Interchromosomal Colocalization with Parental Genes Is Linked to the Function and Evolution of Mammalian Retrocopies

Yubin Yan, Yuhan Tian, Zefeng Wu, Kunling Zhang, and Ruolin Yang*

College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China

*Corresponding author: E-mail: desert.ruolin@gmail.com.

Abstract

Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of three-dimensional (3D) genome organization. By mapping retrocopy-parent pairs onto the chromatin contact maps of human and mouse cell lines, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated, and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis on retroposed gene copy number variants (retroCNVs) in human populations revealed that retrocopy insertions are not entirely
random in regard to interchromosomal interactions and that colocalized retroCNVs are more likely to reach high frequency, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroCNVs. Overall, our results hint a role of interchromosomal colocalization in the “resurrection” of initially neutral retrocopies.

Key words: retrocopies, processed pseudogenes, 3D genome organization, interchromosomal interactions

Introduction

Gene duplication is a major process leading to the birth of new genes, which contributes significantly to the adaptive evolution and phenotypic novelty of species in diverse clades (Ohno 1970; Zhang 2003; Chen et al. 2013). Gene retrotransposition is an RNA-based gene duplication mechanism whereby mRNA derived from protein-coding genes are reverse transcribed to DNA and inserted back into the genome (Kaessmann et al. 2009). In mammals, gene retroduplication is mainly mediated by the non-LTR retrotransposon LINE-1s (L1s), and occasionally by LTR-retrotransposons (Esnault et al. 2000; Tan et al. 2016).

Although RNA-based gene duplication is less common and widespread than DNA-based duplication (i.e., segmental duplication and whole genome duplication) (Kaessmann 2010), thousands of retrotransposed gene copies (retrocopies) have been identified in humans and other mammalian species (Navarro and Galante 2015; Carelli et al. 2016; Rosikiewicz et al. 2017). However, to what extent this large amount of retrocopies contribute to new gene origination and genome evolution is still an open question. On the one hand, retrocopies have been stripped of introns and promoters during retrotransposition, rendering them to be “dead
on arrival”, and were frequently dismissed as “processed pseudogenes” (Mighell et al. 2000; Zhang et al. 2003). On the other hand, increasing number of protein-coding retrocopies (retrogenes) with explicit functions have been reported in various organisms (Casola and Betran 2017). For example, a recent study reported that a mammalian retrogene HAPSTR2 encodes a protein that retains the biochemical features of its parental gene HAPSTR1 and acts as a safeguard in stress signaling and resilience (Amici et al. 2023). Moreover, accumulating evidence indicates that many retrocopies are robustly expressed, often in a tissue-specific manner (Carelli et al. 2016; Qian et al. 2022). These retrogene-derived RNAs may function as natural antisense transcripts (NATs), long noncoding RNAs (lncRNAs), or sponging microRNAs to regulate their progenitors or host genes (Kubiak and Makalowska 2017; Ciomborowska-Basheer et al. 2021). Ribosome profiling data further suggest that a sizable proportion of retrocopies may be actively translated (Kim et al. 2014; Ji et al. 2015; Qian et al. 2022), although their exact proteins and functions awaiting additional investigations.

How some retrocopies gain their expression capability and “awake” as functional paralogs continually attracts evolutionary biologists (Vinckenbosch et al. 2006). Previous research discovered that retrocopies may exploit preexisting promoters, evolve new promoters from scratch, or recruit proto-promoters from their genomic vicinity (Carelli et al. 2016). For example, the promoter of the aforementioned retrogene HAPSTR2 originated from a nearby proto-promoter (Amici et al. 2023). However, current studies mostly focused on the role of local genomic context in the expression of retrocopies (Carelli et al. 2016; Machado and Antunes 2020), while the influences of high-order chromatin organization on retrocopy expression and functionality are largely unexplored.

In eukaryotes, high-order chromatin organization and transcription are tightly linked, with reciprocal influence on each other (Bonev and Cavalli 2016; van Steensel and Furlong 2019). Apart from the well-studied intrachromosomal (cis) structures, such as A/B compartments,
topologically associating domains (TADs), and chromatin loops, interchromosomal (trans) interactions also play a critical role in gene regulation (Quinodoz et al. 2018; Maass et al. 2019) and genome evolution (Dai et al. 2014; Xie et al. 2016). For example, human interchromosomal paralogous gene pairs generated by whole genome duplication (i.e., ohnolog pairs) tend to be colocalized in the nucleus, which may associate with stronger dosage balance in those ohnologs (Xie et al. 2016). Likewise, neighboring genes in yeast exhibit interchromosomal spatial proximity after their separation (Dai et al. 2014), which indicates a role for interchromosomal interactions in the coregulation and evolution of functionally related genes. Inspired by these previous studies and the fact that most retrocopies and their parental genes are located on different chromosomes, we sought to ask whether retrocopy-parent pairs show interchromosomal colocalization in the nucleus, and if so, how spatial proximity links to the function and evolution of retrocopies.

Here, we used chromatin contact maps of human and mouse cell lines to detected significant interchromosomal interactions between retrocopies and their parental genes. Through extensive simulations, we demonstrated that retrocopy-parent pairs exhibit a higher colocalization frequency than random chromatin fragment pairs under various null models. Compared to noncolocalized retrocopies, colocalized retrocopies are enriched in active subcompartments and speckles, and are more actively transcribed and translated, supporting a connection between spatial proximity and functionality of retrocopies. Such differences might be resulted from the higher number of shared regulatory elements with parental genes and the more active epigenetic landscape of colocalized retrocopies. Furthermore, by investigating retroposed gene copy number variants (retroCNVs) in human populations, we discovered that insertion bias and nonadaptive evolution shaped the colocalization between retrocopies and parental genes. Our results shed lights on the function and evolution of retrocopies in the context of 3D genome organization.
Results

Human Interchromosomal Retrocopy-Parent Pairs Exhibit Widespread Nuclear Colocalization

To determine the extent of spatial colocalization between retrocopies and their parental genes, we retrieved 5,159 retrocopy-parent pairs from Carelli et al. (2016). We removed retrocopy-parent pairs that were not located on autosomes or the X chromosome, and those with parental genes inferred from other species (Materials and Methods). Among the remaining 4,638 pairs, the vast majority (4,427; 95.5%) are interchromosomal, i.e., individual retrocopies and their parental genes are located on different chromosomes, which are the focus of this study. Using Hi-C contact maps at 250-kb resolution of seven human cell lines (GM12878, HMEC, HUVEC, IMR90, K562, KBM7, and NEHK) (Rao et al. 2014), we found that between 738 (16.7%; in IMR90) and 1,019 (23.0%; in GM12878) retrocopy-parent pairs exhibit significant interchromosomal interactions, i.e., spatial colocalization (**fig. 1A**, **supplementary fig. S1** and **table S1**). More than half (2,511; 56.7%) retrocopy-parent pairs are colocalized in at least one cell lines, and 1,465 (33.1%) pairs exhibit spatial proximity in two or more cell lines (**fig. 1B**).

