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Abstract

The Linearbandkeramik (LBK) Neolithic communities were the first to spread farming

across large parts of central Europe, settling fertile regions from Ukraine to France during

the second half of the 6th millennium BCE. The LBK had a high degree of material culture

uniformity, albeit with regional differences in settlement patterns, subsistence, and

mortuary practices. To date, ancient DNA data from LBK individuals have been generated

for a limited number of locations and often in small sample sizes, making it challenging to

study variation within and across sites. We report genome-wide data for 178 LBK

individuals, from the Alföld Linearbankeramik Culture (ALPC) eastern LBK site of

Polgár-Ferenci-hát in Hungary, the western LBK site of Nitra in Slovakia, and the enclosed

western LBK settlement and massacre site of Schletz in Austria, as well as 42 LBK

individuals from 18 other sites. We also report genome-wide data for 28 Early Neolithic

Körös and Starčevo individuals from 13 sites, viewed as the predecessors of the LBK. We

observe a higher percentage of western hunter-gatherer (WHG) admixture among

individuals in the eastern LBK than in the far more widely distributed western LBK,

showing that these two archaeologically distinct cultures also had different genetic

trajectories. Most WHG-farmer mixture occurred just before the dawn of the LBK culture

and there is no evidence that the WHG ancestry came systematically more from males or

females. However, we do find strong genetic evidence for patrilocality among the LBK,

extending previous findings based on isotopic analysis, with more genetic structure across

sites on the male than on the female line, and a higher rate of within-site relatives for males.

At Schletz we detect almost no first-degree relatives despite reporting data from almost

every skeleton present at the site, showing that this massacre involved people from a large

population, not a small community.
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Introduction

The archaeological roots of the Linear Pottery culture (Linearbandkeramik, LBK) ca.

5500-5000 BCE are conventionally traced to the Starčevo culture of central Transdanubia
1–3, and the Körös culture of the eastern Carpathian Basin 4. The LBK is often divided into

two subgroups: the 'eastern LBK' Alföld Linearbankeramik Culture (ALPC) limited to the

east of the Carpathian Basin, and the expansive 'western LBK'. The western LBK spread in

two waves, first from Transdanubia, at ca. 5500 BCE, to Slovakia, Austria, Moravia, Bohemia,

and central and eastern Germany. Several centuries later, a second wave reached the Paris

basin and adjacent areas of France as far west as Normandy and as far east as Poland,

Ukraine, Moldova, and Romania 1,2.

LBK material culture appears strikingly uniform, given its geographic extent, with the

typical LBK settlement pattern consisting of clusters of sites along the alluvial plains of

rivers. Nevertheless, archaeological studies5 have documented subtle differences in

subsistence, settlement patterns, health, and lifeways among LBK communities, identifying

three sociocultural regions: the great Hungarian plain and Transdanubia, central Europe,

and the Paris basin6. The LBK culture disappeared around 5000-4900 BCE. Studies of the

temporal distributions of radiocarbon dates suggest a demographic collapse in that century
7, potentially linked with violence exemplified at the Late LBK massacres sites of Talheim

and Schletz 8,9.

Studies of variation in strontium isotope ratio have provided insight into mobility patterns

in the LBK, notably at Nitra, Schwetzingen, and Vedrovice. These analyses revealed higher

variability in strontium isotopic ratios in females than males5, suggesting women were

more likely than men to have originated from outside the communities where they were

buried, pointing to patrilocal practices. Further evidence for patrilocality came from a study

showing that males buried with polished stone adzes, likely indicative of high social status,

had less strontium variation than males without them, suggesting that the former tended to

be born and live in their natal communities 10. In the archaeological context of settlement

layouts, these results suggest that LBK society may have been organized into patrilocal
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clan-like groups 11, with land inherited on the male line. Most LBK sites are located on loess

soils, and subsequently, movements of individuals within loess regions are not easily

detectable based on isotope ratios. Paleogenomic methods have the potential to reveal

differences between male and female behaviours regardless of local geology. There have

been new discussions about this problem 12.

