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3
, and Thorsten

Wohland
∗1, 2, 4, 5

1
Department of Biological Sciences, National University of Singapore, Singapore, 117558.

2NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, 117557.
3Department of Statistics and Data Science, National University of Singapore, Singapore, 117546.

4Institute of Digital Molecular Analytics and Science, National University of Singapore, Singapore, 117546.
5Department of Chemistry, National University of Singapore, Singapore, 117543.
6Mechanobiology Institute, National University of Singapore, Singapore, 117411.

August 7, 2023

Abstract

Imaging Fluorescence Correlation Spectroscopy (Imaging FCS) is a powerful tool to extract informa-

tion on molecular mobilities, actions and interactions in live cells, tissues and organisms. Nevertheless,

several limitations restrict its applicability. First, FCS is data hungry, requiring 50,000 frames at 1 ms

time resolution to obtain accurate parameter estimates. Second, the data size makes evaluation slow.

Thirdly, as FCS evaluation is model-dependent, data evaluation is significantly slowed unless analytic

models are available. Here we introduce two convolutional neural networks (CNNs) – FCSNet and Im-
FCSNet – for correlation and intensity trace analysis, respectively. FCSNet robustly predicts parameters

in 2D and 3D live samples. ImFCSNet reduces the amount of data required for accurate parameter

retrieval by at least one order of magnitude and makes correct estimates even in moderately defocused

samples. Both CNNs are trained on simulated data, are model-agnostic, and allow autonomous, real-time

evaluation of Imaging FCS measurements.

The description of a biological system requires spatial and temporal information. While spatial information
has reached its physical limits with Ångström resolution possible1,2, temporal information on whole images
is still not easily available. One method that can provide temporal resolution down to at least 40 µs
with commercially available instrumentation is Imaging Fluorescence Correlation Spectroscopy, or Imaging
FCS3,4. Imaging FCS analyzes the fluorescence fluctuations in every pixel in a temporal image stack to
determine the molecular processes underlying these fluctuations in the di↵erent parts of the sample. It
can be implemented with either Total Internal Reflection Fluorescence (TIRF) microscopy, Variable Angle
Illumination or Single Plane Illumination Microscopy (SPIM), either in vitro, in cells, or in vivo to provide
parameter maps, such as concentrations, di↵usion coe�cients, or measures of interactions5. Nevertheless,
Imaging FCS has several limitations. Firstly, correlation functions are biased estimators, and a minimum
of frames has to be taken to obtain accurate and precise parameter estimates6,7. For typical characteristic
process times of 10s of milliseconds, as commonly seen in Imaging FCS on cellular processes, about 1 minute
total recording time is required8. Secondly, the long measurements correspond to a large amount of data
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on the order of gigabytes, slowing data evaluation. Lastly, for some situations no analytical fitting models
are available, such as SPIM-FCS (in preparation). In these cases, one needs numerical evaluations to fit the
data, adding to the computational cost and making real-time evaluation di�cult.

We propose deep-learning inspired Convolutional Neural Networks (CNNs) to overcome these challenges.
CNNs are used widely in computer vision. Since the introduction of AlexNet 9 for image recognition, the
growth of CNN applications has been exponential and has gone well beyond computer vision. CNNs are
now used in various di↵erent domains, including speech recognition10, language translation11, and natu-
ral language processing12. We have seen similarly inspired techniques adopted into scientific fields, and
recent examples include physics13, mathematics14, and chemistry15. In biology specifically, deep learning
has been used to augment currently available solutions in a diverse range of applications, including med-
ical image segmentation16, drug discovery17, super-resolution microscopy18, single-particle tracking19 and
protein structure prediction20. Deep feed-forward networks coupled with wavelet spectral analysis for noise
detection were used in FCS two-color experiments21. And machine learning methods, including CNNs, were
applied to analyze FCS parameters for binary classification of cancer patients in their oncology research22.
A recent review23 points towards the use of CNNs in addressing the challenges of FCS analysis.

Here, we build two CNN models, which we named FCSNet and ImFCSNet , that analyze the autocorrelation
functions or the raw intensity traces, respectively, to estimate di↵usion coe�cients at all pixels of an image
stack of a sample. We illustrate the construction of these models and their workflow of the data evaluation
compared to nonlinear least-squares (NLS) fitting in Fig. 1. We use simulated data for training both CNNs,
thus eliminating the cumbersome and di�cult task of obtaining experimental training data for the required
wide data range for the di↵usion coe�cient (D) and signal-to-noise ratio (SNR). Interestingly, we show that
we can use the same architectures for 2D and 3D systems with di↵erent illumination modalities, i.e. TIRF
or SPIM. We demonstrate the strength and weaknesses of FCSNet , and ImFCSNet by applying them to
supported lipid bilayers, cells and drosophila melanogaster embryos. We show that depending on which
CNN is used, we can estimate D from up to 20 times less data than what is required in traditional FCS
measurements, parameter estimation can be made even when the sample is de-focused, and data evaluation
can be sped-up by up to four orders of magnitude. In addition, both CNNs are fit model-agnostic and thus do
not require functional forms for the autocorrelation function to extract D from a measurement, simplifying
FCS analysis and broadening FCS applications to any desired illumination and detection geometry. Our new
approach makes Imaging FCS a versatile and easy-to-use tool by providing di↵usion coe�cient maps across
biological samples in real-time.

