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Abstract 12 
Some aspects of cognition are more taxing than others. Accordingly, many people will avoid 13 
cognitively demanding tasks in favor of simpler alternatives. Which components of these tasks 14 
are costly, and how much, remains unknown. Here, we use a novel task design in which subjects 15 
request wages for completing cognitive tasks and a computational modeling procedure that 16 
decomposes their wages into the costs driving them. Using working memory as a test case, our 17 
approach revealed that gating new information into memory and protecting against interference 18 
are costly. Critically, other factors, like memory load, appeared less costly. Other key factors which 19 
may drive effort costs, such as error avoidance, had minimal influence on wage requests. Our 20 
approach is sensitive to individual differences, and could be used in psychiatric populations to 21 
understand the true underlying nature of apparent cognitive deficits. 22 
 23 
Author Summary 24 

Anyone who has tried to mentally calculate how much to tip at a restaurant knows that cognitive 25 
effort can feel aversive. Doing math in your head, like most high-level cognitive abilities, depends 26 
critically on working memory (WM). We know that WM is sometimes effortful to use, but we don’t 27 
know which aspects of WM use drive these effort costs. To address this question, we had 28 
participants request wages in exchange for performing various tasks that differed in their specific 29 
WM demands. Using computational models of their wage demands, we demonstrated that some 30 
aspects of WM are costly, such as bringing new information into memory and preventing 31 
interference. Other factors, like the amount of information in memory and attempts to avoid 32 
mistakes, were less costly. Our approach identified which specific subcomponents of WM are 33 
aversive. Future research could use these methods to test theories about how motivational 34 
problems might be masquerading as cognitive deficits in psychiatric populations.   35 
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 36 

Introduction 37 

 38 
Some activities (e.g., getting dinner with friends) are more enjoyable than others (e.g., 39 

calculating how to split the bill). Doing tasks which require greater cognitive effort, colloquially 40 
called “brain power,” can feel uniquely aversive, though to different degrees for different people 41 

(1–3). Indeed, despite tangible benefits, people often avoid cognitively demanding work (4,5). 42 

Such resistance suggests that we weigh the effort of mental activity, perhaps as a cost to be offset 43 
with reward. 44 

Previous research has identified the experimental tasks which are more costly to perform 45 

by giving subjects control over which tasks they complete. Tasks which subjects demanded the 46 
most incentives to complete (5–7) or which subjects tended to avoid in favor of other tasks with 47 
equivalent rewards (4,8,9) are considered most effortful. Some costly aspects of these tasks are 48 

external, like time on task (10–12) or the complexity of the cognitive model required by the task 49 
(13–16), but other costs arise from the internal operations necessary to realize external actions. 50 
In general, cognitive resistance increases when tasks place substantial demands on working 51 
memory and cognitive control (5,17–19). However, it remains unknown which particular aspects 52 

of working memory and cognitive control may be most costly. For example, perhaps the sustained 53 
effort required during working memory maintenance is more costly than the transient effort 54 
required to inhibit a prepotent response.  55 

Here, we decomposed simple and complex attention (i.e., detection) and working memory 56 

(N-back) tasks into putative elemental processes such as maintaining information in memory of 57 
different loads and resisting interference from task irrelevant lures. We assumed that the 58 
subjective costs of these operations are internally felt and consciously accessible, and that the 59 

total cost of completing a task is learned by experiencing these costs. We assessed these total 60 

costs using a modified auction procedure. Previous work has used such auctions to infer the 61 
subjective values of items on a menu (20,21); our modifications allowed us to infer the total effort 62 

costs associated with completing various cognitive tasks by asking subjects what a “fair wage” for 63 

task completion would be. Given the evidence that the allocation of cognitive resources is subject 64 
to a cost-benefit tradeoff (12,22–26), we hypothesized that subjects’ trial-by-trial fair wage 65 

demands would, at least to a first approximation, reflect the sum of the individual costs associated 66 

with task completion, as the amount of reward necessary to offset them. To assess the extent to 67 
which the costs we measured were related to the self-reported tendency to engage in effortful 68 
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cognitive tasks, albeit varying across trials, we collected Need For Cognition scores from each of 69 

our subjects (NFC; 2). 70 

As our subjects were likely to experience costs other than those deriving from cognitive 71 
effort, we designed our experiment to try to limit the effects of these other factors. First, to 72 

minimize the influence of time on task on fair wage ratings, we gave subjects an easy task to 73 
complete when they wished to skip a harder one. We also ensured that every task round took the 74 

same amount of time. Second, cognitively effortful tasks often also elicit errors. This may be 75 

experienced as a cost, particularly in perfectionist subjects (27,28). While we could not as easily 76 
control for error avoidance costs as for time costs, we designed our task to minimize error 77 

avoidance behavior by not giving trial-by-trial feedback, not informing subjects of their accuracy 78 

round-by-round, and not reducing their compensation unless errors became overly prevalent. We 79 
also collected subject scores on the Short Almost Perfect Scale (SAPS; 29), to assess the degree 80 
to which subjects’ fair wages were driven by the tendency to avoid making errors (i.e. 81 

perfectionism). Lastly, we included the costliness of errors alongside the costs of cognition in our 82 
computational analyses. 83 

We found three non-zero cognitive effort costs: the cost of adding new information into 84 
working memory (WM), the cost of filtering out irrelevant information, and the cost of maintenance. 85 

More subtly, we found evidence that subjects learned the total costs of each task through task 86 
experience, and that the costs of cognition did not increase or decrease over the duration of the 87 
experiment. We found that the self-reported tendency to avoid effort was related to explicit ratings 88 
of task costliness and difficulty, as well as more implicit costs of cognition. This implies that effort 89 

avoidance may be driven both by the explicit, stable preference to avoid effort and by the implicit 90 
subjective experiences of the costs of cognition. 91 
 92 
 93 
Results 94 

100 subjects completed the experiment online through Amazon Mechanical Turk. Subjects 95 
completed 32 task rounds and performed four different tasks in random order: an attentional 96 

vigilance task (1-detect), a vigilance task requiring more WM maintenance (3-detect), and the 1- 97 

and 2-back WM task (18,30). Before each task round began, subjects were shown the task they 98 
were to complete (an associated fractal), and were able to request a fair wage for that round of 99 

that task. A Becker-Degroot-Marschak (BDM) auction mechanism then determined whether they 100 

completed 15 trials of the task they rated for the wage they requested, or 15 trials of the default, 101 
non-demanding task (the 1-detect) for a lower wage. We analyzed their performance and fair 102 

wage ratings across tasks. We used computational modeling to examine how fair wages were 103 
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influenced by the putative cognitive operations used to complete the previous task rounds, like 104 

WM maintenance or updating. We also related fair wage ratings to previous task behavior, 105 

including the number and types of errors they made.  106 
 107 

Model-Agnostic Results: There was a main effect of task identity on accuracy (Figure 2A; F = 108 
44.1; p <0.0001), mean reaction time (RT; F = 31.5, p <0.0001), and difficulty rating (F = 26; p 109 

<0.0001). Post-hoc comparisons confirmed that subjects had lower accuracy, higher RTs, and 110 

higher difficulty ratings on the 2-back task than on all of the other tasks (Table 1; Accuracy: 2-111 
back versus 1-detect p <0.001; 2-back versus 1-back p <0.0001; 2-back versus 3-detect p 112 

<0.0001; Mean RT: 2-back versus 1-detect p < 0.001; 2-back versus 1-back p <0.0001; 2-back 113 

versus 3-detect p <0.0001; Difficulty ratings: 2-back versus 1-detect p <0.001; 2-back versus 1-114 
back p <0.0001; 2-back versus 3-detect p <0.0001). Accuracy was highest on the 1-detect when 115 
compared with all the other tasks (all p’s <0.0001). Mean RTs on the 1-detect were lower than on 116 

the 1-back (p <0.0001), and 2-back (p <0.0001), but not on the 3-detect (p >0.05). Difficulty ratings 117 
were also lowest on the 1-detect compared to the 1-back (p <0.0001), 3-detect (p <0.0001), and 118 
2-back (p <0.0001). Mean accuracy was lower and mean RT was higher on the 1-back than on 119 
the 3-detect (p <0.001; p <0.0001). The mean difficulty rating was no different between the 1-back 120 

and 3-detect (p >0.05).  121 
Subjects rated only the 1-back, 2-back, and 3-detect tasks, as the 1-detect task was the 122 

default task. A 2-way ANOVA on fair wage ratings showed a main effect of task identity (Figure 123 
2B; Table 1; F = 29.7, p < 0.0001) and a main effect of task iteration (Figure 2D; Supplementary 124 

