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Abstract

Global environmental challenges require comprehensive data to manage and protect
biodiversity. Currently, vision-based biodiversity monitoring efforts are mixed, incomplete,
human-dependent, and passive. To tackle these issues, we present a portable, modular,
low-power device with embedded vision for biodiversity monitoring. Our camera uses
interchangeable lenses to resolve barely visible and remote subjects, as well as
customisable algorithms for blob detection, region-of-interest classification, and object
detection to identify targets. We showcase our system in six case studies from the ethology,
landscape ecology, agronomy, pollination ecology, conservation biology, and phenology
disciplines. Using the same devices, we discovered bats feeding on durian tree flowers,
monitored flying bats and their insect prey, identified nocturnal insect pests in paddy fields,
detected bees visiting rapeseed crop flowers, triggered real-time alerts for waterbirds, and
tracked flower phenology over months. We measured classification accuracies between 55%
and 96% in our field surveys and used them to standardise observations over
highly-resolved time scales. The cameras are amenable to situations where automated
vision-based monitoring is required off the grid, in natural and agricultural ecosystems, and
in particular for quantifying species interactions. Embedded vision devices such as this will
help addressing global biodiversity challenges and facilitate a technology-aided global food
systems transformation.
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Main text

Introduction

This century's rapid biosphere transformations exert formidable pressure on nature and
people1,2: land use conversion is undiminished, climate change is accelerating, infectious
disease risks are increasing, food systems are reaching maximal capacity, and disturbance
of remaining natural ecosystems is higher than ever. These pressures are closely linked to
biodiversity, both an actor providing vital services to humans and their ecosystems, and a
victim of these developments3. To prevent, manage and mitigate these global
transformations, we need high resolution biodiversity data4,5. We are heavily reliant on
artificial intelligence to analyse the resulting big data and to tackle Sustainable Development
Goals 6–8. However, while climate and land use change are internationally monitored with
remote sensing and coordinated research networks, and unlike biotechnologies that are
powered by modern laboratory methods and artificial intelligence9–12, much progress has yet
to be made at intermediate spatial scales towards the automated monitoring of biodiversity13.

Much of biodiversity is sampled with vision, and we are facing critical challenges to attain
comprehensive monitoring. First, heterogenous methods and scattered data sources for
different taxa, biomes, and disciplines are hampering progress on integrated analyses14–17.
Cultural challenges slow their progress even though frameworks and infrastructures have
been proposed18,19. Second, sampling coverage and resolution along spatial and temporal
scales are insufficient, resulting in considerable knowledge biases and gaps15,20–22 that
prevent effective conservation: notably, most of the challenging animals to monitor
(amphibians, insects, mammals, and reptiles) are data-deficient and likely threatened23.
Third, many methods still depend on human labour, and are thus time consuming,
error-prone, and hard to reproduce24–26, a problem further compounded downstream by the
scarcity of taxonomic experts27. Fourth and lastly, most passive vision-based methods lack
real-time feedback28, thus ruling out immediate interventions despite increased uptake of
adaptive management approaches29,30. Theoretically, these challenges may be solved by
deploying continuously-powered digital imaging devices for sampling multiple taxa across
large scales, with embedded artificial intelligence to process data in real-time at the edge
and to trigger meaningful reactions when needed. While the underlying technologies exist
and open hardware abounds31, devices are still in early development stages and we lack
integrated solutions32,33.

We harnessed recent technological advances into the first field-ready, portable, low-power,
modular, embedded vision camera system - dubbed “ecoEye” - thus taking advantage of
recent progress in embedded computing34 and also achieving set goals for high-resolution,
long-term, real-time, and standardised sampling methods13. Our system can: 1)
non-invasively monitor various taxa for different applications across disciplines; 2) reach high
temporal resolution and coverage with solar power and be scaled up in space due to its
moderate cost and size; 3) analyse images in real-time using established computer vision
algorithms and performance assessment workflows that standardise observation results, and
thus 4) link specific detections to real-time reactions for intervening in environmental
processes. We finally discuss how our and other embedded vision devices fare for
addressing key vision-based biodiversity monitoring challenges.
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Results

We conducted six case studies representing different use cases and disciplines in several
regions of China (Tab. 1, Fig. 1). We deployed our cameras with setups and scripts adjusted
for various day- and nighttimes and different target organisms. Both frame
differencing-based blob detection as well as deep learning convolutional neural networks
(CNNs hereafter) based on MobileNet-v235 and trained with images captured by the cameras
during test deployments were used to detect and identify targets in real-time on the cameras
during the actual survey deployments. The performance of the detection and classification
algorithms were evaluated with survey images; we report them as field accuracies (i.e.,
F1-scores).

A) Behavioural Ecology: Monitoring bats visiting Durian tree flowers

Bats provide important pollination services for tropical crop trees but little is known about their
foraging behavior36 and current vision-based monitoring approaches are a compromise
between automation and resolution37,38. In Southeast Asia, the Durian tree produces the
"king of fruits", whose most common pollinators are fruit bats39. On the island of Hainan, in
South China, plantations were established around 195040, and flowers were usually
pollinated by hand, although natural pollination seems to be occurring too39 (pers. comm.
LF). Although fruit bats inhabit the island, they have never been reported to pollinate Durian
there. We therefore surveilled Durian flower visitors in Hainan, China (Fig. 1A) by monitoring
the nocturnal behaviour of unknown targets at high resolution, using near-infrared
illumination and blob detection algorithms, from the ground.

We monitored one flowering tree for 12 nights at an average of 0.68 (min: 0.56; max: 0.89)
frames per second with blob detection to detect image changes above a threshold area and
color deviation (Fig 1A). We manually screened 23 154 triggered images and found the
flying fox Roussettus leschenaultii in 122 images. The manual screening allowed us to
determine optimal detection parameters (minimum blob area range: 95 000 - 135 000 and
maximum blob area range: 185 000 - 475 000) for each deployment date, thus obtaining a
mean maximum accuracy of 0.21 over deployment nights (range: 0.10-0.34). Bats were
detected flying towards or from flowers in 63, and feeding on flowers in 59 images. Flowers
were visited 9 times per night on average (range: 3-32 visits, N=7; flowers open only for one
night). Two activity peaks were evident: early in the night (~21:00) and shortly before dawn
twilight (~3:00).

