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(a) CDR3 Short Masking (b) CDR3 Whole Masking

(c) CDR3 Random Mutation (d) CDR3 Random Retrieval

Figure 11: The conformations of various methodologies implemented for xTrimoPGLM-AbFold.
(a) CDR3 Short Masking: This setup represents a sequence modification scenario where a fragment
of the CDR3 sequence is masked and redesigned. The generated antibodies are structurally similar
to the original ones. (b) CDR3 Whole Masking: This strategy involves masking the entire CDR3
sequence, necessitating a de novo structural prediction, thus illustrating a more comprehensive
redesign approach. This setup offers a broader framework for exploring the subtleties of antigen
recognition and antibody functionality. (¢) CDR3 Random Mutation: This strategy signifies the
validation process using random mutagenesis of selected positions within the CDR3 domain. (d)
CDR3 Random Retrieval: This demonstrates another validation method wherein the CDR3 region of
the base sequence is replaced by a random CDR3 region from other antibodies in the SARS-CoV-2
wild-type library.

* CDR3 Short Masking (CSM). This strategy involves masking a partial segment of the
CDR3 region. We select the length of the masked region based on a uniform distribution
within the interval [3,6]. Subsequently, a segment of the CDR3 region is randomly replaced
with the [SMASK]token. Upon feeding this modified antibody sequence into xTrimoPGLM-
Ab-1B, the masked segment of the CDR3 region undergoes a redesign. The comparison
between the conformations of the CDR3-redesigned antibodies and the original sequence is
depicted in Figure 11(a).

* CDR3 Whole Masking (CWM). This strategy involves masking the entirety of the CDR3
region with the [SMASK] token, thus necessitating a de novo design approach. Given
the increased complexity of this setting, compared to the CSM, the CWM requires more
sophisticated computational models. This method provides a comprehensive and integrative
methodology to delve deeper into the complexities of antibody functionality, as shown in
Figure 11(b).

* CDR3 Random Mutation (CRM). This strategy adopts a random mutagenesis approach
focusing on specific sites within the CDR3 region. It involves randomly selecting 3-6
positions within the CDR3 domain and subsequently introducing random mutations at these
sites. This method can be seen as a stochastic baseline that operates at a comparable edit
distance. The result is shown in Figure 11(c).

* CDR3 Random Retrieval (CRR). This strategy comprises the random substitution of the
CDR3 region using sequences from other antibodies present in the SARS-CoV-2 wild-type
library. The predicted structures are illustrated in Figure 11(d).
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Table 7: A collection of sequences produced via two distinct masking approaches: CDR3 Short
Masking and CDR3 Whole Masking. In addition, it includes two parallel benchmark methods, namely
CDR3 Random Mutations and CDR3 Random Retrieval. Each sequence’s relative variation from the
reference truth is also quantified, demonstrated through their respective edit distances.

Marker CDR3 Short Masking Edit Distance
Ground truth | AKDKDYGDLPTVDYYYHYGMDV -
Red AKDKDYGDLPTVLRYYYYGMDV 3
AKDKDYGDLPQYYYYHYGMDV 3
Blue AKDKDYGDLPSLSYYYHYGMDV 3
AKDKDYGDLPTVDYFFLLGMDV 4
Purple AKDKDYGDLSLSPPYYHYGMDV 5
AKDKDYGDLPTVDYYDYYGLDV 3
CDR3 Whole Masking
Red AKDSYYGSGSYYNPDQGYYYYYGMDV 12
AKDGPGGSGSYSADYYYYYGMDV 10
Blue AKDKDCGGDCYLLDYHYYYGMDV 8
AKDSTVTPLPAAIRTYYYYYYGMDV 12
Purple AKDLNRRGISIFGVDNDYYFYGLDV 13
AKDSYYGSGSYSYVSYYYYYYGMDV 11
CDR3 Random Mutations
Red AKDKDHVGFMTVDYYYHYGMDV 4
AKDILFIDLPTVDYYYHYGMDV 5
Blue AKDKDYGDLPTVDYYYLQLIPC 6
AKDKDYGDLPTVDYDIGYGMDV 3
Purple AKDKDYRHRETVDYYYHYGMDV 4
AKDKDYGDLPTVDYYYALRRRR 6
CDR3 Random Retrieval
Red ARDRSGKDVLTGYPMFPAGMDV 14
ARDLSAGHCTGGVCYTAGGIDY 16
Blue ARGVITMVRGVIRDYYYYGMDV 13
ARDLGGGYSNVYVNHYYGMDV 12
Purple ARDEITVTAGAWGNYYYGMDY 14
AKGYCGGDCYSGLLDWYFDL 16