Figure 1; F = 5.2, p < 0.0001). Subjects’ mean fair wage ratings on the 2-back task were 125 
significantly higher than for the 1-back (p < 0.0001). Comparing fair wage ratings for the 1- and 126 
2-back allows us to directly measure the costs of maintaining one more item in working memory, 127 

though the 1- and 2-back tasks also differ in the degree of interference present in WM and the 128 

number of errors made. Mean fair wage ratings on the 2-back were also higher than on the 3-129 
detect (p < 0.0001). Comparing fair wages from the 2-back and 3-detect, which both require the 130 

maintenance of 2 items, allows us to measure the cost of interfering stimuli in WM storage or the 131 

increased errors made on the 2-back task. Fair wages were not significantly different between the 132 
1-back and the 3-detect (p > 0.1). Though the 1-back and 3-detect differ in their load on WM, 133 

subjects tended to rate them equivalently. These results suggest that increasing WM interference 134 

may be more subjectively costly than increasing WM load. We investigate further in our model-135 
based analyses below. 136 
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While accuracy was significantly lower and fair wages significantly higher for the 2-back 137 

task, there was no relationship between mean 2-back accuracy and mean fair wage on the 2-138 

back across subjects (r = -0.08, p > 0.1). There was also no relationship between mean accuracy 139 
and fair wage on the 3-detect task (r = -0.16, p > 0.1). However, there was a significant relationship 140 

of mean 1-back accuracy and mean fair wage (r = -0.36, p < 0.01). We further assess the influence 141 
of errors on fair wages below by using computational modeling (Model-based results). 142 

Task accuracy was broadly stable across task iterations (Figure 2C; main effect of task 143 

iteration F = 1.3, p > 0.05). This indicates that performance did not improve with task experience. 144 
Across all subjects there was also no relationship between round number (out of 32) and mean 145 

task accuracy or mean RT (Pearson r = -0.02, p > 0.1; Pearson r = 0.003, p > 0.1). This is likely 146 

because subjects trained to 80% accuracy during practice and were already at their maximum 147 
performance levels by the start of the main task.  148 

Fair wage ratings seem to decrease with task iteration (F = 5.2, p < 0.0001; Figure 2D), 149 

but potentially as a byproduct of the experimental design. That is, subjects who asked for lower 150 
wages completed the non-default tasks a higher number of times; therefore the lower mean fair 151 
wage on later task iterations may primarily come from subjects who had lower fair wage ratings 152 
overall (Supplementary Figure 2). Another possibility is that subjects ask for lower fair wages over 153 

time because they find that the tasks become less effortful with practice. If that were the case, 154 
then you might expect their accuracy to improve over the course of the experiment. However, the 155 
ANOVA on task accuracy by task iteration reported above found no main effect of task iteration. 156 
We investigated this further by averaging fair wages over each subject’s first and last half of task 157 

completions, and comparing them via t-test to see whether their wage requests changed as their 158 
task experience increased. We did the same analysis for task accuracy. There was a significant 159 
decrease of fair wage ratings from the first to the second half of task completions for the 1-back 160 

task (p < 0.01) and 3-detect task (p < 0.01). There was no change in fair wage ratings across the 161 

first and second halves of experience with the 2-back task (p > 0.05). There was no change in 162 
accuracy in the first and second halves of task completions on the 1-back task (p > 0.05), 3-detect 163 

task (p > 0.05), or 2-back task (p > 0.05). Taken together, these results suggest that any decrease 164 

of fair wage ratings over task iterations stems from the experimental design, and not from learning 165 
or practice effects. We investigate this further with computational modeling below. 166 

 167 

Analysis of Self-Report Measures: We ran regressions on task behavior with linear and 168 
quadratic NFC and SAPS terms, using a model selection procedure which trimmed each 169 

regression down to an intercept term, and the self-report terms which were necessary for model 170 
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significance (p < 0.05). NFC scores were linearly and quadratically related to mean 3-detect 171 

accuracy (β = -11.59, β = 1.82). NFC was quadratically related to difficulty ratings for the 1-detect 172 

(β = -0.06). SAPS scores were linearly and quadratically related to mean 1-back accuracy (linear 173 
β = 12.94, quadratic β = -1.60), mean 3-detect accuracy (linear β = 7.58, quadratic β = -0.87), and 174 

difficulty ratings for the 2-back task (linear β = -1.15, quadratic β = -0.13). SAPS scores were also 175 
quadratically related to 2-back accuracy (β = -1.11). Neither NFC nor SAPS score were linearly 176 

or quadratically related to mean RTs. 177 

 We ran the same regression analysis on mean fair wage ratings, collapsed across all 178 
tasks. There was a significant quadratic relationship of NFC and mean fair wage ratings (β = -179 

0.03). We split subjects up into self-report tertiles to further investigate the significant quadratic 180 

relationships between task and self-report variables. The tertile split resulted in 25 low, 37 mid, 181 
and 37 high NFC subjects, and 34 low, 37 mid, and 28 high SAPS subjects. Post-hoc t-tests 182 
confirmed that the significant quadratic effect of NFC is driven by the difference in mean fair wages 183 

between the high and mid NFC subjects. Mid NFC subjects had higher fair wage ratings than high 184 
NFC subjects (p < 0.01; Supplementary Figure 3). However, there were no differences between 185 
the low and high NFC groups (p > 0.05), or the low and mid NFC groups (p > 0.05). We supposed 186 
that high NFC subjects would ask for the lowest fair wages, but we did not find such a pattern in 187 

explicit fair wage ratings. We next investigated how NFC was related to the implicit costs of 188 
cognition captured by our computational model. 189 
 190 
Model-based results: Based on the model-agnostic results, we designed and tested a series of 191 

computational models to isolate the costs of distinct cognitive processes from fair wage ratings. 192 
These models allowed us to test the hypothesis that subjects have some internal awareness of 193 
the costs of certain cognitive operations, and to estimate the magnitude of these costs. We also 194 

measured the costs associated with all types of behavioral responses, including making errors. 195 

In doing so, we assessed whether fair wage ratings also captured costs stemming from physical 196 
effort (making key presses) or error avoidance, which are not cognitive process costs but are still 197 

potential modifiers of fair wages. Error avoidance in particular could explain, to some extent, effort 198 

avoidance in behavior; we fit error costs separately to assess this possibility (28).  199 
We fit subjects’ behavior with a series of models using the Computational Behavioral 200 

Modeling (CBM) toolbox (31). All models included a noise parameter ( ), and an initial rating 201 

parameter for each task (initi) as free parameters. One class of models assumed that the cost 202 
parameters were fixed across trials, but that the subjects learned about the total cost they 203 

experienced with a learning rate (ɑ). A separate class of models assumed that subjects’ demands 204 
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reflected the cost just on the previous iteration of the task, but that the cost parameters changed 205 

linearly with trial number at a rate given by parameter (δ). Within these model classes, we tested 206 

several combinations of cost parameters. The maintenance cost (cmaintenance) captured the effect 207 
of maintaining more information in WM. The interference cost (cinterference) captured the effect of 208 

“lure” trials in the 2-back task. The update cost (cupdate) captured the effect of updating WM with 209 
new information. The response cost parameter (cresponse) captured the influence of perceived 210 

matches (button presses) on subsequent BDM ratings. The miss cost (cmiss) captured the effect 211 

of missed matches. The false alarm cost (cfa) captured the effect of making responses when there 212 
was no match.  213 