B) Landscape ecology: Determining bat and insect occurrence in rice fields

Landscape composition determines the occurrence of mobile predators and their prey.
Insectivorous bats, which are sensitive to forest edges41 and waterways42, regulate insect
populations in natural and agricultural landscapes through predation, thus providing , and
biocontrol services. Rice in particular benefits from economically valuable pest control
services43,44. Current passive sampling methods use digital imagery to sample only insects or
bats38,45, so we used our cameras with region-of-interest classification and near-infrared
illumination to remotely detect and identify both these differently-sized nocturnal targets.

We monitored flying insects and bats in a mixed rice paddy and forest landscape for 6 nights
in summer of 2022 during astronomical dusk (between approximately 19:20 and 20:30), in
Hangzhou, China (Fig. 1B). Each night, we set up one camera inside the rice field and one
at its border, adjacent to a waterway with a forest on its other shore, and pointed them to the
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night sky. The cameras were operating with a sensitive blob detection threshold at an
average of 1.32 (range: 0.37-1.88) frames per second. Flying objects were detected as blobs
up to an estimated 7 m above ground, and images extracted from their bounding boxes were
classified into bats, insects, or unknown flying objects with our trained CNN. We obtained a
maximum field classification accuracy (F-score) of 67% for bats and 93% for insects at their
individual optimal confidence thresholds of 0.6 and 0.3. After considering only detections
above these thresholds, we obtained a nightly average of 16 bat and 25 insect detections
close to the forest compared to 37 bat and 180 insect detections inside the rice field, with a
significantly lower bat to insect detections ratio inside the rice field than close to the forest
(Estimate = -0.34 ±0.17 SD, Probability(Estimate=0 | Null hypothesis) = 0.04).

C) Agricultural sciences: Quantifying nocturnal insect rice pests

Monitoring pests is essential for agricultural management. Light traps are a common
sampling method for flying insect pests in rice paddy fields46, a staple food throughout Asian
countries that is damaged by the brown and white-backed planthoppers. Existing monitoring
devices are bulky, costly, sometimes lethal and have no embedded classification47,48. We
used our cameras to demonstrate an embedded multiple classification task of nocturnal
insects attracted to non-lethal, portable light traps, with real-time cloud transmission of
results.

We monitored nocturnal, flying, phototaxic insects attracted to white-light illuminated plastic
boards. Cameras were installed in two locations inside a rice field in Hangzhou, China (Fig.
1C) and worked for two hours on two nights in 2022 and 2023, starting at nautical dusk,
around 17:30. Cameras operated with a sensitive blob detection threshold at an average of
0.41 (min: 0.40; max: 0.41) frames per second. Detection numbers for each detected target
were sent to the cloud, via an internal plug-in WLAN module connected to a 4G portable
router, with a transfer success rate between 76% and 83%. Landing objects were
blob-detected and their bounding boxes extracted for classification in nine classes with our
trained CNN. For the different morphospecies detected during survey deployments, we
obtained maximum field accuracies ranging from 8% (Curculionidae - only 39 training
images) to 93% (Coleoptera) for non-pest species (mean: 53%, median: 60%), and from
55% to 83% for potential planthopper pests (two Delphacidae morphospecies). After
retaining only detections above the corresponding optimal confidence thresholds, we found
3856 detections for the Delphacidae 1 and 59 detections for the Delphacidae 2
morphospecies, identified as the brown (Nilaparvata lugens) and white-backed (Sogatella
furcifera) planthoppers respectively, and 452 non-pest detections across both survey nights.

D) Pollination ecology: Monitoring bees on rapeseed flowers

Global insect pollinator declines are disrupting pollination networks and crop production49,
and monitoring is essential to reap their benefits50. Long-term diel monitoring of bees was
attempted with motion-detection devices, albeit with complicated setups51. We used our
cameras to monitor rapeseed, a major oil crop, with object detection models specifically
trained for identifying pollination events by bees.

We monitored solitary bees (Osmia bicornis) on rapeseed flowers growing inside
experimental enclosures with six camera deployments over four summer days in Fuyang
district, China (Fig. 1D). Targets were searched in each image with our object detection
CNN. We operated the cameras with a confidence threshold of 0.5 at an average of 1.37
(range: 1.13-1.91) frames per second, and obtained an average field classification accuracy

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2023. ; https://doi.org/10.1101/2023.07.26.550656doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?2ByFzD
https://www.zotero.org/google-docs/?Rb4BhE
https://www.zotero.org/google-docs/?WMSLtL
https://www.zotero.org/google-docs/?V1PTdu
https://www.zotero.org/google-docs/?2yebRW
https://doi.org/10.1101/2023.07.26.550656
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 69% (range: 55-89%) over all deployments (Fig. S4). As field accuracy varied among
deployments, we standardised the data to obtain true detection counts, which we used to
derive temporal bee activity profiles that were comparable across deployments (Fig. S4). We
evidenced a highly probable positive relationship between standardized bee detections and
ambient temperature (Estimate = 0.24, Probability(Estimate>0) = 0.97), in line with previous
studies51.

E) Conservation Biology: Protected waterbird real-time alerts

Adaptive management of habitats and species is an attractive solution for dealing with
unpredictable global changes that precipitate biodiversity loss29. Real-time monitoring of
protected or endangered species, which typically occur sporadically and in small numbers, is
required over long time ranges without human disturbance. Quick reactions to population
changes52 are possible to potentially initiate fast-response management actions. Birds, as
fast-moving, small targets are especially challenging to monitor automatically with the
current technology53,54. Here, we show how cameras can be networked to send real-time
cloud alerts upon detection of specific waterbird species in a protected area.