Analyses of whole genome data from 157 LBK individuals published before this study

showed that they inherited their predominant ancestry from Early European farmers (EEF)

who then mixed with local European Mesolithic populations, resulting in admixed groups

with typically 5% western hunter-gatherer (WHG) ancestry 13–18, with a possible differential

contribution of Starčevo to LBK and Körös to the ALPC 19. However, some LBK individuals

have a much higher percentage of WHG ancestry 17, suggesting a more complex admixture

process 15. The only published cemetery-scale studies of LBK substructure focused on the

western LBK sites of Derenburg-Meerenstieg II and Stuttgart-Mühlhausenin both in

Germany, both with homogenous ancestry 15,20.

We present a fine-grained analysis of intra- and inter-site variation at three locations with

different archaeological characteristics: A) The ALPC settlement site of Polgár-Ferenci-hát

(5500-5100 BCE) in eastern Hungary in which individuals were buried between houses

rather than in a cemetery, B) The cemetery of Nitra, western Slovakia, which corresponds to

the LBK expansion phase from 5200–5000 BCE, and C) the enclosed settlement and

massacre site of Schletz in Lower Austria dated to the Late LBK around 5000 BCE. We

co-analyzed these data with newly reported data from 31 other archaeological sites and

previously published data to address the following topics: 1) the extent of genetic

differentiation between the LBK and ALPC; 2) kinship patterns of LBK communities and the

extent of their correlation to variations in isotopic values and grave goods; 3) correlations

between kinship and differences in diet and mobility (which have previously been

hypothesized to be related to LBK social structure); and 4) the genetic structure of the

individuals massacred at Schletz.
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Results

We generated genome-wide data passing standard metrics for authentic ancient DNA data

from 248 individuals of the Starčevo, Körös, and LBK/ALPC cultures from Austria, Slovakia,

Croatia, Romania, Serbia, and Hungary, using enrichment for 1.24 million single nucleotide

polymorphisms (SNPs) (Figure 1A, Supplementary Tables 1-2). The new data include 19

Starčevo, 9 Körös (pre-LBK), 67 Hungarian ALPC (henceforth "Hungary_ALPC"), 3

Hungarian LBK ("Hungary_LBK"), 87 Austrian LBK ("Austria_LBK") and 63 Slovakian LBK

("Slovakia_LBK") from a total of 34 archaeological sites (Figure 1A). Individuals with fewer

than 30,000 SNPs covering the autosomal targets were not included in ancestry analyses,

but their data are reported. In addition, we did not use data from 1st-degree relatives of

higher coverage individuals in the data set for ancestry analyses. We co-analyzed these

individuals with published data for 172 Starčevo, Körös, ALPC, and LBK individuals 14,15,17–22.
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Figure 1: A) Map of studied sites in central Europe. Circle size corresponds to the number of

individuals (large circles sites with more than ten). B). PCA shows the clustering of the LBK

and the position of individuals along the X axis, indicating differential WHG affinities and
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showing that WHG (represented by two Körös culture outliers with entirely WHG ancestry)

are more closely related to ALPC

ElevatedWHG ancestry in the eastern LBK

We used smartpca 23 to perform a Principal Components Analysis (PCA) (Figure 1B) on

genome-wide data from present-day European populations genotyped on the Affymetrix

Human Origins SNP array, and then projected the ancient individuals. The PCA

distinguishes the Carpathian Basin ALPC from the rest of the Neolithic populations, with

the ALPC individuals systematically closer to the WHG. The Körös and Starčevo individuals

cluster with the western LBK, suggesting that the analyzed ALPC individuals, which might

be the result of mixture between an early Neolithic population and additional WHG.

Figure 2: Histograms of point estimates of ancestry proportions of LBK and ALPC individuals

for both the autosomes and X-chromosome (generated with ggplot2 24).

We grouped individuals based on archaeological culture and geography (proxied by

present-day country): Austria_LBK, Slovakia_LBK, Hungary_LBK, Hungary_ALPC, and

Germany_LBK. We estimated ancestry proportions with qpAdm, using as proxies for the

sources a pool of Balkan early farmers with little or no WHG admixture (Balkan_N) and a

pool of western European hunter-gatherers (WHGA) 25. As Right reference outgroups, we
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used pools of Turkey_N, ancient Africans, and Mesolithic European hunter-gatherers more

divergent in time or space (WHGB) (Supplementary Methods). We used qpWave to identify

significant outliers from the main cultural and geographical groups at p-value<0.05 adding

the tags HGEXC (“hunter-gatherer excess”) and EEFEXC (“Early European Farmer excess")

(Supplementary Table 1, Supplementary Figure 1). Eastern LBK Hungary_ALPC individuals

have, on average, 11.5±0.4% WHG ancestry (p=0.73 for fit) (Figure 2). In contrast,

Slovakia_LBK and Austria_LBK individuals have an average of 4.0±0.4%WHG (p=0.06). Ten

western LBK individuals from Transdanubia (Hungary_LBK), which do not fit the qpAdm

model (p=0.001) (Supplementary Table 3 and Supplementary Section 5).

