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Abstract  

Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The lack of 

validated prognostic markers, limited patient numbers and variable tissue quality significantly impact 

diagnosis, risk stratification, patient enrolment, and results of clinical studies. We performed label-free 

quantitative proteomics on 50 clinical formalin-fixed, paraffin embedded biopsies, validating 22 putative 

biomarkers from independent genetic studies. Our comprehensive proteomic phenotyping reveals more 

than 380 differentially expressed proteins and metabolic vulnerabilities, that can inform new therapeutic 

strategies for DCIS and IDC. Due to the readily druggable nature of proteins and metabolites, this study is 

of high interest for clinical research and pharmaceutical industry. To further evaluate our findings, and to 
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promote the clinical translation of our study, we developed a highly multiplexed targeted proteomics 

assay for 90 proteins associated with cancer metabolism, RNA regulation and signature cancer pathways, 

such as Pi3K/AKT/mTOR and EGFR/RAS/RAF.  

 

1 Introduction  
Ductal carcinoma in situ (DCIS) is a pre-invasive (stage 0) neoplastic lesion that is associated with a ~10-

fold elevated risk of developing invasive breast cancer, e.g., invasive ductal carcinoma (IDC).1 Due to this 

increased risk, patients diagnosed with DCIS undergo aggressive treatment with breast conserving surgery 

or total mastectomy with optional adjuvant therapy, i.e., radiation or endocrine therapy.  

Studies, however, show that if left untreated, only 20-50% of DCIS patients will progress to IDC.2-5 This has 

led to global concerns regarding overtreatment of DCIS patients, the resulting high economic burden for 

the healthcare system and, most importantly, a high psychological burden for the patients. Tools and 

expression signatures to predict invasive progression for better informed clinical decision making are 

required and many international trials are currently enrolling patients with DCIS for non-surgical 

management by active surveillance, e.g., LORIS, LORD and LARRIKIN.6 The COMET trial (NCT02926911) in 

the US is targeting histologically confirmed low-risk DCIS for a comparison of surgery to monitoring and 

endocrine therapy.  

At present, the diagnosis of DCIS is based on calcifications observed during mammography screenings and 

histological assessment of tissue biopsies, i.e., formalin-fixed and paraffin embedded (FFPE) needle core 

biopsies. Five morphological key features, high intra-tumor heterogeneity, poor inter-observer 

agreement,7-10 and the lack of validated prognostic markers significantly impact clear diagnosis and risk 

stratification, as well as patient enrolment and final results of clinical studies. 

There is currently no precision oncology treatment available for patients diagnosed with DCIS. Post-

operative (adjuvant) therapy is guided by immunohistochemistry (IHC) assays for estrogen and 

progesterone receptor status (ER and PR), HER2 expression status (by fluorescence in situ hybridization, 

FISH), as well as BRCA1/2 mutation status. Clinical multigene assays, such as Oncotype DX/DCIS, 

MammaPrint or PreludeDx DCIS, are sometimes used to clinically predict recurrence risks of patients but 

are not standard and only guide the use of adjuvant therapy.  

Generally, DCIS studies are limited by patient number and tissue quality. Recent genomic landscaping 

studies on individual DCIS lesions identified putative biomarkers associated with progression towards IDC 

and give insights into the underlying cancer biology. Multi-omic profiling of DCIS, however, is still 

challenging since DCIS and IDC lesions are mostly studied in FFPE-preserved samples; pure DCIS lesions 

can be very small in size as they are usually from minimally invasive needle core biopsies, and access to 

pure IDC lesions is limited, as most surgically removed IDC lesions also present in-situ components and 

may follow effective neoadjuvant therapy.  

The current study makes use of our recently published FFPE-proteomics method that facilitates proteomic 

profiling on FFPE-preserved tissue cores.11 In a cohort of carefully curated patients treated with DCIS and 

IDC at the Segal Cancer Centre of the Jewish General Hospital (JGH) in Montreal  (n=51) we investigate 

changes in the protein expression of 29 pure DCIS lesions, 18 pure IDC lesions, 13 mixed-type lesions (IDC 

with in-situ components), and 9 cases where pure DCIS and pure IDC is present in different lesions in the 

same patient, either synchronously or metachronously (see Fig. 1). Data from recently published 

independent gene expression studies investigating the progression from DCIS to IDC were used to 

complement the label-free protein expression data. Since FFPE preservation eliminates up to 85% of 

metabolites,12-16 we used Quantitative Systems Metabolism (QSM™) technology from Doppelganger 
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Biosystem GmbH, Germany, an AI-driven metabolic analysis using proteomics data,17 for a comprehensive 

profiling of the central metabolism/energy metabolism. Guided by these results, we developed a highly 

multiplexed parallel-reaction monitoring (PRM) assay for precise quantitation of 90 proteins, that are 

associated with cancer metabolism, RNA regulation and major cancer growth-associated pathways, such 

as PI3K/AKT/mTOR and EGFR/RAS/RAF.  