Results. Under the aforementioned settings, we generate a set of 6,000 antibodies via xTrimoPGLM-
Ab-1B. Six antibodies are randomly selected as depicted in Figure xTrimoPGLM-AbFold is
utilized as the structure prediction model. In response to the observation that using CDR3 short
masking tends to generate antibodies closely resembling the ground truth with a small edit distance,
we implemented a filter to exclude any antibodies with an edit distance of 2 or less. A series of
generated sequences and their corresponding edit distances from the ground truth is presented in
Table[7] Importantly, it is noteworthy that both the CSM and CWM policies are capable of generating
sequences of varying lengths without resorting to mutations or deletions. In contrast, the sequences
generated by the two parallel baselines, CRM and CRR, display considerable disorder, regardless
of whether there are few mutations or a complete replacement of the entire CDR3 fragment. Our
analysis further identifies a relationship between the edit distance and the structure of the generated
antibody’s CDR3 region. Specifically, as the edit distance grows, the organization of the CDR3 region
tends to degrade, suggesting that even large generative models currently face limitations.

7 Discussion & Conclusion

One must acknowledge that a substantial limitation of xXTrimoPGLM-100B is the high computational
cost linked to these models, posing a considerable barrier to their implementation. A possible
approach to alleviating this might be the application of more advanced efficient technologies in
terms of parameters or memory, like quantization, for instance QLoRA [112]], kernel fusion, such as
FlashAttention [[113]], and Multi-query [[L14]. Utilizing these methods could enable the training and
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deployment of larger models with less computational resources. However, further investigation is
needed to confirm its practical effectiveness.

Many task-specific methods are plausibly orthogonal to pre-training approaches, complementing each
other to achieve robust performance and significant advancements, as is presented in protein structure
prediction tasks. We underscore the importance of leveraging the substantial fitting capabilities
of large pre-trained models for protein tasks. Instead of treating these models as simply feature
extractors, we argue that it is critical to tap into their inherent learning capabilities [[115]. For example,
the contact map prediction task can significantly improve the performance of fine-tuning (including
the use of LoRA) by 15-20 points. Adding inductive bias to these models, although it can improve
performance in some cases, may also inadvertently constrain their learning capacity and limit the
breadth and depth of their feature extraction capabilities. The introduced bias may oversimplify the
problem at hand, hence reducing the robustness of the model. Instead, by exploiting the inherent
strengths of these large pre-trained models, we can extract more diverse and complex features and
build more robust and flexible predictive models. We envision that with continued advancement in
these models and computing technology, the potential of large pre-trained models in protein-related
tasks will be fully unlocked.

In conclusion, our key contribution is the exploration of unified understanding and generation
pre-training with an extremely large-scale protein language model. This model is comparable
to the scale of today’s large natural language models, and our extensive experiments show that
downstream tasks also comply with the scaling law. Additionally, we have opened up the generation
of protein sequences with xTrimoPGLM-100B. By utilizing the xTrimoPGLM framework, we’ve
made advancements in predicting antibody naturalness and structure prediction with our antibody-
specific model, xTrimoPGLM-Ab. Our work serves as a stepping stone for future research in the
protein foundation model, and we hope it can facilitate further progress in protein-related applications.
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A Training Data Distribution

As shown in Figure[I2] the bar charts represent the distribution of sequence lengths within the Uniref90
and ColAbFoldDB datasets. In both datasets, sequences in the *100-400” length category predominate,
followed by the *50-100" category. The ’0-50’ and 400+ categories contain significantly fewer
sequences. Note the comparison between the distribution of Uniref90 and ColAbFoldDB, indicating
the variety of sequence lengths used for model training.
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Figure 12: Training data distribution