We monitored swimming mandarin ducks (Aix galericulata) using a camera in a nature
reserve, from the shore of the Xihu lake in Hangzhou, China, over 6 hours (Fig. 1E). The
camera executed an object detection model on each image with a conservative confidence
threshold of 0.5, and ran at 1.76 frames per second. It transferred images containing
mandarin duck detections exceeding a confidence threshold of 0.5 via an internal plug-in
WLAN module connected to a 4G portable router, to a cloud server where the detection time
graphs and downsampled images could be checked in real-time (Fig. 1E). 82% of the
detections data and 64% of the images were successfully transferred from the cameras to
the server. We obtained maximum field accuracies of 74% for females, and 96% for
breeding males at their optimal confidence thresholds, which allowed to filter the dataset to a
total of 594 raw detections, yielding 134 female and 405 male standardised detections after
correcting for individual detection accuracies.

F) Phenology: Flowering plants

Phenology cameras are used to monitor vegetation phenology when high temporal
resolution and long sampling durations are needed for instance to understand climate
change impacts. However, these cameras are not able to analyse image contents, and even
though automated analysis could happen post-capture55, new monitoring methods are
required for greater reactivity56. We show here how our cameras can operate over long
periods for monitoring the phenology of inanimate, non-animal targets such as flowering
plants with high accuracy.

We monitored ground-dwelling Carthusian pink (Dianthus carthusianorum) flowers with two
cameras situated on our university campus in Hangzhou, China, over a period of two months
(Fig. 1F). The cameras continuously captured images at an interval of 15 minutes from the
start until the end of civil twilight (approximately 5:30 to 18:00), as they were automatically
recharged with 5 W solar panels during sunny weather. The cameras ran an object detection
model at a conservative confidence threshold of 0.1 to detect multiple flowers within each
image, and all images were saved. We attained a maximum field accuracy of 96% for
detecting open Carthusian pink flowers. We automatically tracked single flowers over frames
and days using time series clustering in R57 to establish a flowering peak on October 5, 2022
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with 15 simultaneously open flowers and a mean lifespan of single flowers of 4 days (range:
0.4-13.5 d).

Discussion

Embedded vision devices such as the one proposed here have far-reaching implications for
environmental research. We demonstrated the potential of our ecoEye cameras for
biodiversity monitoring such as phenological observation, real-time species surveillance, and
for key ecological interactions such as pollination, pest prevalence and potential pest control.
Our versatile design can be utilised for multiple taxa and scaled-up to large spatial and
temporal extents due to its interchangeable lens options, sufficient frame rates and
resolution, and low power consumption compared to alternative devices (Tab. 1).

The interchangeable lens design with adjustable focus enabled the largest taxonomic
coverage and deployment flexibility compared to alternative devices: from millimeter-scale
insects, to remote flying bats and flowers on the ground (Table 1). Alternative imaging
devices without embedded vision can be used to detect insects45,58–60, and recent designs
with embedded vision integrate motion-detection47 or species classification61, but stay
confined to their integrated lenses’ angle of view and the corresponding targets that can be
imaged. An interchangeable lens and sensor design also allows near-infrared imaging, as
cut-off filters can be removed to detect nocturnal organisms lit with near-infrared light, which
is invisible to most animals62. We attached up to 4 torchlights for lighting remote or fast
objects, enabling non-intrusive monitoring of bats or flowers without interference from
phototactic insects. While camera traps and the PICT camera also offer near-infrared
imaging as an option, none of the embedded vision alternatives currently do (Table 1).
Furthermore, the imaging sensors can be swapped for thermal imaging modules for a
potentially very effective detection of homeotherms63. In comparison, established camera
traps have a limited angle of view by design, and can only detect heat displacement of
medium to large homeotherms. They have been adapted with poor performance or
excessive efforts beyond their designed application: for far-away birds, risky arboreal
sampling, nocturnal flying insect traces, with poikilothermic animal ramps, or for inanimate
plants55,64–68. This underlines the necessity for broader image-based, embedded analytical
approaches such as ours, which could even be extended to microscopic scales to monitor
zooplankton69.

The ecoEye camera is able to sample a large temporal and spatial coverage. Our cameras
operated between 0.4 and 1.7 frames per second depending on the set resolution and used
algorithm (i.e., between 2.3 and 12.6 MB per second). While frame rates are higher at lower
resolutions, this already sufficed for monitoring short-lived pollination events or bat passes.
In contrast, camera traps may miss quickly-passing and stationary targets by design70.
However, all currently available cameras compared here offer high sampling resolutions over
coverage times that exceed human capabilities (Table 1), and while other embedded vision
devices running on mains power could theoretically be solar-powered, only ours
demonstrated a successful implementation over months. Alternative embedded vision
devices are also currently bulkier and more expensive (Table 1), so that coverage may not
be easily scaled-up in space. Similarly cheap and compact devices such as the PICT
cameras or camera traps can also reach high spatial coverage71 through replication, but
come with challenges in post-deployment data processing demands due to the lack of
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embedded vision. In the end, the low cost and small size of our devices facilitates covering
large spatial scales.

We used standard Artificial Intelligence (AI) evaluation procedures to measure algorithm
accuracies in the field and obtain standardised biodiversity data. Vision-based biodiversity
detection processes are rarely standardised72. AI drives global camera trap syntheses73, but
the data are derived from a separate sampling process that remains problematically
unquantifiable or hard to estimate with ground-truth74,75. We measured the accuracies of our
algorithms by screening every saved frame over a calibration period for true and false
positives and negatives to infer “field accuracies” and mathematically derive standardised
detection numbers. Similar calibration approaches were employed with embedded vision
devices61. In our case, the same CNN’s performance could be corrected across deployments
of the pollination ecology use case. We argue that since the realised performance of
custom-trained CNNs is inevitably variable, standardising results with field data is necessary
and cost-effective at scale - probably also for fine-tuned models based on global
datasets76,77. As a result, we can infer the true number of events, circumvent complex
analytical modeling approaches, and potentially derive densities over the cameras’
field-of-views. We could thereby potentially harmonise sampling methods across realms and
taxa. Such standardised data should facilitate large-scale syntheses based on field studies
with variable setups at scale, yielding actionable density-based evidence for biodiversity
management plans.