      

 
Figure 1: Experimental Design. Label-free quantitative proteomics was performed in a cohort of carefully curated patients treated 
with DCIS and IDC (n=51) to investigate changes in the protein expression of 29 pure DCIS lesions, 18 pure IDC lesions, 13 mixed-
type lesions (IDC with in-situ components), and 9 cases where pure DCIS and pure IDC is present in different lesions in the same 
patient, either synchronously or metachronously. The protein extraction of FFPE tissue cores (1 mm diameter, ~0.8 mm³ tissue 
volume) used an optimized FFPE-proteomics protocol published here.11 The samples were analyzed on ‘plug-and-play’ platform 
built for standardization in clinical proteomics, and the data was processed using state-of-the-art data analysis tools, including 
machine learning/AI-driven algorithms for improved and higher confidence mechanistic insights.      

2 Results  

2.1 DCIS and IDC are highly heterogeneous tumor phenotypes but build two distinct clusters in sparse 

Partial Least Squares Regression for Discrimination Analysis (sPLS-DA). 

Several genomic centered studies have reported that both DCIS and IDC tumor phenotypes are highly 

heterogeneous,8-10,18,19 hampering clinical diagnosis but also limiting statistical power and robust assay 

development to complement clinical diagnosis. Using a streamlined FFPE-proteomics workflow 11 with a 

standard label-free mass spectrometry (MS)-based data analysis, we quantified more than 2800 proteins 

at a 1% false discovery rate (FDR) on the protein and peptide level. Using less than 1% of the total protein 

extracted from a single 1-mm FFPE tissue core, we cover 6 orders of magnitude of the DCIS/IDC proteome 

(Fig. 2a). Notably, the proteome of the two ductal breast cancer disease states seems to be clearly 

differential from each other, as an sPLS-DA shows two distinct clusters between the study cohorts (Fig. 

2b). The sPLS-DA is a statistical method used for extracting and selecting important features from high-

dimensional data to discriminate between different groups, while simultaneously considering sparsity to 

improve interpretability and reduce overfitting.20 Based on the available clinical data (non-omics data) 

and small sample size, we are not in the position to infer any underlying patterns or biological relationships 

leading to this clustering on the protein level. Nevertheless, the top 10 features driving the proteomic 

variability between DCIS and IDC seem to reflect high transcriptional activity, extracellular matrix 

remodeling and inflammation processes (Figs. 2c and 2d).  
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Figure 2: Data Quality and Evaluation of Variability. (A) Dynamic range of ~2,860 proteins quantified in ductal breast 

cancer, at a 1% false discovery rate. All –log10 values were based on normalized spectral abundance factor (NSAF) 

values, which were used to normalize the spectral count. High NSAF values represent a high level of expression. 6 

orders of magnitude of the DCIS/IDC proteome are covered using ~1% of the total sample and a standard data 

dependent acquisition (DDA) method without fractionation. (B) Sparse Partial Least Squares Regression for 

Discrimination Analysis (sPLS-DA) showing good clustering of the two study groups. The oval shape represents 95% 

confidence intervals. Interquartile and ROUT method identified no outlier samples. (C/D) Loading plots of the sPLS-

DA, showing proteins/genes that drive the variability and clustering between DCIS and IDC. The right x-axis shows 

expression levels of these drivers in the DCIS/IDC samples.     

 

2.2 MS-based proteomics complements and supports independent genomic/transcriptomic studies of 

DCIS to IDC progression. 

Study of progression of DCIS to IDC has mainly used gene expression analysis or IHC/FISH on the protein 

level. Recent studies have demonstrated significant misalignment between genome and even 

transcriptome and the ultimate protein levels, and IHC is poorly quantitative.21-24 Therefore, we sought to 

confirm these findings using direct measurement of proteins. We compared MS-based label-free 

proteomics data with 49 differentially expressed genes identified by three recent larger-scale 

independent genomics/transcriptomics studies 9,25,26 and found 22 overlapping genes (see Table 1). 

Proteomics data identified gene products of FOXA1, POSTN, THBS2, CA12, FN1 and ALDH1 as differentially 

expressed proteins (DEPs, unpaired t-test, p<0.05).  

The proteomics data shows lower FOXA1 (Forkhead Box A1) expression in pure DCIS compared to pure 

IDC (p<0.0001), and increased expression in mixed-type DCIS compared to pure DCIS (p=0.03) suggesting 

a protective function of FOXA1. The loss or silencing of FOXA1 observed in DCIS seems to promote cell 

migration and invasion. Interestingly, forced expression of FOXA1 in MCF-7 (IDC cell line) inhibits growth, 
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and controls cell plasticity by repressing the basal-like phenotype.27,28 Genetic studies associate FOXA1 

with heterochromatin remodeling, particularly affecting hormone receptor transcription,29 and regulation 

of the cell cycle with BRCA1.30,31 Evidence of FOXA1 involvement in tumor progression on the (epi-)genetic, 

transcriptomic, and proteomic level warrants further investigation of FOXA1 as clinical biomarker and its 

clinical utility for DCIS risk stratification.    

POSTN (Periostin), THBS2 (Thrombospondin 2), and FN1 (Fibronectin) mediate cell-cell and cell-matrix 

interactions. POSTN, a downstream effector of β-catenin, activates PI3K/AKT and ERK pathways.32 In DCIS, 

these proteins have lower expression levels compared to IDC (p<0.03, p<0.04, p<0.03, respectively), 

indicating stromal remodeling in DCIS to IDC progression.  