Results

We assess the CNNs on a variety of 2D and 3D samples, including supported lipid bilayers, cells, fluorescent
bead solutions, and drosophila embryos (Supplementary Section 4), and a variety of di↵erent setup charac-
teristics (Supplementary Table 1.1), to demonstrate the feasibility of applying the models to experimental
measurements of di↵erent conditions. For each new setting, we retrain a CNN to ensure correct predictions.
Since we do not have the ground truth of the measurements, we use NLS fits of a single di↵usive component
of the ACFs calculated from 50,000 frames of the experimental data as basis for comparison. The image
stack is collected using custom-built data acquisition software, which enables real-time adjustments of the
correlation function, thereby aiding in microscope alignment24. We evaluate the NLS fit models using the
Imaging FCS ImageJ plugin25, using standard Imaging FCS fit models, which are described in the Methods
section. We can run the NLS evaluations with a workstation central processing unit (CPU) or can accel-
erate the process by leveraging the parallel computations on a graphic processing unit (GPU). Before any
evaluation, we apply a polynomial bleach correction of order four, unless stated otherwise. Furthermore, we
apply Z-score standardization to the input data of the CNNs, i.e. subtracting the mean and dividing by the
standard deviation of the input data.

A complete description of the two CNN models (Fig. 1) is in the Methods section and their training are in
Supplementary Section 1. Briefly, the CNNs, based on the ResNet architecture26,27, are trained on simulated
data. For that purpose, we simulate random walks in 2D at constant illumination intensity (TIRF), or in 3D
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Fig.1 | Schematic illustration of the CNN networks and the evaluation workflow. We base the
CNN models on the ResNet architecture, where the skip connections are the dotted lines in the figure. The
⇥2 in the yellow and blue convolutional layers means these convolutional layers come in a pair within each
residual block. We repeated the residual blocks two and six times, respectively. ImFCSNet evaluates 2,500
frames from the raw image stack through ImFCSNet . We can apply ImFCSNet in an overlapping manner
to get a D map of individual pixels, excluding image edges. The ACF curves become the inputs for FCSNet
and NLS curve-fitting evaluations.

within a Gaussian Beam for a wide range of parameters at varying signal-to-noise ratio (SNR) settings (in
Supplementary Tables 1.2 and 1.4). We assume a single di↵using particle in all cases. The CNNs therefore
predict only one parameter, i.e. D. We target our model to evaluate a wide range of D, from 0.1 to 10
µm2/s, and we therefore let the model to output the natural log of D. FCSNet is trained on simulated
ACFs calculated from 50,000 temporal data points as it will be applied to every single pixel of an image
stack. We train FCSNet over 3,000 epochs and choose the model with the lowest training loss. ImFCSNet ,
on the other hand, is trained on 2,500 intensity values of groups of 3⇥3 pixels, generated on-the-fly. The
training of ImFCSNet is essentially a 1-epoch training with many batches and the data is di↵erent for each
batch. We have a training schedule (see Supplementary Table 1.6) where we train ImFCSNet for 8 rounds
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of the 1-epoch training, 48,000 batches per epoch. It is a progressive training where we increase the noise
level of the training data in each round. Lastly, we also evaluate the trained FCSNet and ImFCSNet models
on simulated test dataset (Supplementary Section 2).

In vitro measurements

First, we tested a DOPC supported lipid bilayer labeled with Rhodamine–PE (0.01 mol% dye to lipid ratio).
We collected 300,000 frames at a frame rate of 1.06 ms, which corresponds to 318 s or about 5 minutes
of measurement time. The measurement was then partitioned into non-overlapping sets of either 2,500
(ImFCSNet) or 50,000 (FCSNet and NLS) frames for data evaluation. The network predictions for both
CNNs were close to the values determined by NLS fits (Fig. 2a). While FCSNet achieves a better precision
compared to ImFCSNet , it provides predictions only every 50 s, compared to every 2.5 s for ImFCSNet

(Fig. 2b). Importantly, all three evaluations follow the same trend (Fig. 2b). The Spearman correlation
coe�cients between NLS and FCSNet and ImFCSNet are 0.89 and 0.60, respectively.

