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Abstract 
Long-read Structural Variation (SV) calling remains a challenging but highly accurate way to 
identify complex genomic alterations. Here, we present Sniffles2, which is faster and more 
accurate than state-of-the-art SV caller across different coverages, sequencing technologies, 
and SV types. Furthermore, Sniffles2 solves the problem of family- to population-level SV calling 
to produce fully genotyped VCF files by introducing a gVCF file concept. Across 11 probands, 
we accurately identified causative SVs around MECP2, including highly complex alleles with 
three overlapping SVs. Sniffles2 also enables the detection of mosaic SVs in bulk long-read 
data. As a result, we successfully identified multiple mosaic SVs across a multiple system 
atrophy patient brain. The identified SV showed a remarkable diversity within the cingulate 
cortex, impacting both genes  involved in neuron function and repetitive elements. In summary, 
we demonstrate the utility and versatility of Sniffles2 to identify SVs from the mosaic to 
population levels. 
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Introduction  
The role and biological impact of Structural Variations (SVs) have become evident1,2. SVs are 
loosely defined as 50 bp or larger genomic alterations that fall into five types (insertions, 
inversions, deletions, duplications, and translocations) or a combination of these types1. Given 
that this type of variant impacts the most number of nucleotides in a genome, it is not surprising 
that evidence is mounting regarding their importance across all categories of life. This starts 
e.g., with important speciation events3 and impacts plants4,5, but goes further across human 
diseases (Mendelian6,7 as well as complex diseases8–10) to cancer development11–13 (e.g., HLA 
loss, oncogene amplification). Despite the importance of SVs, it is still challenging to detect 
germline and somatic SVs or even robustly identify de novo SVs14–16. The least often studied 
and thus challenging SVs are insertions (ie. novel sequences) that, as many studies showed, 
amount to half of all SVs found in a human genome17–19. The latter can either be recovered by 
long-read mapping methods or de novo assemblies followed by a genomic alignment1,20. 
 
Long-read sequencing has come a long way over the past years from a novelty to a 
population/production scale mechanism to study SVs21,22. The error rate of Oxford Nanopore 
and PacBio HiFi are both ever decreasing, soon reaching levels of Illumina-like errors along the 
genome23,24. Most recently, Oxford Nanopore Technologies (ONT) provided an insight into the 
upcoming chemistry update to produce Q20+ reads, which further seem to reduce the error 
rates (~2%)25. Indeed, several studies have now started to sequence larger and larger data sets 
or even medical applications using PacBio HiFi or ONT21,26. This trend started with GENCODE 
22, but is ever increasing to other projects (e.g., All of Us initiative27, CARD28) and is currently 
peaking in the G42 endeavor to sequence multiple hundreds of thousands genomes. This also 
requires more efficient software to not just detect SVs, but also to merge and produce a fully 
genotyped VCF file29,30. The improved degrees of error and lower cost for long-reads are also 
starting to promote applications in medical or clinical space31,32. This is needed as several 
genes or regions of the genome remain a “dark matter”20,33. Here, recent studies showed 386 
medically relevant genes that are still challenging for the standard clinical Illumina WGS33. Most 
of these genes (~70%) can be assessed using long-read technologies, but several challenges 
remain33. 
 
Furthermore, there are more complex SVs beyond simple deletions, duplications, inversions, 
insertions, and translocations that can lead to a Mendelian disease6. The genomic locus 
including the dosage-sensitive gene MECP2 at Xq28 is particularly susceptible to such genomic 
instability due to nearby inverted and direct orientation low-copy repeats (LCRs)34–36. The 
protein encoded by the MECP2 gene, Methyl-CpG binding protein 2 (MeCP2), is critical for 
brain function by acting as an epigenetic regulator37. Copy-number variation spanning the gene 
causes MECP2 Duplication Syndrome (MDS) (MIM:300260) with 100% penetrance in males38. 
The most prevalent clinical features of MDS are infantile hypotonia, developmental delay, 
intellectual disability, frequent respiratory infections, and refractory epilepsy39. One of the 
frequent complex allele presentations is constituted by an inverted triplication flanked by 
duplications (DUP-TRP/INV-DUP). This allele is generated by a given pair of inverted low-copy 
repeats telomeric to MECP2, being responsible for 20% to 30% of the MDS cases6 a fraction of 
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which will lead to a more severe clinical phenotype. When generated, this structure includes two 
breakpoint junctions (Jct) connecting the end of the duplication to the end of the triplication 
(Jct1) and the beginning of the triplication to the beginning of the duplication (Jct2). Given the 
presence of two breakpoint junctions in cis, the involvement of LCRs and the size of such 
events (often > 500 kb), we lack the ability not only to detect this structure solely using long read 
sequencing data, but also how to describe it following the VCF specification. Part of the 
complexity originates as the reads themselves only partially indicate the allele, e.g., highlighting 
a shorter inversion29.  
 
In addition to complex variants, multiple studies have shown that there are mosaic or low-
frequency SVs that are likely causal across neurological diseases or other diseases9. As an 
example, single-cell studies show us that there can be variable copy number variants (CNVs) 
across multiple cells in the brain9. However, their true frequency is unknown, with around 12% 
of healthy cortical neurons having Mb-scale CNVs40. A possible role in neurodegenerative 
disease41 has not been adequately explored. In synucleinopathies, which include Parkinson’s 
disease and Multiple System Atrophy42 (MSA), somatic CNVs of the highly relevant SNCA gene 
have been reported43–45, and single-cell whole-genome sequencing in MSA has shown Mb-scale 
CNVs in ~30% of cells44. Still, these CNVs studies lack resolution as breakpoints are defined 
within +/- multiple kbp and only very large ~1 Mb  CNV events are reported40,46,47. An 
identification of complex SVs arising in neurodevelopment was so far only possible with WGS of 
clonally-expanded precursors9,44. Thus, so far we struggle to identify the underlying alleles even 
for large already reported CNVs along the human genome.  
 
In this paper, we present Sniffles2, a redesign of the popular SV caller Sniffles, with  improved 
accuracy, higher  speed and novel features that addresses  the problem of population-scale SV 
calling for long-reads. This is needed across tumor-normal comparison over family (e.g. 
mendelian) studies, but also at larger studies deciphering rare alleles across a population or 
cohort. In addition, Sniffles2 enables the detection of low-frequency SVs across data sets, which 
facilitates detection of somatic SVs  and mosaicism studies and opens the field of cell 
heterogeneity for long-read applications. We first highlight Sniffles2 performance compared to 
other SV caller over multiple benchmark sets then we further investigate how the new 
population or family mode for SV calling improves the accuracy and performance across 
Mendelian disease probands with ONT. Here, we can showcase the boundaries of long-read SV 
calling by assessing highly complex SVs around MECP2. Lastly, we investigate Sniffles2 
abilities to identify low-frequency/mosaic SV across an MSA brain sample and compare its 
performance to Illumina sequencing and Bionano optical genome mapping (OGM). Overall, 
Sniffles2 pushes the boundaries of long-read based SV calling and thus demonstrates the utility 
of such an approach further than any existing approach. Sniffles2 remains an open source (MIT 
license) and is available at: 
 https://github.com/fritzsedlazeck/Sniffles  
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Results 

Accurate detection of structural variations at scale 
Sniffles2 is a complete redesign and extension of the popular SV caller Sniffles. Figure 1 gives 
an overview of its main components. Sniffles2 now implements repeat aware clustering to 
improve germline SV calling (Figure 1A) and further enables family and population SV calling at 
scale and ease (Figure 1B) and implements novel methods to identify mosaic SVs (Figure 1C). 
A detailed description of Sniffles2 can be found in the methods section. 

 
Figure 1: Overview of Sniffles2 A) For Sniffles 2 we have implemented a  repeat aware 
clustering coupled with a fast consensus sequence and coverage-adaptive filtering to improve 
accuracy of the germline SV calls. B) One key limitation of current SV calling is the generation 
of fully genotyped population VCF. Sniffles2 implements a concept similar to a gVCF file where 
single sample calling is only done once which reduces runtime multiple-fold. C) Mosaic SV 
detection is enabled by improved detection and filtering of low variant allele frequency SV (by 
default 5-20%) across a bulk sample. This is enabled over additional noise detection 
methodology as well as refinement and filtering approaches that we developed. 
 
Figure 1A shows a summary of the most important steps applied by Sniffles2 to identify 
germline SVs. In brief, we use a fast yet high-resolution clustering approach, which identifies 
SVs in three key steps. First, putative SV events are extracted from read alignments (split reads 
and inline insertion or deletion events) and allocated to high-resolution bins (default: 100 bp) 
based on their genomic coordinates and putative SV type. Second, neighboring SV candidate 
bins are subsequently merged based on a standard deviation measure of SV starting positions 
within each growing bin. Through the use of optional tandem repeat annotations, Sniffles2 
dynamically adapts clustering parameters during SV calling, allowing it to detect single SVs that 
have been scattered as a result of alignment artifacts. Finally, identified clusters are separately 
reanalyzed and split based on putative SV length. Final SV candidates are subjected to quality 
control based on read support, breakpoint variance and expected coverage changes.  
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Figure 2: Performance assessment of Sniffles2 based on GIAB. Performance metrics for 
correctly identifying and genotyping SVs across Oxford Nanopore (left) and PacBio HiFi (right). 
All details are collected in Supplementary Table 1.  For panels A, B, E and F the shaded 
symbols mean that the Genotype F1 score was lower than 0.5. A+B: comparison across Tier1 
GIAB genome-wide SV (Genotype F1 score in the y-axis, higher is better) across different 
coverages (symbols) and SV caller (x-axis) for default and maximum sensitivity parameters (red 
and green respectively / clear and solid respectively). C+D: runtime comparison across Tier1 
GIAB genome-wide SV (CPU minutes in the y-axis, lower is better) across different coverages 
(symbols) and SV caller (x-axis) for default and maximum sensitivity parameters (red and green 
respectively / clear and solid respectively). E+F: comparison across GIAB challenging medical 
gene (CMRG) benchmark for SV (Genotype F1 score in the y-axis, higher is better) across 
different coverages (symbols) and SV caller (x-axis) for maximum sensitivity parameters. G+H: 
runtime comparison across GIAB CRMG benchmark for SV (CPU minutes in the y-axis, lower is 
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better) across different coverages (symbols) and SV caller (x-axis) for maximum sensitivity 
parameters.  
 
