are not 

128 characteristics of effector sequences only [26]. Furthermore, different amino acids (AAs) can have 

129 similar physicochemical properties, thus different motif sequences can share similar properties. 

130 However, most available motif discovery tools do not take these properties into consideration. To 

131 circumvent these limitations, we have developed MOnSTER a novel tool that identifies clusters of motifs 

132 of protein sequences (CLUMP) and associates a score to each CLUMP. This score encompasses the 

133 physicochemical properties of AAs and the motif occurrences.

134
135 We built-up our method to identify discriminant CLUMPs in 1743 effector proteins of plant-pathogenic 

136 oomycetes. We showed the reliability of MOnSTER by identifying 5 CLUMPs that correspond to the 

137 known motifs: RxLR, -dEER and LxLFLAK-HVLVxxP. After this proof of concept, we applied MOnSTER 

138 on PPN effector proteins and identified peculiar motifs in their sequences at an unprecedented level. 

139 We selected a set of 4395 protein sequences from 13 PPN species belonging to the genera 

140 Meloidogyne, Globodera, Heterodera, Radopholus and Bursaphelenchus. We identified 6 CLUMPs 

141 present in 60% of the known effectors (positive dataset). Of note these CLUMPs were found in only 5% 

142 of the sequences of the negative datasets, thus highlighting the enrichment of the identified motifs in 

143 effector sequences. Furthermore, we found a specific co-occurrences of at least two CLUMPs in PPN 

144 effector sequences bearing protein domains important for invasion and pathogenicity. 

145
146 The potentiality of this tool goes behind the effector proteins and can be used to easily cluster motifs 

147 and calculate the CLUMPs score on any set of protein sequences. Furthermore, we also provide a new 

148 scoring system capable of measuring the physicochemical properties of motifs grouped in CLUMPs and 

149 a motif alignment algorithm to better explore chemical-physical properties within the CLUMPs.  

150 MOnSTER is freely available at https://github.com/paolaporracciolo/MOnSTER_PROMOCA.git.
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151 Materials and methods
152 Datasets
153
154 Oomycetes
155 We used proteins from five oomycetes species to create the input datasets for MOnSTER, namely 

156 Phytophthora infestans, Phytophthora sojae, Phytophthora ramorum, Hyaloperonospora arabidopsidis 

157 and Bremia lactucae. 

158
159 Positive dataset
160 The positive dataset consists of 1743 effector proteins belonging to the aforementioned oomycetes 

161 obtained from a concatenation of proteins selected from PHI-base database (v4.14) [26], Uniprot 

162 (release 2023_02)[28], and the work of Haas et al., (2009) [28],  in which they have manually curated 

163 the annotations of the proteins. Since the proteins come from different sources, we used CD-HIT (v4.8.1) 

164 [29] with the parameters in Supplementary information, to filter out identical protein sequences. A total 

165 of 1283 proteins are annotated as RxLR effectors, 377 as Crinkler effectors and the last 83 sequences 

166 are proteins with no previously identified motif and known to be involved in the host-pathogen interaction.  

167      

168 Negative dataset
169 Proteins in the negative dataset derive all from Uniprot (release 2023_02) and from the oomycetes 

170 species cited before filtered from proteins included in the positive dataset and for evident effector-related 

171 annotations. Due to the large amount of non-effector proteins remaining from the filtering we firstly used 

172 ‘cd-hit’ to reduce protein sequence redundancy and then, to also reduce the unbalance of the final 

173 dataset we refined the selection taking only the representative sequences of the orthogroups found with 

174 Orthofinder (v2.5.4) [30]. In total 3009 non effector proteins are included in the negative dataset.      
175
176 Motif Discovery
177 The last input file consists in a list of motifs identified as enriched in the sequences of the positive dataset 

178 compared to the sequences of the negative one. We used MERCI and STREME (v5.5.1) [31], with 

179 parameters detailed in Supplementary information [32]. We imposed different lengths for motifs 

180 prediction to be inclusive but more stringent on the motifs in which we are interested. STREME’s output 

181 is a list of motifs. Hence, we used the tool FIMO (v5.5.1) [33], with default parameters to extract  246 

182 degenerated motifs from the 4524 different motifs.

183 We  obtained the following numbers of non-redundant motifs: 19 with MERCI and 246 with STREME. 

184 Then, we removed the identical motifs and created a single non-redundant list containing all the motifs 

185 in the same format, which resulted in 265 different motifs. 