In the case of 3D measurements using SPIM-FCS, we used a sample of 100 nm fluorescent polystyrene beads
in aqueous solution. As beads were highly fluorescent and did not show any decrease in intensity during
the measurement, no bleach correction was applied. The CNNs’ predictions are consistent with the NLS
fit. Moreover, the predictions fall within one standard deviation of a confocal FCS measurement, which
serves as an additional reference point (Fig. 2c). Interestingly, when the sample is de-focused, the two CNNs
show di↵erent behaviour. NLS fit and FCSNet evaluate the same ACFs and show the same trend, namely a
decrease of D with increased de-focusing. Note that the values for FCSNet in Fig. 2c lie almost exactly on the
diagonal, demonstrating how similar FCSNet predictions are to NLS fits. However, ImFCSNet predictions
are robust against the change in focus as the values stay constant and are well within one standard deviation
of the confocal measurement.

We conducted a similar test to determine whether ImFCSNet is also robust against de-focusing in the
TIRF setup. Fig. 2d shows a TIRF-based Imaging FCS measurement of a POPC supported lipid bilayer
over 500,000 frames (⇠8 minutes), which was measured at a frame rate of 1.06 ms. It slowly de-focused
from about the 250,000th frame onward. ImFCSNet provides many more points and thus a better time
resolution, and maintains consistent predicted D values throughout the measurement, unlike FCSNet and
NLS. However, the standard deviation of the D values, predicted by ImFCSNet , increases as the SNR
decreases with de-focusing.

2D measurements on live cells

CHO-K1 cells were transiently transfected with a plasma membrane targeted fluorescent protein, PMT-
mEGFP28, and 50,000 frames at 2.06 ms frame rate of a 21⇥21 pixel area were recorded in TIRF. For a
better and fairer comparison between NLS and the CNNs, we calculated the NLS fits for both, 1⇥1 and
overlapping 3⇥3 binning and provide the D maps as well as the scatter plots of the CNNs against NLS
(Fig. 3c). FCSNet produces a di↵usion map that is similar to NLS 1⇥1, which is also reflected in the scatter
plot Fig. 3c, where the points are mostly along the diagonals, and the standard deviation of NLS (with
1⇥1 binning) and FCSNet predictions are 0.39 and 0.47, respectively. ImFCSNet predictions, based on only
2,500 frames, are more widely distributed, in the scatter plot (Fig. 3f), as seen before also on the bilayer
measurements. The standard deviation of NLS (with overlapping 3⇥3 binning) predictions in Fig. 3f is 0.32
while it is 0.73 for ImFCSNet . If we average the 20 predictions of ImFCSNet , denoted as ImFCSNetave,
we see a slight improvement in the precision of the evaluations, as shown by the reduction of the standard
deviation of the predictions on the y-axis (Fig. 3i) to 0.69. It is nonetheless not as compact as the predictions
of FCSNet (Fig. 3c).
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Fig.2 |Evaluations on chemical samples. a, The average D values of multiple 6⇥6, 50,000 frames, ROIs
in DOPC lipid bilayer measurements. The closer the points to the diagonal, the closer the predictions by the
networks are to the NLS predictions. Averaging, i.e. ImFCSNetave evaluations, improves the predictions,
as shown by the orange crosses. The range of standard deviations of the average di↵usion coe�cients for
NLS, FCSNet , and ImFCSNet methods are 0.24 – 0.56 µm2/s, 0.20 – 0.39 µm2/s, and 0.09 – 0.75 µm2/s,
respectively. b, The predictions of a 6⇥6 ROI region over 300,000 frames. ImFCSNet the dynamics within
a shorter duration, which is shown by the evaluations done every 2,500 frames. The predictions typically
show larger fluctuations but follow the same trend as NLS and FCSNet predictions. c, The average di↵usion
coe�cients on bead measurements for in-focus and defocused measurements. The predictions, particularly
the solid points, i.e. in-focus measurement, are distributed around the diagonal; thus, we get comparable
networks’ to NLS predictions. The standard deviations of the average di↵usion coe�cients for NLS, FCSNet ,
and ImFCSNet methods are 0.46 – 0.67 µm2/s, 0.31 – 0.36 µm2/s, and 0.63 – 0.93 µm2/s, respectively. The
confocal measurement, D of 3.7 ± 0.5 µm2/s, is an additional reference. FCSNet follows the same trend
as NLS predictions when the measurements defocus. On the other hand, ImFCSNet predictions are more
robust against defocused measurements. d, Evaluations of a 500,000 frames POPC lipid bilayer measurement
become defocused over time. FCSNet follows the same trend as NLS when the measurement is defocusing,
i.e. a dip in the di↵usion coe�cients. ImFCSNet predictions are relatively stable as the sample defocuses,
for example, from 250 to 350 seconds. This characteristic is consistent with the results in c.
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Fig.3 |Evaluations on a CHO-K1 cell expressing PMT-mEGFP. a, NLS D map of 50,000 frames of
individual pixels. b, FCSNet D map. c, Scatter plot of b vs. a predictions. d, An ROI of 21 ⇥ 21 pixels
of a CHO cell expressing PMT-mEGFP. The widefield image is in Supplementary Fig. 6.1. e, ImFCSNet