We reasoned that if the spatial proximity between retrocopies and parental genes had biological significance, then a higher-than-expected colocalization frequency should be observed. Therefore, we performed various simulations to determine the statistical significance of retrocopy-parent colocalization (**supplementary fig. S2**). First, we simulated 1,000 datasets, in each of which 4,427 random fragment pairs with matching chromosomes and sequence lengths as the retrocopy-parent pairs were sampled. Notably, we found that the colocalization frequencies in simulated data sets are significantly lower than true retrocopy-parent pairs ($p < 0.001$ for all cell lines; **fig. 1C** and **supplementary fig. S3**), suggesting nonrandom colocalization between retrocopies and parental genes. Second, we kept the information of...
retrocopies unchanged while sampling random coding and noncoding genes with matching chromosomes as parental genes. Third, we kept the information of parental genes unchanged while sampling random fragments with matching chromosomes and sequence lengths as retrocopies. Forth, similar to the second simulation, but we restricted the randomly sampled genes to protein-coding genes. For these simulations, we also observed a significant lower colocalization frequencies in simulated data sets compared to true retrocopy-parent pairs ($p < 0.001$ in all cases; fig. 1C and supplementary fig. S3). However, compared to the first null model, the colocalization frequencies in these simulated data are higher, indicating that some properties (e.g., local genomic and epigenomic environments) of retrocopies or parental genes may contribute to interchromosomal colocalization.

Lastly, to further investigate the influence of retrocopies and parental genes on spatial proximity, we randomly shuffled the relationship between retrocopies and cognate genes for 1,000 times, and determined the distribution of colocalization frequency. Particularly, the observed colocalization frequencies in GM12878, HMEC, HUVEC, K562, and NHEK are still significantly higher than expected, while the significance is marginal in IMR90 and KBM7 (fig. 1C and supplementary fig. S3). In sum, we demonstrated that human interchromosomal retrocopy-parent pairs exhibit significant nuclear colocalization.

Colocalized Retrocopies Are Enriched in Active Subcompartments and Are Close to Nuclear Speckles

We next asked where did retrocopies and parental genes colocalize with respect to the 3D genome organization in the nucleus. Interphase chromosomes of eukaryotes are organized hierarchically into chromosome territories, A/B compartments, TADs, and chromatin loops (Bonev and Cavalli 2016). Using ultra-high resolution Hi-C contact map, Rao et al. (2014) further divides the active A and inactive B compartments of GM12878 into five primary
subcompartments (A1, A2, B1, B2, and B3), which are associated with distinct genomic and
epigenomic features in a more refined manner. We found that in GM12878, retrocopies are
slightly enriched in A2 subcompartment while depleted in B2 and B3 subcompartments (fig.
2A). Such enrichment of active subcompartments and depletion of inactive subcompartments
is more apparent for parental genes. In addition, compared to protein-coding genes as a whole,
retrocopies’ parental genes show stronger enrichment of active subcompartments and depletion
of inactive subcompartments, which is consistent with previous findings that highly expressed
genes are more prone to generate retrocopies (Zhang et al. 2003; Podlaha and Zhang 2009; Sisu
et al. 2014).

Remarkably, colocalized retrocopies show strong enrichment of A1 and A2
subcompartments and strong depletion of B2 and B3 subcompartments, resembling the pattern
of parental genes (fig. 2A). In contrast, noncolocalized retrocopies are depleted in active A1
subcompartment and show little depletion of inactive subcompartments. Dividing colocalized
and noncolocalized retrocopies into intergenic and intragenic subclasses do not affect the
general pattern (fig. 2A), indicating that the subcompartment association is not affected by host
genes. Besides, parental genes and colocalized retrocopies are slightly enriched in TADs.
Contrary to retrocopies, unprocessed pseudogenes are depleted in A1 and A2 subcompartments
and TAD while slightly enriched in B1 and B2 subcompartments (fig. 2A), reflecting different
3D chromatin environments between processed and unprocessed “pseudogenes”. Using
subcompartment annotations inferred from relatively low resolution Hi-C maps by deep
learning (Xiong and Ma 2019), we obtained similar results in HMEC, HUVEC, IMR90, and
K562 (supplementary fig. S4).

Of note, for colocalized retrocopy-parent pairs, both ends tend to be overlapped with A1 or
A2 subcompartments, whereas for noncolocalized pairs, a substantial proportion of retrocopies
are overlapped with B2 or B3 subcompartments, despite the majority of parental genes are still overlapped with active subcompartments (fig. 2B and supplementary fig. S5).

Subcompartments are strongly associated with subnuclear structures, such as nuclear lamina, nucleolus, and speckles, which are associated with genome regulation (Chen et al. 2018). Thus, we compared the spatial positioning relative to subnuclear structures of colocalized and noncolocalized retrocopies using TSA-seq data in K562 (Chen et al. 2018). TSA-seq is a technique that combines tyramide signal amplification (TSA) and high-throughput sequencing to map chromosome organization relative to subnuclear structures genome-wide. We found that the log₂(pull-down/input) signals of SON and pSC35 TSA-Seq of colocalized retrocopies or parental genes are significantly higher than their noncolocalized counterparts, whereas an opposite trend is observed for LaminAC and LaminB TSA-Seq signals (fig. 2C and supplementary figs. S6A-C). SON and pSC35 are two marker proteins for nuclear speckles while LaminAC and LaminB are markers for nuclear lamina, and high signal means shorter cytological distance to the respective subnuclear structure. Thus, our results indicate that colocalized retrocopies and parental genes are closer to speckles, while their noncolocalized counterparts are closer to lamina.

SON TSA-Seq signals can be further converted to actual distance (in µm) between chromatin and nuclear speckles and loci can be assigned to different TSA deciles based on their distance to speckles (Chen et al. 2018). Leveraging these data, we found that colocalized retrocopies have an average distance of 0.48µm to speckles, longer than that of colocalized parental genes but significantly shorter than that of noncolocalized retrocopies (supplementary fig. S6D). Consistently, colocalized parental genes have the highest proportion of fragments falling in the 9th and 10th SON TSA deciles (chromatin that is mostly close to speckle), followed by colocalized retrocopies and noncolocalized parental genes, while only a small proportion of noncolocalized retrocopies fall in the 9th and 10th deciles (fig. 2D). Furthermore, by integrating
TSA-Seq, DamID and Hi-C data in the K562 cell line, Wang et al. (2021) partitioned the genome into 10 different spatial compartmentalization states relative to nuclear speckles, lamina, and nucleolus. We found that colocalized retrocopies are enriched in interior active regions and speckle-associated chromatin, while depleted in interior repressive regions and lamina-associated chromatin, similar to the pattern of parental genes (supplementary fig. S7).

RNA Biogenesis and Shared Regulatory Elements Are Linked to the Interchromosomal Colocalization between Retrocopies and Parental Genes

Although retrocopies are often thought to be processed pseudogenes, most of them show evidence of transcription (Carelli et al. 2016). The distinct positioning of colocalized and noncolocalized retrocopies in the nucleus suggests they may have different transcription profile, we then asked whether the spatial colocalization with parental genes is associated with the expression of retrocopies. Using RNA-seq data of GM12878, HUVEC, K562, and NHEK from the ENCODE project (Djebali et al. 2012), we have also detected evidence of transcription for most retrocopies (supplementary table S1), with a substantial proportion of them showing robust expression. For example, 772 ~ 1,350 (17.4 ~ 30.5%) retrocopies expressed with an FPKM ≥ 1 in the studied cell lines for polyadenylated (ployA+) RNAs in the whole cell (supplementary fig. S8A). The proportion of robustly expressed retrocopies for polyA+ RNAs is larger than 15% and 20% in the nucleus and cytosol, respectively (supplementary figs. S8B and C). There are also substantial non-polyadenylated (polyA-) RNAs transcribed from retrocopies in the nucleus and whole cell, but relatively few in the cytosol (supplementary figs. S8D-F). More importantly, colocalized retrocopies and parental genes have significantly higher expression level than their noncolocalized counterparts in all cell lines, for RNAs in different compartments (whole cell, nucleus, and cytosol), and for both ployA+ and polyA- RNAs (fig. 3A and supplementary figs. S9 and S10). In addition, the GRO-Seq and PolII
TSA-Seq data in K562 (Chen et al. 2018) shows that colocalized retrocopies and parental genes generate more nascent RNAs and are closer to RNA polymerase II than their noncolocalized counterparts, suggesting that RNA biogenesis is more active at colocalized loci (fig. 3B).