WHG-farmer mixture without significant evidence for sex bias

We used DATES 26 to estimate the age of admixture in WHG and Early European Farmers.

Consistent with previous findings but now with higher resolution21
, we infer that the

mixture occurred on average ~400 years before the Austrian_LBK, Slovakia_LBK, and

Germany_LBK populations lived (range of 95% CI: 6057-5536 BCE), and 400 years before

the ALPC individuals (range of 95% CI: 5968-5842 BCE) . This suggests a scenario in which

the dawn of the archaeologically defined LBK culture was marked by the completion of a

period of mixture, reflecting a social incorporation of WHG communities which plausibly

could have been part of the process by which the LBK distinguished itself from preceding

cultures.

Some degree of mixture with WHG continued into the LBK period itself, as documented by

individuals at the early LBK site of Brunn (Austria) who show evidence of admixture in the

last couple of generations before they lived 17 (Supplementary Table 6). We found further

evidence for this using the RFMix 27 method, where we inferred the locations and size of

segments of WHG ancestry in each LBK individual after filling in missing genotypes and

phasing the data using the imputation engine GLIMPSE 28 (Supplementary Figure 2,

Supplementary Table 5, Supplementary Section 8). We correlated the summed length of

inferred WHG segments from RFMix greater than 0.2 cM to qpAdm estimates of WHG

ancestry, and observed a high Pearson correlation coefficient of 0.96, suggesting that these

10
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inferred segments are largely reflecting true WHG admixture (Supplementary Figure 3).We

identified long putative WHG segments in some ALPC individuals (up to 55 cM, individual

I21902 from Polgár-Ferenci-hát, 5371-5216 cal BCE) which can only arise in the context of

mixture in the last few generations in their history, similar to the pattern at Brunn.

Furthermore, at the ALPC sites of Polgár-Ferenci-hát with its elevated rate of WHG ancestry,

we also detect significant within-community variation in WHG ancestry. In one family

(“Family B”), all three individuals had significantly elevated WHG—36% for the father and

26% and 29% for the offspring—with the daughter who we estimate to be 27-28 years old

at the time of her death buried with many grave goods which were otherwise uncommon at

this settlement. In another family (“Family C”), the daughter had significantly elevated WHG

ancestry (20%), while the father's ancestry is typical of the site (13%). In Family B, the

mother is unsampled but we can conclude her WHG ancestry was ~9% lower than the

father's (to explain why the offspring had intermediate proportions). In contrast and by a

similar calculation, in Family C we can conclude that the unsampled mother had ~7%

higher WHG ancestry than the father. Thus, we conclude that WHG admixture was mediated

by people of both sexes.

We tested directly for sex-bias in WHG admixture patterns by comparing qpAdm estimates

of ancestry on the X-chromosome which depends 2/3 on female ancestry, and the

autosomes which equally reflect women and men. The estimates are statistically

indistinguishable in all tests (Supplementary Table 3) (Figure 2), providing no evidence for

a scenario either of primarily male WHG contribution to early farmers 29, or

hunter-gatherer Mesolithic women preferencing farmers due to perceived higher status 30.

A caveat is that null results may reflect limited precision in X chromosome qpAdm

estimates.

Genetic evidence of LBK patrilocality at both the continental and local scales

The large sample size of LBK individuals analyzed in this study allows us to perform a

continental scale comparison of patterns of variation on the Y chromosome reflecting the

history of the entire male line, and mitochondrial DNA which reflects the history of the
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entire female line. In the Y-chromosome analysis, we detect previously unappreciated

geographic variation across the LBK (Fig 4) (a χ2(209,42)=242 test for heterogeneity is

highly significant at p<10-12), with haplogroup G dominant in the Slovakian, German, and

Hungarian LBK; haplogroup C in the Austrian_LBK; and most Hungary_ALPC individuals

carrying haplogroup I (61%), associated with Mesolithic populations such as those of the

Iron Gates regions of Serbia and Romania 19,31. In contrast, we do not detect significant

structure in mitochondrial DNA haplogroup frequencies, with no haplotype with a

frequency greater than 30%, and no evidence for haplotype frequency differences across

the regional groups (Supplementary Figure 4), (χ2 (449,54)=61.3, p=0.23). Taken together,

these results provide evidence of limited gene flow among LBK communities on the male

line, which could be explained by a much higher rate of movement of females between

communities.