We assessed the performance of Sniffles2 (v2.2) with respect to Sniffles29 (v1.12), cuteSV48 
(v1.0.11), PBSV49 (v2.6.2) and SVIM50 (v1.4.2) using Truvari51 (version 2.1) and the GIAB 
recommended parameters52. Figure2 shows the results across different GIAB benchmarks see 
Supplementary Table 1 for details). Across the default coverage (30x for HiFi, 50x for ONT), 
Sniffles2 shows the best performance with respect to correctly identified and genotyped 
insertions (HiFi: GT F-score 0.909, ONT: GT F-score 0.915) and deletions (HiFi: GT F-score 
0.934, ONT: GT F-score 0.944) (see Supplementary Table 2 for details). Sniffles2 achieves a 
better result in a fraction of the time across data sets compared to Sniffles (v1.12), being over 
17 times (HiFi) and 11 times (ONT) faster in processing a 30x coverage data set, respectively. 
Figure 2A+B shows the results for PacBio HiFi and ONT, respectively. In addition, Sniffles2 is 
also the fastest method overall, requiring 33.33 CPU minutes for processing a 30x coverage 
HiFi dataset , which was twice as fast as SVIM, the 2nd fastest method. For a 30x coverage 
ONT dataset, Sniffles2 was also close to twice as fast (1.92x) as the second fastest caller 
(SVIM), while also having an over 8.4% higher GT F-score. Taking into account Sniffles2 multi-
processing capability (not supported by SVIM), the speedup increases even further, to more 
than 5.4-fold and 7.5-fold for HiFi 30x, ONT 30x data sets, respectively. When reducing the 
coverage from 30x to 10x we observe only a slight reduction in F-score for Sniffles2 (HiFi: 
reduction GT F-score 0.041, ONT: reduction F-score 0.058). This is in stark contrast to other 
programs such as cuteSV, where using default parameters, F-score dropped by an average of 
over 60% (HiFi: reduction F-score 0.56, ONT: reduction F-score 0.58). Even when using only 5x 
for Sniffles2, we still observe a high accuracy ONT (F-score: 0.74) and HiFi (F-score: 0.77). This 
is achieved as Sniffles2 includes an automated parameter selection for filtering of SV 
candidates based on the available coverage. In contrast, other SV callers rely on manual 
adjustment of these parameters to retrieve acceptable results across coverages and 
sequencing technologies. Figure 2A-D shows this clearly as all other SV callers show a 
decreased performance across lower coverage. Even when tuning the parameters for other SV 
callers (Figure 2A-D, Tuned parameters), Sniffles2 remains the highest accuracy (see 
Supplementary Table 1 for details).  
Additionally, we tested Sniffles2 with an additional mapper (LRA) to showcase its versatility. 
When mapping HiFi data with LRA we observe a slight increase in performance when 
comparing the genotype F-scores (HiFi GT F-Score increase by 0.006), moreover when using 
LRA to map ONT data we observe a slight decrease in performance of Sniffles2 (ONT GT F-
Score decrease 0.0136). Interestingly, when testing Sniffles with CLR data the error rates of this 
outdated data impacts our variant calling and thus we suggest other SV callers (see 
Supplementary Table 1).  
Next, we performed an evaluation with respect to the Tier2 GIAB dataset, which is a more 
challenging region of the GIAB benchmark set as it includes repeats and GIAB cannot 
guarantee the accuracy of the variants in these regions (see Supplementary Table 3 for 
details). Again, Sniffles2 even increases the performance difference compared to other SV 
caller. Lastly, we benchmarked Sniffles2 across a more challenging SV data set across 386 
medically relevant, but highly polymorphic/challenging genes33. GIAB has recently released this 
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call set of ~200 SV covering around 70% of these genes33. Figure 2E-H shows the results. 
Again Sniffles2 outperforms the other SV callers in terms of accuracy and speed using default 
parameters. The next best performing SV caller (pbsv for HiFi, cuteSV for ONT) both achieved 
3.6% and 5.5% lower genotyping accuracy (GT F1-Score) even at 30x coverage. 
Supplementary Table 4 contains the detailed results across all SV callers. Overall, Sniffles2 
outperforms other state-of-the-art SV caller across the entire genome including the most 
challenging regions/genes.  
Next, Sniffles2 improves insertion identification through two additional methods: First, the 
consensus module corrects sequencing-related errors in the recovered insertion sequences 
using a fast pseudo-alignment based approach. This allows Sniffles2 to attain the second 
highest mean sequence identity of (HiFi: 0.948, ONT: 0.939), after pbsv (HiFi: 0.953, ONT: 
0.949), while Sniffles2 is over 14x (HiFi) and 36x (ONT) faster (see Supplementary Figure 1, 
Supplementary Table 5 containing insertion sequence accuracy across all callers) at 30x 
coverage. Second, Sniffles2 increases the sensitivity for the detection of large insertions by 
recording additional supporting alignment signals in the affected regions (see Supplementary 
Figure 2, Supplementary Table 6) at much higher speed than pbsv, the only SV caller with a 
comparable accuracy for long insertions.  
 
Lastly, GIAB only represents one individual benchmarked across most studies (HG002). Thus 
next, we used Dipcall53 together with three T2T assemblies 54 (HG01243, HG02055, HG02080 
of America, African and East-asian ancestry respectively) to further assess the performance of 
Sniffles2. Clearly, we give Dipcall the benefit of the doubt, knowing that the accuracy will be 
lower than the GIAB vetted benchmark set. Overall, Sniffles2 performs the best across all 
samples having on average a F-Score of 0.79 at 30x coverage ONT and HiFi compared to 0.77 
F-score for the next best SVcaller (cuteSV), at nearly 3.5 times the speed (74.03 CPU minutes 
versus 256.65 CPU minutes on average) for default parameters. Supplementary Table 7 
contains the detailed results for each benchmarked program across these three samples. 
Besides the here benchmarked insertions and deletions, we also benchmarked Sniffles2 on 
duplications, inversions and translocations using simulated data as no benchmark exists. 
Overall, Sniffles2 again outperformed all other methods in speed and accuracy (see 
Supplementary Figure 3 and Supplementary Table 8) (see methods for details). 
Given all these comparisons across different ethnicities (HG002 being European, HG01243 
being American, HG02055 being African and HG02080 being East-Asian), coverage levels (5-
50x) and sequencing technologies (HIFI and ONT), we conclude that Sniffles2 improves the 
detection of SVs in terms of accuracy and speed compared to other state-of-the-art methods. 

Enabling family to large cohort studies to discover the impact of complex 
Structural Variation  
Over the past years, an uptake of ever larger studies utilizing long-reads is foreshadowing a 
trend in genomics to utilize long-reads more often than ever21. To promote this, Sniffles2 is fast 
and efficient, but further implements a strategy to obtain a fully genotyped population VCF. 
Traditionally this is a multi-stage process of calling, merging, genotyping, and re-merging21,55,56. 
This is clearly inefficient as the bam/cram alignment files need to be assessed twice. Even so, 
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this process can only be achieved by using a few of the existing methods (SVJedi57, Sniffles29, 
CuteSV48). Sniffles2 strategy only requires an initial calling and merging to obtain a fully 
genotyped population-level VCF. Figure 1B illustrates the principle. The calling can be done 
independently per sample and thus allows to scale to large data sets. Each sample run 
produces a single germline VCF file accompanied with a binary file that serializes every single 
candidate SV that has even a single read support. Next, each binary file per sample is provided 
as a list to Sniffles2 merge, which combines the SV across the samples and fills the missing 
information utilizing the binary files per sample. These files typically range from 75 to 250Mb per 
~30x ONT sample. This process is extremely efficient as it scales linearly with the number of 
samples and allows the samples to be analyzed in parallel and independent of each other (see 
Supplementary table 9, Supplementary Figure 4). In addition, it solves the “n+1” problem to 
include a batch of samples at a later stage of a project.  
To assess the performance of this approach, we measured the Mendelian inconsistency rate 
using a family trio (see methods)58. Here we counted in how many of the called SV, the 
genotypes of the proband do not concord with the genotype of the parents (e.g., F 0/0, M 0/0, P 
1/1) or the other way around (e.g., F 1/1, M 0/0, P 0/0). For Sniffles2, we obtained a Mendelian 
inconsistency rate of 9.13% with a low rate of missing genotype of 1.29% (Figure 3A). The 
latter is driven by a user parameter where Sniffles2 does not report a genotype where only 5 or 
fewer reads are present. In comparison, cuteSV with a simple merge (SURVIVOR59) presented 
a mendelian inconsistency of 3.74% with a much higher missingness of 32.20% of all genotypes 
compared to the 1.29% of Sniffles2. When we apply a re-genotyping and re-merging of the 
cuteSV results, we obtain a Mendelian inconsistency rate of 8.88% with almost 3 times  higher 
missingness of 3.45%, when compared to Sniffles2. Furthermore, the cuteSV approach took 
more than 50 hours CPU hours (50:33:13, Supplementary Table 10, Supplementary Figure 
5) in contrast to 8 CPU hours (8:05:34) for Sniffles2 for a given trio. Thus, rendering it 
impractical for larger cohorts. As a stress test we merged from 3 to 777 samples which 
consisted of repeating up to 259 times the HG002 family trio. This took little more than 11 CPU 
hours using Sniffles2 (11:16:18, Supplementary table 9). 
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Figure 3: Sniffles2 population approach and application to Mendelian disease. A Comparison of 
the proportion of consistent, inconsistent and uninformative (NA) genotypes across HG002/3/4 
computed by the bcftools Mendelian plugin for Sniffles2 population merge and cuteSV. To 
achieve similar results, cuteSV takes more than 6.24x the time. B,C,D) Three examples of SV 
detected by Sniffles2 in Mendelian disorders in probands. Chromosomal position is shown in the 
top part (Xq28), followed by the arrows that represent a specific loci. Next is shown aCGH data 
dots represent genomic positions being assayed. Black dots represent a log2 ratio between -
0.35 and 0.35, red dots represent a log ratio above 0.35 and green dots represent a ratio below 
-0.35. Consistent (at least 3 consecutive probes) log2 ratios above 0.35 represent a region of 
copy number gain and below -0.35 represent copy number loss. In orange we show segmental 
duplications (SegDups) and in teal the SV called by Sniffles2. IGV screenshot and fully resolved 
events are shown in the lower part of each example.  B) Tandem duplication that was fully 
resolved by Sniffles2 in one of the patients (BH14233_1). Sniffles2 was able to identify and map 
the junction of the duplication within a segmental duplication region where array data does not 
provide information. Note that given the presence of the segmental duplication, the SV was 
tagged with a STDEV_LEN filter. C) Detailed aCGH view of a complex duplication-normal-
duplication (DUP-NML-DUP) structure in sample BH13947_1 with breakpoints within SegDup or 
low-copy repeats (LCRs) region (orange bar) where Sniffles2 is indicating two overlapping 
inversions in IGV (teal bars) forming junctions 1 and 2 (Jct1 and Jct2). Top arrows indicate the 
reference orientation (duplications in red, neutral regions in black) of each genomic fragment 
and bottom arrows indicate a possible DUP-NML-INV/DUP haplotype structure containing Jct1 
and Jct2. D) Sample BH15700_1 shows a complex duplication-triplication-duplication structure 
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as highlighted in aCGH data with SegDups and LCRs highlighted (orange bars). Sniffles2 
identifies the inversion breakpoint at Jct2 (teal bar), but cannot fully resolve the entire allele 
including Jct1 as it's also not possible to be reported in the VCF standard. Red arrows indicate 
duplicated regions and blue arrows show triplicated portions. One possible haplotype  structure 
for a DUP-TRP/INV-DUP is shown with the triplication and initial duplication being inverted 
forming Jct1 and Jct235.  
 