B Tasks Comparison

We evaluated all benchmarked downstream tasks with xTrimoPGLM-100B and ESM2 models. The
performance results are followed as Table[§] This table is the digitized result of the previous Figure|[7]

Table 8: Performance of different models across all benchmarked downstream protein-related tasks.
xT100B depicts xTrimoPGLM-100B model, E15B and E150M for ESM-15B and ESM-150M model
respectively. Metric values are shown in both probing and LoRA (in parentheses) fine-tuning modes,
where the underline denotes the best performance of probing and bold indicates the best performance
of LoRA fine-tuning.

Type Task Metric Model
xT100B (LoRA) EI5B (LoRA) E150M (LoRA)

Cont. Pred. Top L/5 ACC 76.86 (93.32) 73.52 (92.19) 63.60 (84.72)
P. Struc. Fold Pred. 12K-cls ACC 71.57 (75.61) 67.39 (69.20) 54.87 (59.25)
Sec. Struc. Pred. 3-cls ACC 74.63 (75.33) 74.40 (75.85) 73.31 (74.15)
Antib. Res. 19-cls ACC 98.29 (98.38) 98.13 (98.28) 97.54 (96.94)
P Func Fluor. SRCC 65.16 (66.00) 63.84 (63.71) 52.68 (54.54)
’ ’ Fitness SRCC 81.69 (96.10) 77.12 (94.75) 69.60 (94.65)
Localization 10-cls ACC 79.99 (81.60) 80.78 (82.35) 77.85 (78.88)
Enzyme eff. PCC 71.44 (74.79) 68.95 (74.58) 65.77 (71.72)
P Inter Metal Bind. 2-cls ACC 81.70 (82.78) 79.35 (80.85) 73.94 (81.53)
’ " Pept.-HLA/MHC Aff. AUC 87.22 (96.68) 90.48 (97.28) 91.39 (97.12)
TCR-pMHC Aff. AUC 89.76 (95.10) 91.10 (94.05) 87.81 (90.40)
Solubility 2-cls ACC 76.04 (79.45) 74.76 (74.63) 71.50 (72.47)
Stability SRCC 75.52 (84.21) 71.69 (80.75) 69.08 (77.69)
P De Temp. Stabit. MCC 93.07 (94.22) 93.01 (93.24) 86.28 (85.93)
POV Opt. Temp. SRCC 73.96 (73.64) 73.29 (72.07) 68.57 (68.47)

C Model FLOPs Comparison

We conduct a comparative analysis of computational resources utilized by different pre-trained protein
language models (Table [0). The parameters detailed in this table are meticulously calculated by
implementing the models as per the configurations outlined in their respective source papers and
accompanying resources, such as code and model checkpoints. When discrepancies arise between a
paper’s theoretical account and its practical application, we favor the metrics provided in the paper.
From the right-hand side, the total training tokens are computed by multiplying the training steps,
global batch size, and sequence length, given that all models listed are sequence language models.
The model’s parameters are estimated directly by following the authors’ released implementations
and hyperparameters, with the sum of the training parameters calculated while disregarding tied
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weights and buffers. The total training compute is estimated by first approximating the FLOPs for one
forward propagation (1F) of a single training sample. This is then multiplied by three to account for
one forward and one backward propagation without activation recomputation (1F1B). The resulting
number is then multiplied by the number of samples used during the entire pre-training process,
which is equivalent to the total training tokens divided by the sequence length during pre-training.
Only matrix multiplication (matmul) operations are considered in the compute statistics, with other
operations such as embedding, element-wise addition, softmax, and layer normalization excluded
from the FLOP count. The matmuls considered within the attention block include key, query, and
value transformations, attention matrix computation, attention over values, and post-attention linear
transformation. Hidden size transformations in the feed-forward block, a projection from hidden
dimensions into vocabulary dimensions, and a linear transformation in the language model head (if
one exists), are also included in the matmul FLOPs. As an example, if hidden states of size (B, L,
D) are multiplied by a weight matrix of size (D, 4D), the resulting FLOPs is BLD4D?2 (the factor of
2 accounts for multiplication and addition operations). The total training compute for ProtGPT2 is
estimated assuming each A100 GPU performs 120 TFLOPs per second. Consequently, 128 A100
GPUs would achieve approximately 5.3e+21 FLOPs over four days of training.