186

187 Plant Parasitic Nematodes (PPNs)
188
189 Positive dataset
190 The positive dataset contains proteins selected to be likely secreted by PPNs in their plant host and 

191 belonging to 13 species (Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria, 
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192 Meloidogyne hapla, Meloidogyne chitwoodi, Meloidogyne graminicola, Globodera rostochiensis, 

193 Globodera pallida, Heterodera havenae, Heterodera glycines, Heterodera schachtii, Radopholus similis, 

194 Bursaphelenchus xylophilus). We could identify a part of these proteins as Ground-Truth (GT) effectors 

195 based on their literature description. More precisely we considered as GT effectors those proteins for 

196 which in-situ hybridization experiments showed that the corresponding transcript is present in nematode 

197 secretory glands (dorsal or sub-ventral), implying that these proteins are likely secreted by the 

198 nematodes into the host plant. The literature mining led to the  extraction of 163 proteins from NCBI 

199 GeneBank thanks to the NCBI ‘entrez’ API. We also manually extracted 41 sequences from the 

200 publications’ core text and Supplementary information. In addition, we downloaded 41 sequences from 

201 WormBase ParaSite (www.parasite.wormbase.org, vWBPS17-WS282 [34], [35]), and eight sequences 

202 from nematode.net [36]. In total we obtained 229 GT effectors. We extended the positive dataset with 

203 proteins that are non-redundant homologs of the previous GT effectors in PPN proteomes. We first used 

204 cd-hit-2D  with parameters in Supplementary information, to cluster sequences from PPNs proteomes 

205 and GT effectors [37]. We then pooled all the GT effectors from closely related Meloidogyne species 

206 (e.g., M. incognita, M. javanica and M. arenaria) and scanned each corresponding proteome with this 

207 multi-species set of sequences using cd-hit. Since the remaining species are genetically distinct, we 

208 then scanned each proteome with the relative set of GT effectors, except for H. havenae and M. 

209 chitwoodi for which no proteomes were currently available. We merged the two set of selected effectors 

210 and we performed CD-HIT intra- and inter-species to reduce dataset redundancy (parameters in 

211 Supplementary information), retaining only sequence having more than 1% divergence and aligning 

212 on more than 80% of their length (the longest sequence from each cluster was kept). The final positive 

213 dataset includes 546 proteins from 13 species. 

214
215 Negative dataset
216 The negative dataset is composed of 3849 protein sequences that we obtained by selecting genes 

217 widely conserved across the nematode tree of life and close outgroup species, including many species 

218 that are non-parasites. Specifically, we filtered the results from a previous analysis [38] and only retained 

219 genes from orthogroups i) conserved in more than 90% (62/64) of the analyzed species including two 

220 tardigrade species (outgroups), and ii) presenting less than 10 genes/species/orthogroups to avoid 

221 multigenic families, which would lead to overrepresentation of some proteins. To remove the 

222 redundancy, we used the same strategy as for the positive dataset (cdhit2D first and then CD-HIT). 

223
224 Motif Discovery
225 Using the aforementioned software in the same configuration we obtained the following numbers of non-

226 redundant motifs: 40 with MERCI and 229 with STREME applying FIMO. In total, we obtained 269 

227 different motifs. 

228
229 All datasets are available at https://github.com/paolaporracciolo/MOnSTER_PROMOCA.git and in 

230 Supplementary tables 1.1-1.2 and 2.1-2.2.

231
232
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233 MOnSTER pipeline
234
235 The MOnSTER (MOtifs of cluSTERs) pipeline is composed of three main steps as described in Figure 
236 1 and in the following paragraphs.

237

238 Feature calculation
239 The first step of the pipeline concerns the calculation of parameters that describe protein sequences 

240 (Figure 1a). To allow an easy calculation of the features on any dataset, we used ProteinAnalysis 

241 class from the Bio.SeqUtils.ProtParam, a python sub-package. We selected 13 features based on 

242 individual AA properties, belonging to 4 categories: 

243  secondary structure propensity ‘helix’ (V, I, Y, F, W, L), ‘turn’ (N, P, G, S), and ‘sheet’ (E, M, A, 

244 L)). 

245  amino-acids dimensions (‘tiny’ (A, C, G, S, T) and ‘small’ (A, C, F, G, I, L, M, P, V, W, Y)).

246  pH (‘basic’ (H, K, R), ‘acid’ (B, D, E), and ‘charged’ (H, K, R, B, D, E)).

