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Abstract 
 

Identifying genetic susceptibility factors for complex disorders remains a challenging task. We 

have developed a weights-based pipeline to prioritize variants and genes in collections of small and large 

pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible. The Weights-

based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease 

incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele 

frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are 

normalized between 0 to 1. Weights are combined multiplicatively to produce family-specific-variant 

weights that are then averaged across all families in which the variant is observed to generate a 

multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and 

genes for further investigation. WARP was validated using familial melanoma sequence data from the 

European Genome-phenome Archive. The pipeline identified variation in known germline melanoma 

genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified 

several interesting genes, some of which might have a role in melanoma. WARP provides an approach to 

identify disease predisposing genes in studies with small and large pedigrees. 
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Introduction 
Next-generation sequencing can detect common and rare genetic variants and has been proven 

key to identifying disease-causing mutations in families affected by Mendelian or complex disorders. 

Germline variants involved in Mendelian disorders can be detected by searching for variants that 

segregate in a highly penetrant manner in one or more families [1,2]. Disease gene identification often 

involves filtering or ranking variants using information such as functional impact, predicted 

pathogenicity, variant conservation status, and/or allele frequency. Filtering approaches that use hard cut-

offs may discard disease-causing variants; a problem for complex disorders and those with incomplete 

penetrance, where variant functional effect may be less impactful and disease alleles not as rare as for 

Mendelian disorders. Synonymous variants, non-coding variants or variants with no allele frequency 

recorded in the public databases may be excluded during some filtering processes. Synonymous changes 

have been implicated in human diseases, however, by affecting splicing and mRNA stability and altering 

protein conformation [3]. Similarly, non-coding variants have been found to increase the risk of some 

diseases [4,5]. Ranking, rather than filtering, places variants on a continuum and allows subsequent 

choice of subsets of variants for further examination and replication.  

Various tools, approaches and pipelines have been developed to either rank or filter variants to 

aid in detecting putative disease-causing genes that functional studies can later verify. VariantDB filters 

on parent-offspring and sibling relationships to enable filtering for mode of inheritance such as de novo, 

dominant or recessive. It then filters on variant information such as population-based variant allele 

frequency, pathogenicity and function [6]. It relies on Mendelian inheritance models and pedigree data 

limited to parent-offspring and sibling relationships. KGGSeq is a tool that can be used for both 

Mendelian and complex disorders by filtering of variants on a disease inheritance model, shared identity-

by-descent segments or allele frequency followed by pathogenic variant prediction [7]. Following the 

filtering step, KEGGSeq performs biological analysis of filtered variants at gene, pathway, protein 

interactions and phenotype level using a novel bit-block encoding algorithm that aids in faster analysis. 

[7]. The filtering of variants using genetic inheritance model or shared segments is skipped and variants 

are directly analyzed for functional score when analysing complex disorders[7]. Both tools ignore 

information such as disease age of onset or family-based details such as extent of genome shared between 

affected cases in a family.  

Some approaches use variant segregation to rank or filter variants within a pedigree. A pipeline 

called the Familial Cancer Variant Prioritization Pipeline (FCVPP) version 1 identifies germline variants 

based on variant segregation and prioritizes them using CADD scores that are later evaluated on the 

conservational score, damage prediction, and the predicted functional effects of variants [8]. An upgraded 

version of the FCVPP (version 2) also prioritizes regulatory germline variants [9]. FCVPP performs best 

with a large pedigree with sequenced affected and unaffected family members, though FCVPP version 2 

can be applied to trio pedigrees. Neither version of FCVPP can be applied to a group of small and large 

families. MendelScan assigns scores based on segregation, allele frequency, variant functional effect, and 

gene expression to rank variants that can be narrowed down to identify disease-causing haplotypes; it 

works well on autosomal dominant disorders [10]. Reliance on variant segregation can be hampered by 

incomplete penetrance and genetic heterogeneity in complex disorders.  

Tools have also been developed that work best with small pedigrees. Var-MD analyzes a set of 

exome variants by first filtering on the Mendelian mode of inheritance and then generates a ranked list of 

potential disease-causing candidates based on pathogenicity, population frequency, genotype call quality, 

and sequence coverage [11]. Another tool, pVAAST (pedigree-Variant Annotation, Analysis and Search 

Tool), uses a statistical framework that integrates linkage analysis, association analysis and functional 

variant prediction [12]. This tool overcomes incomplete penetrance and locus heterogeneity for linkage 

analysis but works best with small families with rare Mendelian diseases or requires large families for 
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common complex diseases. Requena, Gallego-Martinez and Lopez-Escamez (2017) developed an 

approach that can be applied to small pedigrees, which combines multiple tools such as the PAVAR 

score, Variant Annotation Analysis and Search Tool (VAAST-Phevor), Exomiser-v2, CADD, and 

FATHMM to identify candidate variants [13]. This approach is limited to autosomal dominant disorders 

and combining different tools for variant lists might lead to the loss of putative disease-causing variants. 

These tools/approaches, therefore, cannot be applied to a mix of large and small families for a complex 

disorder. 

Most of these tools/pipelines/approaches focus on whole exome sequence data, although some 

incorporate features that can evaluate non-coding and regulatory variants. The drawback of these tools is 

that some rely on the mode of inheritance, work well with either small or large pedigrees but not both, 

and often ignore family-based information such as genetic sharing amongst the cases in a family. 

