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Abstract 

Single cell sequencing is useful for resolving complex systems into their composite cell types and 
computationally mining them for unique features that are masked in pooled sequencing. However, 
while commercial instruments have made single cell analysis widespread for mammalian cells, 
analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single 
microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri 
instrument, this method allows for efficient sequencing of individual microbes’ genomes. EASi-
seq allows thousands of microbes to be sequenced per run and, as we show, can generate 
detailed atlases of human and environmental microbiomes. The ability to capture large shotgun 
genome datasets from thousands of single microbes provides new opportunities in discovering 
and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic 
pipeline that clusters microbes by similarity, improving whole genome assembly, strain 
identification, taxonomic classification, and gene annotation. In addition, we demonstrate 
integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and 
increase coverage. Overall, EASi-seq enables high quality single cell genomic data for 
microbiome samples using an accessible workflow that can be run on a commercially available 
platform.   

Introduction 

A microbiome comprises the collection of distinct microorganisms and their genomic elements 
within a particular environment. These microecosystems play fundamental roles in the biosphere, 
have major impacts on human health, and are important resources for scientific and economic 
progress1,2.  Thus, the study of microbiomes – in terms of the species present, the genes 
employed by different members to thrive, and the molecules consumed or produced – is of high 
scientific value. Historical methods of research rely on passive observation with microscopy3, 
which predominantly yield information about phenotypes and behavior. To reveal functional 
properties, assays can be conducted on microbes isolated from the environment; however, the 
requirement for cultivation imposes a significant bias4. Thus, culture-independent methods to 
profile microbes as a function of species, function, and genetics are immensely valuable. 
Amplicon sequencing of 16S ribosomal RNA (rRNA) genes or other diagnostic marker genes has 
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been widely used for classifying microbial community composition.  Despite its convenience, 
amplicon sequencing suffers from PCR bias and can have limited resolution in discriminating 
closely related species or strains of the same species. Metagenomic sequencing, which directly 
sequences all genomic DNA within an environment, enables both the profiling of phylogenetic 
diversity and the comprehensive accounting of all the genes present within a microbiome5. 
However, because the data is acquired as a pool of mixed sequencing reads originating from all 
organisms, the bioinformatic reassembly requires sophisticated computational algorithms for 
assembly and sometimes yields disconnected genomic fragments6. Although long read 
sequencing7 and/or read cloud alogrithems8 can generate relatively long genomic assemblies, 
associating separate chromosomes or chromosomes and extrachromosomal elements (e.g., 
plasmids, non-integrating phages, Borgs9) with a single cell type can still be challenging with 
current methods. Characterizing these associations can be critical to understanding the behavior 
of a microbiome and genetic flow. While approaches like genome-resolved metagenomics10 and 
chromosome conformation capture11  can obtain them in some circumstances, these methods are 
biased towards the more abundant species/extrachromosomal elements or when the elements 
are not in proximity with the genome molecule, a prerequisite for resolving them with short-read 
assembly.  

The microbiome consists of heterogeneous single cells. Thus, just as single cell sequencing has 
transformed mammalian cell biology by resolving heterogeneous systems and tissues into their 
composite cell types12,13, similar impacts are possible in microbiology. Of the possible methods, 
single cell genomics is perhaps most important for microbiology because of the significant genetic 
heterogeneity and frequent transfer of genetic material14. Genetic mobile elements can be a 
source of important phenotypes, including virulence factors or resistance genes that can 
transform a normally harmless commensal into a multidrug resistant pathogen15,16. Methods to 
analyze all genomic information of a cell, including DNA not physically connected to the 
chromosome, would allow characterization of these vital mobile elements. Towards this objective, 
there has been significant effort to develop single microbe sequencing. Previous approaches have 
been based on isolating microbes for single cell library preparation using FACS17–22, optical 
tweezers23, hydrogel matrix embedding24, and microfluidics25. These methods have limited 
throughput, allowing just hundreds of genomes to be sequenced. More recently, barcoding 
reminiscent to scalable mammalian cell methods have been applied to microbes and achieved 
the sequencing of similar numbers of cells (>10,000 cells/run)26,27. These multi-step droplet 
microfluidic approaches utilize robust molecular biology, yielding superb data for most cell types 
in the sample26,27; unfortunately, the number of steps and custom-built instrumentation poses a 
significant barrier to non-microfluidic engineers for its application. Meanwhile, high-throughput 
single bacteria RNA sequencing has been demonstrated using combinatorial indexing28,29 and 
commercially available single cell platforms30. However, these methods have only been used for 
model organisms and have never been applied to a complex microbiome, in which the diverse 
physical properties of microbes make optimization of the requisite fixation, permeabilization, and 
in situ ligation difficult. Thus, currently, there is no tool available to the microbiological community 
for efficient single cell genome sequencing of microbiomes. If such a method could be developed, 
it would be superior to metagenomic sequencing in most instances and provide access to 
capabilities currently missed, including generation of complete single-microbe resolution cell 
atlases and gene annotation at the strain or single cell level.  

In this paper, we describe EASi-seq (Easily Accessible Single microbe sequencing), a method to 
efficiently sequence tens of thousands of microbes. Rather than relying on custom microfluidic 
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instrumentation as in previous methods26,27, we start from a commercially available workflow with 
the inherent capabilities for single cell sequencing: Mission Bio’s Tapestri31. This instrument is 
widespread in clinical and academic centers, easy to use, and reliable. A major impediment is 
that the instrument is designed for targeted DNA sequencing of mammalian cells and is not 
directly applicable to microbial cell whole genome sequencing, which requires different lysis 
strategies and nucleic acid adaptors. To address this, we introduce two key modifications into the 
commercial workflow: a bulk single cell nucleic acid purification step that addresses cell lysis and 
adapter tagmentation32 to enable whole genome sequencing. With these modifications, the 
Tapestri generates barcoded sequence data for several thousand microbial cells which, as we 
show, can comprise bacteria, archaea, and fungi linages. Our sequencing is untargeted, capturing 
sequence data across each cell’s genome and any other DNA present in or on the cell. Captured 
data includes sequences from mobile elements and viruses. To facilitate analysis of the single 
cell sequencing data, we develop a companion bioinformatic pipeline that clusters cells into 
similarity groups, annotates their genes and species, and pools sequences within a cluster to 
increase improve genome assembly and coverage. Using EASi-seq, we generate detailed atlases 
of a control synthetic community and real-world fecal and environmental microbiomes. We show 
that EASi-seq’s single cell resolution allows differentiation of microbial strains with 99% genomic 
similarity. EASi-seq provides a universal approach for deconvoluting microbiomes into the cells 
of which they are composed and to characterize their gene and pathway functions.  

 

Results 

EASi-seq workflow for whole genome microbial sequencing 

A platform to reliably sequence large numbers of environmental microbes must overcome 
technical and practical challenges. Different microbes have different cell wall and membrane 
properties and, thus, different lysis procedures33–35. Additionally, genomic and plasmid DNA must 
be fragmented and have the correct adaptors added prior sequenced. Lastly, some microbiomes 
are highly heterogeneous, having hundreds to thousands of distinct species that potentially 
include many strains. Generating a complete single cell atlas in this scenario requires sequencing 
significant numbers of single cells. Prior methods to overcome these challenges used custom 
workflows with 3 to 5 microfluidic processing steps26,27. Each device had to be custom fabricated 
and operated by microfluidic experts. While the works demonstrate the power of high throughput 
single microbe sequencing, the inaccessibility of these workflows precludes their use by 
microbiologists lacking microfluidic expertise. Recently, several commercial single cell 
instruments have become available that support processes like the ones required for microbial 
whole genome sequencing (Table S1). Of these, Mission Bio’s Tapestri is unique in the ability to 
conduct two subsequent droplet steps as a result of being designed for targeted DNA sequencing 
of mammalian cells. Nevertheless, even with automation of two common microfluidic steps, 
directly replicating prior microbe sequencing workflows on Tapestri is not possible. Thus, a major 
innovation of this work is to develop a microbe sequencing workflow that maps onto Tapestri’s 
two-step process.  