247  physicochemical properties (‘hydropathy-score’, ‘polar’ (D, E, H, K, N, Q, R, S, T), ‘non-polar’ 

248 (A, C, F, G, I, L, M, P, V, W, Y), ‘aromatic’ (F, H, W, Y), and ‘aliphatic’ (A, I, L, V)). 

249 We performed feature calculations on the positive and negative datasets and the list of motifs. At the 

250 end of this step, we obtained three tables of features, one for each of the input datasets (positive, 

251 negative datasets and the list of motifs).

252

253 Clustering
254 This step allowed to cluster motifs based on their properties described by the 13 features. To make the 

255 features comparable to each other, we performed data normalization by using the StandardScaler 

256 method from sklearn.preprocessing [39]. This normalization consists of the removal of the mean and 

257 the scaling to unit variance.

258 Then, we performed a hierarchical clustering of the motifs using the Euclidian distance. We then divided 

259 the resulting tree into clusters of motifs of proteins (CLUMPs) selecting the threshold distance that 

260 minimized the Davies-Bouldin score [40]. 

261 For each CLUMP, we removed the redundant motifs. Briefly, we identified motifs that shared a core 

262 sequence (for example: ‘HWT in HWTQ’ and ‘GHWTQ’), and we only retained the cores (for instance: 

263 “HWT”) in the CLUMPs.

264

265 Scoring
266 The final objective is to identify the CLUMP(s) with the highest discriminative power concerning the 

267 positive dataset. Thus, we conceived a new score called the MOnSTER score, to rank the CLUMPs by 

268 their discriminative power.

269 The MOnSTER score is composed of three parts: the CLUMP score and two modified versions of the 

270 Jaccard index.

271
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272 CLUMP score
273 This score considers the AA composition of the motifs belonging to each CLUMP concerning the 

274 preferences of the sequences of the positive dataset. The procedure that we implemented to calculate 

275 this score is shown in Figure 1b.

276
277 a) Feature selection

278 We used the Mann-Whitney test to identify the features whose values were significantly different 

279 between the positive and negative datasets. We only retained the statistically significant features, with 

280 a p-value < 0.05. Then, we assigned them a score, by calculating -Log(p-value) of each feature. We will 

281 refer to it as the ‘feature weight’ hereafter. 

282
283 b) Average calculation

284 For each of the selected features, we calculated the average value for the positive dataset, the negative 

285 dataset, and each CLUMP that we will refer to with this notation: 𝜇+
𝑓 , 𝜇―

𝑓  and 𝜇𝐶𝐿𝑈𝑀𝑃𝑐
𝑓  , respectively.

286
287 c) CLUMPs sorting

288 We compared the averages of the positive and negative datasets for each feature and sorted CLUMPs 

289 accordingly. 

290 Thus, if the 𝜇+≥𝜇―
𝑓

𝑓 , the CLUMPs averages would be sorted in ascending order. 

291 Otherwise (𝜇+𝜇―
𝑓

𝑓 ) , CLUMPs averages would be sorted in descending order.

292
293 d) CLUMPs voting

294 For each feature, we divided the CLUMPs into two groups accordingly to the following statements:

295 If 𝜇+≥𝜇―
𝑓

𝑓 : CLUMPs with 𝜇𝐶𝐿𝑈𝑀𝑃𝑐
𝑓 ≥ 𝜇+

𝑓  have a vote from 1 to the number of CLUMPs with an increment 

296 of 1, otherwise the score is set to 0.

297 If 𝜇+𝜇―
𝑓

𝑓 : CLUMPs with 𝜇𝐶𝐿𝑈𝑀𝑃𝑐
𝑓 < 𝜇+

𝑓  the vote attributed goes from 1 to the number of CLUMPs, 

298 otherwise it is 0.

299
300 e) CLUMPs scoring

301 For each CLUMP, for each feature, we multiplied the ‘feature weight’ by the CLUMPs vote then we 

302 summed all the results using the following formula:

303
304 where we normalized the value to have a range between 0 and 1.

𝐶𝐿𝑈𝑀𝑃𝑠𝑐𝑜𝑟𝑒 = 𝑛𝑜𝑟𝑚[( 𝑣𝑜𝑡𝑒𝐶𝐿𝑈𝑀𝑃𝑐
𝑓  𝑥𝑃𝑓)]
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305

306 Modified Jaccard indexes
307 The two modified Jaccard scores respectively consider: i) the occurrences of the motifs, for each 

308 CLUMP, in the positive dataset compared to the negative, and ii) the number of positive sequences 

309 containing the motifs in each CLUMP concerning the negatives (Figure 1c).