Enhancer sharing has been hypothesized to account for the spatial colocalization and coregulation of paralogous genes located on the same chromosome (Ibn-Salem et al. 2017). Also, transcription factors (TFs) play a part in interchromosomal interactions (Kim and Shendure 2019). We thus interrogated the relationship between shared regulatory elements and spatial colocalization. As expected, we found that the flanking regions (putative transcription start site, i.e., TSS ± 3 kb) of colocalized retrocopies and parental genes harbor more transcription factor binding sites (TFBSs) than noncolocalized ones (supplementary fig. S11).

In particular, the number of shared TFBSs between colocalized retrocopies and parental genes is significantly greater than that of noncolocalized retrocopy-parent pairs (fig. 3C). It should be noted that the choice of flanking regions (e.g., TSS ± 1 kb or upstream 3 kb) does not affect our results (supplementary fig. S12). Interestingly, the corresponding TFs of shared motifs are mostly zinc finger proteins, such as ZNF263, ZNF384, ZNF460, and ZNF135, consistent with a recent report in which zinc finger factors are found to play a role in speckle-associated interchromosomal interactions (Joo et al. 2023).

Colocalized and noncolocalized retrocopies are enriched in different subcompartments, which are associated with distinct epigenomic features and may affect the expression of retrocopies. We then explicitly examined the signals of 12 epigenomic features (including DNase I sensitivity, the histone variant H2A.Z, and 10 histone modifications) for retrocopies. Generally, colocalized retrocopies and their flanking regions have stronger signals of activating histone modifications (e.g., H3K4me1, H3K27ac, H3K36me3, and H3K79me2) in comparison with noncolocalized retrocopies (fig. 4 and supplementary figs. S13-S17), indicating an association between epigenetic landscape and interchromosomal colocalization. Notably,
retrocopies, even those noncolocalized ones, harbor stronger activating histone modifications than unprocessed pseudogenes (fig. 4 and supplementary figs. S13-S17), further supporting the delimitation between processed and unprocessed “pseudogenes” in the context of 3D genome environment.

To evaluate the relative importance of different features in the colocalization between retrocopies and their parental genes, we trained a logistic regression model using 35 genetic and epigenetic features of retrocopies and parental genes as predictors (supplementary table S2) in each cell line where matched data were available. For GM12878, the machine learning model is able to predict retrocopy-parent colocalization with an accuracy of 0.798 and an area under the receiver operating characteristic curve (AUC) of 0.785 (supplementary fig. S18A).

Among the features included, the number of shared motifs between retrocopies and parental genes is the most important, with various histone modifications of retrocopies also contribute significantly (supplementary fig. S18B). The number of shared motifs and epigenetic features of retrocopies are also top predictors in models of HUVEC, K562, and NHEK, but the performance is worse for these cell lines (supplementary figs. S19-21).

Taken together, we revealed that colocalized retrocopies are more actively transcribed than noncolocalized ones, and shared regulatory elements and permissive epigenetic environments may contribute to the spatial colocalization between retrocopies and parental genes.

Colocalized Retrocopies Are More Likely to Be Functional and Evolutionarily Conserved

Retrocopies may preserved the coding potentials of their parental genes before degenerative mutations disrupting the open reading frames (ORFs), therefore, gaining expression is the first and most important step of being functional for a retrocopy. The resulting RNAs may serve as functional units per se, such as NATs, IncRNAs, or microRNAs (Kubiak and Makałowska 2017). There are also sporadic cases that retrocopies act as important protein-coding genes in
development and disease (Casola and Betran 2017). To further assess the functional relevance of retrocopies at the translation level, we leveraged the ribosome profiling (i.e., ribo-seq) data across 101 studies curated on RPFdb (Wang et al. 2019), and found that colocalized retrocopies have significantly higher RPKM (Reads Per Kilobase per Million) values than noncolocalized retrocopies in five of the seven cell lines (fig. S22). The difference in ribo-seq signals is statistically marginal between retrocopies that are colocalized in zero and one cell line, while retrocopies with recurrent colocalized in two or more cell lines are covered by significantly more reads than the other two categories of retrocopies (fig. 5A). Because ribo-seq reads could be derived from genomic fragments randomly co-purified with ribosomes, we further screened retrocopy transcripts with actively translated ORFs. These ORFs were detected using RibORF (Ji et al. 2015), which makes use of the 3-nt periodicity and uniformity of read distribution across codons of translated regions, thus reduce spurious signals of translation. When only transcripts with at least one detected ORFs were considered, colocalized retrocopies still present higher ribo-seq signals than noncolocalized ones (supplementary fig. S23). These results indicate colocalized retrocopies, especially those exhibiting recurrent colocalization, are more prone to be actively translated.

If the higher levels in transcription and translation of colocalized retrocopies did confer any functional significance, they would be more evolutionarily conserved than noncolocalized ones. As expected, we observed that the average phastCons conservation scores of colocalized retrocopies are significantly higher than noncolocalized ones (fig 5B and supplementary fig. S24). This pattern is retained when we use LINSIGHT scores (Huang et al. 2017) to measure the conservation of retrocopies (supplementary fig. S25). In addition, colocalized retrocopies and their putative promoters (1 kb upstream of TSSs) are more likely to be overlapped with NHGRI-EBI GWAS single nucleotide polymorphisms (SNPs) (Buniello et al. 2019) than noncolocalized ones (Fisher exact test, \(p < 0.01 \) in six out of the seven cell lines; fig. 5C),
further supporting their higher potential of functionality. We found that the phastCons scores of retrocopies are positively correlated with their levels of RNA-seq \((R = 0.45, p < 2.2e^{-16})\) and ribo-seq \((R = 0.28, p < 2.2e^{-16}; \text{fig. 5D})\). However, after accounting the variation of RNA expression level, the partial correlation coefficient between phastCons score and ribo-seq signal is only 0.088 \((p = 5.5 \times 10^{-8})\), while the partial correlation coefficient between phastCons score and RNA expression level is 0.374 \((p = 1.8 \times 10^{-12})\) when controlling for ribo-seq signal, suggesting that retrocopies may be of more functional relevance at the RNA level.

Of particular note is that for two sister retrocopies derived from the same parental gene, the colocalized one generally has higher levels of expression, motif sharedness, and conservation than the noncolocalized one in GM12878 (supplementary fig. S26). But the trends are not apparent in other cell lines (data not shown), possibly due to the small sample size of desired retrocopies and the nosier nature of colocalization in cell lines other than GM12878.