Next, we applied this population/family approach of Sniffles2 across 31 Oxford Nanopore data 
sets that represented cases of Mendelian disorders in probands (seven complete trios, one duo, 
eight only probands). The runtime for merging the individual samples was roughly 28 CPU 
minutes (28:37) to produce a fully genotyped population VCF file. Across the seven complete 
families (proband, mother, father) we measured an average of 3.89% Mendelian inconsistency 
rate and 1.11% of missingness (see methods, Supplementary Table 11, Supplementary 
Figure 6). The probands for sequencing were selected based on a Mendelian disease that often 
is caused by SVs impacting the MECP2 gene at Xq28 locus. As described in the introduction 
this is a severe neurodevelopmental disorder that is often caused by extreme complex alleles in 
this region. We were interested if Sniffles2 together with ONT data can resolve the breakpoints 
which were not always solvable using array data and if we were able to fully explain the entire 
allele or just partially solve the junctions. To address this we filtered SV based on ChrX together 
with their size (10 kb) and filtered for SV only being de novo or inherited from the mother.  
 
Within this cohort, Sniffles2 is able to achieve a high rate of detection across junctions, but 
sometimes struggles to recapitulate the entire allele that contains complex SVs. Table 1 shows 
the details per proband. In samples harboring a tandem duplication, Sniffles2 was able to 
properly detect the allele and fully resolve its architecture. In our cohort, these duplications span 
the dosage sensitive gene (MECP2) and form a single breakpoint junction (Jct1), confirming a 
tandem duplication structure. As highlighted in sample BH14233_1, although aCGH broadly 
defines the genomic interval of the duplicated region, Sniffles2 is able to properly give positional 
context of genomic fragment defining at nucleotide-level resolution to be a tandem duplication 
on the allele even though the end of the duplication is within a segmental duplication region 
(orange bar) (Figure 3B). Note that the presence of the segmental duplication caused the SV to 
be tagged with a STDEV_LEN filter. This indicates non agreement on the precise start of the SV 
given the repetitive nature of the region. 
 
Interestingly, a portion of the inversions that Sniffles2 was able to detect were not simple 
genomic inversions, but instead part of more complex structures that could not be fully resolved 
using current bioinformatic tools. A more complex allele is detected in sample BH13947_1, 
which consists of a duplication-normal-duplication (DUP-NML-INV/DUP) with breakpoints 
spanning segmental duplications (SegDups) (Figure 3C). Here Sniffles2 indicates two 
overlapping inversions which form junctions 1 and 2 (Jct1 and Jct2) generating a DUP-NML-
INV/DUP structure.  
 
In sample BH15646_1, the inversion called by Sniffles2 spanning nearly the entire X 
chromosome (~148 Mb) represents the breakpoint junction of a recombinant chromosome. In 
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the sample, aCGH data shows a short-arm deletion and a long-arm duplication, i.e. DEL-NML-
DUP structure. Sniffles2 is able to positionally connect the beginning of the duplication to the 
end of the deletion forming Jct1 (Supplementary Figure 7). This allele is generated as the 
result of meiotic recombination between heterozygous homologous X-chromosomes in females 
harboring a pericentric inversion60.  
 
Another example is represented by an apparent 311 kb inversion detected in sample 
BH15700_1. This inversion is part of a DUP-TRP/INV-DUP structure (Figure 3D), which is 
generated by a given pair of inverted SegDups and produces an inverted triplication flanked by 
duplications35. When generated, this structure includes two breakpoint junctions (Jct) connecting 
the end of the duplication to the end of the triplication (Jct1) and the beginning of the triplication 
to the beginning of the duplication (Jct2). While Sniffles2 can properly detect the inverted 
breakpoint generating Jct2, it is not able to fully resolve the context of the larger structure due to 
Jct1 being embedded within a pair of inverted SegDups with 99.9% sequence similarity.  
 
In this cohort, Sniffles2 is able to correctly detect with nucleotide-level resolution the precise 
breakpoints defining a genomic interval in patients carrying complex genomic rearrangements 
(CGRs). Importantly, a large portion of the CGRs in this cohort have at least one of the 
breakpoint junctions mapping to SegDups; those can be fully resolved by Sniffles2 together with 
copy-number information. Nevertheless, CGRs that have two breaks mapping to pairs of highly 
identical SegDups, such as in the DUP-TRP/INV-DUP events, still represent an important 
challenge for SV callers and are also too complex to appropriately report within the limits of a 
VCF standard. Additionally Sniffles2 infers positional connections that help resolve a given 
complex allele architecture with information that aCGH alone cannot provide. Thus, overall this 
highlights the benefit of Sniffles2 family/population mode to enable these types of comparisons. 

Identification of mosaic SVs reveals new insight in diversity 
We have shown that Sniffles2 accurately identifies SVs across the entire genome and that it 
enables better scaling and accuracy across families and even larger population levels. 
Nevertheless, as we know from many studies, germline variants are not the only source of 
structural variation. Often somatic/mosaic variants are important. This has been indicated in e.g. 
cancer and neurological disorders9,12. Thus, Sniffles2 is equipped with a mosaic mode to identify 
low-frequency (5-20% Variant allele frequency (VAF)) SVs across a single sequenced sample. 
Figure 1C shows the principle steps where the main innovation is to weigh the support of each 
read taking into consideration its edit distance as a confidence measure. To circumvent the 
impact of sequencing error rates on mosaic SV detect we filter out SV where the average edit 
distance of reads supporting exceeds a threshold, which is estimated per data set to account for 
different sequencing error levels (see methods). 
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ID Sex Inheritance Pathogenic CGR 
Coordinates CGR (aCGH) Coordinates (Sniffles2) 

CNV Chr Start SegDUP End SegDUP SV Chr Start End Filter 

BH14233_1 M Maternal Tandem Duplication DUP X 153084841 - 153414342 Yes DUP X 153084620 153483892 STDEV_LEN 
BH13948_1 M Maternal Tandem Duplication DUP X 152877325 - 153414342 Yes DUP X 152808716 153487348 PASS 
BH15642_1 F de novo Tandem Duplication DUP X 153289589 - 153399165 - DUP X 153289208 153386550 PASS 

BH13947_1 M Maternal DUP--NML-INV/DUP 
DUP1 X 153106533 - 153414342 Yes INV X 153106249 153937616 PASS 

DUP2 X 153938964 - 154293950 - INV X 153492860 154294604 PASS 

BH15700_1 M Maternal DUP-TRP/INV-DUP 

DUP1 X 153131406 - 153409337 - INV X 153131086 153520844 PASS 

TRP X 153523170 Yes 153565901 Yes      

DUP2 X 153575989 - 153623000 Yes      

BH15701_1 M Maternal DUP-TRP/INV-DUP 

DUP1 X 153189181 - 153420198 Yes INV X 153188685 153499734 PASS 

TRP X 153505485 Yes 153565901 Yes      

DUP2 X 153575989 - 153623000 Yes      

BH15646_1 M Maternal 
Terminal DUP/ 
Recombinant 
chromosome 

DUP X 147326287 - Telomere - INV X 1406919 147326058 PASS 

DEL X Telomere - 1405994 -      

BH15692_1 M de novo 
Terminal 
DUP/Translocation Y 

DUP X 151905254 Yes Telomere - BND X 151904176 N]Y:23243741] PASS 

DUP Y 23243948 - 23655166 Yes      

DEL Y 24095954 Yes Telomere - BND X 23243742 ]X:151904175]N PASS 

BH15696_1 M de novo 
Terminal 
DUP/Translocation Y 

DUP1 X 148351663 - 148384182 - BND X 148351430 ]Y:28389311]N PASS 

DUP2 X 148706667 - Telomere  BND X 148384577 [Y:25210061[N PASS 

DEL Y 28458870 Yes Telomere  BND X 148705972 N]Y:25654822] PASS 

BH14229_1 M Maternal Terminal Duplication 
/Unknown structure DUP X 151893933 Yes Telomere - INV X 151919987 155251615 PASS 

BH13949_1 M Maternal Terminal DUP/ DUP1 X 144057799 - 144066387 - DUP X 144056099 150063756 PASS 

.
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unknown structure TRP X 144067901 - 144101282 - INV X 144068403 150063449 PASS 

DUP2 X 144101282 - Telomere -      
 

 
Table 1: Table across all the probands assessed here and highlighting in bold which junctions could be resolved using Sniffles2. 
Highlighted in green are the results discussed in the main text.
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Figure 4: Recovery of somatic SVs using the Sniffles2 non-germline mode A+B) benchmark of 
mixtures of HG002 with HG00733. We spiked HG002 in various concentrations and measured 
the precision (A) and recall (B) of Sniffles2 default (blue) and mosaic modes (red), alongside 
cuteSV (in yellow). For the recall we added an adjusted recall (in green) as Sniffles2 mosaic 
mode only call SV in the range of 0.05 to 0.20 VAF, and thus everything outside that range will 
not be analyzed. C) Overview of the number of SV types identified as germline (blue) and 
mosaic in the cingulate cortex brain region of an MSA patient brain sample sequenced with 55x 
ONT long-reads. A zoom is shown for Duplication and Inversion SVs. D+E) Validated mosaic 
SVs detected by Sniffles2. D) mosaic deletion close to a germline Alu insertion. The IGV 
screenshot shows bulk whole genome sequencing: top panel  55x ONT bottom panel  85x 
Illumina. PCR validation shows both products from the MSA brain (column b, insertion in top 
and deletion in bottom) compared to a control (c) and the ladder (a). The PCR products 
highlighted in squares were Sanger sequenced, and the alignment is shown below the gel 
(colors matching), with the INS position marked with a purple triangle. E) mosaic deletion within 
RBFOX3. The IGV screenshot shows bulk WGS: top panel 55x ONT, bottom panel  85x 
Illumina. PCR demonstrates the mosaic deletion  (column b, WT in top and deletion in bottom) 
compared to two controls (c, brain control) and the ladder (a). The PCR products highlighted in 
squares were Sanger sequenced and the alignment is shown below the gel (colors matching). 
Supplementary figure 9 shows the complete unannotated gels, Supplementary figure 10 
shows a different view of the same Illumina results for panel 4E. Supplementary table 14 
shows the complete list of candidate SVs and Supplementary figure 11 shows all IGV 
screenshots for the same candidates. 
 