310
311 a) CLUMPs occurrences

312 We calculated the occurrences of the motifs in each CLUMPs in the two datasets (positive and negative).

313
314 b) J’s scores

315 The Jaccard index consists in calculating the similarity between two sets. Here we propose two ways to 

316 calculate the J index that will be called J1 and J2 hereafter.

317
318 To obtain J1, we calculated the number of occurrences of the motifs for each CLUMP in the negative 

319 dataset over the number of occurrences of the motifs of the CLUMP in the positive dataset, using the 

320 following equation:

321 Where: 

322 ∆―and ∆+the number of occurrences of the motifs of the CLUMP in the negative or

323 in the positive dataset, respectively.

324
325 To obtain J2, for each CLUMP, we calculated the number of sequences of the negative dataset that 

326 contain at least a motif of the CLUMP, over the number of sequences of the positive dataset that contain 

327 at least a motif of the CLUMP, accordingly to the following formula:

328
329 Where: 

330 𝑠𝑒𝑞―is the number of sequences of the negative dataset containing at least a motif of the CLUMP.

331 𝑠𝑒𝑞+is the number of sequences of the positive dataset containing at least a motif of the CLUMP.

332
333 The ½ factor is applied to have values between 0 and 0.5 for each J to have equal weight in the final 

334 score, and (1 – Jaccard Index) is to consider the degree of dissimilarity rather than similarity. 

335

336 MOnSTER score
337 The final MOnSTER score, for each CLUMP, is the sum of the CLUMP score, and the two J’s indexes:

338
339
340

𝐽2 =
𝐶𝐿𝑈𝑀𝑃𝑠

1
2

𝑀𝑂𝑛𝑆𝑇𝐸𝑅𝑠𝑐𝑜𝑟𝑒 = 𝐶𝐿𝑈𝑀𝑃𝑠𝑐𝑜𝑟𝑒 +   𝐽1 + 𝐽2

𝐽1 =
𝐶𝐿𝑈𝑀𝑃𝑠

1
2
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341

342 PRO-MOCA: a novel method to create motif logo of CLUMPs
343
344 To create motif logos for each CLUMP, we developed a novel method. PRO-MOCA (PROtein-MOtifs 

345 Characteristics Aligner) aligns protein motifs based on the characteristics of the amino acids as shown 

346 in Supplementary figure 1. The first step is to define the alphabets associated with each characteristic 

347 that can be used to represent the motifs (Supplementary figure 1a). We have defined four alphabets, 

348 namely: “chemical”, “hydrophobicity”, “charge”, “secondary structure propensity” (details for each 

349 alphabets are included in the Supplementary information).

350 These alphabets are easily modifiable and other alphabets can be included. Different CLUMP logos can 

351 be obtained depending on the alphabet chosen. Secondly, PRO-MOCA uses the selected alphabet to 

352 translate the AA sequences of each motif in a CLUMP in the new alphabet (Supplementary figure 1b).  

353 The third step is the alignment (Supplementary figure 1c). Briefly, PRO-MOCA screens the translated 

354 motif sequences of a CLUMP looking for a “summit position” with the highest frequency of the same 

355 “letter” of the novel alphabet (further details in supplementary materials). Once this position is identified, 

356 all motifs are aligned accordingly (Supplementary figure 1d). Since the motifs of a CLUMP can have 

357 different lengths, after the alignment, PRO-MOCA calculates the number of gaps to add at the 

358 extremities to make all motifs having the same length. Importantly, gaps are not allowed inside the motif 

359 sequences. The last step of the method is to re-translate the aligned motifs in the original AA sequences 

360 (Supplementary figure 1e). The alignment is ready to feed a program to create logos. Here we used 

361 the tool Weblogo3 [41].

362

363 PPNs effector protein domains mining analysis
364
365 To investigate the relationship between the selected CLUMPs and functional domain in effector proteins 

366 we firstly selected proteins from the positive datasets containing at least one occurrence of a selected 

367 CLUMP (311 proteins in total). Then we predicted the protein domains with InterProScan (v5.54-87.0) 

368 [42] with default parameters. From the results, we extracted the proteins containing the most frequent 

369 predicted domains and considered only entries coming from: MobiDB-lite, Coils, CDD, PANTHER, Pfam 

370 and ProSitePatterns. Afterwards we also predicted the presence of Signal Peptide (SP) (SignalP4.1 

371 [43]) and TransMembrane (TM) domain regions (TMHMM2.0 [44]). We obtained 258 proteins having at 

372 least a CLUMP and one of the aforementioned predicted domains, SP or TM.  