To enable single microbe sequencing, the cell must be lysed, the DNA fragmented into readable 
lengths, and the fragments labeled with single cell barcodes. With Tapestri’s two step workflow, 
we can use the first droplet manipulation stage to perform DNA tagmentation, and the second for 
barcoding. The challenge is lysing the cells to prepare the genomes for tagmentation, while 
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keeping the genomes and extrachromosomal DNA together. A proven approach to accomplish 
this is to use a microfluidic device to encapsulate single cells in hydrogel spheres before lysing 
the cells with bulk washes. Because genomic DNA is a high molecular weight polymer, it remains 
ensnared within the hydrogel matrix and is protected from the shear forces generated by washing, 
allowing intact genome purification19,26,36,37. The requirement of microfluidics for cell 
encapsulation, however, would negate the primary advantage of EASi-seq’s accessibility. Thus, 
a core innovation of this work has been to develop a microfluidic-free process for genome 
purification in hydrogels. In the approach, we encapsulate the cells in hydrogel droplets by 
emulsification through vigorously shaking or shearing through a syringe needle (Fig. 1a). In either 
case, the process generates an emulsion in which the cells are randomly loaded. The droplets of 
polyacrylamide monomer are gelled by radical polymerization to ensnare the cells. The resulting 
hydrogel beads are then transferred into an aqueous carrier for lysis and washing. This process 
takes 2 hours and uses no microfluidics. The resultant suspension is polydisperse, containing 
many hydrogel beads too large for the Tapestri (which only accepts cells or beads having a 
diameter less than 30 µm) or too small to trap a cell. Thus, we use differential centrifugation (Fig. 
1b and Fig. S1) to select hydrogel beads sizes within the optimal 5-30 µm diameter range. To 
ensure a high probability of single cell genomes, the initial cell concentration is set such that 
hydrogels of this size are loaded at a rate of 2%. To purify the genomes, we perfuse the hydrogel 
beads with cocktails comprising polysaccharide digesting hydrolases and proteolytic enzymes26. 
The result is a suspension of hydrogel beads with intact single cell genomes that have similar 
physical and hydrodynamic properties to mammalian cells. These beads can be readily processed 
with the Tapestri (Figs. 1c-d). To ensure single cell sequence data, most of the hydrogels are left 
empty, such that about 10% contain single cells, in accordance with Poisson statistics38. Thus, 
when loading the gels into Tapestri, we set the concentration to about 5 gels per droplet, which 
yields 10% containing one genome and 90% containing no cells, thereby yielding single cell data, 
and making efficient usage of the barcoding droplets.  

Normally, the Tapestri’s first step is used to encapsulate and lyse the cells. Since our cells are 
already lysed in the gels, we can use this module for tagmentation instead. To maximize 
tagmentation efficiency, the genomes must be released from the hydrogel beads. Controlled 
release is accomplish by utilizing N,N’-bis(acryloyl)cystamine (BAC) as the hydrogel crosslinker, 
which can be reversed on-demand with dithiothreitol (DTT) addition39. The Tapestri’s dual-inlet 
design for the first step allows DTT addition with Tn5 transposase, such that the hydrogels liquify 
upon droplet encapsulation (Fig. 1d, top module and Fig. S2). The Tn5 transposase used for 
tagmentation is loaded with forward adaptors matching Tapestri’s V2 barcoding primer 3’ constant 
region (Table S2), allowing the tagmented fragments to be barcoded in the subsequent droplet 
PCR (Fig. S3). At this point, genomic DNA is released and tagmented in each newly formed 
droplet. Barcoding is accomplished by droplet reinjection and merging with the needed barcoding 
PCR reagents in the Tapestri’s second step (Fig. 1d, bottom module). After the barcoding PCR, 
the final sequencing adaptors are added by pooling the amplicons of all droplets and using a bulk 
PCR (Fig. S3). The resultant material is sequenced and computationally deconvoluted into single 
cells by barcode (Fig. 1e). The datasets contain tens of thousands of single cell genomes with 
coverages ranging 0.01-10% depending on genome size and sequencing depth. The genomes 
can be clustered into a single cell atlas (Fig. 1f, i.-ii.). The data for all single cells in each cluster 
can be pooled to create a consensus genome. Metagenomic sequencing data can be integrated 
to increase coverage. The final genus clusters can be annotated and evaluated for features of 
interest, including species or strain abundance and gene or pathway distributions (Fig. 1f, iii.-iv.).  
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Figure 1 | EASi-seq genome purification, microfluidic, and bioinformatic workflow  

a) Microbial cells suspended in hydrogel precursor (acrylamide monomer and BAC crosslinker) are 
emulsified with a fluorinated oil by passing the mixture through a syringe needle. After gelation, 
the cells are individually embedded in hydrogel beads. 

b) The hydrogel beads are size selected using differential centrifugation. The hydrogel beads are 
suspended in a density matching buffer (40% sucrose in PBS with 0.1% Tween 20) and 
centrifuged. Particles of different size sediment at different rates, with the larger particles 
sedimenting faster. After centrifuge at 1000 x g for 10 min, the oversized hydrogel beads are 
pelted, and the supernatants are subject to a centrifuge at a higher speed (3000xg for 10 min). 
The pellets are then collected as the size-selected hydrogel beads.  

c) Cells are lysed within the hydrogel beads by a two-step enzyme digestion. The beads are first 
subjected to a cocktail of 4 different enzymes that digest cell walls before being treated with 
protease K to digest proteins. The small pore-size of the hydrogel allow proteins and other 
molecules to freely diffuse, while immobilizing long DNA molecules. After the treatments and 
washing, only genomic DNA remains in the hydrogel beads. 

d) The microbial genomic DNA in each hydrogel bead is tagmented in a droplet (first step, bottom) 
before being subsequently paired with barcode beads for barcoding PCR (second step, top) on 
using the Tapestri instrument’s microfluidic modules. 

e) Sequencing of amplicons from the barcoding PCR generates single-cell shotgun reads for 
thousands of cells.  

f) EASi-seq allows high-throughput microbiome genome atlas analysis, as well as cluster-based 
genome assembly, strain identification, and pathway analysis.  

 

Validation of single cell resolution 

For EASi-seq to be useful, it must generate barcoded single cell sequence reads. To validate this 
capability, we used EASi-seq to analyze the synthetic ZymoBiomics microbial community, 
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consisting of eight bacteria and two yeasts (Fig. 2a, Table S3). We process the community using 
EASi-seq, generating 238,362,515 paired-end reads after filtering by barcode read count and 
alignment rate (Fig. 2b-c). This yields 1835 barcode groups with an average of 71,684 reads 
(ranging from 1000 to 1,931,407 bp worth of data). To assess single cell resolution, we map the 
reads in each group to the ten reference genomes and plot the fraction mapping to the dominant 
species. We find that 86.16% of barcodes have a purity of >90% (Fig. 2d) and dominantly align 
to one species (Fig. S4, Table S4). These results demonstrates that EASi-seq achieves single 
cell resolution. For the shallow sequencing applied, the average coverage is 0.44% for bacterial 
genomes and 0.031% for the larger yeast genomes (Fig. 2e). The coverage of most single cell 
barcode groups remains unsaturated at 10,000 reads (Fig. S5-6). The comparison of EASi-seq 
with metagenomic sequencing indicates gram-negative bacteria are poorly represented within 
EASi-seq barcode groups (Fig. 2f). For example, we identify only four P. aeruginosa cells with a 
total read count of 34,021. This result is consistent with a previous report 40 and is caused by the 
ZymoBIOMICS synthetic community inactivating buffer (DNA/RNA ShieldTM) pre-lysing gram-
negative bacteria.  

 

 

Figure 2 | EASi-seq identifies single cells and has strain-level resolution.  

a) The ZymoBIOMICS microbial synthetic community consisting of 10 species was 
analyzed by EASi-seq. Classification of each species is provided, with assigned colors 
used in the following panels.   

b) Barcode rank plot of obtained data. Barcode groups were filtered by read counts, with 
less than 1000 reads used as the cutoff.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.08.551713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.551713


c) The barcode groups were further filtered by alignment rates to reference genomes. 
Barcode groups are mapped to the combined reference genomes of the 10 species, and 
barcode groups with an alignment rate of less than 50% were removed. 

d) Purity distribution of barcode groups after data filtering, defined as the percentage of the 
reads mapping to the species most represented among read alignments. Inset shows 
purity distribution as a log-scale. 

e) Coverages of each barcode group, color coded by species. 

f) The comparison between metagenomic and single cell sequencing. Scatter plot shows 
the read counts of metagenomics sequencing data and combined EASi-seq barcode 
groups. Data points are color coded by species and their sizes are proportional to 
barcode counts after filtering.   

g) UMAP clustering by Taxonomic discovery algorithm, color coded by species. Each 
barcode group is classified using a k-mer based taxonomy classifier (Kraken2). The 
output files were combined at the genus level. The barcodes were filtered by the 
percentage of mapped reads and taxonomical purity, which is the percentage of the 
dominant taxa. The vector of the genus abundance in each barcode was used to 
generate the UMAP and each barcode is annotated by the most abundant genus. 

h) UMAP clustering shows the integration of the EASi-seq data (gray) and metagenomic 
data (blue). Each contig associated short read group in the assembled metagenome of 
the same sample was treated as a barcode and processed by the Taxonomic discovery 
algorithm.  

i) Barcode counts and read counts in each UMAP cluster, grouped by batch (EASi-Seq or 
Metagenome assembly). 

j) Evaluation of contigs assembled by grouping reads from all barcodes in each cluster. All 
the reads within a cluster were assembled into contigs using Spades and evaluated by 
Quast using the reference genome. Left, Genome coverage. Right, relative contig length 
normalized to reference genome.  