 The models with the highest frequencies in our subject pool included learning rate ɑ, rating 214 

noise , three initial rating parameters (one per task), update costs, interference costs, and 215 
maintenance costs (Figure 3A). Two subjects were best fit by a model including the cost changing 216 
parameter δ and a fixed learning rate ɑ = 1 but most subjects’ (98/100) experienced costs of 217 

cognition were stable across 32 task rounds. Most changes in fair wage ratings were likely driven 218 

by cost learning (𝛼), differences in the cognitive operations required in different task rounds, or 219 

reporting noise ( ). 220 
The model with the highest model frequency included only update costs, and was the 221 

winning model overall with a protected exceedance probability of >0.99 and a model frequency 222 
of 78.1%. The second most frequent model included only interference costs and had a model 223 
frequency of 10.3%. The third most frequent model included update, interference, and 224 
maintenance costs, and had a model frequency of 6.3%. The remaining five recovered models 225 

contained the rest of the cost components (including false alarm, miss, and response costs) in 226 
various combinations and accounted for the last 5.3% of model frequency (Figure 3A). They also 227 

contained two models with δ cost-changing parameters instead of ɑ cost-learning parameters.  228 
Although most of our subjects were best fit by the winning model, one quarter of our 229 

subjects were best fit by other models. Subject fair wages were better fit by simulating data for 230 

each subject using their best-fitting model (mean r2 = 0.516; Figure 3C; Supplementary Figure 3), 231 
than by simulating data for all subjects with just the winning model (mean r2 = 0.466). In addition, 232 

10 subjects’ data were best explained by models containing multiple costs of cognition. Thus, 233 

subjects’ fair wages were influenced by more than just update costs.  234 

There was scant evidence that button presses or errors were costly, as all models 235 

including response, false alarm, or miss cost parameters had a total model frequency less than 236 

3%. Models including response and miss costs each accounted for model frequencies less than 237 
1%, so these costs are not explored further below. 238 
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The mean update cost was 0.615 (Figure 3B), making it the highest magnitude cost 239 

parameter. The next highest mean parameter value was the interference cost, at 0.60, followed 240 

by the maintenance cost at 0.2, and the false alarm cost, at -0.65. Despite the near equivalence 241 
of the mean update and interference costs, lures in WM were much less frequent than updates to 242 

WM. Because of this, subjects lost more monetary bonuses due to the avoidance of update costs, 243 
resulting in their forfeiting an average of 0.87 cents extra per round. They were willing to forfeit 244 

0.26 cents and 0.38 cents per round to avoid maintenance and interference costs, respectively. 245 

While subjects did not know the exact mapping between BDM points and the monetary bonus at 246 
the conclusion of the experiment (1 point = 1 cent), this speaks to the true costliness of each 247 

component process, in terms of the overall monetary amounts subjects forfeited.  248 

As we hypothesized, the mean difference between fair wage ratings on the 2-back and 3-249 
detect tasks was predicted by the magnitude of the interference costs (r = 0.42, p <0.0001). The 250 
mean difference between ratings on the 2-back and 1-back was predicted by the magnitude of 251 

the maintenance costs (r = 0.41, p <0.0001). These correlations confirm that the tasks differ in 252 
their subjective costliness at least partially because of the differences in WM operations required 253 
by them. 254 

We tested whether any self-report measures of effort avoidance or perfectionism related 255 

to fit cost parameters. Specifically, we wondered whether the need for cognition (NFC) or 256 
perfectionism (Short Almost Perfect Scale; SAPS) scales were predictive of any cost parameter 257 
values. For simplicity, we analyzed just parameter values from subjects best fit by the winning 258 
(update costs) model (N = 79). We ran a regression including both linear and quadratic terms for 259 

the effect of NFC and SAPS scores on fit update cost parameters from the winning model. We 260 

found no significant linear (𝜷 = 0.218, p >0.1) or quadratic (𝜷 = -0.044, p >0.1) relationship 261 

between update cost and NFC. There was also no significant linear (𝜷  = -0.210, p >0.1) or 262 

quadratic (𝜷 = 0.027, p >0.1) relationship between update cost and SAPS score. NFC and SAPS 263 

scores were well-sampled across our sample of 100 subjects (Supplementary Figure 2).  264 

We then examined whether there were parameter differences across NFC and SAPS 265 

tertiles. Within the subjects best fit by the winning model, high NFC subjects had significantly 266 
lower update costs than both low (p < 0.05) and mid-NFC subjects (p < 0.05). There were also 267 

differences in initial fair wage ratings across NFC groups (Figure 4), the general pattern being 268 

that mid NFC subjects asked for the highest initial fair wages. High NFC subjects had significantly 269 
lower initial fair wage ratings than mid NFC subjects for all three tasks (1-back p < 0.01; 2-back p 270 

< 0.01; 3-detect p < 0.05). There were no significant differences between low and high NFC 271 
subjects’ initial rating parameters. Mid NFC subjects had higher initial ratings for the 2-back task 272 
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than low NFC subjects (p < 0.05). Mid NFC subjects had higher variance (𝜎) around their fair 273 

wage ratings than high NFC subjects (p < 0.01) and low NFC subjects (p < 0.05). There were no 274 

significant differences in learning rates between subjects split into NFC tertiles (p’s > 0.1). Taken 275 

together, these results suggest that both explicit reports about task costliness (initial fair wage 276 
ratings for each task), and more implicit experiences of the costs of cognitive operations (update 277 

costs) change with individual differences in NFC across subjects.  278 
There were no significant differences in cost parameter magnitudes between subjects split 279 

into SAPS tertiles.  280 

 281 
Discussion 282 

Deploying working memory or paying attention can feel costly (32,33). In this work, we 283 
quantified the subjective costs of the cognitive operations demanded by commonly studied 284 

working memory and attention tasks, in a way sensitive to both the dynamics of cognitive effort 285 
exertion and individual differences in effort avoidance. Using a novel experimental paradigm 286 
which leverages an inverted Becker-Degroot-Marschak auction procedure (20), we obtained 287 
subject ratings of the total cost of completing a working memory or attention task, one round at a 288 

time. We then used a computational model to decompose these ratings into the costs of the 289 
individual cognitive operations putatively used during that round, as well as aspects of subject 290 

behavior, like errors. Our computational models quantify the subjective costs of individual 291 
cognitive operations and allow us to test several hypotheses about how cognitive effort costs may 292 
change with time or task experience. 293 

We found evidence that updating WM, interference from within WM storage, and WM load 294 

are subjectively costly. Most subjects tracked a single cost. The largest percentage of subjects 295 
tracked just update costs, and the next highest proportion tracked just interference costs. 296 

Although effortful cognition can be rewarding (3,34), we find that the costs, not the intrinsic 297 

rewards, of cognitive effort drove fair wages. Updating WM cost the most. Subjects forfeit on 298 
average 0.87 cents extra per round as a result of avoiding frequent WM updating demands. 299 

Interference costs (lure stimuli inside of WM) were similarly high, but because lures were 300 

somewhat infrequent, rating them highly (and thereby avoiding them) led subjects to lose less 301 
money per round. The third highest cost was that of maintaining more information in WM. 302 

Increasing WM load (the N in N-back) has often been assumed to be the primary driver of 303 

increases in subjective difficulty. However, we show that WM load was only minimally costly and 304 
that updating and interference had a greater influence on subjective cognitive effort. Lure stimuli 305 

in WM storage demand an accurate maintenance of both stimulus identity and stimulus order. 306 
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The interference cost captures the confusability of stimuli in WM storage and the cost of 307 

disambiguating them by their temporal order. WM updating is similarly complex, as information 308 

must be gated in, gated out, and temporally re-ordered. WM updating has been compared to 309 
switching between WM attractor states, which could be an energetically costly process (35,36). 310 

Perhaps, the magnitude of the update cost parameter captures the complexity or energetic costs 311 
associated with this operation.  312 

We find that subjects quickly learned the costs of completing each task through internal 313 

cost feedback signals, then exhibited stable fair wage ratings. Our models provided two surprising 314 
new insights into how the costs of cognition may figure into deciding between several paths of 315 

action. First, only 10 subjects were best fit by models which contain multiple cost parameters. 316 