373 Results & Discussion 
374

375 MOnSTER identified five CLUMPs containing known motifs characteristics of 
376 oomycetes effector protein sequences
377
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378 Characteristic motifs of oomycetes effector proteins are well-known in the literature, such as RxLR, -

379 dEER and LxLFLAK-HVLVxxP [15]. Thus, we reasoned to apply our novel tool, MOnSTER, on 

380 oomycetes effectors to test its ability to recover well-characterized motifs. We compiled a set of 4752 

381 oomycetes proteins, comprising 1743 effectors and 3009 non effectors, from five oomycetes species. 

382 We performed motif discovery on this set of proteins using MERCI and STREME and we identified 265 

383 significantly enriched motifs (see methods for further details). Then we fed MOnSTER with these motifs 

384 and we obtained 11 CLUMPs (Supplementary table 3), employing the Davis-Bouldin score, as a 

385 criterion to cut the tree. By selecting CLUMPs having a MOnSTER score greater than the median of the 

386 overall scores we identified six CLUMPs (CLUMP7, 4, 10, 6, 2 and 9), the first five best-scoring CLUMPs, 

387 accordingly to the MOnSTER score, correspond to the known motifs (Figure 2). In Supplementary 
388 figure 2 we can also observe that the motifs are respectively grouped in two clades, the two 

389 characteristics motifs of CRN-effectors (LxLFLAK and HVLVxxP), form a separate subclade on the right, 

390 while the RxLR and -dEER motifs fall into the left clade, resembling the family distinction of effectors to 

391 which they belong. More precisely RxLR motifs are divided into 2 different CLUMPs; CLUMP6 containing 

392 only RYLR and RFLR motifs, and CLUMP10, containing other RxLR motifs and included in the same 

393 sub-clade of the dEER motif (CLUMP2). The last best-scoring CLUMP contains no known motifs, 

394 perhaps suggesting a novel putative motif for oomycetes effectors to investigate. Since oomycetes 

395 effectors characterization is not in the scope of this article, we did not consider this last CLUMP for 

396 further analysis. In support of that, CLUMPs 7, 4, 10, 6 and 2 are present in 1205/1743 effectors (~70% 

397 of the sequences in the positive dataset) while in combination with the last significant CLUMP (CLUMP9) 

398 only 2 more sequences can be detected. 

399 Thus, we investigated the occurrences and co-occurrences of the five selected CLUMPs in oomycetes 

400 effectors and non-effectors (Supplementary figure 3). For the effectors we deeply analyzed the two 

401 distinct families; in total we found that 68% of the RxLR-effectors in the positive dataset contain the 

402 motifs in CLUMPs associated with the RxLR motif (CLUMP10, 6 and 2).  In particular, CLUMP10 and 6 

403 are present alone in 41% of the RxLR-effectors (1238/1743 RxLR-effectors), while 19% of the RxLR-

404 effectors contained the co-occurrence of these CLUMPs with the CLUMPs representing the dEER motif 

405 (CLUMP2). This reflects the importance of the RxLR motifs in the effector sequences and the role of the 

406 attached dEER [45]. On the other hand, the co-occurrence of CLUMPs specific for LxLFLAK and 

407 HVLVxxP (CLUMP7 and 4), in CRN-effector sequences accounts for 67% of the relative sequences in 

408 the positive dataset (377/1743). The high co-occurrences rate of CLUMP7 and 4 is strongly in 

409 agreement with the presence of LxLFLAK  and HVLVxxP motif marking the beginning and the end of 

410 the DWL-domain in the Crinkler-effector family [28]. For the negative dataset, instead, only 15% of the 

411 sequences show the presence of CLUMP-motifs with a huge decrease in CLUMPs co-occurrences.  

412 Overall co-occurrences, indeed, are present in around 30% of positive sequences and in 1% of negative 

413 ones.  
414 Previous research showed that the motifs characteristics of oomycetes effectors have strong sequence 

415 position preferences [46]–[48]. Thus, we plotted the CLUMPs occurrences in the positive versus 

416 negative dataset (Supplementary figure 4). Indeed, we can observe that the CLUMPs are concentrated 

417 at the beginning of the sequence in positive sequences and conversely spread around the sequence of 
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418 negative dataset proteins. More precisely the 5 most interesting CLUMPs are condensed in the first 40% 

419 of the sequence with a higher preference at the very beginning and around 30% of the sequence 

420 probably corresponding to the N-terminal of the protein in which the target motifs lie.
421 Altogether these results highlight the ability of MOnSTER to identify CLUMPs containing biologically 

422 relevant motifs.