Embedded vision is not limited to passive biodiversity monitoring and extends to real-time
triggered reactions. At its simplest, the embedded design accelerates the scientific workflow
by providing readily-usable detections data with defined metrics, such as the blob
characteristics or classification probabilities for pests or pollinators in our use cases. Naive
data from blob detection workflows - that are needed in every situation where training
images are not available - may be sent to cloud servers for post-classificatio with advanced
deep learning models that are less power- and computoation-constrained. Beyond this, data
above a threshold confidence level can be used to trigger critical alerts, as we sent and
aggregated data in real-time to trigger alerts on cloud servers for pest management or
species protection. In comparison, only one of the alternative embedded vision devices was
networked for real-time data transmission61. Although devices without embedded vision such
as “cellular” camera traps can also be networked, costs for sending prevalently irrelevant
images can be prohibitively high, justifying “edge” solutions78, even though hybrid solutions
exist28,79. Real-time reactions matter most for remote locations and time-sensitive
applications: bat and insect detections can trigger alerts when biocontrol rates fall below
levels that are safe for crops; suction samplers could catch flower visitors for DNA
barcoding; insecticide spraying or electrocution could be activated upon detection of specific
pests on light boards; finally, poacher detections could direct law enforcement or activate
deterrents. Furthermore, the core of our system can be mounted on drones to extend spatial
coverage and dynamically approach targets80–82. Our embedded vision cameras thus offer
unprecedented opportunities for triggering meaningful actions.

Embedded vision devices are poised to dethrone camera traps, currently the gold standard
for vision-based monitoring, whose various constraints prevent broad scale
implementation83. Future technological innovations such as ever-improving object detection
models, on-sensor machine learning, ultra-low power chips, higher battery energy densities,
and tiny machine learning will tip the scale towards higher-resolution imaging and more
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sophisticated analysis84. Open-set recognition will help to tackle the detection of
taxonomically unresolved taxa85, and individual animals will become distinguishable86.
Beyond this, the monitoring data should be used for predicting future trends13, and
technology-enabled adaptive management of ecosystems can be envisaged. However, just
like new observation technologies have historically driven scientific progress, the sheer
possibilities of embedded vision systems necessitate regulation to alleviate ethics, privacy,
and security issues. Likewise, harmonisation efforts should be pursued on a much higher
level by devising official standards for computer-vision based monitoring of biodiversity, as to
enable truly interoperable data for large syntheses. We hope that with tools that become
ever more efficient, we will be able to address challenges faced by nature and society and
focus on the implementation of solutions.
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Methods

Camera design and setup

Our embedded vision camera consists of 1) a low-power, expandable microcontroller board
with a modular image sensor; 2) a data transfer and power management board; and 3) a
waterproof housing for the boards, batteries, lens mount, and accessories.

The microcontroller board (openMV H7+ computer vision board) is based on the
STMicroelectronics STM32H7 microcontroller and handles imaging and data processing
from the plug-in imaging board, based on the 1/4” (3.6 x 2.7 mm) Omnivision OV5645 (5
megapixel RGB CMOS sensor). The board is programmed with the open-source openMV
Integrated Development Environment (IDE) software in micropython language. The board
can be used with other plug-in imaging boards (far-infrared, global shutter RGB), and has
separate connectors for connectivity (WLAN) or lighting (white LED) modules, among others.

We developed a power management board based on USB (Injoinic Technology, IP2312) and
solar (Consonance Electronics, CN3791) chargers, as well as step-up converter (Aerosemi,
MT3608L) integrated circuits; these components control powering the microcontroller board
and recharging the internal batteries with external power sources such as from USB or solar
panels. Waterproof ports transfer data from USB or external sensors to the microcontroller
board. A waterproof push button on the exterior, combined with a soft latch switch circuit,
enables manual power-on and safe shutdown of the main board through software. Lastly, a
PCF8563 real-time clock chip (NXP Semiconductors) is used for time keeping and
pre-scheduled system power-on by the on-chip timer interrupt output.

The housing secures the internal components against mechanical shocks, water ingress,
and theft with a rubber gasket, latch, and optionally steel cables and locking screws. It is
resistant to immersion (up to 60 seconds, 10 cm depth from front face) and enables
waterproof mounting of M12 interchangeable lenses. Up to three 18650 lithium (Li-ion or
Li-Po) batteries can be inserted in parallel connection. There is space for two expansion
modules plugged into 2.54 mm pitch, 8-pin headers at the front (e.g., LED module) and back
(e.g., WLAN module) of the main board. Five mounting points (on all faces except the front)
with standard UNC ¼-20 threaded inserts allow mounting accessoires such as lights and
tripods. The housing has a transparent window for light from internal plug-in LED boards.

Prior to field deployments, we attached lenses with appropriate angle of view and aperture to
the camera, and inserted three 3350 mAh batteries per camera for a total capacity of 10050
mAh. A field deployment consists of six setup steps. First, the camera is installed at the
study site, pointing at the target. Second, the camera is connected with a laptop; we wrote
custom micropython scripts to control the microcontroller board through the openMV IDE.
Third, we run the script in live view mode to adjust the image composition and focus the lens
by screwing it into the threaded lens mount. Fourth, we run the script in test mode to check
the output of our chosen detection settings in the terminal. Fifth, the script with the chosen
parameters is saved on the camera, which is disconnected from the computer and then
powered on with the external power button to execute the script. Lastly, proper camera
operation can be checked with LED signals corresponding to pre-programmed events. The
cameras can be set up for saving all pictures, only triggered pictures, or none, while saving
image and detection logs as CSV files. An overview of setup parameters is given in Table 2.
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Embedded vision

When images for training CNNs were not available, we used frame differencing to detect
changes in the image as “blobs”87. Changes are obtained from computing the difference
between the current and a reference image. We adapted to changing image conditions by
regularly updating the reference image (every minute) by blending the current image into the
reference image by half (alpha compositing value of 128 out of 256), but only when no image
change was detected (maximum extension by one minute). When we applied automatic
exposure time and image gain to adjust to variable lighting conditions, the exposure and gain
adjustments were performed shortly before and fixed until the next reference image update.
We restricted the range of pertinent blobs by choosing lower and sometimes upper blob size
limits (in pixels) and determined the detection algorithm’s colour sensitivity by choosing
minimum colour thresholds that need to be exceeded (in Lab or grayscale colour spaces) by
the blobs. We used blob detection primarily with controlled image backgrounds to avoid false
positives under changing conditions.