CA12 (Carbonic Anhydrase 12) regulates the tumor microenvironment and metabolic pathways,33-35 with 

lower protein levels in pure DCIS compared to pure IDC (p<0.0001). Loss of CA12 activity likely creates a 

more favorable environment for malignant cell growth and progression towards IDC.  

High ALDH1 (Aldehyde Dehydrogenase 1) expression characterizes cancer stem cells associated with 

tumorigenesis, metastatic behavior, and poor outcomes.36,37 While an IHC-based profiling of DCIS did not 

associate ALDH1 with breast cancer events,9 our MS-based analysis on paired DCIS/IDC lesions, does show 

a significantly higher concentration of ALDH1 in DCIS compared to IDC lesions (p=0.01), supporting 

findings from stem cell biology that ALDH1 might be a functional and prognostic biomarker of 

tumorigenesis in DCIS.  

Having access to ‘real-world’ mixed-type lesions, the most prevalent clinical phenotype of breast ductal 

carcinoma, we were in the unique position to investigate the proteome of DCIS lesions that are likely 

active in the transition to IDC, depleted from inter-tumor heterogeneity. Comparing pure DCIS to mixed-

type DCIS lesions revealed significantly lower protein levels of KRT5, KRT14, KRT6B, and CEACAM5 in pure 

DCIS lesions (p<0.05), indicating stromal remodeling as a key feature in the progression from pre-cancer 

to invasive cancer, with prognostic value for DCIS management. High expression of KRTs is linked to good 

prognosis in breast cancer, while lower levels are associated with invasive tumor proliferation.38-40  

CEACAM5 (also CEA) expression has context-dependent impact and a protective function in breast cancer, 

with potential usefulness in disease monitoring.9,41,42 Similarly, comparing pure IDC to mixed-type IDC 

lesions showed a loss of KRT expression in mixed-type IDC (p<0.05), suggesting a protective role of KRTs 

and marker of progressiveness in DCIS. 
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Table 1: Overlapping molecules from independent gene expression studies and this proteomic profiling.  

Differential expression values of 22 proteins corresponding to genes proposed in the literature as biomarkers for 

DCIS to IDC progression. In red statistically significant entities with a student t-test p-value <0.05, in yellow entities 

close to the set p-value. na = ‘not applicable’; the protein was not quantified in that dataset. 

 

2.3 Loss of basal membrane stability, inflammatory processes, and epithelial-to-mesenchymal 

transition (EMT) identified as key events driving DCIS progression.     

Having confirmed the results of genomic/transcriptomic studies in this setting using direct MS-based 

protein measurements, we turned to a global proteomics approach to discover further features of the 

DCIS-IDC scenario. 

Differential expression analysis of more than 2800 proteins identified in pure DCIS compared to IDC, 

revealed ~388 DEPs using an unpaired t-test with post-hoc Benjamini-Hochberg FDR method for multiple 

hypothesis testing (q<0.01) and at least a 2-fold-change in protein expression between DCIS and IDC (Fig. 

3 a, and Supplemental Table 1). To reduce the inter-patient variability, we compared proteomic profiles 

of DCIS and IDC lesions from the same patients (n=9). Ten differentially expressed proteins (DEPs) were 

identified: ILK, ITGA4, GPRC5A, FNTA, SCPEP1, EPB41L3, and SORBS1 were upregulated in DCIS, while 

ACAP1, ATP6V0A1, and KPRP were upregulated in IDC (Fig 3 b, and Supplemental Table 2). 

ILK, an integrin linked kinase, regulates integrin signaling and is associated with tumor growth and 

metastasis.43,44 ITGA4 mediates cell-cell adhesions and is linked to cancer progression, inflammatory 