In addition, to ask whether the colocalization pattern of retrocopy-parent pairs and its functional significance is conserved across mammalian species, we performed similar analyses with 4,532 mouse interchromosomal retrocopy-parent pairs (supplementary table S3) (Carelli et al. 2016). Using Hi-C map of mouse lymphoblastoid cells (CH12-LX) at 250-kb resolution (Rao et al. 2014), we found that 744 (16.4%) retrocopy-parent pairs are in spatial proximity, significantly higher than the colocalization frequencies under various null models (supplementary fig. S27). In CH12-LX, colocalized retrocopies and parental genes also expressed at a higher level than noncolocalized ones (supplementary fig. S28). Comparison of ribo-seq signals and phastCons scores indicate colocalized retrocopies are more actively translated and tend to be more conserved than noncolocalized ones in mouse (supplementary fig. S29). Besides, the conservation of retrocopies is positively correlated with their levels of transcription and translation, with a greater correlation coefficient between conservation and RNA expression (supplementary fig. S30). These results show that the spatial colocalization
between retrocopies and parental genes is an evolutionarily conserved feature of mammalian
genome organization.

**Biased Insertion and Natural Selection Shaped the Interchromosomal Colocalization
Between Retrocopies and Parental Genes**

Lastly, we explored what molecular and evolutionary mechanisms might have shaped the
spatial colocalization between retrocopies and parental genes. To this end, we identified 625
polymorphic retrocopies (retroCNVs) in five human populations (CEU, CHS, LWK, PEL, and
YRI; 491 individuals) using sideRETRO (Miller et al. 2021) (**supplementary table S4**;
Materials and Methods). As did in Zhang et al. (2021), we did not distinguish homozygotes
and heterozygotes, only accounted for the presence or absence of each allele in different
individuals. Our list captures most retroCNVs identified in other studies (Abyzov et al. 2013;
Ewing et al. 2013; Schrider et al. 2013; Zhang et al. 2017; Feng and Li 2021; Batcher et al.
2022) (**supplementary table S5**) and the neighbor-joining tree based on retroCNV presence
frequency is topologically the same as the tree built from genome-wide SNPs (**supplementary
fig. S31**), indicating the overall accuracy of retroCNV identification. The presence frequency
spectrum of retroCNVs is more skewed toward low-frequency in comparison with SNPs
(**supplementary fig. S32**), congruent with the highly deleterious effect of retroCNV insertions.
Ninety-eight retroCNVs are present in only one individual, which may be enriched in *de novo*
retrocopy insertions. We then performed the same simulations for these presumably *de novo*
retrocopies and their parental genes as did for putative “fixed” retrocopy-parent pairs
(**supplementary fig. S2**), and found that the colocalization frequency between *de novo*
retrocopy insertion sites and their parental genes is only significantly higher than expected in
some simulations (**fig. 6A** and **supplementary fig. S33**). This result suggests that the insertion
of retrocopies is not random, but nonrandom insertion cannot fully explain the current
colocalization pattern between retrocopies and parental genes.

Then we investigated the potential role of post-insertion selection in determining retrocopy-parent colocalization. In contrast to de novo retrocopy insertions, high-frequency (occurs in ≥ 28 individuals; n = 96, a sample size that is comparable to singletons) retroCNVs and their parental genes exhibit a higher-than-expected colocalization frequency in all simulations (fig. 6A and supplementary fig. S34), indicating the action of post-insertion selection on retrocopy survival in the context of interchromosomal interactions. Furthermore, we found that the presence frequency spectrum of retroCNVs exhibiting colocalization in two or more cell lines is less skewed toward low frequency compared to retroCNVs showing colocalization in zero or one cell line (fig. 6B), suggesting relaxed negative selection on colocalized retroCNVs. The difference in frequency spectrum holds true for retroCNV subclasses base on colocalization status in individuals cell lines (supplementary fig. S35). With respect to the 3D genome organization, recurrently colocalized retroCNVs are enriched in the active A1 subcompartment (fig. 2A and supplementary fig. S4) and interior active regions and speckles (supplementary fig. S6). These active chromatin regions may have higher density of selected sites and/or more intense selection, which are negatively correlated with local effective population size (Gossmann et al. 2011), leading to reduced selection efficacy on recurrently colocalized retroCNVs. Indeed, the density of conserved sites (phastCons score > 0.5) flanking colocalized retroCNVs (insertion site ± 50 kb) is significantly higher than noncolocalized retroCNVs (supplementary fig. S36). Also, the unfolded site frequency spectrum of SNPs in the flanking regions (insertion site ± 50 kb) of recurrently colocalized retroCNVs is more skewed toward low frequency (supplementary fig. S37).

Because there is also a higher proportion of intermediate-to-high-frequency alleles for recurrently colocalized retroCNVs, we sought to detect whether the elevated frequency of
colocalized retroCNVs is driven by positive selection. If a retroCNV insertion was under strong positive selection, selective sweep would: 1) reduce the nucleotide diversity (\(\pi\)) among sequences near the insertion for retroCNV carriers compared to noncarriers; 2) reduce the Tajima’s D among sequences near the insertion for retroCNV carriers compared to genomic background; 3) increase the linkage disequilibrium (LD) between SNPs near the insertion for retroCNV carriers compared to genomic background (Zhang and Tautz 2022). Based on these principles, we scanned signals of positive selection for each retroCNV with allele frequency \(\geq 0.5\) in individual populations using SNPs from the 1000 Genomes Project (Altshuler et al. 2015) (Materials and Methods). We found that neither colocalized nor noncolocalized high-frequency retroCNVs are under positive selection using the above criteria (supplementary table S6). Therefore, our results indicate that the intermediate-to-high-frequency of both colocalized and noncolocalized retroCNVs is probably the result of nonadaptive process or weak positive selection that left untraceable signal.

Discussion

In the present study, we revealed that retrocopy-parent pairs exhibit higher frequency of interchromosomal colocalization than expected under various null models and that colocalized retrocopies are more active in terms of transcription and translation. We further explored the potential mechanisms, functional consequences, and evolutionary implications of the nonrandom colocalization between retrocopies and their parental genes.

We focused exclusively on interactions between retrocopies and parental genes that are located on different chromosomes, i.e., interchromosomal contacts. Compared to intrachromosomal structures (e.g., TADs and chromatin loops), the mechanisms and functional consequences of interchromosomal interactions are less well understood. Although often being thought as noise or technical artifacts, emerging evidence suggests that interchromosomal
interactions are relevant to fundamental cellular activity, such as transcription and splicing (Maass et al. 2019). Using CRISPR/Cas9 live-cell imaging, Maass et al. (2018) showed that interchromosomal contacts are as stable and frequent as intrachromosomal interactions. In another study, Quinodoz et al. (2018) developed split-pool recognition of interactions by tag extension (SPRITE) and detected two hubs of interchromosomal interactions that shape 3D genome organization in the nucleus. Along with accumulating evidences of trans gene regulation in health and in disease (Patel et al. 2014; Bashkirova and Lomvardas 2019; Maass et al. 2019; Lei et al. 2023; Moon et al. 2023), recent progress indicates that interchromosomal interactions play structural and functional roles in cells. Our finding that retrocopy function is linked to trans interactions with parental genes also hints nonrandom organization of interchromosomal contacts.