Reference-independent clustering of unknown cell types 

When applying EASi-seq to a novel microbiome, reference genomes are usually not available for 
mapping and species assignment of the single cell datasets. Thus, to build a genome atlas that 
displays all cells in a sample, we require a clustering algorithm not reliant on prior knowledge of 
the species present. In addition, many single cell genomes are covered below 1% (Fig. 2e) and 
comprise short reads that do not overlap with other single cells of the same type in different 
barcode groups. To enable clustering from such data, we propose the Taxonomic Discovery 
Algorithm (TDA). In TDA, each barcode group is treated as a metagenomic sample, and its 
taxonomic abundance is estimated with available taxonomic classifiers. The taxonomic 
estimations of all barcode groups are then combined into a vector suitable for similarity clustering. 
We hypothesize that the different barcode groups that belong to the same cell should be classified 
to the same taxa by taxonomic classifiers even if they possess completely different sets of reads. 
In this approach, reads of each barcode groups are first classified based on a taxonomic database 
to estimate the barcode group’s associated taxonomy abundance. The taxonomic abundances of 
all barcode groups are binned into a vector consisting of all genera, wherein the bin value is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.08.551713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.551713


proportional to the number of reads in the barcode group mapping to it based on the available 
taxonomic database. For taxa accurately represented in the database, most reads will be 
assigned to one genus bin, while cells from poorly represented taxa may be assigned to several. 
The core concept is that related cells generate similar genus vectors, even if their reads cover 
different portions of the genome, and even if the genus to which individual reads are assigned to 
does not perfectly match the true genus (Methods). With the genus vectors in hand, related cells 
can be clustered using Uniform Manifold Approximation and Projection (UMAP)41 for visualization. 
After clustering, reads from all cells in a cluster are pooled to generate a consensus genome.  

The efficacy of the TDA for clustering cells depends on the classification method and database 
used to map reads into genus bins. If a species is totally novel, such that few of its reads can be 
annotated to any genera or other taxa level, the vector will contain minimal useful information for 
clustering. To identify the best database for the TDA, we therefore evaluated the most popular 
software for taxonomic classification and quantification. These included tools based on K-mer 
(Kraken2/Bracken42,43), marker gene (MetaPhlAn344), and protein similarity (Kaiju45). For this 
evaluation, we simulated a microbiome using downloaded available genomes, processed into 
single cell barcode groups with read structures resembling the output of EASi-seq (Methods, Fig. 
S7a-b). To assess the efficacy of a classification method, we calculated the accuracy of barcode 
purity prediction and taxonomic annotation, and barcode recovery rate with filtering. The k-mer 
based Kraken2/Bracken with PlusPF database (v.2021/01/27)46,47 showed the best performance 
in genus identification accuracy, purity prediction accuracy, and accurate barcode retention rate 
(Discussion S1, Fig S7c-h) and was our choice going forward. 

With the TDA validated on a simulated dataset, we next experimentally verified it using the known 
composition of the ZymoBIOMICS synthetic community. After filtering based on the percentage 
of mapped reads and genus level purity (Fig. S8a-b), the TDA correctly clustered and identified 
all ten populations in this synthetic community (Fig. 2g, Table S5). In addition, 97.34% of barcode 
groups were correctly annotated, reflecting the good representation of these community members 
in that database (Fig S8c).  

Integrating metagenomic contigs to reduce cell-type bias and increase overall coverage 

A unique and powerful feature of EASi-seq when combined with unbiased clustering is the ability 
to pool single cell data to increase genome coverage. Compared to EASi-seq, metagenomic 
sequencing does not rely on intact cells, and uses all extracted nucleic acid that may better 
capture all microbial taxa. Thus, to enhance the coverage of EASi-seq, we developed an 
approach to integrate metagenomic data using a similar strategy to the TDA, in which we calculate 
a genera abundance vector for each contig assembled from metagenomics data, then co-cluster 
the metagenomic contigs with the single cell barcode groups (Fig. S9, Table S6, Methods). 
These vectors are filtered by purity (Fig. S10) before clustering. From a metagenomic assembly 
of the ZymoBiomics community, we identified 1427 of 4844 contigs that had >90% association 
with one genus. Most contigs clustered in a fashion that overlapped with the single cell data points 
(Fig. 2h, Fig. S11). With reads added by metagenomic contig integration, we achieve an average 
cluster coverage of 94.31±4.92% for bacteria and 2.74±3.24% for fungi, and the relative contig 
lengths approach 100% of the genome (Fig. 2i-j). Additionally, the assembled contigs have a GC 
content consistent with the reference genomes (Fig. S12a) and an average N50 of 49 Kbp (Fig. 
S12b). These results demonstrate that integration of metagenomic contigs with the EASi-seq 
atlas enhances capture of diverse microbial taxa and increases genome coverage.  
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Strain-resolved differentiation 

Differentiating between strains within a species is important for analysis of natural and engineered 
microbiomes48. Because EASi-seq can obtain thousands of reads on each cell, it affords novel 
opportunities for strain differentiation. To evaluate the ability of EASi-seq to accomplish this, we 
used it to analyze a synthetic community consisting of twenty-two equally mixed strains of 
Eggerthella lenta49 (Fig. 3a, Table S7). We sequenced the library at 105,896,184 paired-end 
reads after quality filtering. We grouped the reads by barcode and aligned them against the 
reference genomes. To ensure read quality, we filtered barcode groups based on read counts 
and alignment rate (Fig. S13), recovering 5345 barcodes containing 101,760,151 reads. Because 
the strains have highly overlapping genomes, most reads align to multiple strains; thus, only reads 
specific to a single genome are useful for strain identification. Based on this, we developed a 
strain resolution approach reminiscent of transcript isoform expression estimation (BitSeq)50. We 
treat each genome as an isoform of one gene and estimate their “expression” level in each 
barcode group using BitSeq (parseAlignment and estimateVBExpression functions). All reads in 
a barcode group are mapped to the isoforms/strains and the probabilities of reads originating from 
a given isoform/strain are calculated for each alignment using a sequence-specific bias correction 
method (parseAlignment). Alignment probabilities are then used to calculate the posterior 
distributions of each isoform/strain via variational Bayes inference (estimateVBExpression), which 
is used to determine which strain a given cell most closely resembles (Methods). We aligned the 
reads in each barcode group to the reference genomes and recorded the overlap, using a Log-
Normal read distribution to calculate the probability of originating from each reference genome, 
accounting for quality scores and mismatches. The barcode group is then assigned to a strain 
with more than 15% abundance and the highest abundance. (Fig. S14, Table S8 To visualize 
the resultant annotations, we plot the data as a UMAP and pair plot of the abundance estimation 
(Fig. 3b and Fig. S15). The separation between clusters on the UMAP plot confirms EASi-seq’s 
strain-level resolution. 

 

Figure 3 |  Strain resolution discrimination of microbes is achieved by EASi-seq. 

a) Phylogenetic tree of the twenty-two E. lenta strains that make up the synthetic 
community. 
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b) UMAP clustering based on Bayesian abundance estimation of strains in each barcode 
group. Colors are the same as in (a), with any mixed/unresolved barcodes colored grey. 
The inset pie graph quantifies the fraction of barcode counts corresponding to each 
strain (excluding the mixed or unresolved barcodes), showing agreement with the 
expected equal distribution of strains.  

