
improved and stock biomass rebuilt in many northeast Atlantic fish stocks, the transient growth 583 

became less sensitive to recruitment variability and more sensitive to adult survival. The 584 

regionwide analyses show that increases in transient growth rate and biomass during the past few 585 

decades resulted largely from improved survival of older fish. Greater sensitivities to adult 586 

survival also may make harvested populations more manageable. Nonlinear responses to age 587 

structure in reproductive fish is however also evident in sensitivity to recruitment variability. 588 

Although the buffering effect of increasingly age-diverse reproductive fish emerged in many 589 

ecoregions especially in the early stages of recovery, this relationship also shifted as the 590 

recoveries further progressed (as seen in the Norwegian–Barents Seas fishes), likely responding 591 

to other intrinsic or extrinsic dynamics (such as catch limits being raised as stock biomass 592 

rebuilds).  593 

Climate regulation of demographic variations 594 

Fish populations experiencing persistent selective depletions of older adults often become 595 

sensitive to variations in early life-history stage processes that reflect signals in environmental 596 

conditions like climate variability (Ottersen, Hjermann & Stenseth 2006; Rouyer et al. 2011). 597 

Warmer than average climate conditions in the northeast Atlantic Ocean increasingly contributed 598 

to observed patterns in fish recruitment success, reflecting shifting climate effects on recruitment 599 

processes. For example, stratification becomes intensified as climate warms, limiting nutrient 600 

movement to deeper waters and food accessibility for the early life of demersal and benthic 601 

species (Moore et al. 2018). At the region scale, however, the models captured only weak 602 

responses in recruitment to regional climate signals likely because of heterogeneous warming 603 

patterns among ecoregions, as also seen in other parts of the world (Barange et al. 2018). 604 

Region-scale analyses may mask differential effects of local climate and oceanographic features 605 
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(climate-induced shifts in ocean heat content and primary productivity for example) that marine 606 

species are adapted to and experience (Conover 1992).  607 

Ecoregion-scale variability in recruitment success may better reflect how fish reproductive 608 

behavior responds to regional climate mediated by local habitat conditions, as hypothesized in 609 

past research (Myers 1998; Ottersen & Stenseth 2001). For stocks in high latitude systems like 610 

the Norwegian–Barents Seas and Icelandic waters, for example, climate conditions in winter–611 

spring (December–May) that regulate phonologies like timings of spawning migration (Sundby 612 

& Nakken 2008) contributed to recruitment variability. Warming-induced reductions in sea ice 613 

extent in these ecoregions promoted ecosystem productivity in the late 1990s and early 2000s 614 

and may have benefited upper trophic animals like fish (Stenevik & Sundby 2007), likely 615 

through changes in growth rate and life stage duration (Houde 2016). When spawning times 616 

coincide with the period of high prey abundance, pre-recruit fish can grow more and experience 617 

less size-dependent mortalities (like predation), contributing to greater recruitment success 618 

(Peck, Huebert & Llopiz 2012). In contrast, in semi-enclosed systems like the Baltic Sea 619 

warming-induced changes in nearshore habitat conditions in summer (June–August) (lower 620 

salinity caused by higher precipitation and freshwater inflows for example, MacKenzie et al. 621 

2007) may have played a greater role in regulating recruitment success through biophysical 622 

processes during the early years of life.  623 

Demographic responses by fish populations to changing climate conditions also may vary 624 

discontinuously (Brander 2007). Local and regional climate conditions (both favorable and 625 

unfavorable) that early life-history stage fish experience can persist through time (Ottersen et al. 626 

2001) and may emerge as delayed effects on transient population dynamics. In some northeast 627 

Atlantic ecoregions the ways that climate affects fish recruitment success shifted from positive to 628 
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negative and may have slowed their recoveries. These shifts suggest that even in the ecoregions 629 

where warming climate promoted productivity in the early twentieth century, fish began to 630 

experience adverse (direct and indirect) effects. Mobile species can adjust their movement 631 

(deeper and poleward) to mitigate physiological stress from warming upper water columns 632 

(Pinsky et al. 2013; Engelhard, Righton & Pinnegar 2014). But asynchronous shifts in spatial 633 

distribution by spawning fish and seasonal events in lower trophic groups like spring plankton 634 

blooms (phenological mismatches) also could trigger a series of events unfavorable for early life 635 

fish (Asch & Erisman 2018), shrinking the probability of recruitment success. 636 