Figure 3: Burial layouts

for A) Nitra (top) and B)

Polgár-Ferenci-hát

(bottom). Each symbol

represents one individual:

squares males, circles

females. Red denotes main

genetic cluster, green

WHG outliers, violet EEF

outliers. Light brown are

children. Blue lines or

circles are 1st-degree

relatives, and the yellow

pottery symbol grave

goods in burials. C)

Dietary isotopes at Nitra

coded by families. Families
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at Nitra do not cluster in dietary-specific groups. All plots restrict to individuals with qpAdm

estimates.

We also find genetic evidence for patrilocality in LBK communities by studying the

distributions of close relatives in the two cemeteries where we detect many relationships

(Figure 3). At Nitra we detect nine families including a pedigree spanning four generations,

and at Polgár-Ferenci-hát we detect 4 families including one with 13 individuals. Combining

the two cemeteries, we find that relatives up to the 3rd degree (Supplementary Table 7,

Supplementary Sections 2.2 and 2.3) tend to be buried together more often than random

pairs of individuals At Nitra, we did not detect significant differences in the number of

relatives between males and females χ2 (47,1)=0.14, p=0.70. In contrast, we detect strong

evidence of patrilocality at Polgár-Ferenci-hát, with more relatives for males (21 of 22) than

for females (14 of 23): χ2(45,1)=7.78, p=0.005 (Table 1).

Table 1: Patterns of relationships at three LBK sites with substantial new data

(*p<0.05)

Polgár-Ferenci-hát
(n=45)

Nitra
(n=47)

Schletz
(n=93)

Ratio
related/unrelated

0.83 0.65 0.15

Ratio of
males/females related

0.94/0.69* 0.66/0.65 0.1/0.05

Average no. of
relatives

1.1 0.60 0.1

No evidence for kinship-associated differences in mobility and diet

We analyzed the findings of genetic relatedness together with dietary (carbon, δ13C, and

nitrogen, δ15N) and strontium isotope data (87Sr/86Sr) 32 (Supplementary Section 3). We did

not perform similar analyses for Schletz as we had dietary isotopic data for too few

individuals and too few detected genetic relatives.

We detect significant within-family variation in mobility isotopic measurements both at

Nitra (Levene’s test for variances n=12, p=0.01) and at Polgár-Ferenci-hát (Levene statistic
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for the difference in variance = 16.74, p=0.001). This suggests that the people at both sites

genetically related individuals varied in the places where they resided over their lifetimes.

We next tested for significant differences across families in their dietary patterns but found

no strong signals. The only notable correlation we detect is at Nitra, where we found a

marginally significant signal of variation across families for δ13C carbon isotopes

(Kruskal-Wallis=17.20, N=26, p=0.04), providing some evidence that families sourced food

from different landscape contexts, either through variation in direct consumption or

through variation in consumption of animals eating these plants27. However, in light of the

fact that we carried out multiple hypothesis tests (below), the observation of one

marginally significant signal of correlation like this should not be interpreted as strong

evidence.

We do not detect significant variation in strontium isotope ratios across families at Nitra

(Mann-Whitney U test, n=21, p=0.16), nor do we detect a correlation between family

structure and the presence of grave goods (Supplementary Section 2.1, Supplementary

Table 8) (δ13C, Kruskal-Wallis=4.99, p=0.17; δ15N, Kruskal-Wallis = 1.45, p=0.69). At

Polgár-Ferenci-hát, we also do not detect variation in isotopic ratios across families: δ13C,

Kruskal-Wallis = 4.99, p=0.17; δ15N, Kruskal-Wallis = 1.45, p=0.69 (Supplementary Figure

5).