UniProt ID Gene Symbol
IDC vs DCIS

p value

IDC mixed vs DCIS mixed

p value

IDC paired vs DCIS paired

p value

DCIS pure vs DCIS mixed

p value

IDC pure vs IDC mixed

p value

P55317 FOXA1 <0.0001 0.1584 na 0.0277 0.2796

Q9BV36 MLPH 0.9937 0.9549 0.1108 0.1053 0.2391

O43570 CA12 <0.0001 na 0.2684 0.9932 na

P02751 FN1 0.1223 0.0584 0.0246 0.3442 0.5544

P08123 COL1A2 0.2946 0.7485 0.2399 0.5725 0.6809

Q15063 POSTN 0.006 0.6849 0.0293 0.1870 0.3989

P35442 THBS2 <0.0001 0.3087 0.0431 0.5240 0.9132

Q02487 DSC3 0.2055 0.7676 0.4584 0.0608 na

P13647 KRT5 0.6350 0.6893 0.4811 0.0008 0.0019

P02533 KRT14 0.3695 0.195 0.7197 0.0026 0.0006

P04259 KRT6B 0.5053 na 0.5849 0.0092 0.0491

P19012 KRT15 0.0949 0.1307 0.3695 0.2278 0.5593

Q05682 CALD1 0.1707 0.9676 0.8580 0.1800 0.4176

P51884 LUM 0.2691 0.3142 0.8070 0.6572 0.5536

P46777 RPL5 0.7106 0.1105 0.1934 0.1819 0.0578

P05154 SERPINA5 0.1831 na 0.7365 0.4077 0.2000

P06401 PGR 0.6468 0.4329 0.1435 0.3075 0.3864

P04626 HER2 0.4177 0.2724 0.8663 0.3003 0.7259

P00403 COX2 0.2184 0.6032 0.1624 0.4270 0.1042

P00352 ALDH1 0.4049 0.4452 0.0125 0.3963 0.9840

P16070 CD44 0.3565 0.8431 0.1683 0.2674 0.9394

P06731 CEACAM5 0.0592 na na 0.0253 na
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reactions, and ECM stemness.45-47 GPRC5A acts as an oncogene or tumor suppressor in different cancers.48-

50 Androgen receptor-regulated FNTA enhances KRAS signaling and might be involved in tumorigenesis.51-

56 SCPEP1 is associated with cancer development, growth and metastasis.57-59 EPB41L3 is a tumor 

suppressor involved in apoptosis and cell cycle regulation.60-63 Decreased expression in DCIS was observed 

for ATP6V0A1, which plays a role in pH homeostasis and tumor cell invasion.64-66 ACAP1, which is 

associated with cell proliferation, migration, and immune infiltration in tumors.67-69 Loss of ACAP1 could 

indicate impaired immune response in IDC progression. KPRP, involved in keratinocyte differentiation,70,71 

might contribute to invasiveness when its expression is lost in DCIS. 

Overall, proteomic profiling of DCIS identified more than 380 putative biomarkers (protein level) to 

clinically profile DCIS lesions for risk stratification and disease management. The association of the 

differentially expressed proteins quantified in this study with hallmarks of cancer, such as remodeling of 

the tumor microenvironment (e.g., ILK, ITGA4, SCPEP1), escape of apoptosis (e.g., ILK, GPRC5A, FNTA, 

EPB41L3), deregulation of apical junction and energy metabolism (e.g., ATP6V0A1, KPRP, ITGA4), as well 

as inflammation and immune response processes (e.g., ACAP1, ITGA4) (Fig. 3c), warrants further 

investigation. Further, most of the identified DEPs are readily druggable and re-purposing of FDA-

approved anti-inflammatory drugs and antibiotics pose interesting treatment options for DCIS. 

 

 
Figure 3: Differential Expression Analysis reflects loss of basal membrane stability, inflammatory processes, and 

epithelial-mesenchymal transition as key events towards DCIS to IDC progression. (A) Volcano plot of the proteome 

of pure IDC compared to pure DCIS lesions showing 388 differentially expressed proteins (unpaired t-test with post-

hoc Benjamini-Krieger analysis p<0.01, abs log2 fold change >2). (B) Volcano plot of the proteome of paired IDC 

lesions compared to paired DCIS lesions showing 10 differentially expressed proteins (unpaired t-test with post-hoc 

Benjamini-Krieger analysis p<0.05, abs log2 fold change >2). (C) Molecular networks representing up-

/downregulated pathways in IDC compared to DCIS lesions. UPR: Unfolded Protein Response, EMT: Epithelial-to-

Mesenchymal Transition. 

 

2.4 EIF2 and PI3K/Akt/mTOR signaling pathway potentially drive IDC phenotype development through 

dysregulation of central energy metabolism in cancer. 

A deeper look into the molecular relationships of all the DEPs we’ve identified by functional enrichment 

analysis and gene set enrichment analysis, confirms the previously reported loss of basal layer integrity 

and epithelial to mesenchymal transitions (EMT) as key events supporting IDC. Figure 5a highlights cancer 

hallmarks that are predominant for the IDC- and DCIS phenotype, highlighting the dysregulation of cell 

metabolism as a key event in the DCIS-phenotype. Proteomic profiling using MS-based techniques 

revealed metabolic vulnerabilities in DCIS that can provide insights into tumorigenic metabolic 

mechanisms, that were missed by genomic/transcriptomic analysis alone.    
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Functional Enrichment Analysis using IPA identifies mitochondrial dysfunction, granzyme A signaling, 

glucocorticoid receptor signaling and sirtuin signaling as significantly enriched (p-value of overlap <0.01) 

in our proteomics dataset, suggesting a dysregulation of glucose metabolism, through a shift from 

oxidative phosphorylation (i.e., tricarboxylic acid (TCA) cycle) to aerobic glycolysis (Figs. 5b and 5c).72  

Aerobic glycolysis is also known as Warburg Effect and is characterized by high glucose uptake and 

glycolytic conversion of glucose to lactate to meet the high energy demands of proliferating cells.73 During 

glycolysis, glucose is converted to pyruvate. Cytosolic pyruvate can either enter the TCA cycle for oxidative 

phosphorylation (OXPHOS) and ATP-production or be converted to lactate. Under normoxia, the 

metabolic fate of cytosolic pyruvate, and thus glucose metabolism, is regulated by pyruvate 

dehydrogenase complex (PDH) and lactate dehydrogenase (LDH), where the PDH reaction is favored.73,74 

PI3K/AKT signaling can modulate the metabolic fate of pyruvate as an upstream regulator of PDH and 

LDH, creating “pseudo-hypoxic” conditions that favor pyruvate conversion to lactate. The pivotal role of 

PI3K/AKT as an upstream regulator in metabolic reprogramming is comprehensively reviewed by Hoxhaj 

et al.75 and involves the interaction with other proliferating signaling pathways, such as MAPK and mTOR. 