Climate variability that regulates local ocean conditions may propagate through vital rates to 637 

shape transient population dynamics of marine species (Jenouvrier et al. 2018). Depleted 638 

populations in particular may have heightened sensitivities to adverse environmental conditions 639 

(Hidalgo et al. 2011; Rouyer et al. 2011), which are becoming increasingly more variable in 640 

recent decades (Rathore et al. 2020). Although the sensitivities of transient growth to recruitment 641 

variability in the northeast Atlantic fish stocks declined as they recovered, the analyses reveal 642 

that increasingly warmer than average climates began influencing how recruitment variability 643 

propagates through transient dynamics. For example, in high-latitude systems like Faroes, where 644 

fish stocks become less sensitive to recruitment variability under a warmer climate, this 645 

stabilizing effect gradually diminished (and shifted to the opposite) as the climate further 646 

warmed. In contrast, in the Baltic Sea, where fish stocks become more sensitive to recruitment 647 

variability under a warmer climate, this amplifying effect became strengthened as the climate 648 

further warmed. Climate effects on transient dynamics also may, however, depend on population 649 

size and demographic structure. In the Norwegian–Barents Seas, where fish stocks experienced 650 
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higher reductions in fishing pressure early and thus higher biomass rebuilding rates than other 651 

stocks, the stocks responded to recruitment variability independently of climate conditions.  652 

Transients as an integrated measure of effects of fishing, management, and climate 653 

Analysis of transient population dynamics can reveal how time-varying demographic structure 654 

and vital rates contribute to recovery patterns of managed resource populations when also 655 

exposed to low-frequency, nonstationary drivers like climate. Declined sensitivities to highly 656 

variable demographic parameters like recruitment, as displayed by intensely managed northeast 657 

Atlantic fish stocks in this study, can provide a buffer against rising environmental variability. 658 

Increasing sensitivities to adult survival further suggest that the stocks also are expected to 659 

become more responsive to management actions through regulation of fishing pressure 660 

(enforcing positive feedback), and future management plans would benefit from maintaining 661 

healthy (age-diverse) reproductive populations of exploited species (Pinsky & Byler 2015). 662 

Combined with other management measures (like use of marine protected areas and fish size 663 

limits, White et al. 2013; Hixon, Johnson & Sogard 2014), restoring and maintaining the 664 

demographic structure of an exploited species thus may enhance resilience against destabilizing 665 

effects of environmental variability amplified by climate change.  666 

Emerging non-negligible changes in demographic responses to rising climate variability 667 

nevertheless may influence the efficacy of fisheries management. Although historical climate 668 

conditions promoted the productivity of fish stocks in the northeast Atlantic Ocean, some stocks 669 

in this region and elsewhere in the Northern Hemisphere already are experiencing adverse effects 670 

of changing climate (Pershing et al. 2015; Free et al. 2019). As many biological responses to 671 

climate-driven changes in surface temperature and other ocean properties are often nonlinear, we 672 

would expect continued shifts in how climate influences marine resource populations and 673 
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management (Britten, Dowd & Worm 2016). Accounting for these climate-induced changes thus 674 

may not only reduce uncertainties in assessment but also improve the performance of 675 

management measures (Rouyer et al. 2011; Bahri et al. 2021).  676 

Exploited marine fish species are an integral part of an ecosystem and changes in their 677 

abundances and demographic structures may propagate through community and ecosystem 678 

dynamics (Jennings & Kaiser 1998), triggering a series of changes in ecologically connected 679 

species (Goto et al. 2022; Pérez-Rodríguez et al. 2022). As adult survival improves in 680 

historically overharvested populations, ecological processes including resource competition and 681 

predation also may indirectly modify vital rates and demographic structures of non-target species 682 

(van Gemert & Andersen 2018). Improving our understanding of how warming and more 683 

variable climates continue to reshape the transient dynamics (through changes in life history 684 

traits and demographics) would help develop management plans to mitigate the risk of 685 

overexploitation and safeguard ecosystem services against rising environmental variability. 686 
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Tables 
Table 1. Stock-specific information and management measures used in the assessments of 38 fish stocks in the northeast Atlantic 
Ocean included in the study. Stock ID indicates a unique ID for each stock assigned by the International Council of Exploration of the 
Sea (ICES); period and years indicate the years and the total number of years that stock data are available; age indicates the age 
classes included in the assessments; F range indicates the age range used to compute mean fishing mortality rates for assessment; Fmsy 
and Bpa indicate the management reference points set for each stock as target fishing mortality rates that produce maximum sustainable 
yields and biomasses that satisfy the precautionary approach; and status indicates recovery status assigned based on spawner biomass 
relative to Bpa for analysis (R: recovering and NR: non-recovering) in this study.  