Variation across the LBK in community size, migration, and mate choice patterns

We attempted ancient DNA analysis from all excavated skeletons from Schletz,

corresponding to 103 individuals from the ditch system associated with a massacre, and 19

individuals from settlement burials. A total of 85 of the 122 individuals had enough

genomic data for high-resolution analyses (Supplementary Table 1). Of the 71 individuals

with genome-wide data from the base of the ditch system, including 51 genetic males and

20 genetic females, we detected only a single pair of 1st/2nd-degree relatives, and possibly

two pairs of individuals between ditch and settlement contexts. Only six of the 71 analyzed

individuals from Schletz are related up to the 3rd degree, contrasting with much higher rates
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at Nitra and Polgár-Ferenci-hát (Table 1). We identified a single relationship between an

older male adult (I24892) and a subadult (I24280) from within the massacre context,

providing further evidence that this was not an event that affected only a small community

that might have been expected to include more families.

We used HapNe 33 to infer the effective population size trajectory of unrelated individuals

from the Schletz massacre in the hundreds of years before they lived (n=56). We find no

evidence for a contraction in the gene pool in the hundreds of years before the individuals

lived, which could be explained if the people massacred at Schletz were drawn from many

communities and not a single community that would be expected to be drawing from a

more local gene pool. In contrast, at Nitra (n=18), we observe strong evidence for such

recent geographic isolation and community substructure (Figure 4, Supplementary Section

6).

Figure 4: Inferred population size trajectory of Schletz and Nitra. The recent contraction in

Nitra likely reflects undetected families in the sample, while the Schletz individuals have no

evidence of being more closely related to each other than more widely sampled LBK.

Further evidence for the Schletz individuals being drawn from a much larger population

than those at the other sites comes from IBD sharing patterns between the studied

individuals (Supplementary Table 9), inferred based on analysis of the imputed and phased
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dataset. We observe significantly less average sharing of IBD segments >12 cM among

individuals at Schletz (26 cM) than at Nitra (174 cM) or Polgár-Ferenci-hát 158 cM. The

reduction is significant (p=0.001), even after excluding 1st, 2nd, and 3rd-degree relative

pairs (p=0.005), showing the signal is driven by distant relatives in sites, not just close

relatives.

Eighth individuals from Polgár-Férenci-hát and four from Nitra have elevated rates of Runs

of Homozygosity (ROH), a type of data that provides evidence about whether or not

individuals reproduced within their own genetic lineages?34. In contrast, the rest of the

individuals at these sites and all of those from Schletz have no segments with ROH >4 cM 34

(Supplementary Figure 6).
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Figure 5: IBD patterns: A) Regression of summed IBD >12cM shared between individuals of

each pair of sites (averaged over all pairs), and geographic distance. Polgár-Ferenci-hat has

more connections with closer sites supporting a localized ALPC community, while Schletz and

Nitra do not show a clear association with distance, as would be expected if the western LBK

expansion was so rapid that nearby groups were hardly more closely related than groups far

apart. B) A heatmap showing the intensity of IBD, presenting the average total length of IBD
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segments > 12cM shared between all possible pairs, by area or period. The numbers after the

site names show the number of individuals per site included in these analyses.

The genetic data give evidence of two separate regional networks: one for the Carpathian

Basin where the across-site rate of sharing averages 918 cM, and one for Central-Western

Europe where the across-site rate of sharing averages 490 cM, but with a lower 31 cM of

sharing across regions. This is in accord with archaeological studies that imply that Nitra

and Polgár-Ferenci-hát are associated with different LBK expansions and periods 21,35,36. We

further observe that the rate of IBD sharing decreases significantly with distance from

Polgár-Ferenci-hat (p=0.011) consistent with the idea of a localized network of people

within the ALPC. In contrast, there is weak or no detectable association of IBD sharing with

geographic distance in the western LBK, as would be expected if the western LBK

expansion was so rapid that nearby groups were hardly more closely related than groups

far apart. Finally, since the Hungary_ALPC individuals have on average 16.5 cM in ROH and

are the LBK group with the largest fractions of their genome in ROH, they appear to exhibit

more restricted reproduction practices than the more widespread western LBK.