Single cell atlas of a human gut microbiome 

The human gut microbiome comprises vast numbers of microbes from hundreds to thousands of 
species51. Additionally, it can vary between individuals as a result of time, diet, geographical 
location, and health52. Thus, characterizing microbiomes, the microbial taxa present, their genetic 
properties, and the bioactive molecules they synthesize, is critical to understanding the dynamics 
and complexity of this ecosystem. Most approaches use amplicon sequencing of the 16S rRNA 
gene or bulk metagenomic sequencing53. EASi-seq would provide unique information missed by 
these methods, including single cell-level heterogeneity and cell-cell interactions. To explore this 
possibility, cells isolated from the human gut microbiome of a healthy donor54 were profiled by 
EASi-seq (Fig. S16a). After quality filtering, we recovered 232,705,096 paired end reads. We 
grouped reads by barcode and filtered by read count (>1000 reads) and genus purity estimated 
by Kraken2 (>80%) to remove multiplets and cell aggregates (Fig. S17a-b, Discussion S2, Table 
S9). The recovered 1118 barcode groups contained ~150,000 reads on average. To increase cell 
capture efficiency and genome coverage, we also performed metagenomic sequencing of the 
sample (Table S10) and integrated it into the single cell data as described previously (Fig. S9, 
Fig. S18a-c). We filtered contigs based on read percentage classified by Kraken2 and genus level 
purity before integration with the EASi-seq data (Figs. S18d-f). We generated a cell atlas, 
identifying 95 clusters or microbial populations (Fig. 3a) with varied cell numbers and read counts 
(Fig. S19). The metagenomic data increased the number of unique reads and clustered well with 
the single cell data (Fig. S21, Table S11). Nevertheless, several genera remain underrepresented 
in the atlas, including Bacteroides, Phocaeicola, Parabacteroides, Akkermansia, and Alistipes 
which may be a result of the cell isolation54 or sample storage artifacts55, as has been described 
previously (Fig. S20, Discussion S3).  

The taxonomic level of the clustering depends on the taxonomic level used for the mapping in the 
TDA. Since we used genus for the analysis so far, clusters in the UMAP most closely represent 
this level. Thus, some clusters may group cells from multiple species, which may be resolvable 
by isolating these groups and re-clustering with a TDA analysis that uses species-level Kraken2 
estimation (Fig. S22). For example, the two clusters with the most cells (Blautia-A, and 
Bifidobacterium) can be categorized into 10 and 7 sub-clusters, respectively, corresponding to 
different populations of these genera coexisting in the sample.   
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Figure 4 | Human gut microbiome genome atlas. 

a) Integrated UMAP clustering of the single cell barcodes and metagenomic assembled 
contigs of a human microbiome sample. Each barcode/contig was annotated based on 
the most abundant genus. Only the top 30 clusters are labeled in the legend. 

b) Antibiotic resistance gene distribution in the clusters identified by TDA. Rows 
represented annotated genus and columns represent resistance gene access numbers 
from the Comprehensive Antibiotic Resistance Database. The value represents the read 
counts of the corresponding antibiotic resistance gene per million combined reads of 
each cluster.  

c) Relative pathway abundance in the identified clusters. All reads in EASi-seq barcode 
groups associated to each cluster were combined and analyzed using MetaPhlAn and 
the MetaCyc database. The relative abundances of each pathway (copy per million, 
CPMs) were normalized to the barcode counts in each cluster. Clusters are color coded 
to the genera listed in (a).  

Taxonomic distribution of antibiotic resistance genes 
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Antibiotics can profoundly impact the gut microbiome in terms of species composition, microbial 
metabolic activity, and antibiotic-resistant gene (ARG) abundance56. To evaluate ARG distribution 
among taxa in the fecal microbiome, we searched for ARGs in each cluster (Fig. 3b, Table S12) 
by aligning the reads against the Comprehensive Antibiotic Resistance Database (CARD)57. We 
filtered the alignments by mapping score (Bowtie2 output SAM MAPQ >=42), selected the ARGs 
for protein coding, and identified 14 ARGs from 15 genus clusters, with mechanisms including 
antibiotic target alteration, protection, replacement, inactivation, and efflux. ARGs with accession 
numbers ARO:3004480, ARO:3004601, and ARO:3000190 are most prevalent among the 14 
ARGs and were identified in 10, 9, and 6 genus clusters, respectively.  Species from 
Bifidobacterium, Blautia_A, Collinsella, and Anearobutyricum carry the most ARGs, at respective 
counts of nine, eight, six and six. Based on those finding, we predict Bifidobacterium potentially 
has strong resistance (11.2 ARGs read per million reads) to rifampicin and peptide antibiotics, 
consistent with prior findings58. Dorea also has high potential resistance to aminoglycoside 
antibiotic (11.1 ARGs read per million reads) and tetracycline antibiotics (6.7 ARGs read per 
million reads).  

Functional annotation of gene clusters detected in fecal microbiome genera 

Biosynthetic pathways are often encoded as gene clusters that allow cells to acquire the ability to 
synthesize new molecules59,60. Many gene clusters have already been observed and 
characterized for function, allowing this information to be annotated to single cell datasets based 
on detection of key pathway genes, such as MetaCyc 61–63 and KEGG64–66. Using MetaCyc, in the 
95 genera groupings found in our fecal microbiome, we identified 194 gene clusters belonging to 
29 classes in 5 super classes, with biosynthetic functions including generation of energy 
precursors, degradation utilization and assimilation, transport, and macromolecule modification. 
Additionally, we found that different taxa possess distinct pathways, as might be expected on their 
unique ecological niches (Fig. 3c, Table S13). Even within a similar pathway type, different 
genera have different functions, such as amino acid metabolism. For example, Blautia_A possess 
the pathway to produce arginine, aspartate, ornithine, lysine, methionine, serine, and tryptophan; 
Bifidobacterium to synthesize the branched amino acids isoleucine, serine, and valine; 
Akkermansia to synthesize arginine, isoleucine, valine, and branched amino acid; and 
Anaerobutyricum to synthesize ornithine and methionine. Different genera also utilize distinct 
carbohydrate sources, with pathways for glucose, galacturonate, lactose, trehalose, sucrose, 
galactose, stachyose, rhamnose, and mannose all detected in the microbiome. Glucose 
degradation was identified in Bifidobacterium; sucrose degradation was seen in Agathobacter, 
Anaerostipes, Coprococcus, Ruminococcus_D and Streptococcus; and, starchyose degradation 
was detected in Blautia_A, Coprococcus, Fusicatenibacter, KLE1615, and Roseburia. The ability 
to unambiguously link functional properties to community members is useful for unraveling the 
web of pathways that comprise all microbiomes and, ultimately, should aid in the engineering of 
microbiomes to improve gut health.  

Taxonomic distribution of nutrient biosynthesis pathways 

The gut microbiome is the source of vitamins and other nutrients important to health67,68. We 
identified 28 vitamins, cofactors, and carrier biosynthesis pathways in the fecal genome atlas, 
responsible for producing several vitamins and their precursors, including pantothenate (vitamin 
B5), adenosylcobalamin (vitamin B12), folate (vitamin B9), riboflavin (vitamin B2), thiamine 
(vitamin B1), biotin (vitamin B7), pyridoxal 5’-phosphate (active form of vitamin B6), nicotinamide 
adenine dinucleotide (NAD) and 1,4-dihydroxy-6-naphthoate (precursor of menaquinones or 
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vitamin K2). Riboflavin is produced by 18 genera, including Agathobaculum, Barnesiella, 
Parabacteroides, and Coprococcus. Thiamin pathways exist in 13 genera, including Bacteroides, 
Bifidobacterium, Faecalibacterium, and Phocaeicola, and 19 clusters are detected for folate 
transformation, including, Acetatifactor, Alistipes, Bacteroides, Barnesiella, Bifidobacterium, 
Blautia_A, Eubacterium_F, Faecalibacterium, Gemmiger, Mediterraneibacter, 
Phascolarctobacterium, UMGS1375, and Phocaeicola. We also detected 21 clusters containing 
the pantothenate biosynthesis pathway, including Acetatifactor, Alistipes, Bacteroides, and 
Gemmiger, and that Alistipes also synthesizes vitamin K2. These findings show that EASi-seq 
can characterize nutrient interactions between microbiome members, and between the 
microbiome and its host. 