We have developed a Weights-based vAriant Ranking in Pedigrees (WARP) pipeline to 

overcome the limitations of the existing tools and approaches, particularly for analysis of collections of 

small and large pedigrees with complex genetic disorders, where genetic heterogeneity is likely but 

biological commonality is plausible. Our pipeline ranks variants by applying five weights. The five 

weights are based on (a) age of diagnosis or rarity of disease in the cases, (b) the total number of cases in 

a family, (c) genome fraction shared amongst sequenced cases in a family, (d) population allele-frequency 

and (e) variant deleteriousness. These weights are combined for each family to generate a Family Specific 

variant weight (FSVW). Obtaining a ranked list of variants for a group of families is accomplished by 

generating a multifamily weight (MFW) by taking an average of the FSVW of the families in which the 

variant is observed. The MFW are ranked in descending order and then analyzed for biological 

commonalities.  

This pipeline has several advantages over the existing tools and approaches. It ranks variants 

using family and variant-based information. Age of diagnosis is integrated, which gives greater weight to 

earlier onset cases that are more likely to have a genetic basis, as opposed to environmental or lifestyle-

based cases that often develop later. Cases from large and small families can be analyzed jointly, 

maximizing the amount of data that can be combined for understanding the disease etiology. The pipeline 

can incorporate data from distant family members such as second-degree and third-degree relatives, 

which reduces the number of shared variants and decreases the search space for a given family. The 

modular design of the pipeline also provides effortless updates of component databases such as CADD. 

Here we demonstrate this pipeline on exome data from melanoma families obtained from 

European Genome-phenome Archive (EGA) EGAS00001000017. Robles-Espinoza et al. (2014) studied 

the families from this dataset, and identified two POT1 variants in two families [14].  

Materials and Methods 

Families 

The melanoma families are part of the sequence data deposited at the European Genome-

phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession number 

EGAS00001000017, and have been previously published [14]. The dataset includes exome data from 89 

melanoma cases. Of the 89 cases, 32 belong to melanoma families where more than one case was 

sequenced; they are part of 13 melanoma families that were used for the analysis by WARP. The rest 

belong to melanoma families with only one case sequenced (43 cases) or single cases that presented with 

multiple primary melanomas, multiple cancers, or an early age of onset (14 cases).  
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Sequence Alignment, Variant Calling and Quality control 

The EGAS00001000017 dataset provides downloadable bam or srf files for the 89 melanoma 

cases. For cases where .srf files are available, they were first converted into fastq files using srf2fastq 

[15]. The fastq files were mapped against the human reference genome (GrCh37) utilizing Burrows-

Wheeler Aligner mem version 0.7.6a [16]. Aligned reads were filtered and sorted using sambamba 

version 0.5.5 [17], and the BAM files generated used in the variant discovery process performed using 

GATK’s (version 4.0.2.1) HaplotypeCaller (32). Variants were then jointly called to generate a single 

VCF file.  

 

The VCF file containing single nucleotide variants (SNV) and insertions and deletions (indels) 

was filtered for variant quality using Variant Quality Score Recalibration (VQSR) with truth sensitivity at 

99.0% for both SNVs and indels. Variants that did not pass VQSR were removed. Multiallelic sites were 

converted into biallelic sites with left alignment and normalization of variants was performed using 

Bcftools [18]. The VCF file containing all the cases was split into individual family VCF files, and 

positions with missing genotypes were removed. As VQSR uses a site-specific approach, the quality filter 

of GQ≥20 & DP≥8 was applied.  

 

The WARP pipeline includes a step that removes variants found in a sequenced informative 

unaffected individual (for example, the unaffected parent in a family where the disease is clearly not 

transmitted through that parent). For each family, the shared genotype of 0/1 or 1/1 is retained in the VCF 

file. In the case of an unaffected sequenced individual, the genotype 0/1 or 1/1 positions shared with the 

unaffected individual would be removed. For the melanoma families used here, only case sequences were 

available, and so this step was skipped. 

Annotation 

For each family, the shared alternate allele set was annotated using Snpsift version 5.0 [19] and 

VEP version 103 [20]. The non-Finnish European allele frequency field was annotated from Genome 

Aggregation Database (gnomAD 2.2.1) using Snpsift. ExAC and 1000Genomes European allele 

frequency were annotated using VEP. Combined Annotation Dependent Depletion (CADD) RawScores 

and Phred Scores were annotated using CADD version 1.6 [21] from the website 

(https://cadd.gs.washington.edu/score). All fields from dbSNP version 155 (21) were used for annotation 

using Snpsift.     

The Weights based pipeline  

Annotated shared variants from multiple families were analyzed by weighting them on five 

criteria. These criteria are individual weight (IW), family weight (FW), sharing weight (SW), population 

allele frequency weight (PAFW), and prediction weight (PW).  

IW for sequenced affected individuals in a family for this study is derived from an open-access 

tool CancerData (https://www.cancerdata.nhs.uk/incidence_and_mortality), published by the National 

Cancer Registration and Analysis Service. Data extracted from CancerData includes melanoma cases for 

a 5-year period from 2015-2019 in combination with age and sex. The incidence rates are reported per 

100,000 age-standardized rates. The file with incidence rates for all age groups and sex for melanoma is 

referred to as the master file. For each sequenced affected individual in a family, IW was computed by 

extracting the incidence rate using their age and gender from the master file. An inverse incidence rate is 

taken to upweight variants in cases diagnosed with melanoma at a younger age. IW is normalized to the 

range of 0-1 by taking the ratio of the IW incidence rate of an individual to the maximum incidence rate 

observed in the familial dataset. As two or more affected individuals are analyzed in each family, an 
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average of the normalized incidence rate for affected individuals in a family is assigned to all the shared 

variants of a family. 

FW is based on the number of affected individuals in a family regardless of their sequencing 

status. For instance, if a family has five affected individuals, of which two are sequenced, then the FW 

assigned for this family is five. The rationale for FW is based on the fact that families with more affected 

individuals are more likely to have a genetic basis. In contrast, in some small families, the disease may be 

caused by the coincidental occurrence of sporadic disease rather than the segregation of a susceptibility 

gene(s). Variants shared by a family are given the same FW; thus, a higher weight is given to families 

with a greater number of affected individuals. FWs are normalized to the range of 0-1. Normalization is 

performed by dividing the number of cases in a family by the maximum number of affected individuals 

observed in a single family in the dataset. 