evaluation of the first 2,500 frames. f, Scatter plot of e vs g predictions. g, NLS D map with overlapping 3
⇥ 3 binning of 50,000 frames. h, ImFCSNetave: average of twenty ImFCSNet non-overlapping evaluations
over the 50,000 frames. i, Scatter plot of h against g predictions. The black crosses in the scatter plots are
the average and ±1 standard deviation of the respective log D values.
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3D measurements in an early drosophila embryo

Next, we used a transgenic eGFP-tagged bicoid (eGFP-Bcd) drosophila line29. Bicoid is a morphogen that
provides positional information to the syncytial nuclei of the embryo through their concentration gradient
that forms across embryo’s anterior-posterior axis29, a morphogen that regulates development in a concen-
tration dependent manner30, in drosophila embryos. Bicoid is known to be found inside and outside the
nucleus where it can have various interactions31–33. Here we recorded an image stack of 128⇥128 pixels and
50,000 frames at 2.04 ms per frame at the anterior domain ( ⇠100µm from the anterior end) of the embryo
at nuclear cycle (n.c.) 14. There is a slight drift observed in the measurement – over 4 pixels upward and
2 pixels to the right over 50,000 frames, for which we perform a simple drift correction by shifting 1 pixel
downward every 12,500 frames and 1 pixel leftward every 25,000 frames. We cropped the image stack to a
smaller 120⇥120 region for evaluation to avoid any border e↵ects due to the drift correction. This is a much
more challenging sample as it has lower SNR compared to the other measurements, shows sample drift, and
positive ACFs cannot be seen at all locations. In addition, bicoid, due to its interactions, might not exhibit
a pure one-component di↵usion process34,35. Therefore, it is a good test of the sensitivity of the CNNs to
the input data. In Fig. 4 we indicate the locations at which NLS cannot fit the data as blue pixels and
exclude them from further evaluations. Figs. 4a,b show the similarity in the outlines and values between the
di↵usion maps of FCSNet and NLS evaluations of individual pixels. The scatter plot in Fig. 4c confirms the
observation and shows the correlation between NLS and FCSNet values. The di↵usion coe�cients measured
are consistent with previous data of 0.3 µm2/s29. More recent publications indicate that there are actually
two di↵erent di↵usion coe�cients, one on the order of 1 µm2/s and one about 10 µm2/s34,36. Our time
resolution of 2.04 ms will not be su�cient to resolve the fast di↵usion coe�cient. Therefore, the NLS and
FCSNet predictions are consistent with the slower di↵usive component.

For the comparison with ImFCSNet , we perform the NLS evaluation at overlapping 3⇥3 binning for 50,000
frames (Fig. 4d). In ImFCSNet , although the general outline of the sample is still visible in the di↵usion
coe�cient map, the values are generally lower compared to NLS and FCSNet at 50,000 frames (Fig. 4e) and
we observe skewed predictions in the scatter plot (Fig. 4f). Averaging multiple non-overlapping predictions
of ImFCSNet across time did little to improve the results (Figs. 4h,i). However, it should be noted that
ImFCSNet is a significant improvement over NLS at 2,500 frames (Fig. 4g), which does not preserve the
sample structure in the di↵usion coe�cient map and can in general make no meaningful predictions, with
di↵usion coe�cients overestimated by up to a factor 10.

These observations highlight the advantages and limitations of ImFCSNet . While ImFCSNet is a significant
improvement over NLS at 2,500 frames, it does not reach the performance of FCSNet .