Tracking multiple costs of cognition may be in itself costly, so subjects may have selected just 317 
one cost component to base their fair wage ratings on to minimize overall experimental demands, 318 
consciously or otherwise. Second and seemingly at odds with previous work (37–39), we found 319 

no evidence that fatigue impacted fair wage ratings as cost parameters did not increase or 320 
decrease over rounds. However, cognitive fatigue may only emerge after longer durations of 321 
cognitive work (40). 322 

Our task design directly controlled for one possible confound of the costs of cognitive 323 

effort, time on task (10–12). Another key confound in cognitive effort avoidance work is error 324 
avoidance (27,28), which is harder to directly control for, as tasks which are cognitively effortful 325 
often also elicit more errors. Instead, we measured several potential markers of error avoidance 326 
and found that it had minimal influence over subjects’ fair wage ratings. First, there was no 327 

relationship between round-by-round accuracy and fair wage ratings in two out of three tasks. 328 
Second, highly perfectionistic subjects, as measured by the Short Almost Perfect Scale (29), did 329 
not have higher fair wages overall, though they would be expected to have been particularly error 330 

avoidant. Third, while 2/100 subjects’ fair wage ratings were responsive to false alarm errors, the 331 

fit cost of making false alarms was of the smallest magnitude, and in fact, numerically negative 332 
(Figure 3B). No subject was affected by the cost of making omission errors (misses). These 333 

results suggest that while error avoidance is a small factor in the overall costs of cognitive effort, 334 

it is not the most important component driving them.  335 
The Need for Cognition (NFC) scale measures the self-reported tendency to engage in 336 

challenging cognitive work (2). Our task and modeling approach are sensitive to self-report NFC, 337 

as the cost of updating WM is lowest in subjects with high NFC. This establishes that our paradigm 338 
is sensitive to individual differences, and validates that what we measure with it is indeed related 339 

to the trait tendency to avoid cognitive effort. Interestingly, self-report NFC scores exhibited an 340 
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inverted U-shaped relationship with initial task ratings, where mid NFC subjects requested the 341 

highest fair wages on the 2-back task. This suggests that NFC interacts differently with more 342 

explicit task ratings versus the more implicit costs of cognition, and warrants further investigation. 343 
Though one would suspect that high NFC subjects would provide the lowest explicit fair wage 344 

ratings, their fair wage ratings were not significantly different from low NFC subjects’ ratings. 345 
Instead, they differed in how their wages responded to the dynamic costs of cognition (WM update 346 

costs). This suggests a dissociation of explicit self-report measures and task behavior, but an 347 

association between explicit self-reports and the implicit costs of cognition measured through 348 
computational modeling. 349 

One limitation of our task design was the high degree of correlation between cost 350 

components, which may have impacted cost parameter recovery during model fitting. While 351 
maintenance demands were constant across the 2-back and 3-detect tasks, the 2-back was the 352 
only task which required subjects to filter out interference from lures stored in WM. In addition, as 353 

the 2-back was the most difficult task, it was associated with the most errors. Thus the total cost 354 
components increased from the 1-back to the 2-back, and to some extent from the 3-detect to the 355 
2-back. This resulted in high correlations between cost components within subjects. Despite this 356 
consequence of the experimental design, there remained a high degree of fidelity in parameter 357 

recovery (Supplementary Figure 4), and a low degree of tradeoff between fit parameter values 358 
(Supplementary Results). It remains an open question as to what extent these cognitive 359 
operations (i.e. WM updating, resistance to interference, and maintenance) depend on 360 
overlapping or independent mechanisms, and indeed whether the costs of these operations are 361 

related. 362 
 This work directly quantifies the costs associated with the cognitive operations required in 363 
working memory and attention tasks, not just how subjects avoid or approach each task. The N-364 

back, a classic WM task, is useful in the study of working memory because it requires the use of 365 

many diverse WM operations (30). Here, we reveal that the N-back’s strength may also be its 366 
weakness, in that the number of WM operations required to complete it is also what makes it so 367 

aversive (32).  368 

There are many avenues for future work using this experimental and modeling approach. 369 
Here, we adopted one specific process model to decompose each round of each task into the 370 

component cognitive operations necessary to complete it, though there are many possible models 371 

to use. The use of a different process model could have resulted in a different cost component 372 
structure. Slight modifications to the tasks could also have given rise to different cost magnitudes. 373 
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For example, if we had provided explicit trial-by-trial feedback, we may have observed higher 374 

error costs. 375 

These results have potential implications for treating cognitive dysfunction in psychiatric 376 
disorders. For one, the N-back task may not be suitable for use as a benchmark for WM ability in 377 

psychiatric populations, as many have comorbid cognitive and motivational deficits. Dopaminergic 378 
cortico-striatal loops, which are highly sensitive to reward, are thought to be a driver of WM 379 

performance (41–43). Our novel paradigm may be clinically useful, as cognitive dysfunction could 380 

be partially treated by comparing the costs of cognition across groups, then offsetting those costs 381 
with rewards (44–46).  382 

In summary, along with a novel experimental approach in which subjects request wages 383 

for completing one round of one task, we implemented a modeling procedure that decomposes 384 
their wages into the costs driving them. We found that updating WM, interference among items in 385 
WM, and WM load are costly, independent of any error, time, or fatigue costs. This suggests that 386 

certain cognitive operations are inherently costly to perform, in alignment with the idea that human 387 
cognition is subject to cost-benefit analyses which can result in the use of less costly, less effective 388 
cognitive strategies (47). Surprisingly, the highest subjective cost of N-back performance was not 389 
WM load, but WM updating. We find a direct relationship between self-report individual differences 390 

in cognitive effort avoidance and the implicit costs associated with specific WM operations. That 391 
our task captures these individual differences, where others have not (48), suggests it could be 392 
implemented to capture other individual differences, perhaps in psychiatric or developmental 393 
populations. 394 

 395 
 396 
 397 

 398 

 399 
 400 

Methods 401 

100 subjects (35 female, 14 unspecified sex, mean(std) age: 39(12), 11 unspecified age) 402 
completed our online task in full. 281 unique workers opened our experiment on Amazon 403 

Mechanical Turk (AMT). Of the 270 subjects who consented to participate, 218 of them made it 404 

through the practice blocks, 142 successfully finished the quiz, 125 made it to the 16th block of 405 
the experiment, and then 100 completed the experiment in its entirety. Our final sample, which 406 

we analyze below, consisted of these 100 subjects who finished the experiment. We did not 407 
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include any data from any of the subjects who did not finish the experiment in our analyses. Given 408 

the strict accuracy and attention cutoffs we imposed, and the overall length of our task 409 

(mean(median) total time on task: 37(36) minutes) versus the typical length of tasks on AMT (one 410 
study reported that the mean time spent on submitted HITs was less than 2 minutes (49)), we 411 

considered a 37% completion rate to be acceptable. 412 
Subjects were asked to complete 32 task rounds, alternating between 4 different tasks: a 413 

1-detect task (oddball detection), a 1-back task, a 3-detect task (detect 3 of the same stimulus in 414 

order), and a 2-back task. We chose these four tasks because they rely on many of the same 415 
cognitive processes, whilst also differing in important ways in the operations they require from 416 

those processes. 417 

 418 
Experimental procedure: In a novel experimental paradigm, we leveraged the Becker-Degroot-419 
Marschak (BDM) auction procedure to measure the evolving subjective value of choice options 420 

(20). The experiment was coded using a pre-built Javascript framework for online Psychology 421 
experiments (JsPsych; 50) and custom Javascript functions. Subjects were introduced to 4 tasks, 422 
each of which was associated with a fractal image (a “task label”; see Figure 1): the 1- and 2-back 423 
working memory tasks, and two types of attentional vigilance task, which we refer to as the 1-424 

detect (the default task) and 3-detect (4,5,30,51). Subjects completed a total of 32 rounds, using 425 
the BDM procedure before each round to report the wages they considered fair for performing the 426 
particular non-default task that was offered instead of the default 1-detect task.  427 

In all tasks, subjects saw a sequence of 15 letters, one after the other. Subjects had to 428 

respond to the letters that matched a rule by pressing the “K” key on the keyboard. Stimuli 429 
remained on the screen for 1.5s; any response had to be made before they disappeared. If a 430 
subject responded late to a match, that trial was marked incorrect. The inter-stimulus interval was 431 