423
424 MOnSTER allowed to identify six CLUMPs characteristics of nematodes effector 
425 proteins
426
427 The application of MOnSTER of the oomycetes effectors served as a proof of concept of our 

428 methodology. Thus, we moved to the characterization of nematodes effector sequences for which no 

429 characteristic motifs have been identified yet.  We collected a set of 4395 proteins, including 546 well-

430 known effectors and 3849 non-effectors, coming from 13 nematode species. By running motif discovery 

431 analysis as for the previous dataset, we found 269 motifs enriched in the effectors sequences. By 

432 applying MOnSTER with the previous configuration, the 269 input motifs were grouped into 11 CLUMPs.  

433 Six best-scoring CLUMPs were selected using the median as the significative threshold 

434 (Supplementary table 4). Similar to the oomycetes results, we observe two main clades (Figure 3):  

435 the second and the third best scoring ones (CLUMP2 and 5 respectively) form a single clade while the 

436 other significant CLUMPs (CLUMP1, 3, 7 and 10) are distributed in the bigger clade with the non-

437 significant ones.  Overall, we found CLUMPs in almost 60% of sequences from the positive dataset 

438 compared to 5% of sequences from the negative. 

439 Then we investigated the presence of the six CLUMPs in each of the 13 PPN species present in the 

440 dataset. Figure 4 shows the abundance of the six best-scoring CLUMPs in the species accordingly to 

441 their phylogeny tree. The first three species are the most represented in the positive dataset. 

442 Interestingly very distant species show similar CLUMPs frequencies thus suggesting that they might 

443 share common characteristics at the sequence level for accomplishing similar functions. Furthermore, 

444 we could identify characteristic CLUMPs also for species represented in the dataset with very few 

445 sequences reinforcing the previous observation. Overall, this analysis suggests that CLUMPs might be 

446 associated with functional properties of PPN nematodes.  

447 Finally, we focused on the positional sequence preferences of CLUMPs in effector sequences 

448 (Supplementary figure 5). In general, we observe a difference in the position preferences of the best-

449 scoring CLUMPs between positive and negative dataset sequences. The 6 CLUMPs tend to occur more 

450 frequently in the middle of the sequences in effectors (positive dataset), with more abundance in central 

451 (around 50% of the sequence) and terminal (around 70%), positions. The same CLUMPs are rare in the 

452 central position of the non-effector protein sequences (negative dataset).  Contrary to the properties of 

453 oomycetes effectors, which characteristics CLUMPs occur mainly at the beginning of the sequence, 

454 PPN effectors showed a different pattern of occurrences, privileging a central – C terminal occurrence. 

455
456 Co-occurrences of different CLUMPs are associated with functional protein domains.
457
458 We investigated the co-occurrence patterns of CLUMPs in the PPNs effector sequences (all possible 

459 combinations of co-occurrences are reported in Supplementary figure 6). Overall, we notice that 
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460 CLUMPs tend to co-occur more frequently in the sequences of the positive dataset than in the negative 

461 one, despite the positive set being smaller than the negative one.  30% of effector sequences show co-

462 occurrences of the 6 selected CLUMPs, while in the non-effectors, co-occurrences, are present in less 

463 than 1% of the sequences. As observed for oomycetes, some CLUMPs tend to be present alone, while 

464 others tend to co-occur with specific CLUMPs. This suggests that different classes of nematode effectors 

465 might exist, similar to the oomycetes effectors. Importantly, there is no relationship between the 

466 sequence length and the number of co-occurrences that might suggest a functional role for CLUMPs 

467 co-occurrences (Supplementary figure 7). 

468 To inspect further a putative functional role of CLUMPs in effector sequences, we queried the effectors 

469 having at least one CLUMP or a co-occurrence of multiple CLUMPs against several protein domain 

470 databases (see Methods, results in Figure 5 and Supplementary table 5). The most recurrent hits are 

471 the coil domain, intrinsically disordered domain and the presence of the signal peptide (SP) followed by 

472 the pectate lyase domain, glycosyl hydrolase family 5, Stichodactyla toxin (ShK) domain, 14-3-3 family 

473 and cysteine-rich domain. Interestingly, we observe the almost exclusive association between CLUMPs 

474 and functional domains, mainly when multiple CLUMPs co-occur in effector sequences. 