Single cell atlas of a coastal sea water microbiome 

Environmental microbiomes play important roles in the global ecosystem69,70, for biogeochemical 
cycling of elements71–74, metabolism of greenhouse gases75–77, soil fertility78, and 
biodegradation79. Compared to human microbiomes, environmental microbiomes are more 
diverse and difficult to culture80–82. Thus, just as single cell atlases can reveal unique information 
about human microbiomes, so too can they provide insight into the microbiomes of the 
environment. To demonstrate the utility of EASi-seq for analyzing environmental microbiomes, 
we applied it to seawater samples collected from the San Francisco coastline. We isolated the 
cells via filtration26 (Fig. S16b) and processed them with EASi-seq to obtaining 329,470,030 
paired-end reads. Quality filtering and further filtration based on classification rate in Kraken2 
(Fig. S23) yields 3417 cells with an average of 21,062 reads. Using the TDA, we discover 876 
genus clusters (Fig. 4a, Table S14-15), of which 3395 cells are bacteria, and 22 are archaea 
(Fig. 4b). The most abundant bacteria phyla are Proteobacteria (2438 cells), Bacteroidota (556 
cells), Actinobacteriota (146 cells), Verrucomicrobiota (48 cells), Firmicutes_A (34 cells), and 
Firmicutes (22 cells). The archaea include Thermoproteota (12 cells), Halobacteriota (6 cells), 
and Thermoplasmotota (4 cells). To demonstrate the diversity of the captured community, we 
constructed a phylogenetic tree using the genus level identification of the cells (Fig. 4b, center). 
Within the 668 identified genera, the top genera by abundance are Halioglobus (810 cells), 
Sediminibacterium (218 cells), Pelagibacter (190 cells), Azonexus (170 cells), Luminiphilus (154 
cells), and Amylibacter (105 cells). This composition is consistent with previous studies of ocean 
microbiomes26,83,84. 
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Figure 5 | Coastal sea water microbiome genome atlas. 

a) UMAP based on single cell genera clustering, with points colored according to Kraken2 
annotation.  

b) Phylogenetic analysis of the barcode groups.  The phylogenetic tree branches are 
colored by phylum, except in the case of Archaea (kingdom), Gamma/ Beta/ 
Alphaproteobacteria (classes all part of the phylum Pseudomonadota), and incertae 
sedis (members with ambiguous TDA classification). The inner bar plot (blue) shows the 
barcode count for the corresponding genus, and the outer bar plot (gold) shows the total 
read counts for the corresponding genus.  

c) UMAP subclustering of the genus Halioglobus, from (a), which has the highest barcode 
count. 3873 genes are identified from the 809 barcode groups using HUMANN 3.0 with 
UniRef90 database. After the genes and barcode groups are filtered (minimum cell 
counts of a gene = 5 and minimum gene count of a cell = 5), the vector containing 665 
barcode groups and 298 genes are used to generate the UMAP.  
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d) The gene distribution in the Halioglobus barcodes. The barcodes are grouped by the 
cluster in (c).  

Single cell gene distribution in Halioglobus 

To demonstrate the ability to analyze the gene distribution at single cell level, we analyzed the 
genus cluster with highest abundance, Halioglobus, which accounts for 810 barcode groups 
(23.7% of the 3,417 total counts). The genus Halioglobus belongs to the class 
Gammaproteobacteria and family Halieaceae, which is characterized as Gram-negative, non-
endospore-forming, aerobic, oligotrophic, and mesophilic bacteria. The family is exclusively 
isolated from marine environments and is one of the major bacteria groups in coastal or open 
ocean environments85. Although a few isolated Halioglobus species isolates have been 
reported85–89, the heterogeneity within a Halioglobus population has never been studied. Within 
the single cell cluster, we first annotate genes using HUMAnN344. After filtering based on the gene 
count and cell counts (minimum cell counts per gene = 10 and minimum gene counts per cell = 
10), the gene presence/absence matrix of the Halioglobus barcode groups are grouped into 6 
clusters by Leiden algorithms90 (Fig. 5c). The gene presence/absence matrix of each cluster is 
shown in Fig. 5d. This result suggests the Halioglobus genus in our sample is a heterogeneous 
population and indicates that EASi-seq is suitable for the analysis of a heterogeneous population, 
which could potentially be used for more detailed single-cell-resolution pan-genome analysis.   

Discussion 

Microbes play key roles in all ecosystems and are important to human health. While they comprise 
the most diverse forms of life on the planet91, there are few tools available for sequencing them 
at single-cell resolution. Additionally, while tools for single mammalian cell genomics have 
become widespread12, analogous tools for microbes have lagged, due to the technical challenges 
of isolating and sequencing them in the numbers required to characterize diverse microbiomes. 
With these realizations in mind, we developed a workflow for efficient microbe sequencing using 
Mission Bio’s commercial single-cell platform. This instrument is broadly distributed and 
accessible to non-experts, and therefore constitutes an opportunistic foundation on which to build 
a single microbe sequencing technology. Our core innovation to enable this has been to develop 
a simple and general bulk technique to purify single-cell genomes in hydrogels that are compatible 
with the instrument. Our lysis procedure is applicable to all microbe types, including archaea, 
bacteria, and fungi, and the commercial microfluidics allow high throughput and efficient single-
cell barcoding, to obtain unbiased sequencing for tens of thousands of cells in a sample in one 
run.  

The data generated by EASi-seq is unique in that reads are grouped at the level of single cells. 
By contrast, the dominant method of metagenomic sequencing discards single cell information 
and captures the sequence data as a mixed pool of short reads. This mixed pool output 
necessitates complex bioinformatic approaches for contig reconstruction that cannot exploit 
single-cell information. Therefore, in addition to developing a novel approach for obtaining single-
cell data, we also develop novel bioinformatic approaches that exploit the data’s single-cell 
structure. These include ways to allow cells to be clustered by similarity, aggregation of the reads 
within a cluster to increase genome coverage, annotate phylogeny and genes, and to scan 
genomes for genetic elements of interest. By enabling the construction of detailed cell atlases 
that capture the overall species demographics of a microbiome, EASi-seq affords new 
opportunities for characterizing the interaction webs inherent to these systems that are near 
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impossible to obtain with metagenomic techniques. With the ability to integrate EASi-seq and 
metagenomic reads, EASi-seq can provide a complementary viewpoint to metagenomics.  

There still remain aspects of the EASi-seq method that can be improved. Importantly, the 
coverage per barcode is low, which is caused by three reasons. First, before droplet barcoding, 
the genomic DNA is fragmented by Nextera-like tagmentation, which leads to only 50% of the 
genomic fragments being viable for barcoding PCR32. To overcome this inefficiency, we anticipate 
that future implementations of EASi-seq can increase the complements of adaptors92 or use 
single-adaptor transposition and uracil-based adapter switching within the barcoding PCR step93. 
Second, the heterogeneous genome sizes of microbes require different amounts of transposase 
to achieve the appropriate fragment size94. Although we did extensive optimization, one 
concentration does not fit all needs. For certain genomes, the transposase concentration could 
either be too high (for smaller genomes) and generate fragments that are below the size-selection 
threshold or too low (for larger genomes) and produce long fragments incompatible with 
downstream processing. Third, in adapting the protocol to directly integrate into a commercial 
device, it was necessary to utilize the barcoding beads from the Tapestri V2 reagent kit. The 
beads’ barcoding primer has a 15 bp constant region with a melting temperature of 48°C. While 
we used this sequence as the forward priming site in the barcoding PCR, a higher temperature of 
55°C was used as the anneal temperature to avoid random priming. This may lower efficiency in 
the PCR step. Future optimization can involve development of barcoding beads with improved 
primers having an elevated melting temperature. Finally, we suspect that coverage can be also 
improved with an additional single genome amplification step prior to the tagmentation, which can 
be achieved either in droplet27 or in hydrogel beads22. Such improved coverage will greatly 
advance the application of EASi-seq. 

Even in its current form, EASi-seq represents a highly accessible platform technology for 
generating detailed and comprehensive single-cell genome atlases independent of isolation and 
culturing. Such atlases will have a broad and sustained impact on microbiology, similar to what 
has been accomplished for mammalian cells. Because we build our workflow on a commercial 
architecture that is constantly adding features, many of the same improvements and innovations 
may carry over to microbiomes. For example, after the first demonstrations of mammalian cell 
DNA and RNA sequencing, multiomic approaches were built on top of the original technologies. 
These include the ability to measure surface and internal proteins, characterize epigenetic 
signatures and genome structure, and integrate spatial data95. For example, microbial RNA-seq 
is possible using universal cDNA methods amenable to single cell barcoding and would thus allow 
addition of transcriptional state measurements with EASi-seq. Using oligonucleotide-labeled 
binders like including antibodies, lectins, and aptamers, microbes can be stained prior to EASi-
seq, allowing for recording proteomic and serotype signatures in a manner similar to Ab-seq96, 
DAb-seq97, CITE-seq98,  inCITE-seq99, and INS-seq100. Similarly, the lysis and molecular biology 
processes of EASi-seq should carry over to DNA viruses and, with the implementation of reverse 
transcription, RNA viruses, holding potential for single virus genome atlasing.  
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Methods 

1. Microbiome samples processing 
a. Synthetic community 

ZymoBIOMICS standard (Zymo, D6300) was stored at -80°C until use. 100 µL of ZymoBIOMICS 
was washed with 4 mL of PBS for 3 times to remove the storage buffer.  The cell density is 
measured with Countess™ cell counting slides (Thermo Fisher, C10228) using an EVOS 
microscope. After counting, cells were resuspended to a final concentration of 100 million per mL 
in PBS.  