To assess the performance of Sniffles2 across mosaic SVs, we first synthetically merged 
HG002 (at low concentrations: 5x (7%), 7x (10%), 10x (14%), 15x (21%) or 20x (28%)) with the 
50-63x coverage read data from the sample of an unrelated individual (HG00733). This yielded 
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multiple, synthetic samples with constant total coverage of ~70x (68x in one case), but varying 
concentrations of HG002 in them (7-28%). We only assessed this for ONT data as this 
technology often is sequenced at higher sequence depth than Pacbio HiFi. The latter can still be 
used, but is not benchmarked here. Figure 4 A&B highlights the results across this synthetic 
data set across different concentrations of HG002 (x-axis, Supplementary Table 12). Figure 
4A and 4B show the precision and recall of SVs across the different concentrations. In blue, we 
highlight the performance of Sniffles2 default germline-mode, which shows low precision and 
increased recall with increase in concentration of HG002 in the mix. In red we show cuteSV 
which has lower precision and recall in both cases, when compared to sniffles2 germline-mode. 
In yellow we highlight the performance of Sniffles2 mosaic mode. Sniffles2 achieves high 
precision that increases with  higher proportions of HG002 (Figure 4A) with the highest being at 
21% HG002 proportion (84.12% precision). Recall also increases with higher proportions of 
HG002, moreover it only reaches a maximum of 54.05%. This is because Sniffles2 mosaic-
mode only calls SV where the variant allele frequency (VAF) is between 5 and 20%.. We 
computed the adjusted recall by only using the SVs where the VAF matches in the range that 
mosaic-mode uses (Figure 4B, Supplementary Table 12). This adjusted recall is shown in 
green, which averages 94.47% across all comparisons (highest 96.39% at 7% mix of HG002). 
Thus following the default recall for germline variants. 
 
Next, we applied Sniffles2 mosaic mode to an affected brain region (cingulate cortex) of an MSA 
patient at 55x coverage using ONT. Here we are interested in all types of SVs, including 
rearrangements (INV & DUP). In this particular case, however, we need to be alert for the 
possibility that chimeras can form inversions or other duplications and as such contribute to the 
overall apparent somatic SV calls. To avoid this Sniffles2 deploys filters for low frequency 
inversions that are 1kb or smaller. Figure 4C shows the overall number of SV and their type for 
both the germline and mosaic SV call-sets (Supplementary table 13). We detected a higher 
proportion of deletions than insertions in the mosaic calling when compared to germline 
(INS/DEL ratio 1.3669072 germline, 0.7760922 mosaic). We compared this ratio across all 
samples used in the paper and found an average INS/DEL ratio of 1.10206 for germline SV 
calling. Thus clearly showing differences between mosaic and germline SV. Supplementary 
table 14 shows 34 mosaic SVs that were manually curated and Figure 4D and 4E show two of 
them, both deletions, which were validated by PCR and Sanger sequencing. One is overlapping 
a repeat element, and one affects a neuronal gene. Figure 4D shows an example of a mosaic 
deletion close to a germline insertion that was identified using 55x ONT long-reads (top IGV 
panel). Interestingly we observed these events were located between Alu elements, one novel 
insertion and one already pre-existing on the reference. We compared the insertion sequence to 
the neighboring Alu sequence and found great similarity (89.17%). This particular case is a 
direct orientation of an AluY, which is the Alu subfamily that is most predisposed to brain 
recombination and thus leading to mosaic deletions61. We then performed a blast search of the 
insertion sequence reported by Sniffles2 (and Sanger sequencing, 100% identity) and found 
that it belongs to an AluYa5. Across this sample we could identify 25 other regions that had 
similar alleles of Alu insertions that lead to mosaic deletions both identified with Sniffles. When 
expanding our search to other sizes of insertions we identified a total of 206 regions where 
insertions might lead to an instability of the region causing a mosaic deletion in the proximity. 
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This again highlights the ability of Sniffles to recover potential interesting alleles genome wide 
and at scale. Figure 4D further shows discordant Illumina reads (colored) indicating multiple 
translocations instead of the actual Alu insertions, which we reported previously29. 
 
Figure 4E shows another example of a mosaic deletion, this time overlapping an intron of the 
RBFOX3 gene which encodes NeuN, an important nuclear antigen used for sorting neuronal 
nuclei62. On manual inspection of the short reads (Supplementary Figure 10) we observed this 
deletion also on the Illumina reads (5 reads out of ~85x), but was not identifiable using Manta. 
Figure 4D and 4E also show the result of PCR validation of both SVs. For the first validated SV 
(4D), the PCR gel shows both the insertion and deletion event (column b) with the proper SV 
length of 240 bp reported by Sniffles. For the second validated SV (4E), the PCR gel shows 
evidence of the 127 bp deletion. We further validated these SVs by Sanger sequencing the PCR 
products highlighted in both gels, which again showed both deletions detected by Sniffles.  
 

 
Figure 5: Insights into somatic SVs in the MSA patient brain sample. A) Overall comparison of 
SVs detected in ONT (Sniffles2), Illumina (Manta) and OGM data sets. B) Distribution of allele 
frequencies for SVs identified by Sniffles2 and Manta. C) Association of Sniffles2 germline and 
non-germline SVs with repeat elements. D) Tumor-normal comparison of the COLO829 cell line 
using two different sequencing technologies, ONT MinION and Pacbio Revio. Highlighted are 
the tumor specific SVs (in red), the normal/control specific SVs (in green) and the technology 
specific SVs (dashed lines). In the cancer specific SV we can find variants overlapping with 
cancer related genes such as PTEN, PMS2, ARHGEF5, PAK2, WWOX. Differences between 
ONT and Revio calls for the same cell-line can be attributed to either technology differences and 
the evolution of the cell-line through time. E) Example of a cancer-specific somatic SV that 
affects the PTEN gene. Both the Pacbio and ONT dataset showed the same coordinates for the 
variant and no read support is found in the control. 
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Next, we assessed the potential of the identified mosaic SV from Sniffles impacting genes in this 
sample. We identified 3,049 Sniffles2 non-germline SVs that have read support unique to the 
cingulate cortex region from which. 2,856 of these SV overlapped with 1,176 genes including at 
least 80 that are related to the brain and its development (Supplementary Table 15). Some 
examples are GABRB3 which is implicated in many human neurodevelopmental disorders and 
syndromes, NRXN3 which is involved in synaptic plasticity and Netrin receptor DCC which is 
involved in neuron migration and axonogenesis. GRIN2A, which encodes for NMDA receptor 
subunit 2a. Of these 29 SVs, 27 overlapped introns and 2 affected at least one exon. 
Furthermore, 4 SVs disturb regulatory regions associated with at least one gene, including 
PEX26, DLL1 and ABCA2. This further highlights Sniffles2's ability to not only detect SVs that 
cannot be identified using Illumina data alone but also the likely unique presence of a subset of 
these calls within a brain region. Their distribution across functional areas of the genome in a 
brain affected by multiple system atrophy merits further study. 
 
A significant fraction of germline SVs is known to be associated with genomic repeats such as 
Alu and L1 elements. To understand the differences between germline and non-germline SVs in 
this regard, we separately analyzed the association of Sniffles2 germline and non-germline SV 
calls with different repeat families (Supplementary Table 16, Figure 5C). In summary, we 
found a similar fraction of germline and non-germline SVs was associated with repeat elements 
(60.61% and 59.70% respectively). When comparing specific repeat elements, we found Alu 
being more abundant in germline SV (4.82% difference) and simple repeats more abundant in 
non-germline/mosaic SVs (6.54% difference). Interestingly, the patterns of repeat association 
only shifted in duplication where LTR, L2 and other repeats differed from the norm and with 
inversions where no SV was detected in the mosaic SVs (Figure 5C and Supplementary 
Figure 8). For duplications, the fraction of non-germline SVs associated with LINE1 and simple 
repeats showed the highest difference over germline SVs. This highlights the different ways in 
which repeat elements are associated with somatic structural variants. As we could show above 
Alu insertion mediated mosaic deletions. Supplementary Figure 12 shows two examples of 
read alignments for a non-germline duplication SV that was solely called by Sniffles2, alongside 
with its relation to nearby and overlapping repeat elements. For deletions and insertions, we 
observe similar to slightly lower fractions of non-germline SVs associated with most repeat 
types, with the exception of simple repeats. For this repeat family, especially non-germline 
duplication and insertion SVs had a higher fraction associated. Repetitive elements may be 
associated with neurodegenerative disorders, through increased expression and / or de novo 
somatic genomic integration41. The observance of a higher fraction of non-germline insertion 
and deletion SVs being associated with simple repeat elements could suggest a further 
correlation for this on the level of an individual brain region. Overall, this also highlights the 
differences between repeat families in their effects on somatic SV generation63.  
 
Next, we compared the different technologies to the Sniffles2 results. The same brain region 
was also sequenced by Illumina short reads (90x) and analyzed by Bionano optical genome 
mapping (OGM 690x) (see methods). The Sniffles2 calls from both germline (21,965) and 
mosaic (2,937) were concatenated as they VAF are mutually exclusive. For illumina, Manta64 
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detected 12,142 SV, and OGM (5kb or larger) 1,463 SVs. Figure 5A highlights the agreement 
of all SVs detected in the same sample by the three technologies for a minimum length of 50bp 
and excluding translocations (Supplementary Table 17.1). From the total of 22,619 merged SV 
calls, only 214 are shared across all methods and 19,254 (85.12%%) were detected by Sniffles2 
together with either Manta, OGM or both. Sniffles2 uniquely detected 10,720 (47.39%) SVs, 
while Manta uniquely detected 2,599 (11.49%) and OGM 749 (3.31%). We next identified the 
most abundant SV type per method for the unique calls. We found that Sniffles2 has a higher 
number of insertions and deletions (94.87%, 70.98% respectively%), while for Manta are 
duplications and inversion (98.35%, 92.12% respectively, Supplementary table 17.2,). At the 
same time, Illumina showed a higher overlap with Sniffles2 (8,022 SVs) compared to OGM (298 
SVs), likely also because of the minimum length for OGM. 
The overlap between Sniffles2 and the other technologies was also much higher for deletions 
(4,801) than for insertions (3,607). These differences are likely explained by the individual 
difficulty in detecting larger (i.e., Illumina) and smaller (i.e., OGM, recommended threshold 
approximately 5kbp or larger) insertion events, respectively. Next, we took a closer look at 
putatively mosaic SVs detected by Sniffles2. For this, we separated Sniffles2 detected SVs by 

their reported variant allele frequencies (VAF) into germline (VAF > 0.3) and likely mosaic (VAF 

≤ 0.2) calls. Interestingly, a total of 58 insertions were shared uniquely by the germline and 

mosaic calls of Sniffles2. No other SV types were observed overlapping between mosaic and 
germline. Interestingly we do observe size differences for these 58 SV but share the same start 
location.. Next, we compared the mosaic Illumina and OGM calls. Only 702 mosaic SVs 
reported by Sniffles2 could be detected by either Illumina or OGM or both (24 OGM, 666 
illumina and 12 both), highlighting the difficulty in identifying rare SVs. For deletions, only 473 of 
SVs were also found by either OGMand/or Illumina. Only 218 mosaic insertions reported by 
Sniffles2 were detected by the other methods. For duplications and inversions, only the Illumina 
data showed overlap (one and ten, respectively) with Sniffles2 mosaic SVs. 
 