475 The strongest association that we observe is between the co-occurrences of CLUMPs 7 and 10 and the 

476 glycosyl hydrolase family 5 domain on one hand and the co-occurrences of CLUMPs 3, 7, 10 and the 

477 cysteine-rich domain, on the other hand. Specifically, all 23 effector sequences containing the co-

478 occurrences of CLUMP 7 and 10 bear also the glycosyl hydrolase family 5 domain. By inspecting the 

479 position of CLUMPs occurrences within the sequences, we observed that the two CLUMPs are flanking 

480 the domain: CLUMP7 is consistently present at the beginning of the sequence and consequently of the 

481 domain, while CLUMP10 mostly concentrates at the end of the domain, around 60-80% of the 

482 sequences (Supplementary figure 8). Examples of these genes in nematodes is poorly characterized 

483 and likely resulting from horizontal transfer [49], [50]. Similarly, all 17 sequences presenting the co-

484 occurrence of CLUMPs 3, 7,10 also contain the cysteine-rich domain. Cysteine-rich domain and CAP 

485 protein are known to be involved in the virulence of nematodes [51]. They are expressed in both plants 

486 and pathogens; in the latter, they are important for their virulence by suppressing the host’s immune 

487 responses and promoting colonization. Interestingly, these sequences do not contain disordered regions 

488 or coil domains, consistently with unique conserved sandwich fold with a large central cavity of these 

489 kinds of proteins [52]. 16 out of 19 sequences presenting co-occurrences of CLUMPs 2, 3 have also the 

490 14-3-3 family domain, a eukaryotic-specific protein family with a general role in the signal transduction 

491 [53]. We also observe only one motif from CLUMP 2 in these sequences (KDKM) and 4 from CLUMP 3 

492 (NKDKAC, KMKG, PTHPIR, PTHP). 13 out of 34 sequences bearing only CLUMP 1 also contain the 

493 pectate lyase domain. Of note, these sequences do not contain coiled or disordinate regions, and only 

494 7 show the presence of the SP. Pectate lyase enzymes in nematodes facilitate penetration in plant-cell 

495 walls made of pectin [54]. numerous recent reports showed that these enzymes are produced in 

496 specialized nematode gland cells and secreted during the parasitism process. In the case of sedentary 

497 endo-parasitic nematodes,  this occurs mainly during juvenile migration through the root tissue, when 

498 these enzymes play a crucial role in the maceration of the plant tissue facilitating the infection [55]. 

499 Finally, 8 out of 22 sequences bear the co-occurrences of CLUMPs 2, 5 and the ShK domain. Although 
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500 the exact biological function of the ShKT domain remains unclear, previous reports have shown that this 

501 domain might be associated with immunosuppression [56], [57].

502 Overall, these findings highlight that specific CLUMPs co-occurrences are associated with specific 

503 functional domains with roles in invasion and/or infection and might suggest different classes of effectors 

504 cross-species. 

505

506 Conclusions
507 This work is structured around three main aims: (1) the development of a novel method to cluster and 

508 score discriminant motifs of protein sequences called MOnSTER, (2) the validation of the MOnSTER 

509 results by applying it to identify CLUMPs specific to effector protein sequences of oomycetes (3) the 

510 application of MOnSTER to protein sequences from plant-parasitic nematodes with unprecedented 

511 discriminant motifs detection. 

512 The application of MOnSTER on oomycetes yielded the identification of five CLUMPs corresponding to 

513 the well-known effector-related motifs like RxLR-dEER and LxLFLAK-HVLVxxP motifs in oomycetes. 

514 This demonstrated that the novel scoring method introduced by MOnSTER is a good parameter with 

515 which calculate CLUMP specificity for effector protein sequences. When applied on the nematodes 

516 effectors, MOnSTER found six novel CLUMPs, not previously characterized. The main advantage of 

517 MOnSTER is that the definition of CLUMPs allowed us to reduce the degeneration of 265 and 269 motifs 

518 (oomycetes and nematodes respectively), to 11 CLUMPs. Effectors sequences of both pathogens show 

519 some common characteristics. Indeed, selected CLUMPs-motifs are present in about 70% of the input 

520 effector proteins for oomycetes and 60% in PPN compared to 15% and 5% in of the non-effector 

521 proteins, respectively. Furthermore, around 30% of effector sequences have co-occurring CLUMPs, in 

522 contrast with less than 1% of the non-effector sequences, in both applications. The main difference 

523 between effector-specific motifs of the two pathogens is the positional preference: the beginning of the 

524 sequence for oomycetes and central C-terminal for PPNs. This highlights MOnSTER ability to cluster 

525 motifs specifically relevant for effector sequences without privilege any portion of the sequence, like 

526 other motif discovery tools. 