common name scientific name ecoregion stock ID period years age F range Fmsy Bpa status source¶ 
cod Gadus morhua Norwegian–Barents Seas cod.27.12 1946-2016 71 3-15+ 5 -10 0.40 460000 R a 
cod Gadus morhua North Sea cod.27.47d20 1963-2016 54 1-6+ 2-4 0.31 150000 NR b 
cod Gadus morhua Baltic Sea cod.27.22-24 1994-2016 23 1-5+ 3-5 0.26 38400 NR c 
cod Gadus morhua Icelandic Waters cod-farp 1959-2016 58 1-10+ 3-7 0.23 29226 NR d 
cod Gadus morhua Icelandic Waters cod.27.5a 1955-2016 62 3-14+ 5-10 0.20 160000 R d 
cod Gadus morhua Celtic Seas cod.27.6a 1981-2016 36 1-7+ 2-5 0.17 22000 NR e 
cod Gadus morhua Celtic Seas cod.27.7a 1968-2016 49 0-6+ 2-4 0.31 8161 NR e 
cod Gadus morhua Celtic Seas cod.27.7e-k 1971-2016 46 1-7+ 2-5 0.35 10300 NR e 

four-spot megrim Lepidorhombus boscii Bay of Biscay and Iberian Coast ldb.27.8c9a 1986-2017 31 1-7+ 2-5 0.19 4600 R f 
haddock Melanogrammus aeglefinus Norwegian–Barents Seas had-arct 1950-2016 67 3-13+ 4-7 0.35 80000 R a 
haddock Melanogrammus aeglefinus North Sea had.27.46a20 1972-2016 45 0-8+ 2-4 0.19 132000 R b 
haddock Melanogrammus aeglefinus Icelandic Waters had-faro 1957-2016 60 1-10+ 3-8 0.13 22843 R d 
haddock Melanogrammus aeglefinus Icelandic Waters had.27.5a 1979-2016 38 2-11+ 4-7 0.52 59000 R d 
haddock Melanogrammus aeglefinus Celtic Seas had-rock 1991-2016 26 1-7+ 2-5 0.20 10200 R e 
haddock Melanogrammus aeglefinus Celtic Seas had.27.7b-k 1993-2016 24 0-8+ 3-5 0.40 10000 R e 
herring Clupea harengus Baltic Sea her.27.25-2932 1974-2016 43 1-8+ 3-6 0.22 600000 R c 
herring Clupea harengus Baltic Sea her.27.28 1977-2016 40 1-8+ 3-7 0.32 57100 R c 

megrim 
Lepidorhombus whiffiagonis 

and L. boscii Bay of Biscay and Iberian Coast meg.27.8c9a 1986-2016 31 1-7+ 2-4 0.19 
        

980 R f 
plaice Pleuronectes platessa North Sea ple.27.7d 1980-2016 37 1-7+ 3-6 0.25 25826 R b 
plaice Pleuronectes platessa North Sea ple.27.420 1957-2016 60 1-10+ 2-6 0.21 230000 R b 
plaice Pleuronectes platessa Baltic Sea ple.27.7e 1999-2016 18 1-5+ 3-5 0.37 5550 R c 
plaice Pleuronectes platessa Celtic Seas ple.27.7a 1981-2016 36 1-8+ 3-6 0.16 5825 R e 
plaice Pleuronectes platessa Celtic Seas ple-echw 1980-2016 36 2-10+ 3-6 0.24 2443 NR e 
saithe Pollachius virens North Sea pok.27.3a46 1967-2016 50 3-9+ 4-7 0.36 150000 R b 
saithe Pollachius virens Icelandic Waters pok.27.5b 1961-2016 56 3-11+ 4-8 0.30 41400 R d 
saithe Pollachius virens Icelandic Waters pok.27.5a 1980-2016 37 3-14+ 4-9 0.20 61000 R d 
saithe  Pollachius virens Norwegian–Barents Seas pok.27.1-2 1960-2016 57 3-8+ 4-7 0.32† 220000 R a 
sole Solea solea Baltic Sea sol.27.20-24 1984-2016 33 2-6+ 3-5 0.23 2600 R c 
sole Solea solea Bay of Biscay and Iberian Coast sol-bisc 1984-2016 33 2-8+ 3-6 0.33 10600 R f 
sole Solea solea Celtic Seas sol.27.7a 1970-2016 47 2-8+ 4-7 0.20 3100 NR e 
sole Solea solea Celtic Seas sol.27.7e 1969-2016 48 2-12+ 3-9 0.29 2900 R e 
sole Solea solea Celtic Seas sol.27.7fg 1971-2016 46 1-10+ 4-8 0.27 2380 R e 
sprat Sprattus sprattus Baltic Sea spr.27.22-32 1974-2016 43 1-8+ 3-5 0.26 574000 R c 