Interchromosomal contacts often occur at farther spatial distances than cis interactions (Maass et al. 2018), rendering their detection difficult for regular ligation-based methods (e.g., Hi-C). In this study, we leveraged the ultra-high-depth Hi-C data of GM12878, which has ~5 billion mapped read pairs, with 740 million interchromosomal read pairs (Rao et al. 2014). Even at such sequencing depth, we primarily depend our analysis of interchromosomal interaction at 250-kb resolution. For the other six human cell lines and the mouse CH12-LX cell line with shallower sequencing depth, we chose to select the top-5M contacts with lowest p-values, as a compromise between the number and reliability of significant interactions. We recognized that the resulting interactions in relatively low-depth cell lines may be noisier than in GM12878, but significant interactions should also be enriched in those top-5M contacts. To further evaluate the influence of Hi-C resolution and the number of significant interchromosomal interactions, we detected spatial colocalization between retrocopies and parental genes at 100-kb and 500kb resolutions in GM12878. Using the same criterion (q-value < 0.05 in FitHiC2), the number of colocalized pairs of retrocopy-parent pairs decreases with
the increase of resolution. However, the colocalization pairs based on high-resolution data is almost a subset of pairs detected using low-resolution contact map (supplementary fig. S38). Furthermore, although the observed colocalization frequencies changes under different resolutions, they are always significantly greater than that under various null models (supplementary fig. S39).

Subsequently, we established that colocalized and noncolocalized retrocopies exhibit distinct properties in terms of subcompartment annotations and cytological distance to subnuclear structures (fig. 2 and supplementary figs. S4-7). For subcompartments, both A1 and A2 harbor highly expressed genes and activating chromatin marks, and are depleted in nucleolus-associated domains (NADs), but they show difference in replication timing and GC content. B1 represents facultative heterochromatin that exhibits intermediate level of transcriptional activity and high level of H3K27me3. B2 and B3 are associated with nuclear lamina, but B2 is enriched in NADs whereas B3 is strongly depleted in NADs (Rao et al. 2014; Xiong and Ma 2019). Using TSA-seq data, Chen et al. (2018) further revealed that chromatin in A1 subcompartment is close to nuclear speckles while A2 subcompartment corresponds to region with non-speckle associated transcription. Therefore, our observations (fig. 2 and supplementary figs. S4-7) imply that many interchromosomal interactions between retrocopies and their parental genes may be mediated by nuclear speckles. Nuclear speckles are domains enriched in pre-mRNA splicing factors (Spector and Lamond 2011) and are also hubs of interchromosomal interactions where active transcription takes place nearby (Galganski et al. 2017; Quinodoz et al. 2018; Chen and Belmont 2019; Kim et al. 2020). Remarkably, zinc finger proteins are found to facilitate the establishment of speckle-associated interchromosomal contacts (Joo et al. 2023), in accordance with our findings that the number of shared regulatory motifs is the most importance feature in predicting retrocopy-parent colocalization and that most shared motifs are bind by TFs in the zinc finger family. Thus, our
findings further support a role of TFs in interchromosomal interactions (Kim et al. 2019; Kim and Shendure 2019).

Speckle-associated interchromosomal interactions, along with more active chromatin marks and higher number of shared motifs associated with colocalized retrocopies, signify colocalized retrocopies should be more actively transcribed. The implications of higher expression of colocalized retrocopies could be twofold. First, retrocopy-derived RNAs could function as NATs, IncRNAs, or microRNAs in diverse cellular activities, including regulation of their parental genes (Kubiak and Makałowska 2017). Besides, RNAs transcribed from retrocopies may be processed and translated, and function at the protein level (Qian et al. 2022). Second, the action of transcription and the resulting RNAs can orchestrate both intra- and interchromosomal chromatin organization (van Steensel and Furlong 2019; Bertero 2021; Quinodoz and Guttman 2021). In the nucleus, 3D genome organization and transcription are intermingled, with reciprocal influence on each other. Recent single-cell Hi-C and RNA-seq data discovered widespread chromatin interaction rewiring before transcription activation, strongly supporting a regulatory role of chromatin organization on gene expression (Liu et al. 2023). Meanwhile, TFs can bring DNA fragments on the same or different chromosomes to spatial proximity through direct oligomerization or cofactor oligomerization, leading to transcription-mediated interactions in cis or trans (Kim et al. 2019; Kim and Shendure 2019). In addition, non-coding RNAs in the nucleus may serve as chromosome scaffolds or seeds to guide chromatin organization (Mele and Rinn 2016; Quinodoz et al. 2021; Bouwman et al. 2022). However, the actual impact of retrocopy transcription and retrocopy-derived RNAs on interchromosomal interactions needs additional investigations.

We further showed that both biased insertion and natural selection contribute to the nonrandom colocalization between retrocopies and parental genes (fig. 6). Mechanistically, new L1 insertions are linked to DNA replication, with a preference in early-replicating regions.
of the genome (Flasch et al. 2019; Sultana et al. 2019). Because early-replicating regions are enriched with active subcompartments and speckles and are more like to be involved in interchromosomal interactions (Vouzas and Gilbert 2021), if retrocopy insertions have the same property as L1s, this insertion bias would partly explain the higher-than-expected colocalization frequency between de novo retroCNVs and parental genes.

Our population genetic analysis indicates that colocalized retroCNVs are more likely to reach high frequency, but this elevated frequency is probably driven by nonadaptive forces. Then, what is the evolutionary significance of retrocopy-parent colocalization? Given the fact that colocalized “fixed” retrocopies are more actively transcribed and have higher potential of functionality than noncolocalized ones, we argue that the spatial proximity with parental genes may facilitate the “resurrection” of initially neutral retrocopies. This is similar to the situation where new genes frequently originated in the promiscuous testis (Kaessmann 2010). Colocalized retrocopies are also residing in chromatin with activating epigenetic marks, are cytologically close to speckles, and extensively share regulatory elements with their progenitors, all of which may facilitate their exploitation of cellular transcription machinery and the exaptation of these seemingly neutral retroposed gene copies.

However, we are aware of some potential caveats should be considered in interpreting the population genetic analysis of retroCNVs. First, our search for retroCNVs is not exhaustive. Only five representative human populations were used to identify retroCNVs, and only 98 singletons were identified to represent potential de novo retroCNVs, which may reduce the statistical power of our analysis. Second, our approach ignored retroCNVs that are present in the reference genomes, but absent in some other individuals. However, such retroCNVs may represent a relatively small proportion of total retroduplication variants (Zhang et al. 2017). Third, we were unable to derive the ancestral state of retroCNVs. Some low-frequency retroCNVs may arise from losses of ancestral retrocopy insertions. Nevertheless, our
investigation exemplifies a first yet valuable attempts to understand the evolutionary dynamics of retrocopies in the context of 3D genome organization. In the future, more thorough survey of retroCNVs at large scale, coupled with long-read sequencing (as did in Feng and Li (2021) and Troskie et al. (2021)), should give us a deeper understanding of the link between 3D genome organization and the function and evolution of retrocopies.

In conclusion, we demonstrated that retrocopies and their parental genes displayed significant colocalization in the nucleus, and characterized the spatial positioning and functional profiling of colocalized and noncolocalized retrocopies in great detail. Our results highlight the importance of 3D genome organization in the function and evolution of stripped-down retrocopies.