All twenty-two E. Lenta strains (Table S3 list of E. lenta strains) were cultured in appropriate 
media49 and equally mixed based on CFU counting in culture media. The cell mixture is stored at 
-80°C until use. Before processing, thawed cells were washed 3 times to remove the storage 
media and filtered with 5 µm syringe filter to remove cell aggregates. After cell counting, the cells 
were resuspended to 100 million per mL in PBS. 

b. Human microbiome and cell isolation 

Fecal sample from health donor is stored at -80 °C until use. Cell isolation was performed 
according to previously reported protocol54. About 0.5 g of fecal sample was homogenized in PBS 
(10 mL). The suspension is filtered through a 50 µm cell strainer (Corning, 431752) to remove the 
large fecal particles and loaded into a 15 mL centrifuge tube with 3.5 mL of 80% Nycodenz® 
solution (Cosmo Bio USA, AXS-1002424). After centrifuge at 4700xg for 40 min at 4°C, the layer 
corresponding to cells was collected by pipetting. The cells were washed with PBS for 3 times, 
filtered with 5 µm syringe filter, and then resuspended to 100 million per mL in PBS. 

c. Ocean water microbiome and cell isolation 

Sea water was collected at Pacific coastline near San Francisco (GPS coordinate: 37.7354373 
N, 122.5081862 W) by submerging a 1000 mL sterile bottle into the ocean. The sea water was 
transferred to the lab on ice. The cell was isolated according to the published protocol26. Briefly, 
the sea water was first filtered through a 50 µm cell strainer (Corning, 431752) to remove sands 
or other large particles. The suspension was then filtered by a 0.45 μm vacuum filter (Millipore, 
SCHVU01RE) to capture the cells on the membrane. The membrane was cut off from the filter 
with a sterile razor blade and transferred a 15 mL centrifuge tube with 5 mL PBS. The cells were 
released from the membrane by vortexing the tube at maximum speed for 2 min. The cells were 
washed with 10 mL PBS for 3 times and passed through a 5 μm syringe filter to remove remaining 
virus or large particles. The cells were resuspended to 100 million per mL in PBS.  

2. Microfluidics device fabrication 

Microfluidics devices were fabricated with standard photolithography and soft lithography method. 
Custom device fabrication is not necessary for the single cell sequencing using Mission Bio 
Tapestri but used for workflow optimization. Master photomask was designed using AutoCAD and 
printed at 12,000 DPI (CAD/Art Services, Bandon, OR). To make the master structure, SU8 
Photoresist (MicroChem, SU8 3025 and SU8 3050) were spin coated on three-inch silicon wafers 
(University Wafer), soft baking at 95°C for 10 to 20 min, UV-treated through the photomasks for 
3 min, hard baked at 95°C for 5 to 10 min and developed in propylene glycol monomethyl ether 
acetate (Sigma Aldrich). For the microfluidic devices, poly(dimethylsiloxane) (PDMS) (Dow 
Corning, Sylgard 184) and curing agent were mixed in 10:1 ratio, degassed and poured over the 
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master structure, baked at 65 °C for 4 h to cure, and peeled off from the wafer. After hole punched 
with a 0.75 mm biopsy puncher, the devices were plasma treated and bonded to glass slides. The 
channels were treated with Aquapel (PPG industry) to for hydrophobic surface and dried by 
baking at 65°C for 10 min.  

3. Single cell genomic DNA isolation in hydrogel beads 
a. Cell encapsulation in hydrogel beads 

500 µL cell suspension (100 million per mL in PBS) was mixed with 500 µL hydrogel precursor 
solution (12% acrylamide, 1% BAC, 20 mM Tris, 0.6% sodium persulfate, and 20 mM NaCl in 
H2O) in a 15 mL centrifuge tube. 1 mL HFE 7500 with 2% surfactant (008-FluoroSurfactant, 
RanBiotechnologies) was added to the cell/hydrogel precursor mixture. Emulsion was formed by 
passing the oil/aqueous mixture 5 times through the needle. 20 µL of TMEDA 
(tetramethylethylenediamine, Sigma) was added into the emulsion and the emulsion was 
incubated at 70 °C for 30 min and at room temperature for overnight for gelation. The emulsion 
can be stored at 4°C for up to 1 week. 

The emulsion was centrifuged at 1000 RCF for 1 min and the bottom oil layer was removed by 
using a gel loading tip. 1 mL of 20% PFO (1H,1H,2H,2H-perfluoro-1-octanol, Sigma, 370533) and 
5 mL of PBST buffer (0.4% tween 20 in PBS) were added into the emulsion. The mixture was 
vortexed at maximum speed for 1 min break the emulsion and centrifuged at 1000 RCF for 5 min. 
Any remaining oil was removed by pipetting through a gel-loading tip.    

b. Hydrogel size selection  

Differential velocity centrifugation was performed to select the hydrogel beads from previous step 
within the diameter between 5 to 15 µm. The hydrogel beads were resuspended in 14 mL high 
density buffer (40% sucrose in PBS with 0.4% tween 20). First, the beads were centrifuged at 
1000 RCF for 5 min to pellet large gels. The supernatant was transferred to a new 15 mL tube 
and centrifuged at 3000 RCF for 10 min to pellet the right sized beads. The supernatant (still 
containing beads smaller than 5 µm) was discarded and the pelleted beads were washed 3 times 
with PBST to remove the high-density buffer.  

c. Cell lysis in hydrogel beads 

100 µL of size selected beads were treated in 1 mL cell wall digestion buffer (TE buffer solution 
containing 2.5 mM EDTA, 10mM NaCl, 2U zymolyase, 5 U Lysostaphin, 50 U mutanolysin, and 
20 mg Lysozyme) at 37 °C overnight. The beads were then pelleted by centrifugated at 3000 
RCF for 10 min and washed with PBST for 3 times. The beads were then treated in 1 mL 
protein digestion solution (TE buffer with 4U of Proteinase K, 1% triton X100 and 100 mM of 
NaCl) at 55 °C for 30 min. Following lysis, the beads were thoroughly washed with PBST, 100% 
EtOH, and PBST 3 times to ensure complete removal of proteinase K and other chemicals 
which may inhibit the downstream reactions. The beads were then filtered with 10 µm cell 
strainer and ready for droplet tagmentation.  

4. Single cell tagmentation and barcoding in droplet microfluidics 

Microfluidic droplet encapsulation, tagmentation, and barcoding PCR were performed on 
commercial single-cell DNA genotyping platform (Mission Bio, Tapestri) or custom build 
microfluidic devices with the same functions.  
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a. Tagmentation reagents 

25 µL Tn5-Fwd-oligo GTA CTC GCA GTA GTC AGA TGT GTA TAA GAG ACA G (100 nM, IDT), 
25 µL, Tn5-Rev-oligo TAC CCT TCC AAT TTA ACC CTC CAA GAT GTG TAT AAG AGA CAG 
(100 nM, IDT) , and  25 µL Blocked ME Complement /5Phos/C*T* G*T*C* T*C*T* T*A*T* 
A*C*A*/3ddC/ (200 nM, IDT) and 25 µLTris buffer were mixed well in a PCR tube by pipetting. 
The mixture was incubated on a PCR thermal cycler with the following program: 85°C for 2 min, 
cools to 20 °C with a ramping rate at 0.1 °C/s, 20 °C for 1 min, then hold at 4 °C with lid at 105°C. 
100 uL of glycerol was added into the annealed oligo. Unloaded Tn5 protein (1 mg/mL, expressed 
by QB3 MacroLab, Berkeley, CA), dilution buffer (50% Glycerol, 100 mM NaCl, 0.1 mM EDTA, 1 
mM DTT, and 0.1% NP40 in 50 mM Tris-HCl pH 7.5 buffer), and the pre-annealed 
adapter/glycerol mix were mixed at 1:1:2 ratio by pipetting. The mixture was incubated at room 
temperature for 30 min then stored at -20 °C until use. For droplet tagmentation, equal amount of 
assembled Tn5 and tagmention buffer (10 mM MgCl2, 10 mM DTT in 20 mM TAPS pH 7.0 buffer) 
were mixed. 

b. Droplet tagmentation 

In the first droplet step, the tagmentation reagents (0.125 mg/mL assembled Tn5, 10 mM MgCl2, 
and 10 mM DTT in 20 mM TAPS pH 7.0 buffer) and the genomic DNA in hydrogel beads 
(equivalent to 3 million cells per mL) in 10 mM MgCl2, 1% NP40, 17% Optiprep, and 20 mM TAPS 
pH 7.0 buffer were co-flowed in the microfluidic devices to form droplets.  