We further noted a shift in the allele frequencies across the Manta calls compared to the 
Sniffles2 calls (Figure 5B). As expected, for Sniffles2, we observe a multimodal distribution with 
three peaks, representing homozygous, heterozygous and non-germline SVs, respectively. In 
contrast, Manta shows two main peaks in their allele frequency distribution. A homozygous 
(~0.9-1 AF) and a broad peak around 0.3 AF, which would be below the typical expected 
heterozygous AF peak. For Sniffles2, we furthermore observe a ~140% increase in the area 
under the curve in the putative non-germline range of allele frequencies (0.0-0.2) when 
compared to the illumina data, thus showing the potential of Sniffles2 to detect low frequency 
SV.  
 
Finally, we focused on the non-germline (mosaic/somatic) SVs exclusive to the cingulate cortex 
brain region. For this, we also sequenced the neighboring cingulate white matter from the same 
patient using Illumina. We used SVTyper65 to genotype Sniffles2 SVs (only deletions, 
duplications and inversions) that were not initially identified by Manta against the aligned 
Illumina reads from both brain regions (Supplementary table 17.3). This way we identified 497 
SVs that initially were not identified in Illumina, but were genotyped as present. We identified 
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484 non-germline SVs using Sniffles2 that have Illumina read support in the neighboring brain 
region. Thus, showing that Sniffles2 is able to accurately detect low-frequency (ie mosaic) SVs. 

Identification of cancer-specific somatic SVs by Sniffles2 
We have shown that Sniffles2 can accurately identify SVs across the whole range of allele 
frequencies. Furthermore, we showed that Sniffles2 enables fast and accurate population SV 
calling. Next, we made use of the population merge strategy of Sniffles2 to investigate its ability 
to identify tumor-specific somatic SVs using paired tumor/normal samples. For this endeavor we 
used the well-known and highly studied COLO829 cancer cell line (with blood control 
COLO829BL). By merging the SV calls from both tumor and normal we are able to identify 
tumor-specific somatic SVs based on the genotype, alternative read count and and the support 
vector. Figure 5D shows shared and unique SV between the COLO829/COLO829BL cell-lines 
for two long-read technologies: ONT MinION and Pacbio Revio.  
First, we tested both germline and mosaic SV calls against a COLO829 benchmark dataset66. 
This benchmark was done by analyzing the COLO928 sample using multiple technologies. We 
filtered out all SV smaller than 50 bases, and divided the analysis in two parts: translocations 
(13 BNDs in the benchmark) and the rest of the SVs (49 SVs in the benchmark). For the case of 
the translocations (BND) Sniffles2 reported five BND, from which four are present in the 
benchmark with all within five bases of either breakpoint. Nine BNDs from the benchmark were 
not detected by Sniffles2, and one BND was called but not present in the benchmark 
(Supplementary Table 18). For the rest of the 49 SVs (INS, DEL, INV, DUP), Sniffles2 was 
able to identify 36 in either the ONT, Revio datasets or both with breakpoints within 300 bases 
(max. allowed distance between breakpoints = 1kb, Supplementary Figure 13), moreover in 
some cases the technologies didn't agree on the genotype (het vs. homozygous alt.). This 
highlights potential changes across the cell lines as the ONT and Pacbio data were released a 
few years apart. From the remaining unidentified SV, four had no reads for the alternative allele 
(0% AF), three were identified by Sniffles as mosaic (8.2-21% AF), four had heterozygous 
genotype (31-41% AF) and two had homozygous alternative genotype (81-100% AF, 
Supplementary table 18, Supplementary figure 14). For Sniffles2 it shows that we missed 
only six germline and three mosaic SVs from the benchmark (81.63% recall, Supplementary 
table 18). These results show the difficulty of defining a benchmark dataset for an ever-evolving 
cancer cell-line such as COLO829 or any other. 
We further annotated 79 tumor specific somatic SVs identified by Sniffles (see Methods). These 
SVs overlap with cancer related genes such as PTEN, PMS2, ARHGEF5, PAK2, WWOX to 
mention some. Additionally, some SVs overlap with olfactory receptor pseudogenes. Figure 5E 
and Supplementary Figure 15 shows examples of cancer-specific germline SV. Manual 
inspection in IGV identified homozygous, heterozygous and LoH events.  

Discussion  
In this paper, we present a new version of the highly popular SV caller: Sniffles. Sniffles2 is a 
significant improvement in terms of accuracy and runtime not only compared to Sniffles v1, but 
also to all other commonly used long-read based SV callers (see Figure 2). We show higher 
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accuracy across different coverages (5-50x) using different sequencing technologies (Pacbio 
HiFi and ONT) and even across all SV types. This is achieved by an automatic parameter 
optimization that is part of Sniffles2 compared to all other SV callers that require manual 
adjustments. Besides this Sniffles2 is also able to genotype SV and leverage phased reads 
(using HP and PS tags) as input to provide phased SV in a VCF file. Sniffles2 is more than a 
simple extension (Figure 1). For the first time, we demonstrate a gVCF concept for SV calling 
and implemented a working version in Sniffles2. This instantaneously halves the requirements 
of computing and storage for population/family SV or even tumor vs. normal SV calling. Thus 
resolving the ever larger demands of long-read data sets21. Furthermore it solves the n+1 
problems when a new sample is added on a later stage of the project. We demonstrated the 
new merge concept across the GIAB family where Sniffles2 produced a fully genotyped VCF file 
within minutes resulting in a low Mendelian error rate and negligible missing genotypes. We 
could demonstrate the utility across the 31 ONT Mendelian samples, where Sniffles2 resolved 
SVs mapping to complex regions of the genome with a direct impact to disease, supporting 
copy-number data. This clearly illustrates the benefit of this novel approach that can easily scale 
to new population long-read challenges. Moreover, this strategy can also be applied to sample 
comparison like in the example shown of tumor-normal analysis to detect cancer-specific 
somatic SV. Currently, there are in development other somatic SV callers67  that are specialized 
on tumor vs. normal tissue comparison. In contrast to them Sniffles2 is a general purpose SV 
caller that can also be used to detect cancer-specific somatic, but further mosaic SV. 
Furthemore, the same strategy can also be used to compare different tissues within the same 
organism (for example different brain regions) 
 
Another novelty of Sniffles2 is the mosaic-mode that enables the detection of low- frequency 
SVs with a standard sequencing run, while maintaining a high precision. We have demonstrated 
this novel approach using a synthetic data set of HG002 and a genetically unrelated individual 
HG00733. This showed the accuracy and recall of Sniffles2 while depending on only 2-3 reads 
overall to distinguish SV from noise (Figure 4 A and B). We then turned our attention to MSA, a 
rare sporadic neurodegenerative disease related to Parkinson’s, with negligible heritability 
(<7%)68. We performed ONT WGS on an affected brain region from one patient, where Sniffles2 
was able to identify presumptively low-frequency mosaic SV and showcased great performance 
partially validated by Illumina and optical genome mapping approaches, thus overall highlighting 
the fact that Sniffles2 is highly versatile and accurate. While thresholding on the variant allele 
frequencies (here 5-20% AF) for the identification of potential somatic variants is 
straightforward, there is still a gray area to be addressed. For multiple SV, we saw a continuum 
in VAF (between 20 and 30% AF) which suggests that some SV with apparent AF < 30% may 
also be germline. Thus, the comparison to population data or to different tissues is still favorable 
(e.g. tumor vs. normal). It is interesting to note that the detection of tissue specific SV as 
proposed here can be impacted by multiple biases. First we can have a detection bias in the 
Illumina data (e.g. insertions) but further a sampling bias in the other tissue might also result in 
tissue specific SV detection. The possible role of somatic SV’s in MSA is under investigation44, 
although further validation data from more cases and controls would be required to allow 
interpretation of the present findings. Interestingly, in our experiments at mosaic level, we 
identified many more deletions than insertions in contrast to germline (AF>0.2). We speculate 
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that this is indeed a biological signal and not a detection bias due to NAHR or other mediated 
mechanisms. 
 
Despite all the novelties and solving central problems of SV calling at scale and accuracy for 
long-reads many challenges remain. We still lack high quality benchmarks for non-insertion and 
deletion calls including complex rearrangements. Achieving this will boost the field of SV 
detection further and promote novel methodologies. In this study, we could only evaluate other 
SV types (inversions, duplications, and translocations) via simulated data using an established 
pipeline. Supplementary Figure 3 summarizes these results. While this is unsatisfactory, it 
remains the only way as benchmark sets focus on insertion and deletions only. In addition, 
Sniffles2 does not yet solve the issues with highly rearranged regions where SVs can be 
overlapping to each other. This remains a near future goal of Sniffles2 and will also require 
improved benchmark sets and even standards to report these events as the VCF standard does 
not provide a clear recommendation. Currently these complex alleles would need to be reported 
as indepentend BND events, which looses their individual impact (e.g. DUP/ INV-DUP) on the 
region itself. Nevertheless this is clearly needed as our experiments on the Mendelian cohort 
shows. Another highly important factor that Sniffles2 improves is tumor normal comparisons. 
Here, we included an example of using the population merge to detect cancer-specific somatic 
SV, moreover we are still working on how to best address the detection of the low variant 
frequency SV which are common in cancer. 
 
Overall this paper reports the innovations across Sniffles2 and highlights them across 
Mendelian cases, an MSA patient and a tumor-normal comparison. We believe that our new 
implementations (merging and mosaic mode) will spark novel findings across human diseases 
and diversity. Furthermore we believe that these will also be important for other species. 
Despite the fact that the genotype model for Sniffles2 is designed for diploid organisms, 
Sniffles2 is capable of also detecting SV in haploid (as shown for X chromosomes in males) or 
polyploid organisms. For higher ploidy levels we would suggest running the mosaic mode as 
otherwise the genotype caller will penalize true SV. Thus, again highlighting Sniffles2 as a 
highly accurate and versatile method to detect SV of any kind and property.  