Evaluation speed

Our networks o↵er a tremendous speed-up in evaluation time, o↵ering (near) real-time analysis of measure-
ments. The speed benchmarking is done on a workstation with an Intel(R) Core(TM) i9-10900KF CPU
@ 3.70 GHz processor and a NVIDIA GeForce RTX 3090 GPU. We use the GPU implementation of the
Imaging FCS plugin37. With this newer generation of GPU, i.e. with more memory, cores and computing
power, we observe in Table 1 a 47⇥ speed-up for 2D NLS evaluations of 128⇥128 pixels, which is faster
than the benchmark reported previously37. For 3D NLS evaluation, the bottleneck in the processing time
occurs as there is no analytic solution for the ACF fit function and numerical integration has to be used
(equation (4)). While the GPU speeds up the NLS computation time by more than 100⇥ compared to the
CPU mode, it is still a time consuming process. Using CNNs, we improve the evaluation speed by another
factor 100 for FCSNet and a factor 100 – 1,000 for ImFCSNet bringing evaluations to the second and thus
real-time domain.
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Fig.4 |Drosophila embryo measurement on SPIM microscope. a, D map of NLS 1⇥1 evaluations
for 50,000 frames, individual pixels. b, D map of FCSNet evaluations. c, Scatter plot of FCSNet vs NLS
predictions. d, D map of NLS evluations for 50,000 frames with overlapping 3x3 binning. e, D map of
ImFCSNet evaluations of the first 2,500 frames. f, Scatter plot of ImFCSNet vs NLS 3⇥3 with binning. g,
D map of NLS evaluations for 2,500 frames, 3x3 overlapping binning. We observe that NLS at 2,500 frames
predicts di↵usion coe�cients that are much higher than those for 50,000 frames in d. Even the genral sample
outline cannot be discerned anymore. h, Averages of ImFCSNet predictions across time. i, Scatter plot of
h against d. There is an increase in the di↵usion coe�cients for some pixels when we compute the averages.
However, the NLS and ImFCSNet predictions still di↵er significantly. The tiny cyan squares in the di↵usion
maps are pixels that cannot be evaluated (or with large D values, which we capped at 10 µm2/s for this
measurement) by the NLS, and they are excluded from our evaluations. The black crosses in the scatter
plots are the average and ±1 standard deviation of respective log D values.
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Table 1 |Evaluation speed

Model & Processor NLS 1⇥1 FCSNet ImFCSNet
non-

overlapping

ImFCSNet
overlapping

2D, CPU 334 s 144 s 6 s 41 s
2D, GPU 7 s 8 s 1 s 6 s
3D, CPU 28 hours 159 s 6 s 41 s
3D, GPU 793 s 8 s 1 s 6 s

NLS and FCSNet evaluate 50,000 frames while ImFCSNet evaluates 2,500 frames. The timing of NLS
measurement is done in the Java code. We time the forward-pass of the FCSNet and ImFCSNet in Python,
and we substitute the corresponding ACF curve fitting time by NLS with those feed-forward timing.

Discussion

Imaging FCS is a powerful technique that provides information on biomolecular processes. Nevertheless,
data evaluation can be complex and time-consuming, and several hurdles have hampered its widespread use.
First, Imaging FCS measurements take much longer than simple imaging and require a recording of about
one minute to obtain a su�ciently good signal-to-noise ratio. Although there have been recent attempts38,39

to solve these issues, which could reduce measurement times to the range of seconds or even lower, they still
have to show their applicability in vivo. Second, data fitting is strongly dependent on the availability of fit
models. However, closed-form solutions for fit models are only available for simple measurement geometries
and molecular processes. In other cases, numerical models can be used but require a much longer evaluation
time. Third, the fitting process itself is complex and often requires expert users for interpretation40. Fourth,
FCS measurements strongly depend on the exact experimental conditions, and any misalignment will bias
the results.

Here, we developed two CNNs to accelerate and simplify parameter estimation from single molecule fluo-
rescence data. The first CNN, FCSNet , estimates the di↵usion coe�cient from ACFs of each pixel of a
temporal image stack. The second CNN, ImFCSNet , reads in raw intensity traces directly from a 3⇥3 pixel
area of a temporal image stack. We trained both CNNs on synthetic data. Here, we simulated exclusively
free di↵usion of one component. In principle, any process that changes fluorescence intensities and con-
tributes to spatiotemporal ACFs can be simulated and used for training. The use of simulations for training
solves two problems. First, it provides a wide range of ground truth data that can cover any desired range,
while experimental data is limited by available standards with known di↵usion coe�cients. Second, the
CNNs do not have to rely on theoretical ACF models as solutions for a particular process and thus become
model-agnostic.

This has another important advantage. In this work, we introduced a numerical fit model for SPIM-FCS that
takes into account the cross-talk from out of focus particles. The older SPIM-FCS models25 underestimate
D as they cannot account for the cross-talk. E.g. for the bead measurements in Fig. 2c, the older SPIM-FCS
model predicts a D = 2.4 ± 0.4 µm2/s, which is 50% lower than the value of the new SPIM-FCS model at 3.5
± 0.6 µm2/s. Our CNNs which are model-agnostic and were trained on simulations of the actual situation
provide predictions of D much closer to our numerical model (FCSNet : 3.5 ± 0.4 µm2/s; ImFCSNet : 3.5
± 0.8 µm2/s), thus justifying it. Finally, the value of the same sample in confocal FCS is 3.7 ± 0.5 µm2/s
confirming the larger D value. Thus CNNs do not only provide parameter predictions but can validate
theoretical models.