300ms. Time on task was standardized such that the time spent on each task could not influence 432 

subjective effort cost differences across tasks; each task round took approximately 24 seconds.  433 
The 1-detect task was the default task, intended to involve minimal effort. Subjects had to 434 

respond only if they saw a “T” on screen. In the 3-detect task, subjects had to respond when any 435 

letter was presented 3 trials in a row. In the 1- and 2-back tasks, subjects had to respond when 436 
the letter on screen matched the one displayed 1 or 2 trials back, respectively. Letter sequences 437 

were standardized such that subjects were required to respond to 3 to 5 matches per round, 438 

regardless of task identity. We chose to run these four tasks because they involved similar 439 
cognitive processes, but differed in their rule structure and thus the number and complexity of the 440 
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operations they required. In particular, we sought to measure the costs of increased WM load and 441 

the information manipulation required by the N-back tasks. 442 

Comparing the subjects’ fair wage demands for the 1- and 2-back tasks allowed us to 443 
measure the cost of maintaining one more item in working memory (“maintenance”). Comparing 444 

the demands for the 2-back and 3-detect tasks, which both require the maintenance of 2 items, 445 
allowed us to measure the cost of protecting against interference in the contents of WM 446 

(“interference”). In the 3-detect task, subjects had to remember the 2 previous stimuli and 447 

compare them to the current stimulus. Detecting a match was simple as long as one recalled 448 
whether the previous 2 stimuli matched the current one. In the 2-back task it remained essential 449 

to recall the previous 2 stimuli. However, the stimulus from 1 trial ago was never relevant for the 450 

trial at hand; all that mattered was the identity of the stimulus 2 trials ago. Because both must be 451 
stored, however, it is possible that the stimulus from 1 trial ago was distracting, and if it matched 452 
the current stimulus, it may have served as a lure to respond. Identifying and filtering out this 453 

distraction may require significant attention and effort. Thus a “lure trial” was any trial where the 454 
irrelevant stimulus from 1 trial ago matched the stimulus on the current trial, in the 2-back task. 455 
The interference cost in our model captured the cost of these lure trials. This idea is also described 456 
in (52).  457 

Stimuli were presented in pseudo-random order such that the use of other WM operations, 458 
like WM updating, also differed slightly across rounds. Additionally, forcing 3-5 matches per round 459 
allowed us to measure the costs of responding to perceived matches, not responding when 460 
matches occur (misses), or responding erroneously (false alarms). 461 

To obtain fair wage ratings for each round in each task, we employed an inversion of the 462 
typical Becker-Degroot-Marschak (BDM) auction procedure, in which subjects bid for items with 463 
points. In our procedure, subjects are asked to do some cognitive work in exchange for a fair 464 

wage. Before each round, subjects were shown a fractal image associated with one of the tasks, 465 

and were asked to use a slider to specify their “fair wage” for completing one round of that task. 466 
Possible fair wages ranged from 1 to 5 points. They were then shown a random computer offer, 467 

also from 1 to 5 points. If the computer offer was above their requested wage, they were given 468 

the computer offer for completing one round of the task associated with the fractal. If the computer 469 
offer was below their requested wage, they completed the default task for 1 point. All task rounds 470 

consisted of 15 trials. 471 

 We used the BDM procedure in this work because, via mechanism design, it motivated 472 
subjects to report the true subjective value of the effort they expected to expend on each instance 473 

of a task. If subjects were effort avoidant and wanted to earn higher wages or not complete 474 
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effortful tasks at all, they would ask for high wages. If subjects were effort seeking, or at least not 475 

effort avoidant, then their fair wages would be low as they should be satisfied with any number of 476 

points above the minimum. If one task was substantially more effortful, then our subjects should 477 
ask for higher wages on that task so that they would not have to complete that task without proper 478 

compensation. In an attempt to prevent subjects from being overly avoidant of making errors, we 479 
did not impose an accuracy cutoff for the receipt of points on individual rounds. Further, after the 480 

initial practice phase, subjects were not informed of their accuracy each round. However, subjects 481 

were aware that if they were inattentive to the task, or their overall accuracy fell below some cutoff, 482 
that the task would conclude early and they would receive less compensation (see exclusion 483 

criteria below). At the end of the task, subjects’ points were tallied and converted into a monetary 484 

bonus. 485 
At the end of the main experiment, subjects completed a basic demographic inventory, 486 

the Need For Cognition Scale (NFC; 2), and the Short Almost Perfect Scale (SAPS; 29). They 487 

then rated the difficulty of each of the tasks (signaled by its associated fractal) using the same 488 
slider that they used to provide their fair wage ratings. Subjects were also able to provide 489 
comments on their experiences completing the experiment. Subjects were given one hour and 15 490 
minutes to complete the entire experiment.  491 

 492 
Recruitment and exclusion criteria: The subject pool was limited to Amazon Mechanical Turk 493 
workers based in the United States, to ensure English reading comprehension. We limited our 494 
recruitment to workers ages 18 and up with at least 100 completed Human Intelligence Tasks, 495 

and with at least 85% acceptance rates. We also ensured that subjects had not completed the 496 
task before using their Worker ID. To ensure that subjects understood the task and were able to 497 
maintain a high level of accuracy, we excluded subjects who did not demonstrate task proficiency 498 

or an understanding of the fair wage procedure after the practice phase. We implemented two 499 

tests that subjects had to pass to make it into the main experiment. First, subjects had to reach 500 
80% task accuracy on 15 trials of our most difficult task, the 2-back. They had up to 10 rounds to 501 

do so. 52 subjects failed to reach this criterion. Following that, subjects had to correctly answer 4 502 

out of 6 questions about the BDM procedure. 76 subjects did not pass this quiz. If subjects passed 503 
both those checks, then they proceeded to the main experiment. After these exclusions, 142 504 

subjects started the main experiment. 505 

 During the main experiment, subjects’ performance was assessed 3 times (every 8 506 
rounds). If in 8 rounds, subjects missed the response deadline for 4 fair wage ratings or their 507 

overall accuracy went below 60%, the task ended early and their data were not used in the final 508 
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analyses. This eliminated another 42 subjects, resulting in a sample size of 100 subjects total. 509 

Subjects were given a 30 second rest between task rounds and no other breaks.  510 

 511 
Model-agnostic analyses: All model-agnostic and model-based analyses were run in MATLAB 512 

(53). Subject accuracy was calculated online as a weighted function of correct responses (hits) 513 
and correct withholding of responses (correct rejections), where hits were given three times more 514 

weight than correct rejections. We chose to emphasize hits over correct rejections in order to 515 

encourage participant engagement in the tasks, though subjects were not aware of the exact 516 
scoring procedure. In this way, subject accuracy was tracked while they completed the 517 

experiment, so that subjects who were not engaging with the task could be removed from the 518 

experiment early. Once subjects completed the experiment, we examined their behavior on each 519 
task by running ANOVAs on accuracy, response time, fair wages, and difficulty ratings, looking 520 
for an effect of task identity. We examined significant main effects of task identity with post-hoc t-521 

tests. We assessed the linear relationships of mean accuracy on each task and mean fair wage 522 
for that task across subjects. Additionally, we ran linear analyses of accuracy versus task iteration 523 
and overall experimental round, to examine potential learning or fatigue effects on accuracy. We 524 
ran these same analyses on fair wage demands to determine whether subjects’ fair wages may 525 

have changed with time or task practice. Additionally, we ran a comparison of reaction times on 526 
fair wage ratings at the start and end of the experiment. 527 