Online Methods 
 
Patient Enrollment:  
The 31 individuals (proband and parents) included in this study were enrolled into research 
protocols approved by the Institutional Review Board (IRB) at Baylor College of Medicine and 
the Pacific Northwest Research Institute (H-29697 and H-47127, WIRB#20202158). 
 
Sniffles2 methodology 
Sniffles2: Germline calling 
An overview of the steps involved in Sniffles2 germline SV detection algorithm is shown in 
Supplementary Figure 16. 
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Sniffles2 germline mode accepts aligned long-reads as input (BAM or CRAM format, sorted by 
genomic coordinate and indexed). First, read alignments are parsed and pre-filtered based on 
minimum mapping quality (default: 20), minimum alignment length (default: 1kb), and maximum 
number of split alignments (default: 3 � 0.1 ��	
�������). Split alignments are analyzed to 
extract SV signals for insertions, deletions, duplications, inversions, and breakends. Next to 
analyze splits, inline alignments are scanned for insertion and deletion signals. Sniffles2 does 
not merge nearby inline insertion and deletion events at this point. SV signals that fulfill a 
minimum length threshold (default: 0.9 ����������) are subsequently recorded in high-
resolution genomic bins. Start and end positions of alignments are recorded in a separate data 
structure for facilitating later coverage computation without requiring reopening of alignment 
files. 
 
Sniffles2 employs a three-phase clustering process to translate individual SV signals into 
putative SV candidates. First, SV signals extracted from reads in the preprocessing step are 
clustered based on their indicated SV type and genomic start position. Second, insertion and 
deletion sequences in each cluster stemming from the same read are merged to correct for 
alignment errors in highly repetitive regions. Third, preliminary clusters are re-split to represent 
different supported SV lengths. 
 
The first clustering phase constitutes a fast pass over all bins (default bin size: 100bp) 
containing SV signals extracted from alignments in the preprocessing step. Bins are traversed 
from chromosome start to end separately for each of the five basic SV types. Neighboring bins 
are merged if the inner distance between them is smaller than a threshold calculated based on 
the minimum standard deviation of the genomic SV start positions within each bin. The inner 
distance threshold dn is calculated as: 
� �  � �  ����������� , ��������, where r is a constant 

(default: 2.5), and ������� , ������� refer to the standard deviation of indicated SV start 

positions in the two neighboring bins, respectively. In regions spanning tandem repeats, a more 
relaxed clustering criterion is applied: Neighboring bins are also clustered when their outer 
distance falls below a threshold defined based on the indicated average SV length of the SV 
signals stored in the neighboring bins. This threshold dr is calculated as: 
� �  �������	 , � �
 � �  �  �!� , where h and hmax are constants (default: 1.5 and 1kb, respectively) and xA,xB refer 
to the mean indicated SV length in the two neighboring bins. Whenever two neighboring bins 
have been merged, the clustering is restarted at the bin preceding the merged pair, facilitating 
the growth of SV clusters in both upstream and downstream directions. The first clustering 
phase is completed as soon as the last bin in the chromosome has been reached. 
 
The second clustering phase constitutes merging of insertion and deletion events stemming 
from the same read that have been placed within the same initial cluster. Events with an inner 
distance closer than the set threshold (default: 150bp) are merged. In areas of tandem repeats, 
the distance threshold is set to the size of the initial cluster itself. 
 
In the third phase, clusters are split by indicated SV length of the contained SV signals and 
subsequently re-merged, which leads to the final separation of SVs that share a start position on 
the reference but have different lengths. Bins are traversed from those containing small to large 
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SV signals and merged in a similar fashion to phase one, based on the relative difference in SV 
length between neighboring bins being no larger than a given threshold (default: 0.33). In 
clusters overlapping tandem repeats, Sniffles2 does not perform resplitting.  
 
Differentiated clustering parameters are applied to breakend-type SVs, since no length is 
available as a metric to drive clustering. 
 
At the beginning of postprocessing, SV candidates are generated from the final clusters 
resulting at the end of the last stage. Start coordinates and SV length are determined based on 
the median of the most common values supported by the reads. Standard deviations are 
calculated for the trimmed distribution of indicated SV start position and lengths. The quality 
value is summarized as the mean mapping quality of supporting reads. SVs are labeled as 
precise when the sum of SV start and length standard deviation is less than the set threshold 
(25bp). 
 
SV candidates are filtered based on absolute and relative (compared to the SV length) standard 
deviation of their coordinates. In addition, type-specific coverage filtering is applied to deletions 
and duplications, requiring central coverage changes consistent with the detected variant. 
Instead of requiring users to settle for a predefined, static minimum read support threshold, 
Sniffles2 dynamically adjusts the minimum support value based on estimates of global and 
regional sequencing coverage. By default, the minimum read support threshold is calculated as 
����"##$�� �  % �  ��1 & '! ()$�	) � ' ()$*	)). Where Cglobal and Clocal refer to average 
chromosomal and SV surrounding coverage, respectively. The parameters are set as %=0.1 and 
'=0.75, by default. For insertion and deletion SVs, support from inline alignments and split 
alignments is output separately. Additionally indicated support from soft-clipped reads is 
additionally recorded for insertion SVs. 
 
Genotypes are determined using a maximum-likelihood approach. The genotype quality is 
calculated based on the likelihood ratio of the second most likely to the output genotype: 
+ �  &10 )$
�� ��/�
� , whereas L1 and L2 refer to the likelihood of the most likely genotype 
and second most likely genotype, respectively. Genotype likelihoods are computed for a 
binomial distribution for the observed number of variant and reference reads. Genotype 
likelihoods are set as 1.0-ß for 1/1, 0.5 for 0/1, and ß for 0/0, whereas ß represents the 
genotype error introduced through sequencing and alignment artifacts and is set to ß=0.05 by 
default.  
 
For insertion SVs, sequencing and read aligner errors are corrected using a fast kmer-based 
pseudo-alignment method. Through this, Sniffles2 generates a consensus sequence in two 
steps: In the first step, the best possible starting sequence is chosen from the supporting read 
with the smallest distance in SV start position and length to the final reported SV coordinates. K-
mers (default length: 6bp) are enumerated for this reads supported insertion sequence and a 
taboo set of repetitive k-mers, which occur more than once in the sequence, is built. 
Simultaneously, the positions of non-repetitive k-mers are stored in an anchor table to facilitate 
pseudo-alignment of the other reads. In the second phase, k-mers from other reads insertion 
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sequences are enumerated. When a kmer is present in the anchor table, the corresponding 
position in both the initial insertion sequence and the current read are stored. After all reads 
have had their k-mers anchored, sequences between anchored kmers are extracted from the 
pseudo-aligned reads. These sequences from between the anchored kmers constitute the parts 
of each reads insertion sequence in disagreement with the initial sequence. Finally, coordinates 
of the initial sequence are traversed and the consensus is generated as the most common base 
at the respective position throughout all pseudo-aligned reads. Long insertions (ie. multiple kbp) 
are often difficult to detect even in long-read data because reads often do not span the full 
insertion sequence. To improve detection of long insertions, Sniffles2 records these clipped 
read events as additional support for presence of a large insertion. This enables Sniffles2 to 
accurately detect large insertions even when the SV is fully covered just by a single read. 
 
Post processed and annotated SV calls that passed quality control checks are written to the 
output VCF file. Quality control filters applied to SV candidates by default include absolute and 
relative standard deviation of the SV breakpoints, coverage change for copy number variants 
and minimum coverage in the surrounding genomic region. Additionally, all unfiltered SV 
candidates and genome-wide coverage information are written to a specified output SNF file, 
which may be consecutively used as input for multi-sample calling (see Section 1b). Using the --
qc-output-all option, all unfiltered candidates (except for the minimum SV length filter) can also 
be directly written to the VCF output file complete with the respective reasons for why they 
would have been filtered by default. 
 
Full parallelization across chromosomes is applied through all key steps in Sniffles2, including 
preprocessing, clustering and postprocessing. The final SV calls are written to a sorted VCF 
output file. Alternatively, Sniffles2 also supports direct output to a sorted, bgzipped and tabix-
indexed VCF file. 
 
Sniffles2: Combined Calling (Population Mode) 
Sniffles2 produces a fully genotyped population VCF file by introducing a specialized mode 
(Sniffles2 combine) for both family- and population-level SV calling. Sniffles2 combine is built 
around a new specialized binary file format (SNF), designed to store a complete snapshot of 
structural variation and sequencing coverage for a single sample. Mergeable SNF files for later 
population-level calling are designed to be easily produced as a side-product of regular single-
sample SV calling using Sniffles2, by using the optional --snf output argument. Based on 
individual use case requirements, Sniffles2 can simultaneously produce SNF files and/or regular 
VCF files in a single run of processing an individual sample. 
 
SNF files consist of a JSON-based index followed by a series of multiple gzip-compressed 
blocks (separated by genomic coordinates). Each block stores all putative SV candidates, 
separated by SV type, for a single sample's respective genomic region. This includes 
candidates only supported by e.g. a single read, that would normally be ignored. Each block 
furthermore stores sequencing coverage information (500bp resolution by default). All stored SV 
candidates contain a compressed form of all the information of the final SV calls, as they would 
be output in a single-sample VCF file, such as start, end positions, standard deviation and 
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alternative alleles. SNF blocks span a genomic region of 100kb by default. This small block size 
comparison to a typical mammal genome allows Sniffles2 to combine a high number of samples 
simultaneously while keeping a manageable memory footprint. 
 
SNF files, once generated, can then be used as input for the Sniffles2 combine mode, 
producing a final, fully genotyped population-level VCF file within seconds. SNF files may also 
be reused in the combine step, e.g., when the population is later on extended, when individual 
samples need to be re-run, or when querying whether a later newly identified SV is present in a 
population. These use cases would not be possible without costly reprocessing of all samples 
with the currently prevalent method of forced calling. A schematic of SNF file structure can be 
found in Supplementary Figure 17. 
 