The CNNs can provide 1 – 4 orders of magnitude faster data treatment than NLS fitting, depending on the
particular situation. The data passes through a single evaluation step in a CNN compared to NLS, which
iteratively evaluates fits until it reaches a user-defined precision goal. As FCSNet requires the calculation of
ACFs, similar to NLS, it reduces the data evaluation time to a lesser extent than ImFCSNet , which directly
uses the raw intensity stacks as input. Therefore, FCSNet reduces data evaluation times between a factor 2
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(CPU, 2D data with analytic fit model) and a factor 600 (CPU, 3D data with numerical fit model). On the
tested GPU, this gain reduces and provides only improved performance for the 3D case with a numerical
fit model, where the gain is about a factor of 100. ImFCSNet improves evaluation times for the same data
by about 1 – 4 orders of magnitude on the CPU and about 1 – 3 orders of magnitude on the GPU. As
can be seen, the speed-up is particularly advantageous when no analytic solutions for the ACF are available
(Table 1). Furthermore, the CNN analysis is essentially real-time and does not require user input, thus
making Imaging FCS available to non-expert users.

The two CNNs have their unique advantages. FCSNet achieves similar, if not better, accuracy and precision
compared to NLS in 2D and 3D measurements. It evaluates the data of single pixels but requires, at the
moment, still 50,000 frames. ImFCSNet , which evaluates the raw data and not the correlation functions,
has additional advantages. It can obtain similar results as NLS with up to 20 times fewer data, making FCS
measurements shorter and allowing to follow biomolecular processes not accessible up to now due to the
long measurement times of FCS. Furthermore, ImFCSNet is less sensitive to focusing and provides stable
parameters even when the sample is defocused. We speculate that the access to spatial information through
the 3⇥3 binning allows ImFCSNet to correct for defocusing, an advantage not available to FCSNet, which
works on data from single pixels. The advantage of spatial information in ImFCSNet might also be used to
correct aberrations when measuring in biological tissues, functioning essentially as a software-based adaptive
optics approach. However, this requires further investigation.

The advantages of ImFCSNet , though, come at the price of reduced spatial resolution as it evaluates 3⇥3
patches of pixels. And although ImFCSNet can be run in an overlap mode and thus provide di↵usion
coe�cient estimates at each pixel, the estimates of neighbouring pixels will be strongly interdependent.
Nevertheless, even when using the same 3⇥3 areas, NLS cannot reach the same performance due to the
bias of the ACFs at short measurement times of about 2.5 s (i.e. 2,500 frames), which cannot be entirely
overcome by pixel binning.

On the flip side, CNN models also have drawbacks. The largest is the lack of explainability of how the models
reach a particular decision. It was one of the motivations for developing FCSNet , which uses less than 100
points as input as it directly evaluates correlation functions. We speculate that the smaller CNNs with fewer
parameters reduce the complexity of understanding a CNN, leading to clearer design principles when applying
a single CNN structure and translating it between di↵erent parameter ranges, a topic to be addressed in the
future. In addition, ImFCSNet predictions are sensitive to the SNR. We included supporting evidence in
Supplementary Section 8 showing the larger fluctuations in ImFCSNet predictions for measurements taken
at a low laser power and, thus, lower SNR. Furthermore, we have seen in the drosophila measurement in
Fig. 4, that ImFCSNet fails. While it is an improvement over NLS at 2,500 frames and can at least retain
some of the di↵usion map features of the sample, it cannot reach the performance of NLS and FCSNet at
50,000 frames. In this case the evaluation of the ACF by NLS and FCSNet over 50,000 frames provides a
more robust readout and the short measurements of ImFCSNet of 2,500 frames at moderate SNR are not
su�cient to retrieve the correct di↵usion coe�cients. In addition, recent publications indicate that for bicoid
there is a second fast di↵usive component (⇠10 µm2/s) that Imaging FCS cannot capture due to the limited
time resolution of 2.04 ms29,36. Thus our FCS analysis provides only the slower di↵usive component of ⇠1
µm2/s. However, the fast di↵usive component could still contribute to the dynamics seen over 3⇥3 pixels
of ImFCSNet , something not included in the training set.