SW is the inverse of the fraction of genomic sharing between the sequenced individuals of a 

family. Families with higher numbers of informative DNA samples allow us to rule out more variants 

observed in family members by requiring that they are shared between affected relatives to be of interest. 

Shared variants in a family have the same SW. This weight is normalized to the range of 0-1. 

Normalization is performed by taking the ratio of SW in a family to the maximum SW observed in the 

dataset. 

PAFW uses allele frequency in population cohorts, such as ALFA [22], gnomAD [23], ExAC 

[24], and 1000Genomes [25], which indicates the rareness of a variant. Both rare and common variants 

are considered rather than applying an arbitrary cutoff to filter variants out. This weight is calculated as 

(1–allele frequency), giving higher weight to rare variants. When a variant frequency is identified in only 

one database, then that database is used to obtain its PAFW. In contrast, if a variant is observed in more 

than one database, then the PAFW is calculated from one of the databases in a preferred order based on 

the sample size of the database. Preference is given to allele frequency from ALFA, gnomAD, ExAC, and 

then 1000Genomes as ALFA database has the largest sample size followed by gnomAD. Variant 

frequencies not identified in any of the databases are assigned an arbitrary low allele frequency, assuming 

that these variants are rare and not yet discovered in existing allele frequency databases. 

PW is applied to variants based on their predicted deleteriousness. The rationale for this is its 

capability to up-weight damaging variants. CADD raw scores are used to calculate the PW as it provides 

a range of relative differences in deleteriousness amongst the variants [26]. Raw scores are obtained from 

the CADD database, where a higher raw CADD score indicates that a variant is more likely to have 

deleterious effects. Negative CADD raw scores are converted into low-value positive scores so they can 

be combined with other weights. All negative values are given a value of 0.000001, which is lower than 

the smallest positive value in the familial dataset. PW is normalized to 0-1 by taking the ratio of PW for a 

variant to the maximum PW in familial dataset. 

Each variant received these 5 individual weights, each between 0 and 1. These 5 weights were 

combined multiplicatively to generate a family-specific variant weight (FSVW) for each variant in a 

family outputted into a .tsv file. These files with FSVW are converted into .tab files and annotated to 

individual family VCF files using the BCFtools annotate command [18]. Once each VCF file is annotated 

with FSVW, they are merged using BCFtools [18], which generates a single VCF file. Variant details 

from the merged file, such as allele frequency, CADD score, gene name, and FSVW were extracted using 

the BCFtools +split-vep plug-in [18] to generate multifamily weight (MFW). For each variant in the 

extracted file, FSVWs were averaged to generate an MFW. The average is based on the number of 

families in which the variant is observed, as these families are expected to show genetic heterogeneity, so 

some families might have the variant while others may not. Therefore, MFW is generated by taking the 

average instead of giving higher weight to variants observed in multiple families. The number of families 

harboring the variant is also calculated, which is used while interpreting the variant of interest. The 
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multifamily weight is sorted in descending order generating a ranked variant list.  Code for the WARP 

pipeline can be found at https://github.com/s-ralli/WARP.git 

Analysis of variants for biological commonalities 

Assessment for biological commonalities was done by examination of top-ranked variants from 

each family, and through literature searches. Common variants (allele frequency > 0.01) that were highly 

ranked in the melanoma families data set were examined in the GWAS catalogue [27]. Variants of 

interest were visually inspected using Integrative Genomics viewer(IGV) version 2.4 [28] and excluded if 

deemed artifacts.  

Starting at the top of each  family’s ranked list of variants, rare variants (allele frequency ≤ 0.01) 

were checked and those that were either in pseudogenes or that did not withstand a TraP cut-off score of 

90 percentile [29] for synonymous variants,  or that were deemed artifacts upon examination in the 

Integrative Genomics Viewer (IGV), were excluded. The process was repeated with each family’s ranked 

list of variants until 15 verified, highly ranked variants were identified. A gene set generated from the 15 

most highly ranked rare variants from each family was analyzed using the gene set/Mutation analysis tool 

of the Reactome Functional Interaction (FI) in Cytoscape version 3.9.1. For this purpose, the 2021 

‘ReactomeFI Network’ dataset option was used to create interaction networks without adding any linker 

gene. Enrichment analysis for the networks was performed using the Analyze network functions for the 

pathway or GO Biological processes. The p-values were calculated based on binomial test and the 

adjusted p-value ≤0.05 was considered significant. The adjusted p-value is computed by ReactomeFI 

using the using the Benjamini-Hochberg method.  

 Literature-based biological commonalities analysis was performed by looking for rare and 

common variants in genes previously known to have germline mutations in melanoma families, genes 

known to be somatically mutated in melanoma tumors, and genes identified in GWAS studies of 

melanoma. The source for known germline melanoma genes was Toussi, A et al. (2020) [30]; somatically 

mutated genes were acquired from the COSMIC cancer gene census (https://cancer.sanger.ac.uk/census) 

[31], and GWAS genes were taken from the GWAS catalogue [27].  

Results 
The WARP pipeline is summarized in Fig 1. We anticipate that a disease-causing mutation would 

be shared amongst the cases of a family. The pipeline was validated on exome sequence data from 13 

families with 32 cases in the EGAS00001000017 dataset. These families were verified by KING version 

2.1.8 [32] relationship inference. There were, in total, 91,021 variants, of which 86,639 (95.2%) are 

common variants (allele frequency >0.01), 4,107 (4.5%) are rare variants (allele frequency ≤0.01), and 

279 (0.3%) are novel variants with no allele frequency reported in public datasets.   

