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ABSTRACT 18 

Human-induced climate change has intensified negative impacts on socioeconomic factors, 19 

the environment, and biodiversity, including changes in rainfall patterns and an increase in 20 

global average temperatures. Drylands are particularly at risk, with projections suggesting 21 

they will become hotter, drier, and less suitable for a significant portion of their species, 22 

potentially leading to mammal defaunation. We use ecological niche modelling and 23 

community ecology biodiversity metrics to examine potential geographical range shifts of 24 

non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate 25 
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impacts of climate change on mammal assemblages. According to projections, 85% of the 26 

mammal species will lose suitable habitats, with one quarter of species projected to 27 

completely lose suitable habitats by 2060. This will result in a decrease in species richness for 28 

more than 90% of assemblages and an increase in compositional similarity to nearby 29 

assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized 30 

mammals will be the most impacted and lose most of their suitable habitats, especially in 31 

highlands. The scenario is even worse in the eastern half of Caatinga where habitat 32 

destruction already prevails, compounding the threats faced by species there. While species-33 

specific responses can vary with respect to dispersal, behaviour, and energy requirements, our 34 

findings indicate that climate change can drive mammal assemblages to biotic 35 

homogenisation and species loss, with drastic changes in assemblage trophic structure. For 36 

successful long-term socioenvironmental policy and conservation planning, it is critical that 37 

findings from biodiversity forecasts are considered. 38 

 39 

Keywords: Beta-diversity, Biotic homogenisation, Body size, Drylands, Ecological Niche 40 

Models; Mammals  41 
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INTRODUCTION 42 

Defaunation typically refers to the depletion of fauna caused by overexploitation, habitat 43 

destruction, and invasive species (Dirzo et al., 2014; Redford, 1992). At large spatial scales, 44 

defaunation may generate complex spatial patterns rather than a simple reduction in species 45 

richness, which depend on species-specific responses to defaunation drivers and landscape 46 

configuration (Bogoni et al., 2020)  Climate change adds another layer of complexity to the 47 

spatial consequences of defaunation, since, besides posing an additional threat to wildlife, it is 48 

expected to reshape species distribution patterns. In response to a changing the climate, 49 

species can be displaced to regions with more favourable conditions, experiencing either 50 

geographic range contraction or expansion (Lenoir & Svenning, 2015). Species with higher 51 

tolerance to environmental change (e.g., disturbance-adapted, habitat generalists, wide-52 

ranging, and synanthropic species) are less likely to be affected and may even expand their 53 

occurrence to novel habitats. In contrast, more sensitive species (e.g., habitat specialists, 54 

narrow-ranging species) may lose suitable areas and eventually becoming locally extinct 55 

(Filgueiras et al., 2021). These differences in species responses have the potential to change 56 

richness and composition of local assemblages, ultimately affecting biodiversity patterns. 57 

The widespread loss of specialist species reduces local species richness (alpha 58 

diversity) and may increase the similarity in species composition across space, decreasing 59 

beta diversity, a phenomenon termed biotic homogenisation (Mckinney & Lockwood, 1999). 60 

Most often, biotic homogenization also result from increases in local richness due to the 61 

colonization of species assemblages by generalists (Filgueiras et al., 2021; Socolar et al., 62 

2016). However, species redistribution may also increase the spatial heterogeneity in 63 

assemblage composition, either due to the gain of disturbance-adapted species or to the loss of 64 

widespread species (Socolar et al., 2016). Although studies on the effects of climate change 65 

over biodiversity patterns often emphasize the biotic homogenization due to species loss 66 
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(Clavel et al., 2011; Hidasi-Neto et al., 2019; Moura et al., 2023), the prevalence each of 67 

those process is likely context dependent, and spatial patterns will vary according to species 68 

composition, the level of spatial heterogeneity in environmental conditions and the severity of 69 

climate changes. 70 

The potential effects of biotic homogenization have been studied mostly in tropical 71 

rainforests (Sales et al., 2020), leaving other types of systems highly subject to climate change 72 

understudied. Because future climate projections also include changes in the volume, 73 

frequency, and geography of rainfalls (IPCC, 2021), climate change is particularly worrying 74 

for regions already facing scarcity of water. For instance, drylands are expected to become 75 

hotter, drier, and less suitable for a significant portion of their species (Aguirre-Gutiérrez et 76 

al., 2020). If these projections are confirmed, it is likely that drylands will gradually become 77 

impoverished, homogenised, and driven towards desertification (Moura et al., 2023; Torres et 78 

al., 2017). One of Earth’s most vulnerable drylands, the Caatinga, is also the largest tropical 79 

dry forest in South America (Banda-R et al., 2016; Hoekstra et al., 2004; Silva et al., 2017). In 80 

addition to being affected by chronic disturbances (Antongiovanni et al., 2020), this semiarid 81 

region underwent a high degree of defaunation associated with habitat loss and poaching in 82 

the past five centuries (Alves et al., 2012; Barboza et al., 2016; Bogoni et al., 2020), showing 83 

a high proportion of locally threatened species, including endemic ones (Leal et al., 2005) 84 