We can explore di↵erent approaches to tackle these shortcomings. From a modelling perspective, we can
experiment with Bayesian approaches41,42 to determine a network’s uncertainty when evaluating out-of-
distribution samples. From a data perspective, future additions of multiple components into the CNN
training and faster measurements could resolve the issue of multiple components. The failure of ImFCSNet

on this sample is a reminder that one must carefully determine in what range of experimental settings a CNN
can operate reliably. Unlike NLS, which is statistically well-understood and provides with the �2

µ statistics
a measure of the quality of fit, this is missing for CNNs. While CNNs can provide many advantages over
NLS as discussed earlier, they can as well fail and that failure prediction is at the moment not possible.
The drosophila experiment is a case in point where one CNN, FCSNet , works very well while the other,
ImFCSNet , fails. One way to avoid overconfidence in a single prediction is to exploit the fact that our two
CNNs have di↵erent advantages and drawbacks and could be used together. Due to their fast evaluation,
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once trained, the two or more models could be used in conjunction even for real-time evaluations. This would
provide a mutual quality control that could be further supported by NLS checks. For instance, when using
FCSNet and ImFCSNet simultaneously, they combine their advantages and are model-agnostic, provide
significantly faster data evaluation compared to NLS fitting, are less sensitive to de-focusing artefacts or
PSF changes, require fewer data to obtain the same parameters compared to standard Imaging FCS, and
work in 2D and 3D on a wide range of samples, including supported lipid bilayers, cells, and multicellular
organisms. We summarize the benefits of our models in Table 2. Spot checks by NLS would then ensure
overall consistency of results.

Table 2 | Summary of advantages

Advantages NLS FCSNet ImFCSNet
FCS function agnostic � + +

Evaluation speed � + +
Data requirement � � +

Robust against de-focusing � � +
Pixel level accuracy + + �
Applicability range + + �
Comparing the advantages of FCSNet , ImFCSNet , and NLS approaches.

While this is only a starting point, the advantages already shown by this first approach demonstrate the
possibilities of CNNs to provide real-time data evaluation of experiments that are fast, model-agnostic, and
robust against experimental problems, e.g. de-focusing. Future work will estimate more parameters, consider
more heterogeneous systems with more than a single component and a wider range of processes, including
more complex di↵usion processes or active transport, and exploit the capability of CNNs to provide robust
parameter estimates even in the case of non-ideal experimental conditions. Finally, the CNNs do not require
input from expert users and thus make Imaging FCS readily available for a broad base of researchers.

Methods

Imaging FCS

At the heart of Imaging FCS is the fitting of measurements to a theoretical model based on the molecular
properties of the fluorophores, the illumination profile, and the detection e�ciency of the microscope setup.
The workflow to obtain fitted parameters in the theoretical model involves several computations. Firstly, we
compute the statistics of an input image stack in the form of the temporal autocorrelation function (ACF)
and its standard deviation at each pixel of the image stack, where the ACF is given by

G(⌧) =
hF (t)F (t+ ⌧)i

hF (t)i2
, (1)

where F (t) is a measure of the fluorescence intensity at time t measured in a pixel and ⌧ is the lag time
between two time points in an image stack. The value of F (t) will be a function of the illumination intensity
within the sample, the absorption cross-section and quantum yield of the fluorophore, the detection e�ciency
and the point spread function (PSF) of the microscope setup, and the distribution of fluorophores in the
sample40.

As the intensity traces in the image stack are temporally correlated, we use a blocking transformation to
obtain unbiased estimates of the standard deviations43. The reciprocals of these standard deviations act as
weights in a non-linear least squares (NLS) fit44 using the Levenberg-Marquardt algorithm45,46. The ACF
fit will provide the di↵usion coe�cient of the measured molecules at the location of a pixel, assuming a single
molecular species in the sample, and the average number of molecules N within the observation area (2D)
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or volume (3D) of a pixel. For all our analysis, we compute the ACF based on correlators P of 16 and Q of
8. Correlator P is the number of correlation channels for the first group of bin times. The bin time is equal
to the frame time / acquisition time. Correlator Q is the number of groups of bin times including the first).
The bin time within a group is constant but it will always be twice as large as the bin time of the preceding
group.

2D free di↵usion

The ACF for free di↵usion in 2D of a single molecular species47 is

G(⌧) =
1

N


erf (p(⌧)) +

1p
⇡p(⌧)

⇣
exp�(p(⌧))2 �1

⌘�2
+G1. (2)

The term p(⌧) is

p(⌧) =
aq

!2
xy + 4D⌧

, (3)

where a is the camera pixel pitch, !xy is the 1/e2 radius of a 2D Gaussian which is used to approximate the
microscope PSF, G1 is the convergence term of G(⌧) as ⌧ ! 1. The expected value of G1 is 0 for long
lag times and infinite measurement time. We use it, however, as a fit parameter as it can deviate slightly
from 0 due to the finite measurement times. We recover the di↵usion coe�cient D by fitting an ACF curve
to equation (2).