When presented with multiple SNF files as input, Sniffles2 combines them through a single pass 
over chromosomal regions. For each region, the respective SNF blocks overlapping it are 
loaded, including all SV candidates and coverage information from each sample. In the following 
step, Sniffles2 groups the loaded SV candidates based on SV type and coordinate-based 
matching criteria. For each SV candidate, Sniffles2 first checks if there is an already existing, 
matching group. An SV candidate matches a group if it has the same SV type and the sum of 

start position and length deviation is less than � � -�����������, .�$"#��������, where M 
is set to 500bp by default (user-adjustable). The start position and SV length of a group are 
defined as the arithmetic mean of all SVs currently contained in it. In case there are one or more 
groups that fulfill the matching criteria for the current SV candidate, the group with the smallest 
deviation metric is chosen and the SV candidate placed therein. The coordinates of the selected 
group are then subsequently updated to represent the new average position of length of the 
contained candidates. If there are no matches, a new SV group is created. By default, Sniffles2 
allows for matching multiple SVs from the same sample within a group (can be disabled using a 
dedicated parameter). 
 
This partition of SNF files into individually loadable blocks keeps Sniffles2 memory footprint 
manageable even when processing a high number of samples and/or samples with high-
coverage. Sniffles2 further implements a dynamic binning strategy for accelerating the grouping 
phase. Sniffles2 first assigns all loaded SV candidates from the current chromosomal region to 
bins based on SV type and start position. Bins are then traversed from low to high coordinate 
within the current block, while collecting encountered SV candidates. When the number of SV 
candidates exceeds a certain threshold (default: /$#")	��$���0� 1 0.5), the collected SV 
candidates are grouped as described above. Triggering the grouping stage only when a set 
number of SV candidates is reached allows for the highest possible accuracy in matching SVs 
from different samples in regions with low complexity, while keeping the runtime manageable 
even in regions with a high density of SV candidates. To avoid edge effects, the final resolving 
of SV groups with genomic coordinates close to the ends (default: <2.5kb) of the respective bin 
are carried over and finally resolved in conjunction with the grouping of the next bins. The same 
strategy is applied to SV groups close to the genomic start or end coordinate of the currently 
processed SNF block. 
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By default, Sniffles2 combine mode will output all resulting SV groups in the population that 
meet at least one of two criteria:  

A. The SV has been detected with high-confidence (i.e. passes all quality control checks) in 
at least one sample and/or  

B. By default, to have a high-confidence call in at least one sample.  
The SV is present in a sufficiently high number of individual samples, even though it may not 
have passed individual quality-control checks (default: present in at least 
�	 �0.2 /$#")	��$���0�, 2� samples). These parameters are also user-adjustable and can be 
adjusted or disabled without having to re-generate the SNF files for the individual samples. 
 
Each final SV group that passes the above criteria is output as an SV in the final population-
level VCF file, including the genotypes from all samples. For samples that did not have a SV 
candidate that could be matched to the group, Sniffles2 first uses the coverage information 
stored in the SNF file of the respective sample to determine if the sequencing depth at around 
the group's genomic location was sufficiently high (default value: 5x). If it is, the sample 
genotype for that SV is output as 0/0 if there is no evidence, and otherwise as missing (./.). For 
all SVs, the number of reads supporting the SV and supporting the reference are output for all 
samples, allowing for differentiation between true biological and technically induced absence of 
each SV from a sample. 
 
Sniffles2 combine is fully parallelized, allowing leveraging multi-core CPU systems not just for 
calling individual samples but also the final combination step. This, in conjunction with the 
separation of SNF files into blocks and dynamic binning strategy, together enables Sniffles2 to 
perform scalable population-level SV calling. 
 
Sniffles2: Low frequency SV (mosaic) calling 
In the non-germline mode, a reduced default minimum support multiplier is applied (default: 
0.025) to increase sensitivity for low-frequency SVs. At coverage levels of 30x to 50x, this leads 
to a minimum read support of 2-4 reads for the detection of non-germline SVs. To balance out 
the increased influence of sequencing and alignment artifacts at this lowered read support 
threshold, additional filtering based on alignment quality is applied. In the preprocessing steps, 
the length-weighted number of mismatches is recorded for all SV signals, excluding insertions 
and deletions. After calling, SVs with an average weighted mismatch ratio of larger than a 
threshold � � * 1 	 , where a is the average length-weighted mismatch number for all reads and 
c is a constant (default: 1.66) are filtered. The additional, coverage-based filtering steps for 
CNVs applied in the germline mode are not applied in non-germline mode, as coverage 
changes induced by somatic SVs are not reliably measurable.  
 
Benchmarking Methodology 
 
Computer specifications 
All tests are performed in a high performance cluster with Intel(R) Xeon(R) Gold 6148 CPU @ 
2.40GHz, the memory allocation is 32Gb unless it is otherwise stated and the number of CPU 
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cores allocated is 8 unless otherwise stated. All CPU time is given as the sum of all compute 
time as if a single core was used. 
 
Benchmarking SV callers on GIAB, 1000 Genomes and CMRG 
Reads were mapped using minimap269 (v2.17-r941) technology specific preset parameters. 
Reference genome GRCh37 was used to test for the GIAB v0.6 SV benchmark and GRCh38 
was used to test the Challenging Medical Relevant Genes (CMRG) SV panel. In both cases the 
ALT and/or Decoy contigs were not included. The -Y option was supplied to disable hard 
clipping (required by pbsv) and generate the --MD tag (required by Sniffles1) and the PacBio / 
ONT presets were used respectively. Resulting alignments were converted to BAM format, 
sorted and indexed using samtools (v1.13). 
As measure of coverage across all benchmarked data sets, we used the mapping coverage as 
reported by mosdepth70 (version 0.3.2), which was averaged across all autosomes. 
Besides HG002 we also benchmarked SV on three assemblies of the 1000genomes (HG01243, 
HG02055, HG02080). Here we leveraged the phased HiFi assemblies provided at 
https://github.com/human-pangenomics/hpgp-data and the corresponding long-reads. The 
benchmark set was derived from a dipcall53 (version 0.2) alignment against the GRCh38 
reference. This result was used together with the corresponding bed files for benchmarking.  
 
We used Truvari51 (version 2.1) for benchmarking the accuracy of all SV callers across 
datasets. For benchmarking, we used the --passonly parameter to include only those SVs from 
caller and gold standard that are not marked as filtered. For the GIAB benchmarks, we 
additionally used the --giabreport parameter to generate the benchmark-specific detailed report. 
As included regions Tier 1 regions were used unless otherwise specified. For all other 
parameters, default values were used. 
 
Callers were first benchmarked using default parameters and callers other than Sniffles2 were 
separately benchmarked on GIAB by manually setting the minimum read support parameter to 2 
(sensitive). 
 
SVIM50 (v1.4.2) does not include filtering steps in its main pipeline, which caused it to perform 
poorly (F-measure) in most benchmarks, and we were not able to identify a recommended 
default cutoff for the quality value that SVIM outputs along with its SV calls. Therefore, in line 
with previous SV caller benchmarks, we filtered the output of SVIM to include only calls with a 
minimum read support of 10 by default (equal to the default of cuteSV and Sniffles1) or 2 
(sensitive).  
 
For benchmarking Sniffles2 (build 2.2), we only used the default parameters with the exception 
of non-germline SVs, where the --mosaic option was supplied. For Sniffles29 (v1.12), default 
parameters were used. For cuteSV48 (v1.0.11), we used the additional parameters 
recommended by the authors for use with HiFi / ONT datasets in their GitHub documentation, 
as well as the --genotype option. For pbsv49 (v2.6.2), we supplied the --ccs option for analyzing 
HiFi data, as recommended by the authors. Both pbsv and Sniffles2 support the use of tandem 
repeat annotations for improving SV calling in repetitive regions. For pbsv and Sniffles2, we 
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therefore supplied the tandem repeat annotations for GRCh37 / GRCh38 which we obtained 
from the pbsv repository on GitHub: https://github.com/PacificBiosciences/pbsv . 
 
For all SV callers that have an option for specifying the number of multiprocessing threads, we 
set the number of threads as 8. We measure and report the total CPU time and wall clock time 
using the UNIX time command. For the benchmarks including only insertions and deletions, we 
used SnpSift 71(v4.3t) to filter the output of all SV callers to include only those types of structural 
variants. To prepare SV caller output for benchmarking, VCF files were sorted using bedtools, 
compressed and indexed using bgzip and tabix. For SVIM, SVs labeled as INS:NOVEL were 
relabeled to INS, in order to be able to be matched to insertions in the benchmark sets by 
Truvari. 
 
Simulation of different SV types using SURVIVOR 
SURVIVOR59(v1.0.7) was used to simulate SV types not covered by the GIAB and other 
benchmarks. For this benchmark, 3000 duplications, inversions and translocations were each 
simulated within a length range of 500bp to 30kb on the human reference genome GRCh37 in 
diploid mode. A total sequencing depth of 30x was simulated for ONT reads, with the error 
profile obtained using the SURVIVOR scanreads command from the HG002 ONT Q20+ data 
set. SVs were called using each SV caller for the simulated reads using the default parameters 
and postprocessing steps also used in the GIAB and other benchmarks (see respective 
methods subsection). The SURVIVOR eval command was used (matching threshold: 500bp) to 
obtain TP, FN and FP counts for each caller and simulated SV type from which precision, recall 
and F-measure were calculated. 
 
Measurement of Insertion Sequence accuracy 
Accuracy of insertion sequences recovered by the SV callers was measured using Biopython's72 
(v1.79) pairwise2 global alignment function. First, the true positive calls from all investigated SV 
callers on the data set were intersected, to establish a common set of calls to benchmark. Next, 
the gold standard and reported insertion nucleotide sequences were aligned and the resulting 
score was normalized by length of the gold standard sequence to compute the alignment 
identity. We measured sequence accuracy separately for the GIAB HiFi and ONT data sets (30x 
coverage). Results are shown in Supplementary Figure 1. The respective script is made 
available in the supplementary materials.  
 
Simulation of low-frequency SVs 
Low-frequency SVs were simulated by combining varying coverage titrations of HG002 and 
HG00733 into synthetic samples with different levels of mosaicism. Recovery of SVs unique to 
HG002 was done based on the intersection of SVs of the same type using bedtools with 50% 
coverage of the SV reciprocally against the truth-set of HG073351. These unique SVs were then 
used to benchmark to measure recall for low-frequency SVs. For benchmarking the ability of 
Sniffles2 to detect low-frequency SVs, we simulated synthetic data sets with 63x/5x, 63x/7x, 
60x/10x,55x/15x and 50x/20x, where the coverage refers to HG00733 and the second one to 
HG002. Next, we used the previously selected HG002 unique SVs overlapping  the GIAB Tier 1 
benchmark. . To measure recall for low-frequency SVs, we ran Sniffles2 in mosaic mode on the 
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synthetic samples and used Truvari as described in the methods section on GIAB benchmarks 
to compute the recall for the rare HG002 SVs introduced into each HG00733 data set. 
Simultaneously, we ran sniffles2 and cuteSV with default parameters and benchmarked the 
results for comparison. Given that sniffles2 mosaic mode only analyzes and reports SV within a 
defined VAF (5-20%), we excluded all SV that were outside of such VAF to compute an 
“adjusted recall”. As in all the other GIAB benchmarks, analysis was limited to insertion and 
deletion SVs.  
 