summer-spawning herring Clupea harengus Icelandic Waters her-vasu 1987-2016 30 3-13+ 5-10 0.22 273000 R e 
turbot Scophthalmus maximus North Sea tur.27.3a 1981-2016 36 1-8+ 2-6 0.36* 4163* R b 

whiting Merlangius merlangus North Sea whg.27.47d 1990-2016 27 1-8+ 2-7 0.15 166708 R b 
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whiting Merlangius merlangus Celtic Seas whg.27.6a 1981-2016 36 1-7+ 2-4 0.23 44600 NR e 
whiting Merlangius merlangus Celtic Seas whg-iris 1980-2016 37 0-6+ 1-3 0.22 16300 NR e 

†Fmsy was not defined for Barents Sea Saithe in 2017 and an alternative reference point applied (Fmp) were used for analysis in the study. 
*The reference points for North Sea turbot were not defined until 2018 and the stock was excluded from multilevel modeling analysis.    
¶Stock information is taken from ICES Scientific Reports: (a) ICES (2017a), (b) ICES (2017e), (c) ICES (2017b), (d) ICES (2017c) (e) ICES (2017f), (f) ICES 
(2017d).
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Table 2. Parameter estimates and test statistics for the generalized additive mixed effects models 
selected for the northeast Atlantic fish stocks with per capita recruitment success (RStotal) as a 
response variable (Table S2). EDF, F, CI, t, and SD indicate the effective degrees of freedom, F-
statistic, confidence intervals, t-value, and standard deviation. All time (year)-dependent 
smoother terms for covariates are modeled as tensor product construction (using the t2 function 
in the R package mgcv). 
 

model structure and parameter smoother fixed effect random effect 
  EDF F estimate 95% CI t variance SD 

recovering        
RStotal ~ ʄ(Year) + ʄ(Year, SAmean) + 

ʄ(Year, SB/Bpa) + ʄ(Year, 𝐹𝐹�lag1)        
ʄ(Year) 1.00 7.75      

ʄ(Year, SAmean) 4.49 3.12      
  ʄ(Year, SB/Bpa) 5.43 19.58      

ʄ(Year, 𝐹𝐹�lag1) 2.00 5.73      
β0   2.26 (1.81, 2.7) 9.97   

βYear   -0.15 (-0.26, -0.03) -2.51   
βYear×SAmean1   -0.34 (-0.51, -0.17) -3.99   
βYear×SAmean2   -0.04 (-0.14, 0.07) -0.71   
βYear×SSB/Bpa1   0.43 (0.26, 0.61) 4.83   
βYear×SSB/Bpa2   -0.05 (-0.17, 0.07) -0.81   
βYear×𝐹𝐹�lag1,1   -0.06 (-0.18, 0.06) -1.00   
βYear×𝐹𝐹�lag1,2   0.16 (0.06, 0.26) 3.07   

stock      0.20 0.45 
 ecoregion/year       0.13 0.36 

ecoregion      0.06 0.25 
residual      0.34 0.58 

non-recovering        
RStotal ~ ʄ(Year) + ʄ(Year, SAmean) +  

     
       

ʄ(Year, SSB/Bpa) + ʄ(Year, OHC)        
ʄ(Year) 1.00 7.95      

ʄ(Year, SAmean) 4.47 0.58      
  ʄ(Year, SB/Bpa) 3.51 17.8      

ʄ(Year, OHC) 2.19 187.8      
β0   2.40 (1.58, 3.22) 5.75   

βYear   -0.26 (-0.48, -0.03) -2.22   
βYear×SAmean1   -0.18 (-0.47, 0.11) -1.20   
βYear×SAmean2   0.82 (0.6, 1.05) 7.15   
βYear×SSB/Bpa1   -0.40 (-0.63, -0.16) -3.28   
βYear×SSB/Bpa2   0.05 (-0.15, 0.25) 0.46   

stock      0.42 0.64 
 ecoregion/year       0.17 0.41 

ecoregion      1.81×10-5 4.26×10-3 
residual      0.27 0.52 
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Table 3. Parameter estimates and test statistics for the generalized additive mixed effects models 
selected for the northeast Atlantic fish stocks with elasticity to recruitment success (eRS) as a 
response variable (Table S2). EDF, F, 95% CI, t, and SD indicate the effective degrees of 
freedom, F-statistic, confidence intervals, t-value, and standard deviation. All time (year)-
dependent smoother terms for covariates are modeled as tensor product construction (using the te 
function in the R package mgcv). 
 