We scored subjects Short Almost Perfect Scale (SAPS) and Need for Cognition Scale 528 
(NFC) responses by summing the numerical values of all their answers, reversing some values 529 

as indicated by published scoring guidelines, then dividing by the number of questions answered. 530 
We used this normalization to ensure that any questions that were not responded to would not 531 
artificially lower questionnaire scores. We excluded questionnaire data from subjects who 532 

incorrectly answered one or both of our screener questions (i.e. “Please select ‘Strongly Agree’ 533 

for this question”). This type of attention check has been shown to be a reliable way of removing 534 
subjects who are randomly responding to questionnaires, especially when administered more 535 

than once during an experiment (54). 536 

The mean(std) normalized NFC score was 3.4(0.9) and the mean(std) normalized SAPS 537 
score was 4.4(1.3). 1 subject chose not to finish those questionnaires and as such has no NFC 538 

or SAPS score.  539 

We correlated these questionnaire scores with each other and with participant age. NFC 540 
and SAPS scores were positively correlated (r = 0.24; p < 0.05). There was no relationship 541 

between participant age and NFC (NFC/age r = -0.17; p > 0.1) or SAPS score (SAPS/age r = -542 
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0.16; p > 0.1). We also regressed NFC and SAPS scores, and their squares, against mean fair 543 

wage ratings, average accuracy, and average response time. We used a model selection 544 

procedure which trimmed each regression down to an intercept term, and the self-report terms 545 
which were necessary for model significance (p < 0.05). If two reduced models were significant, 546 

and they included different terms, we selected the model with the lower mean squared error (MSE) 547 
in predicting each task variable. We did this to assess both linear and quadratic relationships 548 

between individual difference scores and task performance measures. 549 

To build upon the quadratic relationships observed, we also split subjects into tertiles 550 
based on their questionnaire scores. Because both scales administered were short-form, many 551 

subjects have the same score. Thus after splitting subjects into low, mid-, or high scoring groups 552 

based on these scores, the resulting tertiles did not have the same number of subjects in them. 553 
Nevertheless, we ran a series of ANOVAs and post-hoc t-tests to examine whether these groups 554 
differed in their task accuracy, or fair wages.  555 

 556 
Computational methods and model-based analyses: We use a computational model to 557 
quantify the putative cognitive processes used in task completion and their influence on fair wage 558 
ratings. We use a process model to decompose each task into the cognitive operations putatively 559 

involved in its completion. We fit 84 candidate models to subject data. We fit this many models in 560 
an attempt to account for most possible combinations of cost parameters, while also limiting 561 
model fitting to those models with high individual parameter recoverability. This number is also 562 
elevated by our use of two different functions of how fair wages change with time. We modeled 563 

subjects’ fair wage ratings as a dynamic process driven by subject learning or by the changing 564 
costs of cognitive effort. The first class of models tests the hypothesis that the total cost associated 565 
with each task is learnt through experience with the task and the number of costly components 566 

required to complete it (ɑ class of models). The second class tests the hypothesis that cognitive 567 

effort costs may themselves change over time, as costly processes become either less costly with 568 

practice or more costly as subjects grow fatigued (𝛿! class of models). 569 

The fair wage ratings for each task were initialized in the model by fitting initial rating 570 

parameters for each task and each subject, thus capturing each subjects’ initial ratings with very 571 
high fidelity (Supplementary Figure 4). Each subject’s initial fair wage ratings for each task were 572 

captured using a free parameter initi.  573 
 574 

rating0(task = ”1-back”) = init1-back;  575 

rating0(task = “2-back”) = init2-back;  576 
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rating0(task = “3-detect”) = init3-detect 577 

 578 

While the inclusion of three extra free parameters to determine initial fair wages may seem 579 
unnecessary, correctly capturing each subject’s starting point allows us to fit most accurately how 580 

subjects’ fair wage ratings evolve over course of the experiment, as well as how they respond to 581 

individual cost components. However, because there are already extra parameters in the 𝛿! class 582 

of models (+1 𝛿! for each cost parameter, so that they can change independently), we did not fit 583 

individual init parameters to each task in this class of model, to avoid overfitting. After the initial 584 

fair wage ratings, the total cost on task round rk of task k was then used to determine the fair wage 585 
rating on the next round of that same task (round rk + 1). This round may arise some trials later; 586 

we denote trials by t. 587 
We approached cost decomposition with a simple program which was capable of 588 

accurately completing each task with the same “cognitive” functions, but switched between rule 589 
structures depending on the task at hand. We tallied each operation that the model had to use to 590 
complete each task round with 100% accuracy, including how many items had to be maintained 591 

in WM, how many times WM storage had to be updated with new information, or how many times 592 
there were interfering “lure” stimuli in WM storage. In addition, we tallied the mistakes (misses 593 
and false alarms) and button press responses made by each subject in each round. All those 594 
components were then scaled by their associated costs (which might change over trials t, and 595 

were fit through the modeling), and were summed to produce the total cost incurred on that round 596 

of that task. For round  of task k: 597 

(1)   598 
 599 

The most complex model included six cost parameters (set 𝐶"#$#%&): the cost of 600 

responding to a perceived match (cresponse), the cost of maintaining information in WM (cmaintenance), 601 

the cost of protecting against interference in the contents of WM (cinterference),  the cost of updating 602 

WM with new information (cupdate), the cost of false alarm responding when there was no match 603 
(cfa), and the cost of missing a match (cmiss). Other than the interference cost, which was only 604 

present in the 2-back task, each cost was fit from ratings of all 3 rated tasks. However, we tested 605 

models containing all combinations of 6 different possible costs. All cost parameters were 606 
unbounded such that they could be positive, or negative. If any components were perceived to be 607 

rewarding, instead of costly, then our model would capture that with a negative cost magnitude. 608 
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It is important to note that a different choice of process model could result in a different cost 609 

structure.  610 

We tested two possible fair wage rating updating mechanisms: a class of model which 611 
assumed that the costs themselves changed over trials and that subjects directly reported their 612 

experienced costs as they changed, and a class of model which learned the total cost of 613 
completing each task following task experience. These updating mechanisms are subtly different, 614 

and involve two different free parameters: δ, the scalar with which costs are changed trial-by-trial, 615 

and α, the cost learning rate. It should be noted, however, that it is theoretically possible that both 616 
mechanisms contribute to cost ratings simultaneously. For simplicity and for robustness of model 617 

recovery, we chose to fit these updating mechanisms as separate model classes.  618 

In the cost-changing class of models, δj (𝑗	 ∈ 𝐶"#$#%&) is the cost-specific change 619 

parameter which captures how costs linearly change over time (trial number t), i.e. with task 620 
experience or fatigue: 621 

(2) cj
t = cj

0 * (1 + (𝛿!		∗		)
*

)) 622 

 623 

T is the total number of trials, and δ can be positive or negative. The flexibility of δ allows 624 

the cost of each cognitive operation cj to increase or decrease linearly. Note that because the cost 625 
components are shared over tasks, and fatigue is supposed to generally increase with time on 626 

task, in this model class each cost is changed according to overall trial number (t), instead of task 627 
round number (  for task ). In this class of models, fair wage ratings on round  are a direct 628 
function of the cost parameters and task components involved to complete the previous task 629 

round  (which is equivalent to having a cost learning rate 𝛼 = 1): 630 

(3)   631 
 632 

In the cost-learning version of the model, the costs do not change with trial number, as 633 
they do in the other class of models, so: cj

1 = cj
2 = … = cj

T. This class of models learns 634 

incrementally about the total cost of completing each task. 𝛼 is the subject-specific cost learning 635 

rate which captures how much each subject adjusts their ratings for an individual task  based on 636 

the most recent round  of that task: 637 

(4)  638 
 639 
 640 
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Lastly, we modeled noise in the fair wage rating process with a Gaussian noise process 641 

centered on 0 with standard deviation , also a free parameter, and by applying this noise to each 642 

fair wage rating independently. This makes the generated rating follow: 643 

(5)   644 
 645 

Given the modest number of ratings provided by each subject (32 in total, split amongst 3 646 

tasks), and the overall similarity of ratings between subjects, we fit our models using a hierarchical 647 
Bayesian inference (HBI) for computational behavioral modeling (CBM) package (31). Employing 648 

a hierarchical parameter estimation procedure allows for similarity across subjects to be 649 

leveraged to fit individual parameter values accurately, especially when fitting few individual data 650 

points. The package leverages estimations of group parameter means and variances in the 651 
individual parameter estimation process. In addition, this package allows for the possibility that 652 

not every subject is best fit by one model. Model responsibilities are calculated subject-by-subject 653 
such that subjects who are not well-described by a model do not influence the overall parameter 654 
probability distributions from that model. In our case, this allows for individual differences in what 655 

processes are perceived as costly. If the ratings of some subjects are not affected by a certain 656 
cost term, then the group-level estimate of this cost is not driven down by their inclusion in the 657 
pool. The Bayesian model fitting procedure constrains the group parameters to have Gaussian 658 
distributions, and so, as is common, we transformed the parameter associated with the learning 659 

rate  using a logistic sigmoid (so it lies between 0 and 1) and the parameter associated with the 660 
rating noise  using an exponential, so that it is positive (with a log normal distribution). 661 