Materials and Methods

Retrocopy-Parent Pair Datasets

A total of 5,159 human (genome assembly: GRCh37) and 5,569 mouse (genome assembly: NCBIM37) retrocopies and their cognate parental genes were retrieved from the Supplementary Table S1 of Carelli et al. (2016). Retrocopy-parent pairs fit any of the following criteria were removed from further analyses: 1) a retrocopy or its parental gene was not located on autosomes or the X chromosome; 2) a retrocopy and its parental gene were located on the same chromosome; 3) the information of parental gene of a retrocopy was inferred from other species (Carelli et al. 2016). Consequently, 4,427 human and 4,532 mouse interchromosomal retrocopy-parent pairs were retained (supplementary tables S1 and S3). The number of associated unique parental genes were 1,430 and 1,201 in human and mouse, respectively.
Identification of Colocalized Retrocopy-Parent Pairs

The raw interchromosomal contact matrices at 250-kb resolution for seven human cell lines and one mouse cell line were downloaded from NCBI (GEO accession: GSE63525) (Rao et al. 2014). These contact matrices were constructed using Hi-C read pairs that were uniquely mapped to the respective reference genomes (mapping quality ≥ 30). The studied cell lines are GM12878 (human B-lymphoblastoids), HMEC (human mammary epithelial), HUVEC (human umbilical vein endothelial), IMR90 (human lung fibroblasts), K562 (human erythroleukemia), KBM7 (near haploid human myelogenous leukemia), NHEK (normal human epidermal keratinocytes), and CH12-LX (murine B-lymphoblasts).

In the raw contact matrix, an entry $M_{i,j}$ is the number of filtered read pairs that support the interaction between fragments i and j with fixed non-overlapping size (e.g., 250 kb). Only contacts that were supported by at least one high-mapping-quality read pairs were listed in the raw matrices. Significant interchromosomal interactions at 250-kb were identified using FitHiC2 (Ay et al. 2014; Kaul et al. 2020). The Knight-Ruiz matrix balancing algorithm (Knight and Ruiz 2013) was applied to normalized Hi-C data during identification. Unlike intrachromosomal interactions where the observed contacts can be compared with the null distribution of contacts based on the linear distances between fragments to determine statistical significance, p-values of interchromosomal interactions in FitHiC2 were calculated using a uniform probability model (Duan et al. 2010). At the level of q-value (Benjamini-Hochberg adjusted p-value) < 0.05, 5,152,588 significant interchromosomal interactions at 250-kb were identified. Due to the much shallow depth of Hi-C sequencing in the other cell lines, far fewer significant interactions at q-value < 0.05 were detected. In order to perform comparable analyses, we selected the top-5 million fragment pairs (~7% of all possible interchromosomal pairs) with lowest p-values as significant interactions for all cell lines, as suggested by the authors of FitHiC2 (Kaul et al. 2020).
The colocalization status between retrocopies and their parental genes were determined from the interaction of their residing genomic fragments using the “findOverlaps” function of the R package “GenomicInteractions” (Harmston et al. 2015). If a retrocopy and its parental gene were overlapped respectively with two ends of an interchromosomal fragment pair that was identified as significant interaction, then they were denoted as “colocalized”, otherwise they were “noncolocalized”. Visualization of significant interaction between retrocopies and parental genes was plotted with the R package “circlize” (Gu et al. 2014).

Statistical Tests on Chromatin Spatial Colocalization of Retrocopy-Parent Pairs

To assess the statistical significance of interchromosomal interactions between retrocopies and parental genes, we performed five different simulations. 1) Random fragment pairs with matching chromosomes and sequence lengths as the retrocopy-parent pairs were generated to represent simulated chromatin pairs. 2) The information of retrocopies was kept unchanged while sampling random genes (including coding and noncoding ones) with matching chromosomes as parental genes to form simulated chromatin pairs. 3) The information of parental genes was kept unchanged while sampling random fragments with matching chromosomes and sequence lengths as retrocopies to be simulated chromatin pairs. 4) Similar to the second simulation, but the randomly sampled genes were restricted to protein-coding genes only. 5) The pairing relationship between retrocopies and parental genes was randomly shuffled. For each sampling, the same number of chromatin pairs as true retrocopy-parent pairs was generated, and 1,000 samplings were carried out for each simulation. Colocalization of simulated chromatin pairs was determined using Hi-C data of respective cell lines, and the p-value was calculated as the fraction of simulated data sets that exhibited a colocalization frequency higher than that of true retrocopy-parent pairs. See also supplementary fig. S2 for graphic illustrations.
Genome-wide Enrichment with Subcompartments, TADs, and SPIN States

Genome-wide annotations of subcompartments in GM12878 and TADs in the seven human cell lines were downloaded from NCBI (GEO accession: GSE63525) (Rao et al. 2014). Subcompartment annotations for HMEC, HUVEC, IMR90, and K562 were retrieved from https://cmu.box.com/s/n4jh3utmitzl88264s8bzsfcjhqnaa0. In cell lines other than GM12878, subcompartment annotation was achieved through the SNIPER computational approach, in which interchromosomal interactions were imputed and subcompartments were inferred by denoising autoencoder and multilayer perceptron classifier using typical Hi-C datasets with moderate depth (Xiong and Ma 2019).

The annotation of 10 spatial compartmentalization states for K562 was downloaded from https://github.com/ma-compbio/SPIN.

Enrichment or depletion of retrocopies, parental genes, unprocessed pseudogenes, and retroCNV insertion sites in subcompartments, TAD, and SPIN states were computed using the Genomic Association Tester (GAT) (Heger et al. 2013). Only mappable regions of the hg19 genome were included for the sampling of random regions to determine the enrichment or depletion of test genomic elements. Retrocopies and parental genes were divided into “colocalized” and “noncolocalized” ones based on Hi-C data of individual cell lines. To assess the impact of host genes, retrocopies were further divided into “intragenic” and “intergenic” subcategories, based on whether they overlap with protein-coding genes. Protein-coding genes and unprocessed pseudogenes (GENCODE release 39; lifted to GRCh37) were included for comparison. Note that “transcribed unprocessed pseudogenes” annotated by GENCODE were not included. For retroCNVs, we used the estimated coordinates of insertion sites for enrichment analysis.
TSA-seq and Related Data

Genomic tracks of SON, pSC35, lamin B, lamin A/C, and pol II TSA-seq signals, GRO-seq signal, and speckle distance in bigwig format for the K562 cell line were downloaded from NCBI (GEO accession: GSE81553) (Chen et al. 2018). The signal strength in 20 kb non-overlapping bins were calculated using deepTools (Ramirez et al. 2016) and intersected with retrocopies and parental genes using bedtools (Quinlan and Hall 2010).

RNA-seq, TFBS, and Histone Modification Analyses

The genomic alignment files in bam format of RNA-seq for GM12878, HUVEC, K562, and NHEK were downloaded from the ENCODE RNA Dashboard website (https://public-doks.crg.eu/rguigo/Data/jlagarde/encode_RNA_dashboard//hg19/). RNA-seq data of mouse CH12-LX cell line was downloaded from ENCODE (ENCSR000AJV). Only uniquely mapped reads were kept for downstream analysis. The FPKM values of retrocopies and other genes were estimated using StringTie (Pertea et al. 2016) and are averaged across replicates.