Table 9: Comparison of training computes between different pre-trained protein language models.

Model Total train compute (FLOPs)  Params  Training tokens
ESM150M 1.1E+21 150M 1,000B
ESM650M 4.4E+21 650M 1,000B

ESM3B 1.8E+22 2.8B 1,000B
ESM15B 5.1E+22 15B 864B
ProtBert 2.5e+12 2.8B 1,929B
ProtT5-x1 1.7E+22 2.8B 1,929B
ProtT5-xxl 3.7E+22 11B 1,039B
Ankh-base 2.6E+21 740M 952B
Ankh-large 6.5E+21 1.9B 952B
ProtGPT2 5.3E+21 740M -
ProGen 7.6E+21 1.2B 1,049B
ProGen2-small 1.8E+20 150M 170B
ProGen2-medium 8.9E+20 760M 170B
ProGen2-base 1.1E+21 760M 200B
ProGen2-large 3.4E+21 2.8B 200B
ProGen2-xlarge 1.4E+22 6.4B 350B
xTrimoPGLM-Ab-1B 8.5E+21 1.2B 1,000B
xTrimoPGLM-100B 6.2E+23 100B 1,000B

D Pre-training Configurations

The detailed parameters for training the xTrimoPGLM-100B model are listed in Table[I0] Hyperpa-
rameters for fine-tuning settings are also included.

E Generated Structures

We first produced batches of samples with an n-gram penalty (N-gram=3) to reduce the probability
of generating repetitive sequences. However, we find many examples exhibiting low-complexity
sequences (e.g., local repeats), where the predicted structures contain long loop disorder regions. We
hypothesize that the n-gram penalty potentially impedes the model’s capacity to generate grammati-
cally correct sequences with ease. Once we remove the n-gram penalty, the generated structures tend
to be more natural.
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Figure 13: Structure examples of generated protein sequences with different parameter configurations.
The first row depicts sequences with parameter (7'=1.0, P=1.0, N-gram-penalty=3), while the second
row removes the n-gram constraints to reduce long loop disorder regions.
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Table 10: Full configurations for xTrimoPGLM-100B training

KEY VALUE
glu_activation GeGLU
hidden dim. 10,240
ffn size 31,744
# layers 72
# attention heads 80
sequence_length 2,048
global batch size 4,224
max learning rate 4e-05
min learning rate 4e-06
adam_betal 0.9
adam_beta2 0.95
adam_eps le-08
aggregated_samples_per_sequence 1,2,4,8
attention_dropout 0.1
attention_softmax_in_fp32 True
average_block_length 6
bias_dropout_fusion True
checkpoint_activations True
checkpoint_in_cpu False
checkpoint_num_layers 9
clip_grad 1.0
tensor_parallel_size 4
pipeline_parallel_size 8
data_parallel_size 24
deepnorm True
distributed_backend nccl
eval_interval 300
fpl6 True
mlm_prob 0.1
span_prob 0.2
gpt_prob 0.7
hidden_dropout 0.1
init_method_std 0.0052
initial_loss_scale 65536
layernorm_epsilon 1e-05
rotary_embedding 2D
learnable_rotary_embedding False
length_per_sample 2048
log_interval 1
Ir_decay_iter None
Ir_decay_samples 439,453,125
Ir_decay_style cosine
Ir_warmup_samples 14,648,437
make_vocab_size_divisible_by 128
masked_softmax_fusion True
micro_batch_size 1
min_gmask_ratio 0.4
min_loss_scale 1.0
optimizer adamw
partition_activations True
rampup_batch_size 240,24,12207031
save_interval 300
seed 1234
short_seq_prob 0.02
shrink_embedding_gradient_alpha 0.1
single_span_prob 0.02
split 949,50,1
tokenizer_type ProteinTokenizer
weight_decay 0.1
zero_stage 1
FINETUNE

lora_(R, o) (8,16),(16,32)
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