Our proteomic analysis of DCIS identified several differentially expressed molecules involved in glycolysis, 

hypoxia-mediated reactions and PI3K/AKT/mTOR signaling (Fig. 5c) which warrant further investigation.   

Metabolomic profiling of FFPE specimens is challenging, because ~85% of metabolites are washed out 

during the preservation procedure. To nevertheless gain insights into metabolic changes occurring 

towards IDC progression, we conducted an AI-based metabolic profiling using QSM™ technology, which 

is supported by more than 500 publications.17 Clear metabolic differences between DCIS/IDC lesions from 

the same patient (paired DCIS/IDC) were identified, but due to the large variability and small sample size 

(n=9) metabolic differences between the groups were hard to assess. A multitude of functional markers 

with direct causal relation to ATP production capacity and utilization of glucose were nevertheless 

identified (Tbl. 2). These findings confirm the dysregulation of energy metabolism towards IDC 

progression and suggest that the energy demand of transforming pre-invasive cells (DCIS-phenotype) is 

mainly achieved by fatty acid metabolism and lactate production.     

To further evaluate and promote the translation of our findings into the clinic, we developed a highly 

multiplexed targeted MS-assay for absolute quantitation of 90 signature peptides, associated with cancer 

metabolism, central energy metabolism, RNA regulation and members of the PI3K/AKT/mTOR, EIF2 and 

EGFR/RAS/RAF signaling pathways. A complete list of peptides included in this assay is provided in 

Supplemental Table 4.  The results of the PRM assay are depicted as STRING network (Figure 5d), where 

the differential expression is represented by the node color, and the absolute fold-change by the node 

size. These findings correlate well with the previously discussed observations from label-free proteomics 

and independent genomics/transcriptomics study, showing that DCIS tumors have a tendency towards 

loss of metabolic functions. Albumin (ALB) is significantly higher expressed in the DCIS phenotype 

compared to the IDC phenotype (q value = 0.03). Studies associated low albumin levels with changes in 

the tumor microenvironment to more favorable conditions for disease progression and tumor migration, 

suggesting that serum albumin levels might have a prognostic value for cancer.76,77 Other studies discuss 

albumin as a potent marker for inflammation and the nutritional status of patients, where low albumin 

levels correlate with inflammatory processes resulting in higher morbidity and poor prognosis.78,79 Our 

results support these findings, and highlight remodeling of the tumor microenvironment, environmental 

stress (i.e., malnutrition, which inhibits EIF2 signaling)80 and inflammatory processes as key events 

towards IDC progression.  
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Figure 4: Dysregulation of central energy metabolism is a key event in the DCIS tumor phenotype. (A) Graphical 

representation of hallmarks of cancer (modified from 81) characteristic for proteomic tumor profiling of DCIS and IDC 

tumors. (B) Top 5 canonical pathways from Ingenuity Pathway Analysis on differentially expressed proteins in 42 

DCIS and 31 IDC tumors. (C) Signature proteins potentially driving DCIS progression through glycolysis, hypoxia (or 

“pseudo-hypoxia”) and PI3K/AKT/mTOR pathway, identified by gene set enrichment analysis. (D) STRING Network 

showing the protein expression profile of signature proteins, associated with cancer metabolism, RNA regulation 

and major cancer pathways, such as PI3K/AKT/mTOR and EGFR/RAS/RAF. Absolute concentration of the proteins 

was determined by parallel reaction monitoring. The color of the nodes represents q values from multiple-hypothesis 

testing using unpaired t-tests with post hoc correction using the Benjamini-Krieger FDR method (1% FDR). The node 

size represents the fold-change. Grey nodes were not quantified, either because no SIS/NAT was available or because 

there were more than 60% missing values. Edges represent physical and/or functional interaction partners based on 

the STRING database.   

 

Table 1: List of putative metabolic biomarkers identified by AI-based metabolic profiling of DCIS and IDC 
specimens from the same patient.  

ATP Production Capacity CPT2, ACADM, HCDH, NDUBA, NDUBB, NDUV1, NDUV2, NDUS1, NDUS2, 

QCR1, QCR2, CY1, UCRI, QCR6, QCR7, QCR8, ATPA, ATPB, ATPD, ATP5H, 

ATP5I, ATPO, ADT3, MCEE, MUTA, THIK, THIM, ECHB, THIL, ODPA, ODPB, 

ODP2, DLDH, CISY, ACON, IDH3A, ODO2, SUCA, SUCB2, FUMH, MDHM, 

ACPM, NDUA2 

Glucose Utilization HXK1, ALDOC, PGAM1, ENOG 
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3 Discussion  
Clinical research on DCIS has been limited due to low sample numbers, high inter-tumor heterogeneity 

and low tissue quality, as most DCIS lesions derive from diagnostic needle-core-biopsies and are FFPE 

embedded. Although genetic/transcriptomic studies of DCIS progression provide a cellular blueprint of 

what might happen, genes cannot be readily targeted for therapy and post-translational modification 

cannot be assessed by genetic screening alone. Quantitative proteomics can complement and confirm 

genetic changes and provides a deeper look into the ‘real-life’ tumor phenotype. The readily druggable 

nature of proteins makes quantitative proteomics studies attractive for clinical research. Additionally, 

mass spectrometry-based studies allow both (i) discovery studies for comprehensive tumor profiling and 

(ii) validation studies in a highly multiplexed manner, with unprecedented accuracy, specificity, and 

sensitivity.  