The position frequency matrices (PFMs) of 949 human TFs were downloaded from the JASPAR database (https://jaspar.genereg.net) (Castro-Mondragon et al. 2022), and FIMO (Grant et al. 2011) was used to scan the occurrences of TFBSs in the flanking sequences (± 3 kb, ± 1 kb, or upstream 3 kb of putative TSSs) of retrocopies and parental genes. Only TFBSs with q-value < 0.01 were retained for further analysis.

Genome-wide fold change signals of DNase I sensitivity, histone variant H2A.Z and 10 histone modifications (H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K9me2, and H4K20me1) in bigwig format for GM12878, HMEC, HUVEC, IMR90, K562, and NHEK were obtained from the Roadmap Epigenomics Project (https://egg2.wustl.edu/roadmap/web_portal/). The signals of retrocopies and unprocessed
pseudogenes and their flanking regions (± 3 kb) were computed and visualized with DeepTools (Ramirez et al. 2016).

Logistic Regression and Evaluation of Feature Importance

For GM12878, HUVEC, K562, and NHEK, we built a logistic regression model to predict the colocalization status of retrocopy-parent pairs using 35 genetic and epigenetic features related to retrocopies and parental genes as predictors (supplementary table S2). The model was trained using 70% randomly selected retrocopy-parent pairs, and the remaining 30% of data was used to evaluate the performance of trained model. The R package Boruta (Kursa and Rudnicki 2010) was applied to assess the importance of individual features.

Coding Potential and Evolutionary Importance of Retrocopies

The RPKM values and ORF information of human and mouse genes inferred from ribosome profiling data were downloaded from RPFdb (Wang et al. 2019). For human and mouse, 101 and 52 ribo-seq studies were included in the RPFdb database. The maximum RPKM of a given gene among all ribo-seq samples was used to compare the coding potential between colocalized and noncolocalized retrocopies, as did in Qian et al. (2022). The ORFs were detected with RibORF (Ji et al. 2015), which combines the 3-nt periodicity and uniformity of read distribution across codons of translated regions to identify translated ORFs from ribo-seq data.

The human 46-way phastCons scores and the mouse 60-way phastCons scores were downloaded from UCSC Genome Browser. For both species, the phastCons score of the placental mammal subset was used. For human, we also downloaded the precomputed LINSIGHT score from http://compgen.cshl.edu/LINSIGHT/LINSIGHT.bw. LINSIGHT leverages both functional and population genomic data to detect deleterious noncoding variants.
The average phastCons/LINSIGHT scores of retrocopies were computed with the bigWigAverageOverBed tool of UCSC.

A total of 516,945 GWAS SNPs associating with various diseases were downloaded from the National Human Genome Research Institute’s (NHGRI) GWAS catalog (Buniello et al. 2019). Duplicated recodes were removed, leaving 254,286 unique SNPs for further analysis.

Identification and Population Genetic Analysis of retroCNVs

To investigate the insertion bias and evolutionary forces of newly inserted retrocopies in relation to interchromosomal interactions, we used sideRETRO (Miller et al. 2021) to identify retroCNVs using whole genome sequencing (WGS) data from the 1000 Genomes Project. sideRETRO utilize abnormal alignments (i.e., discordantly aligned paired-end reads and split reads) in WGS or whole exome sequencing (WES) to identify unfixed retrocopies absent in the reference genome, but present in the sequenced individual. Considering the computation complexity, only the WGS mapping files of 491 individuals from five diverse populations (CEU, CHS, LWK, PEL, and YRI) were used. These individuals were sequenced to a high depth (30×), and were good resources for detecting retroCNVs using sideRETRO.

The initial list of retroCNVs was further filtered with the following criteria: 1) retroCNVs that were not located on autosomes and the X chromosome were removed. 2) If the insertion site of a retroCNV and its parental gene were on the same chromosome, they were excluded from further analysis. 3) retroCNVs with a missing rate greater than 20% were discarded.

To detect possible positive selection on retroCNVs, we calculated three population genetic statistics for each retroCNV that had a frequency ≥ 50% in any of the five populations: 1) the average nucleotide diversity (\(\pi \)) of 100 kb flanking regions centered at the insertion sites of retroCNV carriers over that of non-carriers (\(\pi_{\text{ratio}} \)) (Schrider et al. 2013). 2) average Tajima’s D of 100 kb flanking regions centered at the insertion sites of retroCNV carriers (Llopard et al.)
2002). 3) average LD (r^2) of 10 kb flanking regions centered at the insertion sites of retroCNV carriers (Cardoso-Moreira et al. 2016). These statistics were computed for individual populations using matching polymorphism data from the 1000 Genomes Project. In order to evaluate the statistical significance of the estimates, we randomly generated “pseudo” insertion site in the genome, while keeping the same setup of carriers and noncarriers as the focal retroCNV. A total of 200 samplings were carried out and the Wilcoxon rank-sum test was used to determine how likely to get a smaller π_{ratio}, a smaller Tajima’s D, or a greater LD from “pseudo” insertion sites as that from a true retroCNV insertion (Zhang and Tautz 2022).

Conversion of Genomic Coordinates between Different Reference Genomes

When necessary, the genomic coordinates of human hg19 (GRCh37) were converted to hg38 (GRCh38), and the genomic coordinates of mouse mm9 (NCBI37) were converted to mm10 (GRCm38) using the UCSC liftover tool, and vice versa.

Data Availability

No new data were generated or analysed in support of this research.

Acknowledgements

We thank members of the Yang laboratory for their discussion. This work was supported by the Fund of Northwest A&F University (Z111021404) and the “100-Talent Program” of Shaanxi Province of China (A289021612) to R.Y.
Author Contributions

R.Y. conceived and supervised the project. Y.Y. and R.Y. designed the study. Y.Y., Y.T., Z.W., and K. Z. performed data analysis. Y.Y. wrote the manuscript with input from R.Y. and Y.T. All authors reviewed and approved the manuscript.

Supplementary Material

Supplementary tables S1-S6 and supplementary figures S1-S39 are available as separate files.

References

Figure Legends

Figure 1. Spatial colocalization between retrocopies and their parental genes. (A) Circos plot highlighting the chromatin interactions between retrocopies and parental genes in the GM12878 cell line. From outer to inner are the ideogram of human chromosomes, the density of parental genes, the density of retrocopies, and significant chromatin interactions between retrocopies and parental genes. (B) Bar plot showing the number of human interchromosomal retrocopy-parent pairs as a function of the number of cell lines wherein the spatial colocalization is detected. (C) Distribution of colocalization frequency between chromatin pairs under different null models, while the red arrow denotes the colocalization frequency of true retrocopy-parent pairs. Simulations and true frequency are based on Hi-C data of GM12878. *P*-value < 0.001 in all cases.

Figure 2. Chromatin positioning of retrocopies and parental genes in the 3D genome. (A) Enrichments of retrocopies, parental genes, unprocessed pseudogenes, and retroCNVs in five primary subcompartments and TAD in the GM12878 cell line. (B) Sankey diagram showing the connection of colocalized (left panel) and noncolocalized (right panel) retrocopy-parent pairs in the context of subcompartment annotations in GM12878. The height of bar indicates the proportion of loci that fall in respective categories. Lines connect retrocopies and their corresponding parent genes. (C) Comparison of SON TSA-seq signal between colocalized and noncolocalized retrocopies/parental genes in K562. Two-tailed Wilcoxon *p*-values are displayed over the bars. (D) Proportion of colocalized and noncolocalized retrocopies/parental genes that overlapped with different SON TSA-seq deciles in K562. Decile 1 (estimated distance: 0.868-1.020 μm) and decile 10 (estimated distance: 0.054-0.399 μm) represent the top 10% of chromatin that are farthest and closest to SON, respectively, and other deciles are those that fall between. Coloc_retro: colocalized retrocopies; noncoloc_retro: noncolocalized retrocopies.
retrocopies; coloc_parent: colocalized parental genes; noncoloc_parent: noncolocalized parental genes.