527 Concerning the novel identified motifs for PPNs effectors, we observed that the pattern of occurrences 

528 and co-occurrences of CLUMPs in effector sequences is associated with specific functional domains 

529 and might suggest the existence of different classes of effectors. Importantly we did not observe any 

530 species-related preferences thus implying the generality of these results.

531 In conclusion, MOnSTER quantifies the motifs and sequence properties in each dataset provided, thus 

532 allowing a wide application to other protein classes. Since the MOnSTER score considers the 

533 physicochemical properties and occurrences of motifs in CLUMPs concerning the protein sequences 

534 provided, it works without the need for a reference dataset. Furthermore, the MOnSTER scores are 

535 normalized values, therefore, allowing direct comparison between different studies.

536 Our results highlighted that MOnSTER is a powerful new method to cluster and score discriminant motifs 

537 in protein sequences according to their physicochemical properties and pattern of occurrences. It is also 

538 a tool that can be easily used on any set of protein sequences and a list of motifs. As such, MOnSTER 
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539 can be included in any pipeline needing motif calling and will be of great use to accelerate both 

540 computational and experimental studies relating to protein motif discovery.

541
542
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717
718 Figure 1: MOnSTER pipeline scheme.
719 (A) MOnSTER pipeline is composed of three steps. It takes two FASTA protein sequences datasets 
720 (positive and negative) and a list of predicted motifs (enriched in the positive dataset) as input. The 
721 output is a list of CLUMPs and an associated MOnSTER score. The MOnSTER score is constituted 
722 by: (B) CLUMPscore calculation. (C) Two modified Jaccard Indexes.
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723 Figure 2: Motif logos of CLUMPs compared to the target motifs.
724 Upper-panel: alignments of motifs in the respective CLUMP are produced by PROMOCA, and then the 
725 aligned motif sequences are used to produce the logos with WebLogo3. The x-axis represents the AA 
726 position in the motif, while the y-axis represents log-transformed frequencies translated into bits of 
727 information. Lower-panel: characteristic motifs of oomycetes effectors families from literature.
728
729
730   
731
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732

733
734 Figure 3: Dendrogram of CLUMPs in Plant Parasitic Nematodes (PPNs)
735 11 CLUMPs produced by MOnSTER (indicated with “/” sign). The coloured ones are those selected as 
736 best-scoring CLUMPs after MOnSTER-score calculation. Each best-scoring CLUMP is associated with 
737 the corresponding motif logo; alignment of motifs in each CLUMP is produced by PROMOCA and then 
738 WebLogo 3 is used to produce the image (the x-axis shows the AA position of the motif and the y-axis 
739 represents the log-transformed frequency of each AA in terms of bits of information).
740
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741 Figure 4: Cardinality of CLUMPs-motifs in each PPN species considered. 
742 The total number of motifs belonging to each significant CLUMP per PPN species accordingly to their 
743 phylogeny. (minc: Meloidogyne incognita, mjav: Meloidogyne javanica, mare: Meloidogyne arenaria, 
744 mhap: Meloidogyne hapla, mchi: Meloidogyne chitwoodi, mgra: Meloidogyne graminicola, gros: 
745 Globodera rostochiensis, gpal: Globodera pallida, have: Heterodera havenae, hgly: Heterodera 
746 glycines, hsch: Heterodera schachtii, rsim: Radopholus similis, bxyl: Bursaphelenchus xylophilus)
747

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547457
http://creativecommons.org/licenses/by/4.0/


23

748
749 Figure 5: Effector proteins showing the presence of CLUMP/s associated with pathogenicity-
750 related protein domain/s.
751 The table on the right shows the co-occurrence of CLUMP or CLUMPs with specific domain classes 
752 (dc); dc1, pectate lyase domain class, dc2, glycosyl hydrolase family 5 domain class, dc3 Stichodactyla 
753 toxin (ShK) domain class, dc4 14-3-3 family domain class and dc5, cysteine-rich domain class. The 
754 upset plot on the left represents the occurrences and co-occurrences of respective CLUMPs in the 
755 positive dataset, highlighting the sequences that also have an interesting protein domain following the 
756 table counts. 
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