When enough training images were available, we explicitly located multiple targets with
CNNs for region of interest classification or for object detection. These algorithms enable the
detection of targets that have too small sizes for whole-image classification methods. For
region-of-interest classification, we classified image parts extracted from bounding boxes
around blobs, derived from frame differencing, with CNNs (MobileNet V235). This allows to
identify the object independently of its size in the image, since images are rescaled before
classification, and was particularly useful for differently-sized animal targets. When image
backgrounds were too dynamic for frame differencing (due to motion or exposure changes),
we used the FOMO (“Faster Objects, More Objects”) object detection model 88 directly on the
captured images. The FOMO models may require larger amounts of data for effective
training and usually cannot deal well with objects of different relative sizes. All CNNs were
trained on the EdgeImpulse platform (https://www.edgeimpulse.com/) to enable their
execution on the STM32H7 microcontroller with a closed-source, built-in library.

Portable devices with continuous imaging must balance power consumption and taxonomic
resolution. Higher-resolution images invariably require more power, further reducing
constrained deployment times. Increasing battery capacity in turn increases cost, bulk -
which can restrict mounting possibilities (e.g., cameras in trees) - and theft risk, a major
problem with camera traps83. Embedded CNNs also need to be simpler than their
sophisticated counterparts executed on powerful servers, and the sacrificed precision may
enable only coarse classification: This is why we lumped similar-looking non-breeding male
and female mandarin ducks into one category. However, embedded devices are particularly
relevant for pre-filtering data before transfer to more powerful machines for accurate
post-processing (e.g., for a species-level classification).

Case Studies

A) Behavioural Ecology: Monitoring bats visiting Durian tree flowers

We set out to study the behavioral foraging ecology of Durian flower visitors at night,
between the end of astronomical dusk (approximately 20:35) and its start at dawn
(approximately 4:43), by surveying the only available Durian tree of the Xinglong botanical
garden (latitude: 18.734212; longitude: 110.196675 degrees), with flowers at a height of 3 to
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5 m. The survey started on 2022-05-20 and ended on 2022-06-13, and was only interrupted
by a tropical storm and national holidays.

We used F2 aperture, 12 mm focal length lenses without infrared cut-off filter to allow
near-infrared wavelengths to reach the image sensor. We used the maximum resolution of
the sensor in grayscale mode (2592 × 1944) and used adaptive frame differencing to detect
image changes. Flower visits by bats were a rare event, so we experimented with various
setups and exposure parameters on different nights to optimise the image quality and
detection performance. We eventually used two near-infrared torchlights (M5, Manta Ray)
powered by Osram Oslon Black LEDs with an adjustable light cone angle to illuminate the
field of view. From the 25th of May onwards, three 3350 mAh Lithium-ion batteries were
connected in parallel inside waterproof battery boxes to power each near-infrared torchlight
throughout the night. We tried exposure times between 20 and 50 ms and a gain of 6 to 20
dB to effectively freeze the flying animals’ motion. We detected blobs based on lower pixel
area thresholds ranging between 6 000 and 50 000 pixels depending on the object size on
the image, maximum pixel area thresholds between 400 000 and 2 000 000, and luminance
thresholds luminance values ranging from 3 to 10. The maximum pixel area threshold was
often too low: bats would often lower entire tree branches when they hung on the flowers,
leading to blobs so large that they were excluded by the maximum area threshold, so we
analysed the performance of the blob detection algorithm based on the last five deployments
only (9th of June onwards) which had the highest maximum blob area thresholds of 2 000
000 pixels (and a minimum area threshold of 15 000 pixels), a conservative colour threshold
of 3, an exposure value of 20 ms, and an image gain of 10 dB.

Based on the last five deployments’ data (during one deployment, the flower did not open),
we quantified the accuracy of the detection algorithm by subsetting the detection dataset
with variable lower and upper pixel area thresholds to compute the F1 scores at all the value
combinations. The total number of false negatives was inferred from their frequency
occurrence within saved images (which were image-change triggered), under the
assumption that the prevalence of bats was not biased by vegetation movement (rainy or
stormy episodes were excluded from deployment periods). Due to the paucity of flowering
trees, the short flowering period, and thereby little diversity of images in the training dataset,
we were unable to obtain object detection models that were not overfitted for our particular
tree. The images resulting from our five last survey deployments were screened visually to
log the occurrences of flying or feeding bats, and to assign them to blob detections and the
individual flowers they were feeding on. We calculated the average number of visits per
flower and plotted the bats’ detections with time to analyse the foraging behavior of the flying
fox Roussettus leschenaultii in Hainan.

B) Landscape ecology: Determining bat and insect occurrence in rice fields

We monitored flying bat and insect activities at night, during astronomical dusk, between
approximately 19:20 and 20:30, in a rice field in Hangzhou, Zhejiang province, China
(latitude: 30.10247; longitude: 120.05027 degrees). The surveys took place on 6 different
nights with an interval of approximately one week, from the 16th of July to the 15th of August
2022. One camera was placed inside the rice field, at a distance of 60 m to its edge, and the
other camera was placed at the edge of the rice field, 25 m away from a canal, and 45 m
away from the forest edge.
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We set up cameras on tripods and pointed them to the sky. We illuminated the sky with four
near-infrared torchlights (M5, Manta Ray) mounted on accessory clamps. We used 6 mm F2
focal length lenses without near-infrared cut-off filter, and focused them at a fixed distance of
4 m.

To detect flying objects, we used blob detection with a lower pixel area threshold of 2000 and
a higher threshold of 2 000 000 pixels, as well as a luminance threshold value of 5. When
blobs were detected, we extracted and saved its bounding rectangle. The image
classification model was trained on EdgeImpulse with image extracts obtained from 6
training deployments over 4 nights, resulting in a dataset of 487 images (376 for training, 111
for testing) split over 3 categories: bat, insect, and unknown, when images were not clear
enough to distinguish bats from insects (usually because of faraway objects). Our best
model had a pixel side length of 96 and achieved an accuracy of 84% for training and
testing. Inferencing time was 128 ms, peak RAM usage 346.6K. We then carried out the
survey deployments during which the extracted bounding rectangles were classified to bats,
insects or unknown flying objects by the camera with the trained model. We determined the
field accuracy by manually verifying 1254 detections inside 357 images gathered during the
survey deployments.