We established a label-free quantitative proteomics pipeline suitable for needle-core biopsy sized FFPE 

specimens and performed a comprehensive proteomic phenotyping of DCIS and IDC using less than 1% of 

the total extracted protein material. We cover 6 orders of magnitude of the disease proteome and identify 

more than 380 differentially expressed proteins that identify classical hallmarks of cancer, reflective for 

high transcriptional activity, extracellular matrix remodeling and inflammation processes as key events 

towards IDC progression. We further identify dysregulation of glucose metabolism as a key event in the 

transition from pre-invasive to invasive carcinoma. Guided by these results, we developed a highly 

multiplexed parallel-reaction monitoring (PRM) assay for precise quantitation of 90 proteins, that are 

associated with cancer metabolism, RNA regulation and major cancer pathways, such as PI3K/AKT/mTOR 

and EGFR/RAS/RAF. We applied this assay to generate an activation profile of these signature proteins for 

proliferation and metabolic remodeling in cancer in ‘real world’ clinical samples and were able to support 

observations from label-free proteomics data with absolute concentrations in the amol range, facilitating 

the translation of our findings into the clinic. Notably, proteomics profiling revealed that FDA-approved 

drugs, such as antibiotics and NSAID, may be repurposed for DCIS and IDC treatment, as they have been 

shown to control and target proteins identified as key events towards IDC progression. 

It is important to highlight, that this study design is applicable to many diseases with limited sample 

volumes and low tissue quality, as it requires only a fraction of the total sample amount allowing discovery 

and validation studies in the same sample cohort. In our opinion, clinical proteomics is a versatile tool for 

comprehensive tumor phenotyping, able to capture a ‘real-life’ snapshot of tumor phenotypes, 

representative of post-translational modifications and epigenetic changes. More than 99% of published 

clinical biomarkers/genomic assays fail to enter clinical practice,82 but we show here that complementing 

genomics and transcriptomics studies with proteomics data, and vice versa, will help create a better 

understanding of underlying disease mechanisms and will better inform the selection of biomarker 

candidates and patient enrolment for clinical studies, ultimately improving the quality and final results of 

clinical trials. 
 

4 Methods  

All chemicals and reagents were purchased by Sigma Aldrich (St. Louis, MI, USA) unless otherwise 

specified. Sequencing grade trypsin (Promega, P/N V511A) was used for the generation of tryptic peptides.  

 

4.1 Clinical Specimens 

Clinical specimens were obtained from patients who consented for tissue biobanking part of the Jewish 

General Hospital Breast Biobank (protocol 05-006).  The study was performed in accordance with the 
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ethical standards laid down in the 1964 Declaration of Helsinki and was approved by the Jewish General 

Hospital Research Ethics Board.   

A total of 50 clinical cases of patients diagnosed and treated with DCIS and/or IDC at the JGH were carefully 

curated by a pathologist with expertise in breast cancer to select lesions meeting inclusion criteria for 

mass spectrometry-based (MS-based) analysis, i.e., at least 30% tumor cellularity and less than 10% 

necrosis. The patients were of Caucasian ethnicity ranging from 22 to 82 years of age at first diagnosis 

(median age 52 years). The patients were followed for a period of 1 to 18 years (median 8 years). During 

the period of follow-up, 43 patients have no evidence of disease, and 1 patient has metastatic disease, 

while 8 patients died from cancer. The cohort comprises 29 cases with pure DCIS lesions, 18 cases with 

pure IDC lesions, 13 cases with mixed-type lesions (IDC with in-situ components) and 9 cases with 

synchronous/metachronous DCIS and IDC. Clinical data for the patients is available upon request. 

 

4.2 Sample Preparation 

1 mm-diameter tissue cores (~0.8 mm3 tissue volume) were prepared from FFPE-blocks enriching for DCIS 

or IDC only tumor cells. Excessive paraffin was trimmed off using a clean scalpel blade. Protein extraction 

was performed following our developed FFPE-proteomics workflow for core needle biopsies. Briefly, 

paraffin was removed by incubation with hot water (~80 °C). Each deparaffinized core was mechanically 

disrupted using a micropestle (Sigma Aldrich, #BAF199230001) in 250 µL of 2% sodium deoxycholate 

(SDC), 50 mM Tris-HCl, 10 mM tris(2-carboxyethyl)phosphine (TCEP), pH 8.5, followed by sequential 

incubation on an Eppendorf ThermoMixer C for 20 min at 99 °C (1100 rpm) and for 2 h at 80°C (1100 rpm). 