model structure and parameter smoother fixed effect random effect 
  EDF F estimate 95% CI t variance SD 

recovering        
eRS ~ ʄ(Year) + ʄ(Year, SAmean) + ʄ(Year, SB/Bpa) 
+ ʄ(Year, 𝐹𝐹�lag1/Fmsy) + ʄ(Year, AMOlag1)        

ʄ(Year) 1.00 0.60      
ʄ(Year, SAmean) 3.51 1.61      

  ʄ(Year, SB/Bpa) 7.61 39.16      
 ʄ(Year, 𝐹𝐹�lag1/Fmsy) 5.06 3.71      

ʄ(Year, AMOlag1) 7.15 3.09      
β0   -5.16 (-5.25, -5.07) -118.0   

stock       0.02 0.16 
ecoregion/year      0.01 0.11 

ecoregion      0.01 0.08 
        

non-recovering        
eRS ~ ʄ(Year) + ʄ(Year, SAmean) + ʄ(Year, SB/Bpa) 
+ ʄ(Year, 𝐹𝐹�lag1/Fmsy) + ʄ(Year, wSSTanom)        

ʄ(Year) 1.00 2.10      
ʄ(Year, SAmean) 7.01 141.36      

  ʄ(Year, SB/Bpa) 6.65 4.88      
ʄ(Year, 𝐹𝐹�lag1/Fmsy) 3.60 1.96      

ʄ(Year, wSSTanom) 3.02 1.52      
β0   -5.16 (-5.36, -4.96) -50.2   

stock       0.09 0.31 
ecoregion/year      0.008 0.088 

ecoregion      3.4×10-7 5.8×10-4 
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Figure legends 

Figure 1. Study systems and climate conditions in the northeast Atlantic Ocean. (a) Geographic 

locations of the ecoregions, which are defined by the International Council of Exploration of the 

Sea (ICES): Norwegian and Barents Seas (62°0'N–82°0'N at 11°0'W–68°30'E), Greater North 

Sea (56°0'N at 2°55'E), Baltic Sea (53°35'N–65°54'N at 11°57'E–30°14'E), Faroes (60°0'N–

63°0'N at 15°0'W–4°0'W), Icelandic waters (64°38'N at 18°55'W), the Bay of Biscay and the 

Iberian Coast (42°39'N at 8°53'W), and Celtic Seas (48°0'N–60°30'N at 18°0'W–1°21'W). (b) 

Regional climate indices (North Atlantic Oscillation (NAO) index, Atlantic Meridional 

Oscillation index, and upper (0–400m) ocean heat content (OHC) anomaly) during the study 

period (1946–2016). (c) Seasonal sea surface temperature anomalies in each ecoregion. The time 

series of temperature anomalies in each ecoregion are truncated to show only the years that the 

fish stock data and assessments included in the study are available.  

Figure 2. Regional patterns in fishing pressure and reproductive metrics of the recovering and 

non-recovering northeast Atlantic fish stocks during 1946–2016. (a) Temporal trends in relative 

fishing pressure, relative spawner biomass, mean spawner age, and spawner age diversity. 

Vertical dashed lines indicate the reference year (2002) used to define the recovery status of fish 

stocks based on relative spawner biomass in analysis. (b) Relationships between relative fishing 

pressure and relative spawner biomass and age structure metrics. Solid lines and ribbons indicate 

regional average trends in time (a) or relative fishing pressure (b) and 95% confidence intervals 

estimated by generalized additive mixed effects modeling with year (a) or relative fishing 

pressure (b) as a fixed effect, and ecoregion, year within ecoregion, and stock as random effects. 

Circles indicate partial residuals estimated from the models. Relative fishing pressure and 

relative spawner biomass are defined as estimated fishing mortality rate and spawner biomass 
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relative to management reference points (Fmsy and Bpa) defined by the International Council of 

Exploration of the Sea (ICES).  