We used the confidence scores corresponding to the highest F1 score to determine the true
events - the number of bat and insect flyovers. These numbers were used as response
variables in a binomial mixed effects model with the package lme489 (Bayesian models failed
to initialise) using bat flyovers as successes and the sum of all flyovers as the number of
trials, with the night as a random effect, and camera location as a fixed effect. We computed
the probability that the fixed term’s coefficient differs from zero under the null hypothesis as
its P-value.

C) Agricultural sciences: Quantifying nocturnal insect rice pests

We monitored nocturnal flying insects by setting up two cameras in rice paddy fields located
in Hangzhou, Zhejiang province, China (longitude: 30.10247; latitude: 120.05027 degrees).
The cameras were 10 m apart and started at the end of civil dusk, for 2 hours, on the 28th of
September, 2022 and on the 28th of June, 2023.

The cameras were fitted with a 4.23 mm focal length lens and powered an internal array of
nine white LEDs (1.8 W consumption at 180 lm with a 100% duty cycle; 6000 K color
temperature) to illuminate quadratic plastic boards (15 cm × 15 cm, 3 mm thickness). Plastic
boards were sprayed with several layers of yellow fluorescent paint (Sparvar, Switzerland)
that is commonly used to attract insects during the daytime with yellow pan traps. The plastic
boards were held by tablet holders to be parallel with the camera sensor plane, and both
camera and tablet holder were held by a metal rail that allowed for precise adjustment of a
distance of 9-10 cm between the camera lens and the board. The setup was placed on the
concrete walls delimiting rice paddy fields to reduce the occurrence of crawling insects
relative to flying insects. We pasted transparent window film on the camera window as a
diffuser to achieve more even lighting of the board and insects with less reflections. Even
without ultraviolet light source, the boards were effectively attracting nocturnal insects. In
preliminary tests, cameras could last 8 hours while powering the LED array. We outfitted the
camera with a WLAN module and connected it to a portable modem (brand: 蒙旭, model:
MiFi, upload speed 50 Mbps, 10 Ah battery) to send detection data to a web server in
real-time.
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To detect insects landing on the board, we used blob detection with a lower pixel area
threshold of 2000 and a higher threshold of 1 000 000 pixels, and color threshold values of 3
for luminance and the absolute of the a and b channels (Lab color space). When blobs were
detected, we extracted and saved its bounding squares to preserve the proportions of the
detected targets, as the image classification model requires square inputs. During the 2023
deployment, the full image was additionally saved, lowering the frame rate from
approximately 0.40 to 0.10 frames per second - we thus excluded it from the frame rate
statistic mentioned previously in the results. We used images from nine test deployments
over five nights in August and September, resulting in a dataset of 909 images (735 for
training, 174 for testing) split over 10 classes: one for plastic board detections due to false
positives, and nine morphospecies that could be classified to order or family level. Our best
trained model had a 160 pixels side length and achieved an accuracy of 82% for training,
and 97% for the testing dataset. Inferencing time was 248 ms, peak RAM usage 1.4M. We
then carried out the actual survey deployments during which the extracted bounding squares
were additionally classified with the trained model. We determined the field accuracy by
manually verifying 2438 detections inside 1075 images gathered during the survey
deployments, obtaining an accuracy of 60% for Chironomidae, 93% for Coleoptera, 8% for
Curculionidae, 81% and 55% respectively for the first and second morphospecies of
Delphacidae, 66% and 40% for respectively the first and second species of Hymenoptera.

D) Pollination ecology: Monitoring bees on rapeseed flowers

Cameras were set up to operate during warm daytimes when bees are most active, between
10:00 and 16:00, inside experimental cages containing Osmia bicornis nests and rapeseed
plants. We deployed three to four cameras twice, resulting in seven deployments lasting
three to four days, in Fuyang district, in an agricultural field (latitude: 30.141028; longitude:
119.937658 degrees).

The cameras were set up on tripods and aimed at the terminal rapeseed flower stands. We
used 12 mm lenses with a F2 aperture, resulting in a working distance of approximately 20
cm. We chose flower stands with multiple open flowers and new flower buds, but after three
days, the flower stands had sometimes outgrown the picture frame. We set focus as to have
the flowers facing the cameras in focus, but the depth-of-field was generally large enough to
get acceptable sharpness on the flowers facing away from the camera, behind the flower
stand. We only used ambient lighting and adjusted exposure automatically.

The cameras captured pictures at a square resolution (required for object detection models)
of 1944 × 1944 pixels, in RGB565, and each image was analysed with an ImageNet
v2-based object detection model88. Prior to the deployments, we used the same settings for
capturing rapes<eed flower images with visiting bees at noon and in the afternoon
(estimated total working time: 2 hours) for constituting a training image dataset. We used
handheld versions of our camera, consisting of the core H7+ board connected to a
powerbank via a USB cable with a flip switch. We selected images that were typical of our
deployments and labelled them for bees on the EdgeImpulse platform. The best object
detection model had a side resolution of 160 pixels and was trained using 278 images and
its performance tested with 81 images, resulting in training and testing accuracies of
respectively 95% and 90%. Inference time was 4 ms, peak RAM usage 630.9K. During the
deployments, we only saved images with bee detection probabilities above 0.5. We visually
screened the first 10 000 pictures of each deployment to determine for each visible (i.e. at
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least half of the body visible and in focus) bee whether it was detected or not. Based on this,
we measured field accuracies ranging from 55 to 89 %, but excluded a stationary false
positive (similarly to previous studies61) inside one deployment that would otherwise have
had a field accuracy of 13%. The stationary false positive was caused by a feature of the
exclosure net that triggered the object detection model. The field accuracy may have been
low due to the absence of rear-facing bees in the training images, which were collected with
handheld cameras that could only be pointed to flowers after bees had approached them.