Rank of previously identified POT1 variants 

A published paper reported two POT1 variants rs587777472 (g.124503684T>C) and 

rs587777473 (g.124465412C>T) that are observed in two families. The rs587777472 is a missense 

variant that alters the amino acid from tryptophan to cysteine in the highly conserved N-terminal 

oligonucleotide-/oligosaccharide-binding (OB) domain of the POT1 protein observed in 5-case family 

UF20. In the combined ranked list for all families together, this variant is at position 37 (99.96 

percentile). The second variant, rs587777473, is a stop gain variant observed in 6-case family AF1. This 

variant is ranked at the 96.75 percentile (ranked 2955th). Both variants are predicted to be damaging or 

probably damaging by SIFT [33] and Polyphen [34].  
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Assessment of biological commonalities among top-ranked genes 

The top 15 rare variants were chosen from each of the 13 families, which resulted in a set of 194 

variants in 188 genes. A deletion variant, rs199851144 in FAM111B, was observed in two families, UF19 

and UF21. Pairs of different variants in the same genes were identified in 5 genes (Table 1). Two variants, 

rs117307819 and rs17304212 were observed in two or more families, but each one made it to the top 15 

in only one family. rs117307819 in ELAVL1 is a synonymous variant with a CADD score of 12.75. The 

TraP score for this variant is 0.287, which is above the top 92.5th percentile in TraP, indicating that it is 

predicted to be possibly damaging. The rs117307819 variant is observed in three families – UF16, UF20, 

and UF10. Variant rs17304212 is a missense variant in DFNB59 with a 23.9 CADD score and conflicting 

interpretations of pathogenicity on Clinvar. This variant is observed in two families, NF2 and UF1.  

The top 15 variant set also included both the variants in POT1 found in family UF20 and AF1. In 

addition to the POT1 variants, two other families have variants in known germline melanoma 

genes, BAP1 and MITF. Family NF3, had a novel frameshift variant g.52436841T>TAA (CADD score of 

33) in BAP1. This variant is shared by all four sequenced cases and is ranked at position 121 (99.87 

percentile) by the pipeline. The BAP1 variant was not reported by Robles-Espinoza et al. (2014); 

however, another study performed on the same family using new generation aligners and callers did 

identify the BAP1 variant [14,35].  UF10 is a small family with 3 sequenced cases showing a missense 

variant rs149617956 that changes the amino acid from glutamic acid to lysine in known melanoma 

gene MITF. This variant is reported to be pathogenic/likely pathogenic in Clinvar and is ranked at 

position 782 (99.14 percentile) by the pipeline.   

Given that four families had variants in known germline melanoma predisposing genes, we re-ran 

the pipeline excluding these four families, and including just the nine families with no variant in a known 

germline melanoma gene. The top 15 rare variants from each family were then selected for these nine 

families based on the MFW; the set included 135 variants. The identified variants and genes were 

investigated through literature search to get insight into their role in melanoma. Potential melanoma genes 

for these 9 families after the review are summarized in Table 2.   

 188 genes are represented in the 194 variants in the top 15 variant set of 13 melanoma families 

and querying them on ReactomeFI led to the generation of 12 networks with 45 genes (Fig 2). 22 

pathways are enriched with adjusted p-values ≤0.05 in these 45 genes. Table 3 summarizes the enriched 3 

pathways from Reactome, 3 from KEGG, 10 from NCI PID, 5 from Biocarta and one from Panther. The 

top two pathways in the network-based analysis are Regulation of retinoblastoma protein and Beta2 

integrin cell surface interactions from the NCI PID database with an adjusted p-value of 0.0146. The GO 

biological processes are enriched by 309 processes within these 45 genes where the FDR value is ≤ 0.05. 

These 309 processes include sets of 8 GO biological processes where the number of genes in the process 

is > 200 and 241 GO biological processes were the number of query hit genes is 1. Table 4 summarizes 

the top 10 GO biological processes identified by the network based ReactomeFI. The top GO biological 

process is melanocyte differentiation, with an FDR of 0.02.  

Literature-informed assessment of biological commonalities  

Genes known to have germline mutation in melanoma cases, genes known to be somatically 

mutated in melanoma tumors, and genes identified through melanoma GWAS, and their overlaps, are 

summarized in Fig 3. Three genes, MITF, CDKN2A, and TERT, are shared between all three categories. 

Only one gene, MITF, had a rare variant rs149617956 in family UF10. CDK4 and BAP1 are in both the 

somatic and germline categories. No variants in CDK4 were present in the melanoma families, but one 

rare variant, g.52436841T>TAA in BAP1, was identified in family NF3. One gene, MC1R, is shared 

between the GWAS and germline categories. Two common variants rs1805007 (g.89986117C>T) and 

rs1805008 (g.89986144C>T) in MC1R is associated with melanoma in the GWAS catalogue. The MC1R 
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variant rs1805007 is associated with freckling and sun sensitivity and was present in the AF1 family 

previously shown to have a POT1 variant [14] and had an odds ratio (95% confidence interval) of 4.38 

(2.03–9.43) for the effect allele T [36]. This variant is also found in two additional families, UF21 and 

UF7, which did not have a variant in known melanoma genes. One of the cases from UF7 is homozygous 

for the T allele. Another MC1R variant, rs1805008, was observed in family UF19. The effect allele/non-

effect allele for the rs1805008 is T/C, and the family is heterozygous for the T effect allele. This allele has 

an odds ratio (95% confidence interval) of 1.64 (0.85–3.19) with an effect allele frequency of 0.098 [36]. 