3D free di↵usion

The ACF equation for Imaging FCS for 3D free di↵usion of a single molecular species (in preparation) is
given by

G(⌧) =
1

4⇡
3
2

p
D⌧a4hCi!2

z

Z 1

�1

Z 1

�1
exp

✓
� (z � z0)2

4D⌧
� 2z2

!2
z

� 2z02

!2
z

◆

✓
A(z, z0)p

⇡

✓
�2 + 2e

� a2

A(z,z0)2

◆
+ 2a erf

✓
a

A(z, z0)

◆◆2

dzdz0,

(4)

where

A(z, z0) =

r
8D⌧ + (!xy + |z0| tan↵)2 + (!xy + |z| tan↵)2

2
. (5)

↵ is the maximal half-angle of the cone of light that enters/exits the objective lens, which can be computed
given the numerical aperture of the lens and the index of refraction of the medium. !z is the 1/e2 radius of
the light sheet thickness, and !xy is the 1/e2 radius of the PSF of the objective in the x-y plane. There is no
closed-form expression for equation (4). We require numerical evaluations for the double integral term, which
adds to the computational cost when fitting the equation. We want to highlight the term !xy + |z| tan↵,
which accounts for cross-talk between pixels from out-of-focus particles in the z-direction. It is an additional
term to the 3D di↵usion equation48 and we incorporated it in the simulation of training data for our CNN
models.

Convolutional Neural Networks (CNNs)

Both FCSNet and ImFCSNet (Fig. 1) are inspired by the ResNet architectures26,27, where the key feature
is the skip connection that feeds the output of one layer as an input(s) to the next layer(s). Skip connections
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are also known as shortcut connections or identity mapping. They are depicted by dotted lines in Fig. 1. Skip
connections have been shown to improve the stability of training, and there are di↵erent theories attempting
to explain this observation, for instance, they smooth of the loss landscape49, and they reduce the shattered
gradients problem50. The skip connections also allow the formation of ensembles of relatively shallow
networks in a residual network51. Putting it di↵erently, the skip connections allow multiple connections
between di↵erent blocks in the network and each block can be perceived as a smaller network. Our models,
FCSNet and ImFCSNet , share many similarities in their construction. Every convolutional layer is followed
by a batch normalization layer before applying ReLU activation. We have two residual blocks in the body of
the networks, and each block is made up of two 1D convolutional layers and one skip connection. We do not
use padding in our convolutional layers. Instead, we truncate the end of the skip connection to match the
residual block’s temporal dimension and perform element-wise addition. We also deploy 1⇥ 1 convolutional
layers52, i.e. Conv1x1 1D layers. Similarly, we connect a skip connection to every two 1 ⇥ 1 convolutional
layers. There are six such blocks in total. We included blocks of Conv1x1 1D layers to increase the depth of
the network thus allowing the information to flow through more paths within the network.

There are three main di↵erences in the two models. The first di↵erence is at the input layer. The input to
FCSNet is an ACF curve of 72 points, while the input to ImFCSNet is a raw image stack of 2500 frames of
3-by-3 pixels. We perform Z-score standardization to the input by subtracting its mean and dividing by its
standard deviation. The input of FCSNet goes directly from the input layer to a 1D convolutional layer. On
the contrary, we apply a 3D convolutional layer to the spatiotemporal input in ImFCSNet . It has a filter
size of (200, 3, 3), stride of 1 and gives an output of 45 feature maps. This layer reduces the 3D input to 1D
temporal data. Furthermore, we apply a 1D convolutional layer with a filter size of 100 and a stride of 8 in
the second layer. We use a large stride in the second layer to reduce the memory footprint as data traverse
through the network and to speed up the training process because there are fewer convolution computations
in later layers.

We connect the output of the last Conv1x1 1D layer to a fully connected (FC) layer. The second di↵erence
between FCSNet and ImFCSNet here is how the output of the Conv1x1 1D is flattened. In FCSNet , we apply
a standard flattening layer, which allows the data to match the dimension of the FC layer. In ImFCSNet ,
we perform an averaging along the temporal dimension of all feature maps. The averaging is equivalent
to a global average pooling of each feature map53. Some benefits of using an averaging operation are 1)
the flexibility to pass in di↵erent length of input data and 2) experimenting with di↵erent Conv3D filter
size and/or strides when training with more number of frames, without changing the number of layers in
ImFCSNet . The last layer, i.e. the FC layer, does not apply an activation function and essentially performs a
linear combination of the Conv1x1 1D output. Finally, the networks output the log of the di↵usion coe�cient.
The last di↵erence is the fewer feature maps in FCSNet . All in all, our models are lightweight: FCSNet and
ImFCSNet contain 70,849 and 716,896 parameters, respectively. The forward pass is consequently fast. We
included our training details in Supplementary Section 1.

Data Availability The data that support the findings of this study are available from the corresponding
author, TW, upon reasonable request.
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