Besides being an ideal study system to the consequences of climate change on biodiversity 85 

distribution patterns, investigating the response of tropical dry forest mammals to climate 86 

change can help elucidate impacts of environmental change on dryland biodiversity. 87 

In the Caatinga drylands, about half of the mammal species are non-volant 88 

(Carmignotto & Astúa, 2018). Although many of these species are shared with neighbouring 89 

biomes (Carmignotto et al., 2012), the composition of Caatinga mammals reflects a complex 90 

biogeographic history that has involved periodical expansions and retractions of tropical dry 91 
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forests across different mountain ranges along the Pleistocene (Silva et al., 2017). On the one 92 

hand, Caatinga species have historically experienced high climatic variation (Costa et al., 93 

2018), which may have selected organisms able to keep pace with climate change (Riddell et 94 

al., 2021; Schloss et al., 2012). If so, future climate change would have limited influence on 95 

species richness and composition of mammal assemblages. However, if Caatinga species are 96 

already near their physiological limits (Araújo et al., 2013) or have relied on highland humid 97 

enclaves as refuges over evolutionary time (Werneck et al., 2011), further increases in arid 98 

conditions could trigger a range shift in these species with consequences for assemblage 99 

structure. 100 

Herein, we used ecological niche modelling and community ecology biodiversity 101 

metrics to examine potential geographical range shifts of non-volant mammal species in the 102 

Caatinga and evaluate impacts of climate change on mammal assemblages. We combined data 103 

on species distribution and body mass to investigate projected changes in geographical 104 

patterns of mammal richness and spatial dissimilarity across different future climate 105 

scenarios. Specifically, we sought to determine whether the balance between potential range 106 

contraction or expansion may increase or decrease species richness (alpha diversity) and how 107 

those changes in distribution may impact homogenisation or heterogenisation of faunal 108 

composition (beta diversity) across space. Because ecological losses are often non-random, 109 

with large-sized and longer-lived non-volant mammals disappearing first (Carmona et al., 110 

2021; Cooke et al., 2019), we also examined how changes in average body mass per 111 

assemblage (if any) was linked to species loss and biotic homogenisation. Because the 112 

elevational gradient around highlands appears to sustain more favourable conditions for non-113 

volant mammals (Becker et al., 2007), we expected relatively lower changes in species 114 

richness and composition of mammal assemblages at higher elevations, with overall decline 115 

in richness and biotic homogenization associated with a reduction in average body mass. 116 
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 117 

METHODS 118 

Species Data 119 

We compiled occurrence data of Caatinga non-volant mammals searching for different term 120 

combinations: “mamíferos”, “caatinga”, “nordeste”, “dataset”, “northeast”, “dryland”, and 121 

“mammals” in Google Scholar, identifying 185 mammal species known to occur in the 122 

Caatinga. We then used 19 published studies to extracted occurrence records collected 123 

between 1957 and 2021 (Asfora et al., 2011; Brennand et al., 2013; Culot et al., 2019; Feijó & 124 

Langguth, 2013; Freitas, 1957; Gardner, 2008; Geise et al., 2010; Gurgel-Filho et al., 2015; 125 

Lima et al., 2017; Malcher et al., 2017; Mares et al., 1981; Mendonça et al., 2018; Nagy�Reis 126 

et al., 2020; Nascimento & Feijó, 2017; Oliveira et al., 2003; Patton et al., 2015; Pires & 127 

Wied, 1965; Santos et al., 2019; Souza et al., 2019). We also incorporated data from the 128 

mastozoological collection of Universidade Federal da Paraíba (the largest mammal collection 129 

of Northeastern Brazil) and other collections included in the Global Biodiversity Information 130 

Facility (GBIF, 2023). We included species occurrence records if information was available 131 

on coordinates, collection year, and species taxonomy in agreement with specialized literature 132 

(Carmignotto & Astúa, 2018; Feijó et al., 2016; Feijó & Langguth, 2013; Gardner, 2008; 133 

Gurgel-Filho et al., 2015; Nascimento & Feijó, 2017; Oliveira & Langguth, 2004; Patton et 134 

al., 2015; Quintela et al., 2020). After excluding the bat species, our database summed 39,459 135 

occurrence records for 93 species of non-volant mammals.  136 

We used the CoordinateCleaner R package (Zizka et al., 2019) to remove duplicates 137 

and geoprocessing errors (records distant less than 1 km from municipality, state, or country 138 

centroids, or located over water), leading to 18,758 records. To reduce the potential effect of 139 

sampling bias and spatial autocorrelation in the occurrence dataset, we randomly filtered one 140 

occurrence record for each species within a radius of ~10 km (Kramer-Schadt et al., 2013). At 141 
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this point, all species in the database had at least 5 occurrence records. Our final dataset 142 

included 11,900 unique occurrence records of 93 species distributed across the Neotropical 143 

realm (Fig. S1). Information on mammal body mass was extracted from the EltonTraits 144 