 The entire ranked list of variants was searched for rsIDs associated with melanoma in the GWAS 

catalogue. Known GWAS variants were identified in the seven genes DSTYK, TYR, FAM208B, LRRC34, 

MYNN and MC1R. Table 2 lists the common variants, their percentile rank, and the family they are 

present in. The effect allele/non-effect allele for rs3851294 in DSTYK is A/G, and the effect allele 

frequency is 0.098. The germline exome data from the melanoma cases show that the cases in family UF1 

are heterozygous for the effect allele A. In a previous study, this variant had an odds ratio (95% 

confidence interval) of 1.05 (1.03-1.07) [37].  

The TYR variant rs1126809 has effect allele/non-effect allele A/G, and the effect allele frequency 

is 0.27632 with the odds ratio (95% confidence interval) of 1.27 (1.16, 1.40) [38]. Families UF16, UF19 

and UF21 are heterozygous for effect allele A, whereas family UF1 is homozygous for the effect allele. 

FAM208B variant rs45575338, which has been implicated in increased melanoma risk [39], is observed in 

3 families – UF1, UF19, and UF20. LRRC34 variant rs10936600 is present in two families, UF19 and 

NF1. The effect allele/non-effect allele for LRRC34 is A/T, and the effect allele frequency is 0.76. The 

effect allele in these two families is present in the heterozygous effect allele, where the odds ratio for the 

effect allele is previously reported to be 1.076 [40]. The rs10936599 variant in MYNN has been previously 

identified for melanoma risk variants with the effect allele/non-effect allele is C/T and the effect allele 

frequency is 0.75 with an odds ratio (95% confidence interval) of 1.06 (1.04-1.08) [37]. This variant is 

observed in families NF1 and UF19, where the effect allele is heterozygous. Another family, UF14, had 

one heterozygous case for the effect allele, whereas the other sequenced case was homozygous for the 

non-effect allele. 

Discussion 
A weight-based variant ranking pipeline was developed and validated that aids in the search for 

variants and genes that affect risk of complex familial disorders. The weights-based pipeline can be used 

to analyze sets of large and small families together. It works by ranking the variants on the age of 

diagnosis or rarity of disease subtype of the cases, the number of cases in a family, the genome fraction 

shared amongst sequenced cases in a family, allele frequency and variant deleteriousness. Ranked 

variants from large and small families are analyzed for biological commonalities between families and 

with the known disease literature to identify genes and pathways that may play a role in the genetic 

etiology of a complex genetic disease.  

The pipeline was validated using 13 families from the EGA melanoma dataset 

EGAS00001000017. No unaffected individuals were sequenced in these families, so it was not possible to 

reduce the number of variants to be prioritized by removing variants present in unaffected individuals; 

normally this step would be part of the pipeline.  

POT1 variants rs587777472 and rs587777473 and a common variant rs1805007 in MC1R 

published previously [14] were re-discovered using the pipeline. The pipeline prioritizes the variant 

rs587777472, which is present in the highly conserved OB domain of the POT1 protein over the other 

variant. The variation in the OB domain results in longer telomeres, which predisposes individuals with 

the variant to develop cutaneous melanoma [14,41]. The rs587777473 variant was of low quality when 
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observed on IGV; however, this variant was validated by capillary sequences in the cases of family AF1 

in the previously published paper [14]. POT1 is a part of the shelterin complex that plays a role in 

chromosome end maintenance by regulating the length of telomeres [42]. Variants in POT1 have been 

detected in various familial melanoma studies [41,43,44], making it a compelling susceptibility gene for 

familial melanoma. Furthermore, we identified variants in MITF and BAP1, known germline melanoma 

genes through our biological commonalities analysis. MITF is a transcription factor that plays an essential 

role in melanocyte differentiation, proliferation and survival by affecting expression of genes such 

as BCL2 [45]. rs149617956 variant in MITF has been previously identified as a risk variant by linkage 

analysis of 31 melanoma families under the dominant model with the odds ratio of 2.7 and is involved in 

increasing the transcriptional activity of MITF function by preventing SUMOylating [46]. BAP1 encodes 

a tumor suppressor protein that deubiquitinates BARD1 and regulates the E3 ligase activity of the 

BRCA1–BARD1 complex [47]. BAP1 has been implicated in uveal melanoma, but studies indicate that 

this gene can predispose to cutaneous melanoma [48,49]. Interestingly, the rank of variants in known 

melanoma susceptibility genes indicates that there were many variations with high CADD scores in the 

genomes of these families. For instance, the top-ranking variant rs149731136 in ALV9, plays a role in 

progression of cell cycle progression [50]. This gene is known to be involved in colorectal cancer and 

there is a risk of colorectal cancer in families affected with melanoma [51,52] making ALV9 a candidate 

susceptibility gene for melanoma. Further, some of these variants in the known melanoma-causing genes 

might have moved higher in the ranked list after removing false positive variants from IGV.   

The additional analysis of 9 families without variation in known germline melanoma genes 

identified other putative genes that might play a role in melanoma. Family NF1 had a variant rs56348064 

in the LATS1 gene, part of the hippo signaling pathway that acts as a negative regulator of YAP1, where 

inactivation of LATS1 results in the accumulation of YAP protein and subsequent activation of target cell 

proliferation genes [53].  Family UF1 contains a variant rs145360877 in UNC93A, which was detected in 

another melanoma family identified through literature search, although little is known about the gene  

[54]. This family also has a variation rs200431478 in the MYC proto-oncogene which is a transcription 

activator for my genes involved in cell cycle regulation. Copy number variations in MYC have been 

reported in melanoma cases [55]. Family UF21 has a variant rs11571833 that introduces a premature stop 

codon in BRCA2, a gene known to be involved in DNA repair.  The premature stop codon identified in 

family UF21 has been previously reported in another published melanoma family [56]. Recent studies 

suggest; however, that BRCA2 may not contribute to pathogenesis of melanoma [57,58]. Another family, 

UF14, has a variant rs146040966 in FANCI, which is part of the Fanconi anemia complementation group. 