Screens for natural selection based on high-frequency long-range haplotype

We scanned the imputed diploid genotype data for the LBK and ALPC individuals for signals

of selection by searching for haplotypes that had evidence of being very recent in origin

based on their common frequency and large scale. Because of the poor haplotype phasing

expected for ancient genomes, we carried out these scans with both the phased

andunphased versions of the iHS and nSL scores, as implemented in Selscan 2.0 37. We also

used BetaScan38 to detect signals of long-term balancing selection in the population.

We detect evidence of long-term balancing selection in the HLA region on chromosome 6,

with elevated B1 scores (Figure 6), consistent with previous evidence of balancing selection
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at this locus in Neolithic Europeans 39. A second notable finding is 29 genes with evidence

of balancing selection in the ALPc and LBK (Supplementary Table 12). Most were also

reported as significant outliers based on analysis of patterns of variation in modern

Europeans 40.

We identified 40 genes with evidence of positive selection in the LBK (Supplementary

Tables 11-12, Supplementary Section 7, Supplementary Figure 7), including notable

examples associated with pigmentation. Variation in the BNC2 influences human

pigmentation and has also been found to be affected by natural selection in modern

Europeans41–43. The PRKCH gene encodes the PKCη protein in melanocytes which is

involved in the protein kinase C-dependent pathway regulating melanogenesis 44. The

PTPRN2 gene had a higher level of expression in lightly pigmented melanocytes than in

darkly pigmented melanocytes, similar to SLC45A2 which contains one of the strongest

known signals of pigmentation selection in Europe 45. When we correlate the WHG local

ancestry components with our selection values, the non-WHG ancestry seems to contribute

more to sites under selection (Supplementary Section 7, Supplementary Figure 8).

Figure 6: (A) B1 scores in the ALPC. (B) B1 scores in the LBK. B1 shows regions with

balancing selection, the highest signal on chromosome 6 at HLA.

Discussion

Our study reveals differences in kinship structure, admixture, demography, and ancestry

across the LBK. We report an average of around 12%WHG ancestry at Polgár-Ferenci-hát, a

proportion that reached as high as 35% in some individuals. This contrasts with the much
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lower average among the studied individuals from Schletz (an average of 4% with a range

of up to 14%) and Nitra (an average of 4% with a range of up to 8%). This suggests that the

admixture between farmers and hunters in the Carpathian Basin was more extensive than

among the more westerly LBK communities. This admixture shows no evidence of a

sex-biased trend despite the high fraction of Y-chromosome haplogroups associated with

WHG.

Correlation between isotopic and genetic shows no statistical differences in diet and

mobility patterns between families in Nitra and Polgár-Ferenci-hát, but we find evidence

for high variation in mobility within families at least at Nitra. We observe no evidence of

correlation of genetic patterns to archaeological markers of social status.

We find that at both Nitra and Polgár-Ferenci-hát, relatives are buried closer to each other

than non-relatives. Polgár-Ferenci-hát males had significantly more relatives than females.

This pattern, combined with the evidence of limited regional diversity in the Y-chromosome

and long IBD tracks, is consistent with a patrilocal society. We observed much less IBD

across western LBK sites and ALPC sites than within either community, suggesting they

were part of different mating networks.

The proportion of relatives in Schletz is lower than at any other LBK site analyzed. We only

identified relationships between males and children and only one with an adult male. This

raises doubts regarding the idea that the individuals recovered at the ditch represent a local

community, and instead suggests that people massacred at this key were likely drawn from

a widespread population 46. When comparing Schletz and Nitra, we find evidence that

Schletz but not Nitra represents a large population. One possibility is that Schletz was a

central site that drew a population from a larger area in times of stress, such as outbreaks

of violence observed at other LBK sites 9. Another explanation could be that communities in

the broader LBK expansion area were formed with few biologically related individuals, as at

Derenburg-Meerenstieg II and Stuttgart-Mühlhausen, Germany. In any case, our results

suggest that frequent mobility between sites was a factor in many LBK communities 47. A
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lack of related individuals has also been found in the Eneolithic massacre of Potocani,

Croatia 48.