We extracted hourly temperature data90 for Fuyang district to investigate daily activity
patterns of bees in relation with the temperature. We constructed a Bayesian negative
binomial model using the brms package91 and used the number of detections as a response
variable, the temperature as a predictor, the cage row as a random effect (as humidity
gradients were observed from the left and right sides of the field prior to the study) and a
smoothing term based on the time variable, expressed as seconds since midnight, to
account for temporal autocorrelation.

E) Conservation Biology: Protected waterbird real-time alerts

We installed a camera on the shore of an environmental protection area (Historical and
Cultural Reserve) of the West Lake of Hangzhou (latitude: 30.253183; longitude: 120.141125
degrees), Zhejiang province, China, to monitor mandarin ducks swimming in the water, from
7:00 to 13:00. We monitored the mandarin ducks during the breeding season, when males
show a striking and distinctive plumage compared to the females.

The camera was placed on a tripod, at an elevated shore position to be able to monitor the
water near the shore with a field of view of approximately 1.2 x 1.2 m with a 12 mm focal
length, F2 aperture lens. The lake is frequented by passers-by who would feed waterbirds
and thus occasionally attract them to the shore. We outfitted the camera with a WLAN
module and connected it to a portable modem (brand: 蒙旭, model: MiFi, upload speed 50
Mbps, 10 Ah battery) to send real-time image and detection data to a web server.

The cameras captured pictures at a full resolution of 2592 × 1944 pixels in RGB565. Prior to
the deployments, we used the same image settings for capturing images of mandarin ducks
of both sexes (estimated working time: 4 half-days) from different shore positions, using the
handheld camera setup described above (use case D). We selected images that were
typical of our deployments and labelled them for male and female mandarin ducks on the
EdgeImpulse platform. The best object detection model had a side resolution of 96 pixels
and was trained using 425 images and tested with 87 images, resulting in training and
testing accuracies of respectively 93% and 95%. Inference time was 3 ms and peak RAM
usage 244.1K. During the deployments, we only saved images with waterbird detection
probabilities above 0.1. However, since the original, rectangular images did not fit the
required square aspect ratio of the object detection model due to wrong deployment settings,
we had to crop the images to square dimensions of 1944 × 1944 pixels in post-processing,
using the openMV boards to preserve the original color space that the models were trained
with. The loss in image quality resulting from this additional JPEG compression is negligible
due to the strong downsampling to 96 side pixels that occurs to feed the images into the
model. We then re-processed each cropped image by executing the same ImageNet
v2-based object detection model88 on them as used during the deployment, to be able to
analyse the resulting detections data as follows. We visually screened the first 500 pictures
of the deployment to determine for each clearly visible (i.e. at least half of the body visible)
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duck whether it was correctly detected and identified. 181 images had detections, of which
140 were clearly visible and used to measure field accuracies of 74% for female and 96% for
breeding male mandarin ducks.

F) Phenology: Flowering plants

We monitored Carthusian pink flowers growing on a planted green space in our university
campus (latitude: 30.33406; longitude: 120.03457 degrees) in Hangzhou city, Zhejiang
province, China with two cameras, from 2022-09-21 to 2022-11-18. Monitoring was
conducted from the start of civil twilight in the morning until the end of nautical twilight in the
evening, and interrupted at night, when Carthusian pink closes its flowers.

Cameras were pointed to the ground to monitor an area of approximately 25 × 25 cm with
4.23 mm, F2.8 aperture lenses. The cameras were mounted on tripods with angled metal
plates, and a 5 W solar panel, recharging the camera's internal batteries, was fixed on the
tripod in a counter-balancing position to avoid shading the observed flowers. The cameras
were set up to verify battery level, auto-expose the scene, take a picture, and execute the
object detection model every 15 minutes. In-between the active flower monitoring periods,
the cameras went into deep sleep (current consumption: 40 mW) to save battery power, and
awoke with an event from the internal real-time clock. In case the battery level dropped
below 2.8 V, the camera was programmed to go into a deep sleep mode with regular
wakeups at 30 minute intervals to check whether the monitoring could be resumed if the
voltage was restored above the threshold by the solar charging, but this situation did not
occur. For verifying the images and evaluating the model performance, the images and
detection data were transferred to a computer through a USB cable every week during the
deep sleep phases.

The cameras captured pictures at a square resolution (required for object detection models)
of 1944 × 1944 pixels, in RGB565, and each image was analysed with an ImageNet
v2-based object detection model. Prior to the deployments, we used the same settings for
capturing unique images of flowers at different spots, at different daytimes and during
variable weather conditions (sunrise, sunny noon, rainy noon, evening) to represent the
variety of conditions that the object detection model needs to deal with, and we made sure to
include increasingly prevalent dead leaves lying on the ground. We labelled images for
Carthusian pink flowers on the EdgeImpulse platform. The best object detection model had a
side resolution of 320 pixels; it was trained using 118 images and its performance tested with
31 images, resulting in training and testing accuracies of respectively 95% and 90%.
Inference time was 12 ms, peak RAM usage 2.4M. During the deployments, we saved all
images. We visually screened the first 50 pictures of each camera to determine for each
visible flower whether it was detected or not. Based on this, we obtained mean maximum
field accuracies of 96%.

To track single flowers, we clustered detections in space and time. We considered only
detections above the optimal confidence thresholds of each camera. As object detection
sizes and locations could vary even for the same flower, we defined a minimum distance
between neighboring object detection centroids of 100 pixels to assign them all to the same
day cluster, and then clustered day clusters over days. We defined a minimum lifespan of
eight hours to consider day clusters to be flowers, and discarded clusters where less than
two thirds of the images had a detection.
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Display items

Table 1: Comparison of automated vision-based field biodiversity monitoring devices. The size and weight indications exclude support and
continuous powering accessories.