This gene is involved in DNA repair pathway which is known to upregulated in melanoma thereby 

contributing to melanoma pathogenesis [59]. Family NF2 has a variant rs1212341816 in DOT1L, a 

histone methyltransferase that methylates lysine 79 of histone H3 which aids in the regulation of cell 

cycle [60]. The role of DOT1L has been elucidated in nuclear excision repair (NER) where it recruits 

NER factors to the site of ultraviolet induced DNA damage [61]. This family and the DOT1L variant it 

carries have been previously reported as co-segregating with melanoma [62]. The role of DOT1L in cell-

cycle regulation and DNA repair, along with previous mutations reported in this gene, makes DOT1L a 

strong candidate for a susceptibility gene for familial melanoma.  

Variants responsible for familial disorders would be expected to be rare in human populations as the 

variants might be subjected to negative selection. Common variants may impart susceptibility to diseases, 

but the contribution of these variants is usually small. Both rare and common variants may contribute to 

complex disorders in families affected with such cancers. For this reason, we designed the pipeline not to 

filter out any variant but instead rank them, providing an opportunity to evaluate any variant in the ranked 

list whether rare or common.  
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We verified the MC1R variant reported previously [14]. MC1R plays a role in skin pigmentation, 

protects chromosome stability, and is involved in DNA damage response by increased phosphorylation of 

DNA repair proteins in melanocytes explaining why variants in MC1R are associated with increased risk 

to melanoma [63,64]. Some families with a common variant rs1805008 or rs1805007 in MC1R developed 

melanoma at a young age, such as in family UF7 with rs1805007 had cases that developed melanoma 

before age 40. Similarly, the common variant rs1805008 observed in family UF19 had two cases 

sequenced that also developed melanoma before 40. One of the five genes in family UF19 is MYNN, and 

this same variant is found in family NF1 along with a variant with LRRC34 known to be associated with 

an increased risk of melanoma. This family also showed early onset melanoma at the age of < 40 and 40-

49 years. The risk of early onset of melanoma might be due to the contribution of the common variants in 

genes known to be associated with melanoma. These findings would have been ignored if common 

variants had been filtered out. Remarkably, most of these common variants identified in the EGA 

melanoma dataset were ranked highly, ranging between 98 to 91 percentiles by the pipeline.   

The top pathways detected were the Regulation of retinoblastoma protein and Beta2 integrin cell 

surface interactions pathway from NCI Pathway Interaction Database. The retinoblastoma pathway plays 

an essential role in cell cycle control, and dysregulation of the cycle is a hallmark of cancer development. 

Inactivation of the retinoblastoma pathway has been identified in various cancers, including in the 

pathogenesis of melanoma [65,66]. Genes in the retinoblastoma pathway that were identified in the 

melanoma families of this study were HDAC3, BRD2, MITF, and RUNX2, making them putative 

candidate genes for melanoma susceptibility. Of these genes, BRD2 is known to be overexpressed in 

melanoma and the knockdown of BRD2 in melanoma cell lines has resulted in cell cycle arrest by 

preventing the progression of cells from G1 to S phase [67]. The role of RUNX2 has been evaluated in 

inducing cell growth, migration and invasion by ShRNA-mediated knock down of RUNX2 in melanoma 

cell lines. [68] The role of this gene in tumor progression implies that a germline alteration in RUNX2 

might increase the susceptibility risk of melanoma pathogenesis. Integrins play a role in interconnection 

of cells with other cells and extracellular matrix. Integrins activate and control many signalling pathways 

that regulate cell proliferation, migration and apoptosis, indicating that they have a potential role in 

tumour progression and metastasis in melanoma [69]. Some genes, such as ITGAM with the integrin 

pathway, have been associated with an increased risk of melanoma [70]. Therefore, observing the Beta2 

integrin cell surface interactions as a high-ranking pathway is not surprising. Notably, one melanoma 

family UF7 had germline variations in BRD2, part of the retinoblastoma pathway and ITGAV, an integrin 

gene where both the sequenced cases developed melanoma before the age of 40 years. The top GO 

biological process identified was melanocyte differentiation, where unspecialized cells become 

melanocytes. Since this process was enriched amongst the genes that contain the most highly ranked 

variants, it suggests the involvement of USP13, GLI3 and MITF in melanoma.  

This pipeline has some strengths and represents significant advances over current approaches to 

complex disorders. First, variants in a mixture of small and large families can be analyzed together. The 

large families help filter the shared variants so that the focus is on a few exciting variants; small families 

can provide a bulk of data in which to seek biological commonalities. Second, the pipeline is not limited 

to a disease mode of inheritance, which is a requirement for some family-based approaches. The pipeline 

can therefore be applied to families where the mode of inheritance is unclear or to families affected with 

complex disorders. Third, the variant databases used in the pipeline can be replaced or combined as better 

databases for variant prioritization are developed. Fourth, the biological commonalities search provides a 

unique opportunity to identify novel genes and pathways involved in complex disorders, thereby 

increasing our knowledge about disease etiology, and analyzing known disease genes with rare and 

common variants.  

The pipeline also has several limitations. There are many common variants, and understanding 

their impact is generally limited to genome-wide association studies. The pipeline relies on the GWAS 
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catalogue for the analysis of common variants. The function and mechanism of pseudogenes in cancer 

remain unclear; therefore, the top 15 biological commonalities analysis excludes weighted variants in 

pseudogenes. The weighted variants in pseudogenes can be analyzed as more information on their 

function becomes available or if the gene gets classified during reference genome update. The top 15 

variants from each family were selected to analyze biological commonalities between families. The 

number 15 was chosen to allow examination of multiple variants from each family while still being a 

feasible size of data set to analyze; other cutoffs could be used, depending on the level of genetic 

heterogeneity suspected of the disease under study. It is expected that the rare variants that might be 

involved in causing the disease will be ranked higher; the top 15 variant analysis helps investigate a 

handful of ranked variants from all the families. 