In case of using Tapestri, the MissionBio Tapestri DNA cartridge and a 0.2 mL PCR tube were 
mounted onto the Tapestri instrument. 50 µL beads solution, 50 µL tagmentation reagents, and 
200 µL encapsulation oil were load in the cell well (reservoir 1), lysis buffer well (reservoir 2), and 
encapsulation well (reservoir 3) on the Tapestri DNA cartridge, respectively.  The Encapsulation 
program was used for droplet generation. The droplets were collected into a PCR tube.  

For custom build microfluidic device, the beads solution, the tagmentation reagents, and 5% (w/w) 
PEG-PFPE surfactant (Ran Biotechnologies) in HFE 7500(3M) were loaded into three syringes 
and placed on syringe pumps. The syringes were connected to the co-flow droplet generator 
device via PTFE tubing. The pumps were controlled by a Python script 
(https://github.com/AbateLab/Pump-Control-Program) to pump bead solution at 200 µL/h, 
tagmentation reagents at 200 µL/h and oil at 600 µL/h to generate droplets. The droplets were 
collected into PCR tubes.  

The droplets generated by either method are incubated at 37°C for 1 h, 50°C for 1h, and hold at 
4°C to ensure hydrogel melting and Tn5 complete reacting.   

c. Droplet barcoding PCR 

The tagmentation droplets from the previous were merged with PCR reagents and barcode beads 
for barcoding with either Tapestri or custom build microfluidic devices.  

In case of using Tapestri, 8 PCR tubes and DNA cartridge were mounted onto the Tapestri 
instrument. Electrode solutions were loaded into electrode wells (200 µL and 500 µL in reservoirs 
4 and 5, respectively). After running the Priming program, 5 µL of reverse primer (GTC TCG TGG 
GCT CGG AGA TGT GTA TAA GAG ACA GTA CCC TTC CAA TTT AAC CCT CCA, 100 µM, 
IDT) was mixed with 295 µL Mission Bio Barcoding Mix and loaded into PCR reagent well 
(reservoir 8) of the DNA cartridge. The droplets from previous step (~80 µL), 200 µL of V2 
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barcoding beads, and 1.25 mL of Barcoding oil were loaded into cell lysate well (reservoir 6), 
barcode bead well (reservoir 7) and barcode oil well (reservoir 9), respectively. The droplets were 
merged with barcoding beads and PCR reagents by the Cell Barcoding program. The resulting 
droplets were collected into the 8 PCR tubes.  

In case of using custom build microfluidics, the device was first primed by filling electrode solution 
(2M NaCl solution) into the electrode and the moat channels. 500 µL PCR reagents containing 
1.67X Q5® High-Fidelity Master Mix (NEB, M0515), 0.625 mg/mL BSA, 1.2 µM reverse primer 
(GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTA CCC TTC CAA TTT AAC CCT 
CCA) were loaded into a 1 mL syringe. 200 µL Mission Bio V2 barcoding beads washed with Tris 
buffer (pH 8.0) and resuspended in 10 mM Tris buffer containing 3.75% tween 20, 2.5 mM MgCl2, 
0.625 mg/mL BSA. The beads were centrifuged at 1000 RCF for 1 min and the supernatant was 
removed. The remaining bead slurry (~110 uL) was loaded into PTFE tubing connected to a 1 mL 
syringe filled with HFE 7500 oil. The droplets after tagmentation were loaded into a 1 mL syringe. 
The three syringes and two syringes filled with 10 mL of 5% (w/w) PEG-PFPE surfactant (Ran 
Biotechnologies) in HFE 7500(3M) HFE 7500 were connected to the microfluidic devices. The 
follow rates are as follows: tagmenation droplets 55 µL/h, spacer oil 200 µL/h, PCR reagent 280 
µL/h, barcode beads 148 µL/h, and droplet generation oil 2000 µL/h. To merge the tagmentation 
droplet, the electrode near the droplet generation zone was charged with an alternating current 
(AC) voltage (3 V, 58kHz). And the moat channel was grounded to prevent unintended droplet 
coalescence at other locations on the device. The merged droplets were collected into PCR tubes.  

The droplets collected in the merging step were treated with UV for 8 min (Analytik Jena Blak-
Ray XX-15L UV light source) and the bottom layer of oil in each tube were removed using a gel 
loading tip to leave up to 100 µL of droplets. The tubes were placed on PCR instrument and 
thermo-cycled with the following program: 10 min at 72°C for 1 cycle, 3 min at 95°C for 1 cycle, 
(15 s at 95°C, 15 s for 55°C, and 2 min at 72°C) for 20 cycles, and 5 min at 72°C for 1 cycle with 
the lid set at 105°C.  

d. Barcoded Amplicon purification 

The thermal cycled droplets in the PCR tubes were carefully transferred into two 1.5 mL centrifuge 
tubes (equal amount in each). If there were visible merged large droplets present, they were 
carefully removed using a 2 µL pipette. 20 µL PFO were added into each tube and mixed well by 
vortex. After centrifuging at 1000 RCF for 1 min, the top aqueous layers in each tube were 
transferred into new 1.5 mL tubes without disturbing the bead pellets and water was added to 
bring the total volume to 400 µL. The barcoding product was purified using 0.7X Ampure XP 
beads (Beckman Coulter, A63882) and eluted into 50 µL H2O and stored at -20°C until next step. 
The concentrations of the barcoding product were measured with Qubit™ 1X dsDNA Assay Kits 
(ThermoFisher, Q33230).  

5. Barcoding sequencing library preparation and sequencing 
a. Library prep and QC 

The sequencing library were then prepared by attaching P5 and P7 sequences to the barcoding 
products using Nextera primers (Table S2). The library PCR reagents containing 25 uL Kapa HiFi 
Master mix 2X, 5 uL Library P5 index primer (4 uM), 5 uL Library P7 index primer (4 uM), 10 uL 
purified barcoding products (normalized to 0.2 ng/uL), and 5 uL of nuclease free water were 
thermal cycled with the following program: 3 min at 95°C for 1 cycle, (20 s at 98°C, 20 s for 62°C, 
and 45 s at 72°C) for 12 cycles, and 2 min at 72°C for 1 cycle. The sequencing library was purified 
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with 0.69X Ampure XP beads and eluted into 12 uL nuclease-free water. The library was 
quantified with Qubit™ 1X dsDNA Assay Kits and DNA HS chips on bioanalyzer or D5000 
ScreenTape (Agilent, 5067- 5588) on Tapestation (Agilent, G2964AA). The libraries were pooled 
and 300 cycle pair-end sequenced by Illumina MiSeq, NextSeq or NovaSeq platform.   

6. Sequencing file barcode extraction and single cell read file preparation 

Raw sequencing FASTQ files were processed using a custom python script 
(mb_barcode_and_trim.pys) available on GitHub (https://github.com/AbateLab/MissonBioTools) 
for barcode correction and extraction, adaptor trimming, and grouping by barcodes. For all reads, 
combinatorial cell barcodes were parsed from Read 1, using Cutadapt (v2.4)101 and matched to 
a barcode whitelist. Barcode sequences within a Hamming distance of 1 from a whitelist barcode 
were corrected. Reads with valid barcodes were trimmed with Cutadapt to remove 5′ and 3′ 
adapter sequences and demultiplexed into individual single-cell FASTQ files by barcode 
sequences using the script demuxbyname.sh from the BBMap package (v.38.57)102.  

7. Reference based single cell data analysis 
a. ZymoBIOMICS Microbial Community Standards 

The reference genome FASTA files of the ten species of Zymo 
BIOMICS Microbial Community Standards provided by Zymo Research Corporation 
(https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip). The FASTA 
files were combined and Bowte2 index were built using Bowtie2-build command. The reads in 
single-cell FASTQ files were aligned to reference genomes using Bowtie2 (v 2.3.5.1) with default 
setting103. The overall alignment rates for each barcode were collected from the log files. The 
barcode groups less than 50% overall coverage rate were removed. Each barcode group’s 
coverages, numbers of mapped reads, covered bases, and mean depths of 10 corresponding 
species were calculated using Samtools v1.12 (samtools coverage) with default setting104. The 
purity of each barcode group was calculated as the percentage of reads that aligned to a dominant 
species. For the rarefaction analysis, 10,000 reads were randomly sampled from the SAM file of 
each barcode group. The coverage was calculated after each read sampling using Samtools.   

b. Strain abundance estimation for synthetic community with 22 E. lenta strains 

The reference genomes of the 22 E. lenta strains were downloaded from NCBI (Tabel S3). The 
reads in single-cell FASTQ files were aligned to reference genomes using Bowtie2 (v 2.3.5.1) 103 
with -a setting to report all matches. The overall alignment rates for each barcode were collected 
from the log files. The barcode groups with less than 50% overall coverage rate were removed. 
The probabilities of each alignment were calculated with parseAlignment command from BitSeq 
(v 1.16.0)50 using uniform read distribution option (--uniform). The abundances of the 22 strains 
within each barcode were calculated based on the alignment probabilities using 
estimateVBExpression command from BitSeq v 1.16.0 with default setting50. The abundance 
output files were combined and analyzed using a Python script. The barcode group stain identity 
was assigned to the strain with maximum abundance. If the maximum abundance is smaller than 
15% in a barcode group, the barcode group is considered as mixed strains. The UMAP (uniform 
manifold approximation and projection for dimension reduction) analysis was conducted using the 
Scanpy toolkit in Python41,105.  