MSA patient analysis  
Optical mapping data on MSA patient brain 

Ultra-high molecular weight (UHMW) DNA was isolated from frozen human brain tissues using a 

Bionano Prep SP Tissue and Tumor DNA Isolation kit (#80038) according to the Bionano prep 

SP Brain Tissue Isolation Tech Note (#3400). In short, approximately 20mg frozen tissue was 

homogenized using a Qiagen TissueRuptor (9002755), passed through a 40um filter, and 

treated sequentially with Qiagen protease (catalog #19155), proteinase K, and RNAse A in lysis 

and binding buffer. The homogenate was then treated with PMSF to de-activate the Protease 

and Proteinase K, washed, and eluted. The extracted DNA was mixed using an end-over-end 

rotator for 1 hour at 5rpm and allowed to rest at room temperature until homogenous 

(approximately 1 week). 750ng purified UHMW DNA was fluorescently labeled at the recognition 

site CTTAAG with the enzyme DLE-1 and subsequently counter-stained using a Bionano Prep 

DLS Labeling Kit (#80005) following manufacturer's instructions (Bionano Prep Direct Label and 

Stain (DLS) Protocol #30206). Optical genome mapping was performed using a Saphyr Gen2 

platform for a final effective coverage of 894X for the pons and 754X for the cingulate. Effective 

coverage is defined as the total raw coverage of molecules ≥ 150kbp in length multiplied by the 

proportion of molecules which align to the reference genome. 

 

Calling of low allele frequency structural variants was performed using the rare variant analysis 

pipeline (Bionano Solve version 3.6) on molecules ≥ 150kbp in length. De novo assembly was 

performed using the longest 250X molecules of each dataset. The variant annotation pipeline 

(Solve 3.7) was used to detect which structural variant calls in the cingulate are present in the 

pons structural variant calls and/or molecules. See the Bionano Solve Theory of Operations for 

more details. 
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MSA samples comparison 
Illumina reads were mapped to the human genome GRCh38 using bwa73 mem (version 0.7.17-
r1188) with default parameters including -M to mark split reads as secondary alignments. 
Subsequently we identified SV using manta64 (version 1.6.0).  
 
For ONT, reads were mapped using minimap2 69 (version 2.17-r941) with present parameters 
for ONT. Subsequently we identified SV using Sniffles2 with both germline (default) and mosaic 
mode. The Bionano OGM data smap file was converted by SURVIVOR smaptovcf (v1.0.7)into a 
VCF file. 
 
To compare SVs called by Sniffles2, Manta (Illumina), and OGM (Bionano) we used SURVIVOR 
merge using a 10kb threshold, matching SV type and ignoring reported SV strand. We extended 
it to 10kbp after testing 500, 1kbp and 5kp thresholds and observed that the accuracy of the 
breakpoints from OGM required the larger parameter. 
The genotype columns in the SURVIVOR merge output were compared for each SV to 
determine presence or absence in the results reported by the respective method. 
Subsequently, to further investigate SVs absent from the Manta call sets, we additionally 
genotyped the respective Sniffles2 calls against the raw Illumina read alignments for the same 
(cingulate cortex) as well as a different brain region (cingulate white matter) using svtyper 
(version: 0.7.1).65 SVs reported as having at least one supporting read by svtyper were 
considered as present in a sample. 
 
PCR validation of selected mosaic deletions 
We used NCBI primer design tool to obtain primers straddling the target deletions. The primer 
sequences for the 240bp deletion were TACCAAGTCTTTCTCCAAGTCCC (forward) and 
TTGCACAGCCTTGGCTATACTC (reverse) and for the 127bp deletion ATCCTGAGAGAACCCCCTCC (forward) 

and GGACAGACTCGTGGTTTCGT (reverse). PCR was performed using Phusion Plus PCR Master 
mix (ThermoFisher), with 0.5µM primers, annealing temperature 60� and extension time 75 
sec. PCR results were confirmed using Agilent Tapestation and 2% agarose gel 
electrophoresis, stained with GelRed (Biotium), with 100 bp DNA ladder (NEB). Initial PCR was 
performed using 20-40 ng template DNA in 20 μl for 35 cycles. Repeats to obtain adequate 
products were performed using 100 ng DNA in 50 μl, with 40 cycles for the second deletion, and 
low-melting point agarose was used to allow relevant amplicon band excision. Extraction and 
purification from agarose was carried out using QIAquick gel extraction kit (Qiagen). Extracted 
products, which  represented the wild type, deletion, and Alu insertion, underwent Sanger 
sequencing  
 
Mendelian inconsistency benchmark in population mode 
Mendelian benchmark/ inconsistency 
To assess the performance of Sniffles2 population mode, we used the Ashkenazim family trio. 
We called SV using Sniffles2 and cuteSV. For Sniffles2 we used a minimum SV length of 50 
and with the output being the SNF binary file that contains the unfiltered SV candidates and 
genome-wide coverage information (using the --snf option). Then, we merged the SNF files with 
Sniffles2 population-level calling providing the reference genome to obtain the sequences of the 
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deletions. Here the input are the SNF files and the output the VCF file. For the case of cuteSV 
we used v1.0.11 with recommended parameters for Oxford Nanopore data (--max_cluster_bias_INS 

100 --diff_ratio_merging_INS 0.3 --max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3). Then, we merged 
the results of cuteSV using SURVIVOR v1.0.7 with a maximum distance between breakpoints of 
1kb, a minimum support of one and taking into account the SV type. Next, we performed force-
calling with cuteSV using as input the merged SV from SURVIVOR (-Ivcf and --genotype options). 
Finally, we performed a second merge with SURVIVOR with identical parameters as before. 
We then tested the mendelian inconsistency of the genotypes using the BCFtools v1.14 
mendelian plugin58. The mendelian plugin denotes a genotype consistent when the proband 
genotype is in concordance with the parental genotypes (e.g F 0/0, M 0/1, P 0/0), inconsistent 
when the proband and parental genotypes do not match (e.g. F 0/1, M 1/1, P 0/0) and NA when 
the proband has a missing genotype (./.). For all analysis time was measured utilizing the linux 
time command. 
 
Chromosome X disorder patient analysis 
Sniffles2 population mode was used to analyze 31 Oxford Nanopore samples that represented 
cases of Mendelian disorders in probands. We obtained the bam files by running PRINCESS30 
(version 1.0) using the default parameters and "ont" flag. PRINCESS implicitly calls Minimap269 
(version 2.17) with the following parameters "-ax map-ont -Y --MD"; Later, we sorted the output 
using samtools58 (version 1.14). For all samples, unfiltered SV candidates and genome-wide 
coverage information are written to a specified output SNF file and then merged with Sniffles2 
population-level calling. General statistics, such as SV sizes and composition (proportion of 
each SV type) were computed by extracting the SVLEN, SVTYPE and GT information from the 
VCF file. 
Given the nature of the dataset, only the SV calls from chromosome X were analyzed. 
Additionally, for specific individuals (BH14379, BH14413) SV from chromosome Y were 
analyzed given that both aCGH and Sniffles2 called translocations to chromosome Y. 
Then, all SVs that were less than 10kb were filtered, as aCGH data showed large events were 
involved. Finally, we filtered out SV that occurred in the father, as this disorder is fully penetrant 
in males by comparing the SUPP_VEC tag in the VCF to the sample names. Manual curation 
was performed for a single SV that was filtered out by the STDEV_LEN filter of Sniffles2 during 
development. 
 
Identification of cancer specific somatic SVs by Sniffles2 
We used the population level calling (population merge) of Sniffles2 to detect cancer specific 
somatic SVs by comparing a tumor/normal pair. We used the highly studied COLO829 cancer 
cell line with the COLO829BL blood control. Structural variants were called with Sniffles2 using 
default parameters with the --snf option to save candidate SV to the SNF binary file, per sample. 
We used two tumor-normal pairs, one described in Vale-Inclan et al 66, and a sample provided 
by Pacific biosciences (see Data availability). We then merged the four files using Sniffles2 
population merge. Next we analyzed the SV presence/absence by means of the SUPP_VEC 
tag in the INFO field of the output VCF to extract SV that are only detected in the tumor 
samples. We compared all the SVs detected by Sniffles2 to the COLO829 SV truth-set to 
assess the performance of Sniffles2 somatic SV calling. For the case of mosaic SVs we perform 
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the same strategy as before, moreover of the cancer datasets we added the --mosaic option to 
get the mosaic candidate SVs in the SNF file as well. Here, we also detected somatic SVs but 
the presence/absence by means of the SUPP_VEC tag in the INFO field to extract cancer-
specific SVs. 
 

Data availability 
GIAB HG002 Pacbio HiFi data is hosted at the github server: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/Pa
cBio_CCS_15kb/ 
ONT HG002: https://labs.epi2me.io/gm24385_q20_2021.10/ 
ONT HG00733: https://www.internationalgenome.org/data-portal/search?q=HG00733 and 
https://ftp.hgsc.bcm.edu/Software/Truvari/3.1/sample_vcfs/hg19/li/HG00733.vcf.gz  
GIAB benchmark sets: 
Genome wide: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
NIST_SV_v0.6/  
Medical regions: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
CMRG_v1.00/  
 
The 1000 genomes data sets of the three genomes were downloaded from : 
https://github.com/human-pangenomics/hpgp-data The dipcall results that we leveraged as 
benchmark are deposited at https://github.com/smolkmo/Sniffles2-Supplement   
 
The other data sets have been made available over SRA. 31 Oxford Nanopore data sets that 
represent cases of Mendelian disorders have SRA bioproject ID PRJNA953021 and dbGaP  
phs002999.v1.p1. MSA sample has bioproject ID PRJNA985263. The COLO829BL (normal) 
and COLO829 (tumor) ONT samples can be found with the ENA ID: PRJEB27698 (samples 
ERR2752451 and ERR2752452 respectively), and the Revio tumor/normal samples can be 
found in https://downloads.pacbcloud.com/public/revio/2023Q2/COLO829/ The individual VCF 
files for Sniffles across the samples that are publicly available (not dbGaP) can be found here 
https://doi.org/10.5281/zenodo.8144524 

Code availability 
Source code for Sniffles2 is available at https://github.com/fritzsedlazeck/Sniffles and 
https://doi.org/10.5281/zenodo.8121996 the auxiliary scripts are available at 
https://github.com/smolkmo/Sniffles2-Supplement and https://doi.org/10.5281/zenodo.8122060 
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