Deciphering the genetic architecture of complex disorders is a challenge compared to Mendelian 

disease, which has had a success rate of about 60-80% [71]. This challenge is in part because complex 

disorders are multifactorial. Studies of complex familial disorders most often focus on variants in genes 

and pathways from the literature that are known to be involved in disease etiology. However, focusing on 

biological commonalities between families allows us to ask this biological question in a way that is less 

dependent on current knowledge, and has the potential to uncover novel genes and pathways involved in 

the disease.  

Conclusion 
We have developed Weight-based vAriant Ranking in Pedigrees (WARP) pipeline for gene 

identification in families with complex genetic disorders. The pipeline is able to take advantage of data 

from both large and small families and is useful in situations where genetic heterogeneity is expected, and 

biological commonalities are plausible. We validated the pipeline using data from melanoma families in 

EGA. The pipeline not only detected the POT1 variants previously reported but also prioritized rare and 

common variants in other known melanoma-causing genes and identified other genes that may have a role 

in melanoma. This approach could be applied to sets of families with other complex disorders, 

particularly cancers.  
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Tables  

Table 1: Summary of 5 genes with more than one variant identified during the biological commonalities 

of top 15 analysis in 13 families. 

  

Gene ID 
Allele 

Frequency 

CADD 

score 
Consequence 

Family 

IDs 

Rank 

(percentile) 

DNAH11 
rs775108833 3.76E-05 24.7 Missense variant UF19 99.91 

rs72657389 3.29E-03 26 Missense variant UF7 99.81 

EFHB 
novel novel 28.7 Missense variant UF21 99.79 

rs145933876 6.64E-03 23.9 Missense variant UF10 99.76 

POT1 
rs587777473 9.13E-06 33 Splice acceptor variant AF1 93.29 

rs587777472 5.96E-05 24.4 Missense variant UF20 96.75 

RYR3 

rs201633381 1.01E-03 25.6 Missense variant UF19 99.96 

rs190035689 1.42E-04 25 Missense variant UF19 98.38 

rs181264765 2.73E-03 32 Missense variant NF3 99.75 

USH2A 
rs80338902 1.55E-03 28.9 Missense variant UF15 99.13 

rs1356404884 1.76E-05 23.1 Missense variant NF3 98.38 
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Table 2: Putative melanoma susceptibility genes with rare and common variants detected in 13 melanoma families.  

Family 

ID 

Total 

Cases / 

No.of 

sequenced 

cases 

Age of Dx Rare varaints (top 15 analysis) Common variants  

<40 
40-

49 

50-

59 

60-

70 
>70 

Genes 

with rare 

variants  

rsID 
Allele 

frequency 

CADD 

PHRED 
Consequence 

Ranke 

percentile 

Genes with 

common 

variants  

rsID 
Allele 

frequency 

CADD 

PHRED 
Consequence 

Ranke 

percentile 

NF1 4/3  × ×× 
      LATS1 rs56348064 9.70E-04 26.7 Missense 99.7 LRRC34 rs10936600 0.24 15 Missense 92.8 

      CSMD1 rs190894161 3.50E-03 22.9 Missense 99.3 MYNN rs10936599 0.24 13 Missense 25.8 

NF2 4/2 

  

×  

  

×  

  HDAC9 rs748442936 0 26.8 Missense 93.8             

      DOT1L rs1212341816 0 26.6 Missense 93.7        

      SPAG5 rs138772502 2.30E-03 24.5 Missense 92.6             

NF3 5/4 ×   ×   ×× BAP1*   NOVEL 33 Frameshift 99.9             

UF1 4/2 

    

× x 

  UNC93A rs145360877 3.90E-03 36 Stop gained 92.1             

      NCSTN*   NOVEL 26.6 Missense 86.2        

      USP13 rs928260904 3.80E-05 29 Missense 87.0        

      MYC rs200431478 4.50E-04 28 Missense 86.8             

UF10 3/3 ×     ××   MITF rs149617956 2.50E-03 29 Missense 99.1             

UF14 4/2 ×× 
        FANCI rs146040966 2.30E-04 31 Missense 98.8             

        AGAP2 rs35567553 4.52E-03 28.1 Missense 98.6             

UF15 8/2 × 
  

× 
    AVL9 rs149731136 8.80E-06 42 Stop gained 99.9             

      SYNE2 rs34449017 3.67E-03 22.5 Missense 99.4        

UF16 4/2 

    

× 

  

× 

ELAVL1 rs117307819 9.30E-03 12.75 Synonymous 94.3 TYR rs1126809 0.28 29 Missense 96.9 

      ITGAM rs199671976 3.50E-03 24.5 Missense 94.8        

      OPN3 rs138406816 1.20E-03 24.7 Missense 94.9        

UF19 6/2 xx 

        RYR3 rs201633381 1.01E-03 25.6 Missense 99.8 MC1R rs1805008 0.07 22 Missense 98.6 

        RYR3 rs190035689 1.42E-04 25 Missense 99.8 TYR rs1126809 0.28 29 Missense 96.9 

        PAPD5 rs371120727 1.27E-04 24.7 Missense 99.8 LRRC34 rs10936600 0.24 15 Missense 92.8 

               FAM208B rs45575338 0.20 11 Missense 91.0 

                    MYNN rs10936599 0.24 13 Missense 25.8 

UF20 5/3 ×× ×       POT1 rs587777472 5.96E-05 24.4 Missense 99.9 FAM208B rs45575338 0.20 11 Missense 91.0 