 To validate the winning models further by assessing their ability to produce the behavioral 662 
effects of interest, we simulated fair wage ratings using each of the winning models. We then 663 

compared these model simulations to real subject behavior via visual inspection, and by 664 

computing mean r-squared values for each model. Because stochasticity is one feature of model 665 
behavior (via the standard deviation parameter ), we simulated each subject’s data using their 666 

fit parameter values 10 different times to control for the stochasticity of these simulations. Each 667 

time, we correlated the true fair wage ratings of all subjects with the set of simulated fair wages, 668 

and then squared the r-value obtained. We ran this over 1000 iterations, and then took the 669 

average r-squared value to produce a mean r-squared value for each model. This was then used 670 

to validate that the models could reproduce subject behavior. 671 
In the CBM toolbox, the group-level mean for each parameter is calculated separately for 672 

each model. This allows group-level cost parameter magnitudes to be compared within-model, 673 

but not across-model. In order to compare the magnitudes of the cost parameters across all our 674 
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models, we constructed posterior probability distributions over the magnitude of each cost. We 675 

used parameter estimates from every subject and every model, weighing the contribution of each 676 

subject s and model m by their fit responsibility 𝜌: 677 

(6)   678 
 679 

where  is the group-level prior distribution over the costs not in model m. This prior is a 680 

weighted average over the group-level parameter distributions derived from each model, where 681 

the weights are again derived from the model responsibilities . We assumed that these prior 682 
distributions were Gaussian within-model, then averaged them across models to produce non-683 

Gaussian mixture models of across-model priors. Here, the responsibility  reflects the degree 684 
to which each subject’s fair wage data were explained by that model.   685 
 686 

Using equation 6, we constructed a 4D distribution over the four cost parameters included in 687 
models with at least 1% fit model frequency. We summed over the 4D joint distribution to produce 688 
the marginal distributions of each cost. Additionally, we subdivided our subjects into tertiles based 689 

on self-report scores (NFC and SAPS), and calculated the degree to which the posterior 690 
parameter distributions overlapped across these score groups g: 691 

(7)   692 
 where subjects 1 through  belong to the group of interest. 693 

We obtained the means and standard deviations of the marginal posterior distributions 694 
over individual cost magnitudes. In this way, we assessed the degree to which the cost 695 
magnitudes were separable within- and across-subjects, and across models which did not share 696 

all the same parameters. 697 
We confirmed the validity of our models and model fitting procedure by running a generate 698 

and recover procedure. For each model, we simulated a data set of 30-100 subjects with known 699 

parameter values. We used trial-by-trial cost components taken directly from subject behavior to 700 
ensure that real responses, including errors, and task characteristics were compatible with our 701 

modeling procedure. To determine which models were sufficiently robust in parameter recovery, 702 

we ran a generate and recover of all 126 possible models (combining different costs and using 703 

an 𝛼 or δ update mechanism). In this way, we selected 84 models to test that showed reliable 704 

parameter recovery and minimal cost parameter tradeoff. We wanted to test a broad array of 705 
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models since we had limited a priori knowledge of which cost components would drive fair wages, 706 

or what form cost updates would take. At the same time, we wanted to fit real subjects’ data only 707 

with models that had recoverable free parameters and minimal tradeoff between costs, despite 708 
possible correlations of cost components, as individual differences were of particular interest. 709 

 Supplementary Figure 4 shows the results of this generate and recover procedure for one 710 
example model, which includes update, maintenance, and false alarm costs (N = 50 simulated 711 

subjects). All fit and real parameters were highly correlated (  r = 0.84, p < 0.001;  r = 0.94,  p < 712 

0.001; update costs r = 0.55,  p < 0.001; maintenance costs r = 0.66,  p < 0.001; false alarm costs 713 
r = 0.78,  p < 0.001; init1-back r = 0.88,  p < 0.001; init2-back r = 0.96,  p < 0.001; init3-detect r = 0.92,  p 714 

< 0.001). This indicates that our models supported the reliable recovery of individual parameters, 715 

despite the modest number of trials that were fit per subject. 716 
 717 
 718 
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FIGURES 735 
 736 

 

Figure 1. The behavioral paradigm & computational modeling approach. Before each 
round of the experiment, subjects were shown an image which was associated with one of three 
possible tasks. They then indicated the wages (in points) that they would like to receive for 
completing 1 round of that task. If their fair wage rating was below a random computer offer, 
then they would complete that task and receive the computer’s offer. If their fair wage was 
above a random computer offer, then they would complete a different, easier task instead. We 
employed this inversion of the Becker-Degroot-Marschak auction procedure to incentivize 
subjects to be truthful in their fair wage ratings. 
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Table 1: Mean accuracy, reaction time (RT) in milliseconds, and difficulty ratings across all 740 
subjects for the default task, the 1-detect, and for the three rated tasks, the 1-back, 3-detect, and 741 
2-back tasks. The maximum RT was 1500 milliseconds. The minimum fair wage and difficulty 742 
rating was a 1, and the maximum was a 5. 743 
 744 

 Group means 1-detect 1-back 3-detect 2-back 

Percent accuracy 98.29 89.03 94.28 79.83 

RT (msec) 548.33 610.97 532.59 717.37 

Difficulty rating 1.90 2.44 2.40 3.32 

Fair wage NA   2.41 2.37 2.80 
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 746 

 

Figure 2. Model-agnostic behavioral results. A. Distributions of mean accuracies across all 
subjects for the default task (1-detect), and the three rated tasks (1-back, 3-detect, and 2-back). 
The black bars depict the means and standard errors of the mean (SEMs) of each distribution. 
The distribution of all subjects’ mean accuracies was plotted using a Gaussian kernel via 
violin.m. All mean accuracies for each task were significantly different from each other (all p’s 
< 0.001). B. Distributions of mean fair wages across all subjects for the three rated tasks. The 
lowest possible rating was 1, and the highest possible rating was 5. The black bars depict the 
means and SEMs of each distribution. The distribution of ratings was plotted using violin.m. **** 
indicates significance at the p < 0.0001 level. C. Mean accuracy across all subjects on each 
iteration of each task. Due to the stochasticity inherent to the BDM auction procedure, individual 
subjects completed the 1-back, 3-detect, and 2-back tasks a variable number of times, but a 
maximum of 11 times each. The relative number of subjects who completed each iteration is 
depicted by the size of the dot plotted at the mean. Error bars are plotted with standard error of 
the mean. A two-way ANOVA of task and task iteration revealed a main effect of task identity 
(F = 15, p < 0.0001) but no effect of task iteration (F = 1.3, p > 0.05). Thus mean accuracy was 
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different across tasks but did not change with task experience. D. Mean fair wage rating by 
rating number, where the maximum is 11 ratings of one task. A 2-way ANOVA on BDM ratings 
showed a main effect of task identity (Table 1; F = 33; p < 0.0001) and a main effect of task 
iteration (Figure 1; F = 21; p < 0.0001). 
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 749 

 