Samples were cooled down on ice for 1 minute before a 15-minute centrifugation at 21,000x g (4 °C) to 

remove cell debris. The supernatant was collected into a Protein LoBinding tube (Eppendorf, Germany) 

and the total protein concentration was determined using a Pierce Reducing Agent Compatible BCA kit 

(RAC-BCA, Thermo Scientific, P/N 23252) following the manufacturer’s instructions. Free cysteine residues 

were alkylated with iodoacetamide to a final concentration of 30 mM and incubation for 30 minutes at 

room temperature, protected from light. 

For 2 µg of protein lysate, 2 µL of ferromagnetic beads with MagReSyn® Hydroxyl functional groups (ReSyn 

Biosciences, Gauteng, South Africa, 20 µg/mL) were equilibrated with 100 µL of 70% ACN, briefly vortexed 

and placed on a magnetic rack to remove the supernatant. This step was repeated another two times. 

Next, the protein extracts were added to the beads and the sample was adjusted to a final concentration 

of 70% ACN, thoroughly vortexed and incubated for 10 min at room temperature without shaking. The 

following washing steps were performed on a magnetic rack without disturbing the protein/bead 

aggregate. The supernatants were discarded, and the beads were washed on the magnetic rack with 1 mL 

of 95% ACN for 10 s, followed by a wash with 1 mL of 70% ACN without disturbing the protein/bead 

aggregate. The tubes were removed from the magnetic rack, 100 µL of digestion buffer (1:20 (w/w) 

trypsin:protein in 0.2 M GuHCl, 50 mM AmBic, 2 mM CaCl2) were added and the samples were incubated 

at 37 °C for 12 h. After acidification with trifluoroacetic acid (TFA) to a final concentration of 2%, the tubes 

were placed on the magnetic rack for 1 min, followed by removal of the supernatant. To remove residual 

beads, the samples were centrifuged at 20,000x g for 10 min. 

 

4.3 Preparation of spiking solutions for the response curve and absolute quantitation 

In order to promote translation of our findings and to validate LFQ Abundances with a more precise 

targeted MS approach we developed a multiplexed parallel reaction monitoring (PRM) method to quantify 

90 proteins in FFPE specimens, measuring the concentration of a unique sig-nature peptide for each 
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protein. All 90 peptides were measured in a single LC-MS/MS run. Two equimolar synthetic peptide 

mixtures (100 fmol/µg of each peptide) were prepared in 30% ACN with 0.1% formic acid (FA) in water 

(w/v); one mixture contained unlabeled peptides (light or NAT peptides), and the second mixture 

contained stable isotope labeled standard peptides (heavy or SIS peptides). The light peptide mixture was 

used to develop the highly multiplexed PRM assay with optimized peptide-specific parameters, such as 

collision energy and charge state, while the heavy peptide mixture was used for normalization, serving as 

spiking solution and internal standard for clinical samples.  

Quantitation was performed using a 7-point response curve consisting of a variable amount of light 

peptides, ranging from 0.41 to 250 fmol (three orders of magnitude), and a constant amount of SIS 

peptides (50 fmol). Digested bovine serum albumin (BSA, 0.01 µg) was used as surrogate matrix of the 

response curve. To determine the limit of detection (LOD), a double blank sample was prepared. The blank 

sample consisted of 0.01 µg BSA digest spiked with 50 fmol of the SIS-mixture and analyzed before and/or 

directly after the highest calibrant level of the response curve. For quantitation of endogenous protein in 

the patient samples, 50 fmol of SIS peptide were spiked into 1 µg total digested tissue protein, as 

determined by RAC-BCA.       

 

4.4 Data analysis  

1 µg digested protein was pre-concentrated on EV2001 C18 Evotips and separated on a heated (40 °C) 

EV1137 column (15 cm x 150 µm, 1.5 µm particle size) using Evosep’s “Extended meth-od” (15 samples-

per-day (SPD)). The samples were analyzed by data dependent acquisition (DDA) mode, on a Q Exactive 

Plus Orbitrap mass spectrometer operated with a Nanospray Flex ion source (both from Thermo Fisher 

Scientific), connected to an Evosep One HPLC (Evosep Bio-systems, Odense, Denmark). Full MS scans were 

acquired over the mass range from m/z 350 to m/z 1500 at a resolution of 70,000 with an automatic gain 

control (AGC) target value of 1×106 and a maximum injection time of 50 ms. The 15 most-intense 

precursor ions (charge states +2, +3, +4) were isolated with a window of 1.2 Da and fragmented using a 

normalized collision energy of 28; the dynamic exclusion was set to 30 s. MS/MS spectra were acquired 

at a mass resolution of 17,500, using an AGC target value of 2×104 and a maximum injection time of 64 

ms.  