UF21 3/2 

  

x 

    

x 

BRCA2 rs11571833 7.80E-03 36 Stop gained 96.3 MC1R rs1805007 0.07 29 Missense 98.6 

      FAM111B rs199851144 8.26E-03 15.28 Frameshift 94.8 TYR rs1126809 0.28 29 Missense 96.9 

      TBC1D7 rs80189640 4.50E-03 27.9 Missense 93.1        

      AHNAK rs116243978 4.31E-03 24.1 Missense 91.0        

UF7 4/2 xx 
        ITGAV rs768771232 3.80E-05 31 Missense 98.8 MC1R rs1805007 0.07 29 Missense 98.6 

        BRD2 rs35845948 3.76E-05 25 Missense 98.2        

AF1 6/3     × × × POT1 rs587777473 9.10E-06 33 
splice 

acceptor 
96.8 MC1R rs1805007 0.07 29 Missense 98.6 

 

 

x represents number of cases 
*The position for novel BAP1 variants is chr3:52436841:T>TAA and that for NCSTN is chr1:160321877:C>T 

Black shading indicates known melanoma genes that share biological commonalities between known germline melanoma genes, and genes somatically mutated in melanomas, and/or genes identified through GWAS of melanoma cases  
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Table 3: Pathway enrichment analysis with ReactomeFI.  

Pathways enriched in the networks Database 
Adjusted 

p-value 
Genes 

Regulation of retinoblastoma protein NCI PID 0.0146 HDAC3,BRD2,MITF,RUNX2 

Beta2 integrin cell surface interactions NCI PID 0.0146 ITGAM,FGG,ITGAD 

Complement and coagulation cascades KEGG 0.0146 ITGAM,C7,C9,FGG 

RNA Polymerase II Transcription Reactome 0.0146 HDAC3,HTT,HDAC9,GLI3,MYC,RBBP8,ZNF521,FANCI,BRD2,ESR1,RUNX2 

Extracellular matrix organization Reactome 0.0146 ITGAM,CAPN2,ITGAV,FGG,ITGAD,COL4A3 

Signaling events mediated by HDAC Class II NCI PID 0.0146 HDAC3,HDAC9,ESR1 

FOXM1 transcription factor network NCI PID 0.0146 BRCA2,MYC,ESR1 

Urokinase-type plasminogen activator (uPA) and 

uPAR-mediated signaling NCI PID 
0.0146 

ITGAM,ITGAV,FGG 

Pathways in cancer KEGG 0.0146 BRCA2,GNAI1,GLI3,MYC,ITGAV,MITF,ESR1,COL4A3 

Beta3 integrin cell surface interactions NCI PID 0.0146 ITGAV,FGG,COL4A3 

overview of telomerase protein component gene htert 

transcriptional regulation BioCarta 
0.0146 

MYC,ESR1 

alternative complement pathway BioCarta 0.0146 C7,C9 

IL6-mediated signaling events NCI PID 0.0146 MYC,FGG,MITF 

lectin induced complement pathway BioCarta 0.0151 C7,C9 

Thyroid hormone signaling pathway KEGG 0.0177 HDAC3,MYC,ITGAV,ESR1 

classical complement pathway BioCarta 0.0191 C7,C9 

Signaling by NOTCH1 Reactome 0.0241 HDAC3,HDAC9,MYC 

Beta1 integrin cell surface interactions NCI PID 0.0285 ITGAV,FGG,COL4A3 

Regulation of Telomerase NCI PID 0.0292 MYC,ESR1,POT1 

Integrin signalling pathway Panther 0.0352 ITGAM,ITGAV,ITGAD,COL4A3 

Regulation of nuclear SMAD2/3 signaling NCI PID 0.0363 MYC,ESR1,RUNX2 

intrinsic prothrombin activation pathway BioCarta 0.0366 FGG,COL4A3 

 

Note: The table contains 22 significant pathways from enrichment analysis of 45 genes in the top 15 rare variant analyses that were clustered to 

form 15 networks in 13 melanoma families. Adjusted p-values ≤ 0.05 were considered significant. 
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Table 4: Top 10 GO Biological Processes identified through enrichment analysis 

GO Biological Processes 
Adjusted p-

value 
Genes 

melanocyte differentiation 0.0202 USP13,GLI3,MITF 

positive regulation of protein localization to cell cortex 0.0241 GPSM2,GNAI1 

positive regulation of spindle assembly 0.0241 GPSM2,SPAG5 

establishment of protein localization to telomere 0.0261 BRCA2,POT1 

cell adhesion mediated by integrin 0.0284 ITGAM,ITGAV,ITGAD 

cell-matrix adhesion 0.0284 ITGAM,ITGAV,FGG,ITGAD 

protein import into peroxisome matrix 0.0361 PEX2,PEX6 

cell division 0.0361 GPSM2,GNAI1,RBBP8,KNTC1,SPAG5,LATS1 

G1/S transition of mitotic cell cycle 0.0361 MYC,RBBP8,LATS1 

cellular response to estrogen stimulus 0.0361 MYC,ESR1 

Analyses included 15 ReactomeFI networks identified from the top 15 rare variant analysis set from 13 melanoma families. 
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Figures 

 

Fig 1: Overview of the weight-based variant ranking pipeline for complex familial disorders. 

Generated using draw.io (version 21.6.5; https://app.diagrams.net/)  
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Fig 2: Biological interaction network generated using Cytoscape v3.9.1 for top15 variants from 13 

melanoma families. 
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Fig 3: Biological commonalities between known germline melanoma genes, and genes somatically 

mutated in melanomas, and/or genes identified through GWAS of melanoma cases.  

Generated using Venn Diagrams (https://www.vandepeerlab.org/?q=tools/venn-diagrams) 
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