Design Specification Taxa Type
Embedded
detection

Embedded
classificati
on

Resolution
(MP) Operation

Power
consumptio
n (W)

Power
autonomy

Size and
weight

Camera trap
- original use

general
information
sources

large
homeotherms camera trap

heat
displacement NA up to 20 day & night 0.001

30-180 d
(solar power
optional)

10x10x15
cm; 700 g
(minimum)

Camera trap
- ramp setup

https://journal
s.plos.org/plo
sone/article?i
d=10.1371/jou
rnal.pone.018
5026 poikilotherms camera trap

heat
displacement NA up to 20 day & night 0.001

30-180 d
(solar power
optional) NA

Camera trap
- time-lapse

https://zslpubli
cations.onlinel
ibrary.wiley.co
m/doi/full/10.1
002/rse2.275 flowers camera trap NA NA up to 20 day 0.001

2 weeks
(internal
batteries) to
NA (solar
power)

10x10x15
cm; 700 g
(minimum)

Bjerge 2021

https://zslpubli
cations.onlinel
ibrary.wiley.co
m/doi/full/10.1
002/rse2.245 insects

NVIDIA
Jetson
Nano

object
detection yes 2 day 5-10

NA (mains
power) NA

Bjerge 2021

https://www.m
dpi.com/1424-
8220/21/2/34
3

phototactic
insects

Raspberry
Pi 4

motion(image
change)-based NA 8 night 12.5-30

NA (mains
power) NA
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Corva 2022

https://www.m
dpi.com/1424-
8220/22/11/40
94

endotherms
and
ectotherms

Raspberry
3B+

motion(image
change)-based NA 0.3 day & night 2-4

NA (solar
power) NA

Diopsis

https://faunabi
t.eu/producte
n/DIOPSIS insects computer blob detection

NA
(cloud-base
d) 8 day & night NA

NA (solar
power)

92x97xNA;
17 kg

ecoEye current paper
insects, bats,
birds, flowers

openMV
H7+

blob detection,
ROI
classification,
object
detection yes 5 day & night 1.3-2.1

23 h to two
months
(intrnal
batteries or
solar
operation)

10x8x10 cm;
400 g
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Table 2: Comparison of case study setups

Case
study Target

Target
distance
(m) Daytime

Resolutio
n Color

Computer
vision

Frames
per
second

Training
images

Optimal
recall

Optimal
precision Lens

Deployme
nt
duration

A

Bats on
durian
flowers 3-5 night 2592x1944 Grayscale

blob
detection 0.67

NA (no
classificati
on) 0.16 0.36 12mm, F2 6 h

B
Flying bats
and insects 3-6 night 2592x1944 Grayscale

blob-based
image
classificati
on 1.01 376

0.75 (bat),
0.91
(insect)

0.60 (bat),
0.95
(insect) 6mm, F2.2 1 h

C
Insects on
light board 0.2 night 2592x1944 RGB565

blob-based
image
classificati
on 0.41 735

0.53
(Chironomi
dae), 0.87
(Coleopter
a), 0.676
(Curculioni
dae), 0.87
(Delphacid
ae1), 0.42
(Delphacid
ae 2), 0.53
(Hymenopt
era 1),
0.46
(Hymenopt
era 2)

0.70
(Chironomi
dae), 1
(Coleopter
a), 0.04
(Curculioni
dae), 0.77
(Delphacid
ae1), 0.80
(Delphacid
ae 2), 0.88
(Hymenopt
era 1),
0.35
(Hymenopt
era 2)

4.23mm,
F2.8 2 h

D
Bees on
rapeseed 0.4 day 1944x1944 RGB565

object
detection 1.37 278 0.77 0.63 12 mm, F2 24 h

E Waterbirds 3-5 day 1944x1944 RGB565 object 1.75 425 0.92 0.63 12mm, F2 6 h
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on water detection (female),
0.95 (male)

(female),
0.97 (male)

F
Flowers on
ground 0.6 day 1944x1944 RGB565

object
detection

0.001
(interval
capture) 118 0.99 0.89

4.23mm,
F2.8 2 months
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Figure 1: Field-tested applications for the embedded vision camera. Middle panels for B) and C) were made from multiple pictures to show the
diverse target types. Padding was added to the bounding boxes of the detections for better visibility of the targets. The crosshairs represent field
accuracies, measured with F1 scores.
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Figure 2: Inner (A) and outer front (B) views of the “ecoEye” camera
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Extended data

Figure S1: A: a flying fox (Roussettus leschenaultii) feeding on a Durian flower, with four
outer blob corners drawn as a polygon, and labeled blob ID. B: Durian fruits resulting from
pollinated flowers on the same tree. C: Accuracy of the blob detection algorithm for different
minimum and maximum blob pixel values on the five different deployment nights.
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Figure S2: A: Number of detections during each survey night (at maximum accuracy level),
drawn for bats and insects and separated by location. B: Precision-recall curves for each
detected class based on actual survey deployments.
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Figure S3: A: Detection frequencies with time per detected class on each deployment night.
B: Precision-recall curves for each detected class based on actual survey deployments.
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Figure S4: A: Probability density functions for bee detection occurrence with time of the day,
separated by deployments. Raw and corrected (standardised) probabilities are shown with
different line colors. B: Precision-recall curve for solitary bees (Osmia bicornis) based on
actual survey deployments, excluding one stationary detection in deployment A3 - camera 1.
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Figure S5: A: Screenshot of a cloud server graphical interface during the deployment,
showing transferred images with detected mandarin ducks and bar plots showing the
number of detections for each class per time step. B: Detections frequency with time,
separated by identified duck sex, and labeled total standardised detections count. C:
Precision-recall curve for each detected class based on actual survey deployments.
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Figure S6: A: Individual tracked flowers (flower IDs omitted from Y axis for clarity), separated
by camera (IDs 2 and 13). Red lines represent tracked flowers over single days, and blue
lines connect identical flowers through nights. B: Probability density of the flower lifespan;
mean shown with a blue dashed vertical line. C: Precision-recall curve for Carthusian pink
(Dianthus carthusianorum) flowers based on actual survey deployments.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2023. ; https://doi.org/10.1101/2023.07.26.550656doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability

All R scripts and CSV data needed to reproduce the results in the manuscript will be
provided on Dryad or a similar repository upon acceptance.
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