Chromatographic separation of all PRM runs was performed with the same equipment and buffers as 

described above. The Q Exactive Plus was operated in PRM mode at a resolution of 35,000. Target 

precursor ions were isolated with the quadrupole isolation window set to m/z 1.2. An AGC target of 3x106 

was used, allowing for a maximum injection time of 110 ms. Data was acquired in time-scheduled mode, 

allowing a 2-min retention-time window for each target. Full MS scans were acquired in parallel at low 

resolution (m/z 17,500) with an AGC target value of 1x106 and a maximum injection time of 50 ms, to 

ensure sample quality.  

MS data files are publicly available through the ProteomeXchange Consortium via the PRIDE partner 

repository83 with the dataset identifier PXD040782. The synthetic peptides selected for this PRM assay 

were validated by others, information is available through National Cancer Institute’s Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) Assay Portal (assays.cancer.gov). 

 

4.5 Data Processing and Differential Expression Analysis   

MS raw data were processed using Proteome Discoverer 2.5 (Thermo Fisher Scientific). Database searches 

were performed using SequestHT with Multi-Peptide Search (MPS) and a human Swissprot database 

(January 2019; 20,414 target entries). Label-free quantitation (LFQ) was performed using the Minora 
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feature-detector node within Proteome Discoverer, and the Percolator software was used to calculate 

posterior error probabilities. Database searches were performed using trypsin as enzyme with a maximum 

of 2 missed cleavages. Carbamidomethylation of cysteine (+57.021 Da) was set as a fixed modification, 

and oxidation of methionine (+15.995 Da) as variable modifications. Mass tolerances were set to 10 ppm 

for precursor ions and 0.02 Da for product ions. The data were filtered to a false discovery rate (FDR) <1% 

at the peptide and protein levels. Only proteins that were (i) identified with at least one protein unique 

peptide and (ii) quantified in ≥60% of replicates of at least one of the study groups, were considered for 

the quantitative comparison. Protein LFQ data obtained from Proteome Discoverer was normalized based 

on summed protein intensities to correct for differences in sample loading. Missing protein intensity 

values were imputed using 1.5x the minimum observed intensity for this particular sample. The obtained 

normalized abundances were used for unpaired t-tests (two tailed, 95% confidence) and differential 

expression analysis on log2-transformed data with multiple hypothesis testing using the Benjamini-

Krieger false-discovery approach (FDR 1%). Proteins having q-values of <0.01 and absolute log2 fold-

changes >1 were considered as differential between test-ed groups. Statistical analysis was performed 

using GraphPad Prism 9 (San Diego, CA, USA).  

Raw PRM data were analyzed using Skyline (v22.2.0.351).84 Correct peak integration and visual verification 

of detected peaks was performed manually for each target, and the three to four highest and most stable 

transitions were selected for quantitation. A linear regression model with 1/x² weighting using the 

SIS/NAT ratio of each target peptide was used for the calculation of concentrations. Only calibration levels 

meeting following criteria were accepted for response curve generation and regression analysis; precision 

average <20% CV per calibration level, accuracy average between 80% and 120% per calibrant level, 

quantified in at least 3 consecutive calibrant levels. The LOD describes the smallest concentration of the 

target peptide (analyte) that is likely to be reliably distinguished from instrument noise and at which 

detection is feasible. To determine the LOD we use replicate injections from a double blank sample, i.e., 

fixed concentration of the SIS-peptide in surrogate matrix. The average concentration of the double blank 

plus 3.3x the standard deviation of the blank replicates is used to calculate the lowest detectable 

concentration for each peptide. The limit of quantitation (LOQ) describes the lowest concentration at 

which the analyte can not only be reliably detected, but at which above mentioned precision and accuracy 

criteria are met. Here the LOQ was defined as the lowest calibration level for each peptide. 

Proteins/Peptides with more than 60% missing values were excluded from downstream analysis. 

  

4.6 Functional Enrichment Analysis 

Functional Enrichment Analysis was performed using the ‘Core Analysis’ function within Ingenuity 

Pathway Analysis (Qiagen, Inc., content version: 81348237, release Date: 2022-09-15).85 Ingenuity 

Knowledge Base was used as reference set, allowing direct and indirect relationships. Only molecules 

having expression p-values <0.05 and absolute log2 fold-changes of >1 were considered for the core 

analysis. All other settings were kept with default parameters.  

 

4.7 Gene Set Enrichment Analysis 

A pre-ranked Gene Set Enrichment Analysis (GSEA) was performed using GSEA v4.3.2 (Broad Institute, 

Inc.) software. The gene list was ranked by differential expression using SIGN function within Excel with 

calculated log2 fold-change and p-value from an unpaired t-test. A hallmark gene set Molecular Signature 

Database (MSigDB v2022.1)86 was used as references gene set. The search allowed 1000 permutations, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.11.548580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548580


with set sizes between 15 and 500 genes. Pathways were collapsed to remove redundancy and to increase 

selectivity and specificity. Data was visualized using the clusterProfiler87 package within R. 

 

4.8 Metabolic Profiling 

Protein expression data from paired DCIS/IDC cases was sent to Doppelganger Biosystems Inc (Berlin, 

Germany) for metabolic profiling using Quantitative Systems Metabolism (QSM™) technology.17  

 

Supplemental Materials: The following supporting information can be downloaded at:…. Supplemental 

Tables T1-T4 with detailed quantitative proteomics data and results from differential expression analysis.  
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