Our results illuminate how whole-cemetery ancient DNA, with isotopic and archaeological

data, can reveal the structure of past societies as well as evidence for local variations in

mobility and diet, shedding light on unappreciated aspects of past human behaviour.
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Methods

Ancient DNA data generation

The 319 individuals screened in this study were sampled with authorization from the

authorities responsible for each of them. Bones or teeth were powdered, and DNA was

extracted in dedicated laboratories. DNA was extracted from powder using an automated

protocol with silica-coated magnetic beads and Dabney binding buffer 50. DNA extracts were

converted to double-stranded libraries using a partial UDG treatment 51. Amplified libraries

were enriched using two rounds of consecutive hybridization capture enrichment 1240k

strategy 52,53). Captured libraries were sequenced on an Illumina NextSeq500 instrument

with 2 × 76 cycles (2 × 7 cycles for the indices) or an Illumina HiSeq X10 with 2 × 101 cycles

(2 × 7 for the index). We trimmed adapters, merged paired-end sequences, and aligned to

the human genome (hg19) and mitochondrial genome (RSRS) using BWA 0.6.1 54. The

computational pipelines are available on GitHub

(https://github.com/DReichLab/ADNA-Tools,

https://github.com/DReichLab/adna-workflow).

We evaluated ancient DNA authenticity using several criteria: a rate of cytosine

deamination at the terminal nucleotide above 3%; a ratio of Y to combined X + Y

chromosome sequences below 0.03 or above 0.35 55(intermediate values are indicative of

the presence of DNA from at least two individuals of different sex); for male individuals

with sufficient coverage, an X chromosome contamination estimate whose lower bound of

the 95% confidence interval is <1.1% (all but one below 0.5%); and an upper-bound rate

for the 95% confidence interval for the rate to the consensus mitochondrial sequence that

exceeds 95%, as computed using contamMix-1.0.10 56. We added tags to samples that gave

evidence of contamination by any of these criteria and discarded samples with at least two

signals of contamination.

Genetic sex, mitochondrial and Y chromosome haplogroup determination
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To determine genetic sex, we searched for evidence of a Y chromosome by computing the

ratio of Y-chromosomal 1240k positions with available data divided by the number of

X-chromosomal and Y-chromosomal 1240k positions with available data. Individuals with a

ratio of more than 0.35 were considered genetic males, and individuals with less than 0.03

were considered genetic females. To check for sex chromosome aneuploidies, we computed

the mean coverage on X-chromosomal and Y-chromosomal 1240k positions. We normalized

these values by autosomal coverage on 1240k positions for each individual. We did not find

any evidence of sex chromosome aneuploidies.

To determine mitochondrial haplogroups (Supplementary Table 1), we constructed a

consensus sequence with samtools and bcftools 57, restricting to sequences with a mapping

quality of >30 and a base quality of >30. We called haplogroups with Haplogrep2 58.

We determined Y chromosome haplogroups (Supplementary Table 1) based on the

nomenclature of the International Society of Genetic Genealogy (http://www.isogg.org)

version 14.76 (25 April 2019), restricting to sequences with a mapping quality of 30 or

more and a base quality of 30 or more.

Biological kinship estimation and family reconstruction

We followed the same approach described by 59. We focused on 1st, 2nd, and 3rd-degree

relatives for family reconstruction, but also noted individuals detected as relatives up to the

4th degree. The complete list is reported in Supplementary Table 7.

Principal component analysis and f-statistics analyses

We used the Western Eurasian populations genotyped on the Affymetrix Human Origins

SNP array to perform Principal Components Analysis with SmartPCA 23. In this PCA, we

projected all the samples we report in this paper (Supplementary Table 1) as well as other

relevant ancient DNA data (Supplementary Table 1). The same dataset was used to perform

f-statistics-based analyses using admixtools 23.
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We performed qpAdm analyses following the same strategy as in Patterson et al. 2022 25.

Individuals labeled as Ancient_Africa, WHGB, and Turkey_N were used as right populations

and WHGA and Balkan_N as left. qpWave was performed using the same strategy.

ROH

We called ROH with the methodology described in Ringbauer et al.34 optimized for the

study of ancient people, restricting to individuals with more than 400,000 SNPs.

Imputation

Genomes were imputed and phased with GLIMPSE 60 following the methodology in 61.

Local ancestry maps

We used diploid imputed genotypes to perform the analyses. We ran RFMix v2.03-r027using

Balkan_N andWHGA as reference populations. We plotted the results with Python 3.7.6 and

Rstudio.

Selection

The selection analysis is detailed in the supplementary material.

Data availability

All sequencing data are freely available at the European Nucleotide Archive (ENA) with the

accession number: PRJEB64177.
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