8. Taxonomic Discovery Algorithm  
a. TDA validation using simulation data 
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100 species were randomly selected from the NCBI assembly metadata file 
(ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt). The reference 
genome FASTA files were downloaded using the corresponding link in the metadata file (Table 
S4). Simulated pair-end read files were generated using a Python script according to the following 
rules. 1. 100 barcode groups were generated for each species. 2. The reads are 150 bp paired 
end. 3. The amplicon length is in the range of 400-1000 bp. 4. Each barcode group has 0-49% 
percent of contamination reads. 5. The contamination reads were generated from the other 99 
species. 6. Each barcode has 1,000-10,000 pair-end reads.  

3 taxonomic classifiers were chosen for evaluation: Kraken2/Bracken v 42,43 with PlusPF 
database(https://benlangmead.github.io/aws-indexes/k2, Version: 1/27/2021), Kaiju v45 with its 
standard database and MetaPhlAn v44 with its standard database. All the pair-ended barcode 
group FASTA files were profiled using the three classifiers. The results were grouped and 
analyzed in Python. The predicted taxa purity was the abundance of the dominant taxa in each 
barcode group. The barcode filtering based on purity was performed using thresholds ranging 
from 50% to 99% purities.  

 The average after-filtering purity was the mean purity of all the barcodes that passed a certain 
threshold and after-filtering barcode counts was the barcode count of which passed a certain 
threshold. The UMAP clustering was performed with the genus abundances of all the barcode 
groups. The identity of each cluster was assigned with the most abundant taxa. The identification 
accuracy was calculated as the percentage of barcodes with the correct genus identification.  

b. TDA analysis of single cell sequence data 

The single cell sequencing barcode group FASTQ files of ZymoBIOMICS, Human microbiome 
and the sea water microbiome samples were analyzed using TDA with Kraken2/Bracken as the 
taxonomic identifier. For the Zymo BIOMICS sample, Kraken2 PlusPF database 
(https://benlangmead.github.io/aws-indexes/k2, Version: 1/27/2021) was used, while for human 
microbiome and sea water microbiome, Kraken2 GTDB database 
(https://gtdb.ecogenomic.org/tools, Release 95) was used. The reads in each barcode group were 
first classified by Kraken2, and the abundances at genus and species level were re-estimated 
with Bracken using default threshold setting. The percentages of the mapped reads were 
extracted from the Kraken2 output files of barcode groups. The purities were calculated as the 
abundance of the dominant genus in the barcode groups. The data was filtered according to 
percentage of mapped reads and genus-level purity. The taxa abundance profiles of the 
remaining barcodes were combined and UMAP clustering was performed using The Scanpy 
toolkits105 in Python script. The taxa of each barcode group were assigned to the most abundant 
one.  

9. Metagenomic sequencing and assembly 
a. ZymoBIOMICS community 

The metagenomic sequencing data of ZymoBIOMICS Microbial Community Standards D6300 
(batch ZRC195925) was provided by Zymo Research Corporation. The reads were assembled 
using SPAdes-3.15.3 with ‘--meta’ setting106. The quality of assembly was accessed by Quast 
5.0.2107.    

b. Human microbiome  
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The human fecal sample was collected from a healthy adult donor under a UCSF IRB approved 
protocol (#14-13821).  The sample was deposited into a commode specimen collection system 
and aliquoted into 2mL cryovials with DNA/RNA shield (Zymo).  For bulk metagenomic 
sequencing, the sample was extracted using the ZymoBiomics 96 MagBead DNA kit.  The 
sequencing library was prepared using the Nextera XT protocol and sequenced using an Illumina 
Nova-Seq with 2x140 chemistry at the Chan Zuckerberg Biohub.  Metagenomic reads were 
quality-filtered using FastP (v. 0.20.0)108 with the following parameters: (--detect_adapter_for_pe 
--cut_front --cut_tail --cut_window_size 4 --cut_mean_quality 20 --length_required 60). Reads 
mapping to the human genome were removed using BMTagger, as included in MetaWrap 
(v1.2.1)109. Reads were assembled using MEGAHIT (v1.1.3)110, again as included in MetaWrap 
v1.2.1. Reads were mapped to the resulting contigs using Bowtie2 (v2.3.5.1)103 with the default 
parameters. 

10. Comparison between metagenomic and single cell sequencing.  

The genus abundances of the human microbiome metagenomic data and the pooled single cell 
sequence file were analyzed using Kraken2 and Bracken. The results were plotted as a scatter 
plot with triangle markers. For any genus with a barcode group associated, a round marker of 
the genus was added and its size is proportional to the barcode counts.   

11. Single cell sequencing data integration with metagenomics  

To integrate the metagenomic dataset, the contigs assembled from metagenomic sequencing 
(ZymoBIOMICS and human microbiome sample) were treated as individual barcodes and 
processed with TAD. The metagenomic reads were first aligned to the assembled contigs using 
Bowtie2 v2.3.5.1103. The pair-end reads associated with each contig were extracted using 
Samtools v1.12104 (‘samtools view -b {BAM file} {Contig header} | samtools fasta > 
{Extracted_reads.fa}’). The short reads from each contig were then evaluated by Kraken242 and 
the genus abundance were generated by Bracken43 using default threshold setting. The purity 
was calculated as the abundance of the dominant genus in each contig associated with short 
reads. The contigs were filtered using the genus level purity. The taxa abundance profiles of the 
short reads associated with remaining contigs were combined and integrated with the single cell 
dataset using the Scanpy toolkits105 in Python script. 

12. Clustered barcode groups analysis  
a. Cluster assembly and evaluation 

Single cell barcodes of UMAP clusters were combined using concatenate command (cat) in the 
Linux system into single FASTQ files. The pair-end reads associated with barcodes that belong 
to the same UMAP clusters were grouped by Seqtk toolkit (https://github.com/lh3/seqtk) (seqtk 
subseq) into single FASTQ files. The assemblies were conducted with all reads associated to 
both single cell sequencing and metagenomic contigs of each UMAP cluster using Spades v 
3.15.3106 with ‘--careful’ setting. The assembled contigs were evaluated using Quast v 5.0.2 with 
or without reference genome input. To calculate the clustering error rate, all the reads associated 
to a cluster were mapped to the corresponding reference genome, the percentage of the reads 
that were not aligned was considered as the error rate.   

Pathway analyses of each cluster was conducted using HUMAnN v 3.044 with the default 
MetaCyc61,63,111 database. The pathway abundance files of each cluster were combined and 
plotted as a heatmap using the Seaborn module in Python.   
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The sub-categorizing of barcode groups in a UMAP cluster was using species abundance 
estimation. The 2 clusters with the most barcode groups in the human microbiome samples 
(Blautia_A, and Bifidobacterium) were further divided into sub clusters by UMAP aggregation with 
the Kraken2 species abundance estimation.   

b. Gene association analysis 

Comprehensive Antibiotic Resistance Database (CARD) (v 3.1.4)57 
(https://card.mcmaster.ca/download) was downloaded and bowtie2 references were built with 
botie2-build command103.  The combined reads associated with each UMAP cluster identified in 
the human gut microbiome were mapped to the CARD databases using Bowtie2 (v2.3.5.1)103. 
The mapping reads are filtered for MAPQ >= 42 to select the reads without mismatches using 
SAMTools (samtools view -bS -q 42). After duplicate reads were removed using SAMTools 
(samtools rmdup -S), the references sequence name (RNAME) of each alignment were extracted 
from the bam files. The unique genes associated with each UMAP cluster, and their frequencies 
were generated from the RNAMEs. The relative abundance antibiotic resistance gene is 
calculated as the unique ARO read count per million total read count. The resistance mechanism 
associated with antibiotic resistance ontology (AROs) were downloaded from the Comprehensive 
Antibiotic Resistance Database.  

13. Data and code access 

All sequencing data is accessible at the NCBI Sequence Read Archive (Accession numbers: 
SUB12874540). Python Jupyter notebooks code used in this paper can be accessed at Abate 
lab GitHub: (https://github.com/xiangpenglee/EASi-seq.git) 
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