Figure 3. Computational modeling results. A. The number of subjects best fit by each 
model with a non-zero model frequency. Of the 84 computational models fit to subjects’ fair 
wages, the winning models were alpha cost-learning models containing update costs (cupdate), 
interference costs (cinterference), and maintenance costs (cmaintenance), and false alarm costs (cfa), 
in various combinations. The model with the highest model frequency was the model including 
update costs alone. B. The mean of the posterior distribution of each cost parameter from the 
models that best fit at least 1 subject’s fair wages. These posterior distributions were 
calculated by combining inferred parameter distributions across subjects and across models. 
Inference was performed over joint 4D distributions to capture co-variance between update, 
interference, maintenance, and false alarm costs. For plotting purposes we summed over the 
three irrelevant dimensions for each parameter to construct its marginal distribution, and then 
calculated the means and variances of the marginals. Error bars reflect the hierarchical 
standard error of the mean; they were calculated not with the square root of the total number 
of subjects in the denominator, but with the square root of the number of subjects’ data 
explained by models containing that parameter. Note that the error bars describe the spread 
of the marginal parameter distributions, not variance in the fitting process, and thus are not 
suitable for estimating the statistical significance of the effects plotted. C. Real (solid lines) 
versus simulated (dashed lines) fair wage ratings on each rating iteration for each task. Data 
simulated using each subjects’ best model faithfully reproduces real subject data (r2 = 0.51).  
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Figure 4. Winning model parameter values by Need for Cognition (NFC) Group. Mean 
parameter magnitudes from the winning 6-parameter update cost model. 𝜎 is the standard 
deviation parameter which dictates how noisy each subject’s fair wage ratings are, on average. 
ɑ is the subject-specific task cost-learning rate. The update cost is the magnitude of the 
influence of WM updates on each subject’s fair wage ratings. The init parameters dictate each 
subject’s initial fair wage for each task. Subjects were split into NFC tertiles resulting in low (N 
= 25), mid (N = 37), and high (N = 37) NFC groups. Fit parameter values were then averaged 
within-group to produce each bar. Error bars are standard error of the mean. * indicates 
significant difference as assessed with a t-test at p < 0.05 level. ** p < 0.01 
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SUPPLEMENTARY INFORMATION 753 
 754 
SUPPLEMENTARY RESULTS 755 
 756 

Because the 2-back was associated with the most WM updating, most errors, and most 757 

interference in WM, many of the cognitive components of task completion that came out of our 758 

process model were highly correlated. For example, across all subjects & task rounds, updates, 759 

maintenance, lures, and false alarms were all correlated (interference vs. false alarms r = 0.48, p 760 

< 0.001; interference vs. maintenance r = 0.53, p < 0.001; maintenance vs. false alarms r = 0.31, 761 
p < 0.001; updates vs. maintenance r = 0.86; updates vs. false alarms r = 0.43; updates vs. 762 

interference r = 0.62). In addition, when we ran within-subject correlations of these components 763 

across rounds, they were significantly correlated within 91% (maintenance vs. interference), 44% 764 
(maintenance vs. false alarms), 74% (interference vs. false alarms), 100% (updates vs. 765 
maintenance), 66% (updates vs. false alarms), and 90% (updates vs. interference) of subjects. 766 
One consequence of this may be that the cost parameter values associated with these 767 
components may trade off with one another in model fitting, artificially raising or lowering each 768 

other. In addition, model selection may have been impacted, resulting in a low number of subjects 769 
who were best fit by models including multiple costs. Because most subjects’ data are best 770 
captured by a model including only one cost of cognitive effort, one might wonder whether the 771 

cost parameters obtained from our models are capturing one cost only, but incorrectly assigning 772 
them to three different components due to the relatedness of the components. To compare cost 773 
parameter magnitudes across models including only one or two cost parameters each and to 774 
ensure their separability, we constructed posterior distributions over parameter values using the 775 

outputs of the CBM toolbox(31). We also examined whether these parameter values traded off 776 

during model fitting by examining their covariances, which are derived from the inverse Hessian 777 

of the search gradient within the multidimensional parameter space. 778 
The most frequent model with multiple cost parameters contained update, maintenance, 779 

and interference costs. The covariances between these parameters, which is influenced both by 780 

their empirical covariances, and their covariance during parameter fitting, were all within an 781 
acceptable range. The covariance between the update and maintenance costs was largest, at -782 

0.22. Between the update and interference costs, the covariance was 0.0492. Between the 783 

interference and maintenance costs, it was -0.0763. 784 
We verified in a pre-model fitting generate and recover procedure that individual cost 785 

parameters were being accurately fit even in models with multiple costs (Supplementary Figure 786 

4). In addition, there was no evidence that these single cost parameters somehow capture just 787 
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one underlying component, rather than 3 separate ones, as the posterior distributions over their 788 

magnitudes are mostly non-overlapping on the group level (Figure 3B). While the update and 789 

interference costs are of similar magnitudes, and therefore overlapping, the negligible covariance 790 
between update and interference costs suggests that they did not trade off in model fitting. 791 
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 793 

SUPPLEMENTARY FIGURES  794 
 795 
 796 

 

Supplementary Figure 1. Mean fair wage 
ratings across task rating iteration. All 
subjects completed 10-11 ratings of each 
task, but only between 1 and 11 rounds per 
task. Here we plot the mean fair wage for the 
subjects who completed 1 to 11 iterations of 
each task, grouped by the total number of 
iterations they completed. Subjects who 
completed more task iterations are plotted in 
darker colors. This illustrates the diversity in 
fair wage ratings for each task across 
subjects, as well as the stability of the ratings 
subjects gave to each task. In addition, it 
shows that, due to the design of our task, 
subjects who asked for high fair wages on 
one of the tasks did indeed complete fewer 
iterations of that task. Error bars are drawn 
with standard error of the mean. 
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Supplementary Figure 2. Self-report scores and their relationships to mean fair wages. 
A. Distribution of Need for Cognition (NFC) scores within the experimental sample. Scores have 
been normalized by the number of questions answered such as not to lower the mean of the 
distribution artificially. The distribution of NFC scores in our sample is right-skewed compared 
to the typical distribution of NFC scores. However, this is typical of subjects on MTurk (Berinsky, 
Huber & Lenz, 2012). B. Distribution of Short Almost Perfect Scale (SAPS) scores. Scores have 
been normalized by the number of questions answered such as not to artificially lower the mean 
of the distribution. The distribution of SAPS scores in our sample is typical of both in-person 
samples (Rice, Richardson, & Tueller, 2013) and other samples on MTurk, including one 
sample of 400 subjects (Stricker, Flett, Hewitt, & Pietrowsky). C. NFC scores versus SAPS 
scores. NFC and SAPS scores were positively correlated (r = 0.24; p < 0.01). D. Mean fair wage 
rating on the 1-back, 3-detect, and 2-back tasks by tertile split NFC groups. Error bars were 
drawn using the standard error of the mean (SEM). There was a significant quadratic 
relationship of NFC and mean fair wage ratings (β = -0.03). Post-hoc t-tests confirmed that the 
significant quadratic effect of NFC was only driven by mid NFC subjects having significantly 
higher fair wage ratings than high NFC subjects (p < 0.01). E. Mean fair wage rating on the 1-
back, 3-detect, and 2-back tasks by tertile split SAPS groups. Error bars were drawn using the 
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SEM. A 3-way ANOVA, revealed no effect of SAPS group (F = 2.2, p > 0.05) or of the interaction 
of SAPS group and task identity (F = 1.5, p > 0.05) on fair wages. 
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Supplementary Figure 3. Real fair wage values versus simulated fair wage values. For each 
subject, we simulated their data using the model which took the highest responsibility for their 
data, and their fit parameter values. Here we have selected 2 random subjects from each NFC 
tertile (left: low NFC, middle: middle NFC, right: high NFC) and plotted their real and fit fair wage 
values. The title of each plot is the mean r-squared value after 100 simulations with the subject’s 
best fit model and best fit parameter values. Markers are shaded such that later trials are 
displayed in darker colors, and the shape of the marker indicates which task was rated (squares 
are 1-back ratings, circles are 3-detect ratings, and diamonds are 2-back ratings).  
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Supplementary Figure 4. The results of a generate and recover procedure on a model 
including update, maintenance, and false alarm (FA) costs. A dataset of simulated subjects 
was produced with random parameter values (constrained by the bounds of those parameters), 
and then fit with the same procedure as real subject data. Here we show the fits for 50 subjects 
out of 100, where each subject’s fits are plotted in a unique color. The identity line is overlaid 
on each subplot in black. Comparing the fit parameter values to the real values reveals the high 
fidelity of the model fitting procedure. Models were fitted using the Computational Behavioral 
Modeling (cbm) toolbox of Piray et al (2019). All candidate models were visually inspected and 
verified as recoverable to avoid fitting models with parameter tradeoffs. Only models with 
parameter recoverability were fit to real subject data. 
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