Figure 3. Expression and regulatory element sharing of retrocopies and parental genes. (A) Plots of cumulative fraction of expression of retrocopies (left panels) and parental genes (right panels) in GM12878. The expression levels of polyadenylated (ployA+; top panels) and non-polyadenylated (ployA-; bottom panels) RNAs are plotted separately. (B) Comparison of GRO-seq signal (left panel) and Pol II TSA-seq signal (right panel) between colocalized and noncolocalized retrocopies/parental genes in K562. (C) Comparison of the number of shared TFBSs between colocalized and noncolocalized retrocopy-parent pairs. Two-tailed Wilcoxon p-values are given in each plot to indicate the statistical significance of difference between colocalized retrocopies/parental genes and their noncolocalized counterparts.

Figure 4. Epigenetic signals for DNase I hypersensitivity, histone variant H2A.Z, and 10 histone modifications along colocalized retrocopies (red lines), noncolocalized retrocopies (blue lines), and unprocessed pseudogenes (gray lines) and their flanking regions (± 3 kb) in the GM12878 cell line. Solid lines represent the mean fold change signal, shadowed areas denote the standard error. TSS: putative transcription start site; TES: putative transcription end site.

Figure 5. Coding potential and functional importance of colocalized and noncolocalized retrocopies. (A-B) Comparison of ribo-seq RPKM values (A) and phastCons scores (B) among retrocopies that are colocalized in 0, 1, and ≥ 2 cell lines. For ribo-seq data, only retrocopies with RPKM ≥ 1 were included. Two-tailed Wilcoxon p-values are given over the bars. (C) Percentage of colocalized and noncolocalized retrocopies in the seven cell lines that are
overlapped with at least one NHGRI-EBI GWAS SNPs. \(P \)-values of Fisher’s exact tests are indicated. (D) Correlation between phastCons score and RNA expression level (left panel) and between phastCons score and ribo-seq signal (right panel) of retrocopies. Solid line and shadowed area in each plot denote the linear regression line and its confident interval. Pearson correlation coefficient and its associated \(p \)-value is given at the top left corner of each plot.

Figure 6. Colocalization and evolution of retroCNVs in humans. (A) Density plots showing the distribution of colocalization frequency between chromatin pairs under different null models for singleton retroCNVs (left panel) and high-frequency retroCNVs (right panel). Red arrows denote the colocalization frequency between true retroCNVs and their parental genes. Simulations and true frequencies are based on Hi-C data in GM12878. \(P \)-values are indicated for simulation 5. (B) The presence frequency spectra for retroCNVs that are colocalized in 0, 1, and \(\geq 2 \) cell lines.
Figure 1.
Figure 2.

A

<table>
<thead>
<tr>
<th>Retrocopies</th>
<th>GM12878</th>
<th>K562</th>
<th>SON TSA–seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colocalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intragenic colocalized retrocopies</td>
<td>1.04</td>
<td>0.76</td>
<td>0.97</td>
</tr>
<tr>
<td>Intergenic colocalized retrocopies</td>
<td>0.23</td>
<td>0.78</td>
<td>1.33</td>
</tr>
<tr>
<td>Noncolocalized retrocopies</td>
<td>0.21</td>
<td>0.24</td>
<td>0.98</td>
</tr>
<tr>
<td>Intergenic noncolocalized retrocopies</td>
<td>0.33</td>
<td>1.07</td>
<td>0.68</td>
</tr>
<tr>
<td>Parental genes</td>
<td>1.74</td>
<td>1.05</td>
<td>0.84</td>
</tr>
<tr>
<td>Colocalized parental genes</td>
<td>1.04</td>
<td>0.85</td>
<td>1.41</td>
</tr>
<tr>
<td>Noncolocalized parental genes</td>
<td>1.16</td>
<td>1.17</td>
<td>1.39</td>
</tr>
<tr>
<td>Protein-coding genes</td>
<td>1.52</td>
<td>1.32</td>
<td>3.14</td>
</tr>
<tr>
<td>Unprocessed pseudogenes</td>
<td>1.19</td>
<td>1.12</td>
<td>1.97</td>
</tr>
<tr>
<td>retroCNVs colocalized in 0 cell line</td>
<td>0.47</td>
<td>0.59</td>
<td>0.34</td>
</tr>
<tr>
<td>retroCNVs colocalized in 1 cell line</td>
<td>1.75</td>
<td>1.18</td>
<td>0.26</td>
</tr>
<tr>
<td>retroCNVs colocalized in ≥ 2 cell lines</td>
<td>0.06</td>
<td>1.05</td>
<td>0.79</td>
</tr>
</tbody>
</table>

B

Colocalized

<table>
<thead>
<tr>
<th>GM12878</th>
<th>K562</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrocopy</td>
<td>Parental gene</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
</tbody>
</table>

Noncolocalized

<table>
<thead>
<tr>
<th>GM12878</th>
<th>K562</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrocopy</td>
<td>Parental gene</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
</tbody>
</table>

C

K562 SON TSA–seq

<table>
<thead>
<tr>
<th>Retrocopy</th>
<th>Parental gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12e–157</td>
<td>9.40e–18</td>
</tr>
</tbody>
</table>

D

K562

SON TSA decile

<table>
<thead>
<tr>
<th>Distal</th>
<th>Proximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Proportion

<table>
<thead>
<tr>
<th>Coloc. retro</th>
<th>Noncoloc. retro</th>
<th>Coloc. parent</th>
<th>Noncoloc. parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.75</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>0.75</td>
<td>1.00</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fold change

| 2.0 | 1.5 | 1.0 | 0.5 |

log2(pull-down/input)
Figure 3.

A

GM12878

Retrocopies (cell ployA+)

Parental genes (cell ployA+)

Cumulative fraction

Cumulative fraction

\[p = 4.02 \times 10^{-14} \]

\[p = 3.63 \times 10^{-06} \]

\[p = 3.17 \times 10^{-23} \]

\[p = 5.85 \times 10^{-08} \]

B

K562 GRO-seq

K562 Pol II TSA-seq

Retrocopy

Parental gene

\[1.57 \times 10^{-64} \]

\[7.32 \times 10^{-11} \]

\[1.51 \times 10^{-117} \]

\[5.55 \times 10^{-14} \]

C

GM12878

HMEC

HUVEC

IMR90

K562

KBM7

NHEK

Number of shared TFBSs

\[2.00 \times 10^{-19} \]

\[2.00 \times 10^{-19} \]

\[1.00 \times 10^{-19} \]

\[2.00 \times 10^{-19} \]
Figure 4.
Figure 5.
A

Simulation 1 2 3 4 5

Singleton retroCNVs

\[p = 0.588 \]

High–frequency retroCNVs

\[p < 0.001 \]

B

Number of colocalized cell lines 0 1 ≥ 2

Frequency of retroCNVs

Number of individuals