Figure 3. Regional trends in transient population growths of the recovering and non-recovering 

northeast Atlantic fish stocks during 1946–2016. Solid lines and ribbons indicate temporal trends 

and 95% confidence intervals estimated by generalized additive mixed effects modeling with 

year as a fixed effect, and ecoregion, year within ecoregion, and stock as random effects. Circles 

indicate partial residuals estimated from the models. Vertical dashed lines indicate the reference 

year (2002) used to define the recovery status of fish stocks based on relative spawner biomass in 

analysis. 

Figure 4. Regional trends in and covariates of per capita recruitment success (fecundity) of the 

recovering and non-recovering northeast Atlantic fish stocks during 1946–2016. (a) Temporal 

trends. Solid lines and ribbons indicate temporal trends and 95% confidence intervals estimated 

by generalized additive mixed effects modeling with year as a fixed effect, and ecoregion, year 

within ecoregion, and stock as random effects. Red circles indicate partial residuals estimated by 

the models. (b–e) Time-varying effects of spawner age structure, spawner biomass, fishing 

pressure. and climate condition. Covariates selected for each type in the models are indicated in 

the y-axis labels. Color gradients and contour lines indicate the partial effects of covariates 

estimated (as tensor interaction terms) in the models (only the covariate types that are supported 

by data are shown). Warmer colors indicate higher values, and the ranges of the partial effects 

differ among the covariates and are indicated as values on the contour lines. Gray circles indicate 

back-transformed input data. (f–h) Random effects estimates (±95% confidence intervals) for 

stock and ecoregion for the recovering and non-recovering stocks (ecoregion-specific estimates 
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for the non-recovering stocks are negligible; random effect estimates for year nested within 

ecoregion are given in Fig. S6b). 

Figure 5. Ecoregion-scale climate effects on per capita recruitment success (fecundity) of 

northeast Atlantic fish stocks (the Baltic Sea, the Bay of Biscay, the Celtic Seas, Faroes, 

Icelandic waters, and the Norwegian–Barents Seas) during 1946–2016. Time-varying effects of 

climate condition are estimated by generalized additive mixed effects modeling with year (and 

stock for the Celtic Seas) as a random effect (see Fig. S11 for complete results of the models 

with the other covariates, spawner age structure, spawner biomass, and fishing pressure). Climate 

covariates selected in the models are indicated in the y-axis labels. Color gradients and contour 

lines indicate the partial effects of covariates estimated (as tensor interaction terms) in the 

models. Warmer colors indicate higher values, and the ranges of the partial effects differ among 

the covariates and are indicated as values on the contour lines. Gray circles indicate back-

transformed input data. 

Figure 6. Regional trends in and covariates of elasticity to per capita recruitment success of the 

recovering and non-recovering northeast Atlantic fish stocks during 1946–2016. (a) Temporal 

trends. Solid lines and ribbons indicate temporal trends and 95% confidence intervals estimated 

by generalized additive mixed effects modeling with year as a fixed effect, and ecoregion, year 

within ecoregion, and stock as random effects. Circles indicate partial residuals estimated by the 

models. (b–e) Time-varying effects of spawner age structure, spawner biomass, fishing pressure, 

and climate condition. Covariates selected in the models are indicated in the y-axis labels. Color 

gradients and contour lines indicate the partial effects of covariates estimated (as tensor 

interaction terms) in the models. Warmer colors indicate higher values, and the ranges of the 

partial effects differ among the covariates and are indicated as values on the contour lines. Gray 
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circles indicate back-transformed input data. (f–h) Random effects estimates (±95% confidence 

intervals) for stock and ecoregion for the recovering and non-recovering stocks (ecoregion-

specific parameters for the non-recovering stocks are negligible; random effect estimates of year 

nested within ecoregion are given in Fig. S6c). 

Figure 7. Ecoregion-scale climate effects on elasticity to per capita recruitment success of 

northeast Atlantic fish stocks (the Baltic Sea, the Bay of Biscay, Faroes, and Icelandic waters) 

during 1946–2016. Time-varying effects of climate condition are estimated by generalized 

additive mixed effects modeling with year (and stock for the Celtic Seas) as a random effect (see 

Fig. S14 for complete results of the models with the other covariates, spawner age structure, 

spawner biomass, and fishing pressure). Climate covariates selected in the models are indicated 

in the y-axis labels. Color gradients and contour lines indicate the partial effects of covariates 

estimated (as tensor interaction terms) in the models. Warmer colors indicate higher values, and 

the ranges of the partial effects differ among the covariates and are indicated as values on the 

contour lines. Gray circles indicate back-transformed input data. 
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