(Wilman et al., 2014), Phylacine (Faurby et al., 2018) and Combine databases (Soria et al., 145 

2021) and complemented through specialised literature (see Data Availability for complete 146 

sources on body mass data). 147 

 148 

Current and future projections 149 

We used 19 bioclimatic variables from the WorldClim v2.1 (Fick & Hijmans, 2017)� in the 150 

spatial resolution of 5 arc-min (~100 km² pixel) to represent the current climate. The global 151 

bioclimatic layers were cropped to the extent of Neotropical realm (i.e., our model’s 152 

background). To avoid problems with multicollinearity and reduce the dimensionality of 153 

predictor layers, we conducted a principal component analysis on the bioclimatic layers and 154 

retained the predictor axes that cumulatively explained 95% of data variation (De Marco & 155 

Nóbrega, 2018)�. We projected the linear relationships between raw predictors and principal 156 

components onto new layers representing future climate scenarios using the PCA loading 157 

coefficients derived from climatic data. 158 

The future climate projections can vary according to different Shared Socioeconomic 159 

Pathways (SSPs) that consider distinct paths to greenhouse gas emissions and the human 160 

demographic growth (IPCC, 2021). We employed climate projections for the optimistic (SSP 161 

245) and pessimistic (SSP 585) scenarios for the period of 2041-2060 (hereafter 2060) and for 162 

the period 2081-2100 (hereafter 2100), both derived from the 6th IPCC Assessment Report 163 

(IPCC, 2021). The SSPs were created in agreement with different Generalised Circulation 164 

Models (GCMs) that simulate climatic alterations considering various atmospheric processes 165 

(IPCC, 2021). To minimise uncertainties about the choice of a particular GCM (Diniz-Filho et 166 
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al., 2009; Thuiller et al., 2019), we selected the five distinct GCMs, namely: BCC-CSM2-MR, 167 

CNRM-CM6-1, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0. 168 

 169 

Ecological niche models 170 

Recent investigations have showed that 17 occurrence records would be necessary to build 171 

traditional ecological niche models (ENMs) for species in the Caatinga (Sampaio & 172 

Cavalcante, 2023; van Proosdij et al., 2016). Because almost 20% of mammal species herein 173 

considered did not reach this occurrence threshold, we separated our dataset into species with 174 

either <20 presences (considered as ‘rare’) or ≥20 presences (considered as ‘common’). We 175 

then applied the traditional ENM approach to model habitat suitability of common species 176 

and used the Ensemble of Small Models (ESM) approach (Breiner et al., 2015) to model the 177 

rare species. Before modelling, we established the calibration (accessible) area of each species 178 

as a buffer around its occurrence records, with a width size equal to the maximum nearest 179 

neighbour distance among pairs of occurrences (Barve et al., 2012). Within each species 180 

calibration area, we computed pseudo-absences using the ratio of 0.5 presence-absence for 181 

common species and 0.1 for rare species to avoid very unbalanced models while maximising 182 

sampling units (Barbet-Massin et al., 2012; Liu et al., 2019). To increment discriminatory and 183 

explanatory capacities of models, we allocated pseudoabsences following the environmentally 184 

constrained method, based on the lowest suitable region predicted by a climate envelope 185 

(Engler et al., 2004; Lobo & Tognelli, 2011). 186 

Considering that the algorithm choice can affect the habitat suitability estimation 187 

(Diniz-Filho et al., 2009; Rangel & Loyola, 2012), we computed an ensemble of projections 188 

using four algorithms. For the species modelled using the traditional ENM approach, we used 189 

the following algorithms: Generalised Linear Models (using linear and quadratic terms), 190 

Generalised Additive Models (using smooth terms with three dimensions), Maximum Entropy 191 
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(using 10,000 background points and default features based on MaxNet package; Phillips et 192 

al., 2017), and Random Forests (with the mtry parameter automatically tuned by growing 193 

1000 trees through tuneRF function in randomForest package; Breiman, 2001; Liaw & 194 

Wiener, 2002). For the species modelled using the ESM approach, we used the Generalised 195 

Linear Models, Generalised Additive Models (using smooth terms with two dimensions), and 196 

Gradient Boosting Models (using learning rate of 0.1 and 100 trees), and Neural Networks 197 

(with 2 hidden layers, and decay parameters of 0; Breiner et al., 2018). For each method and 198 

rare species, we obtained the ESM by averaging the habitat suitability of bivariate models 199 

weighted by their respective model Somers’ D [D = 2 × (AUC − 0.5)] (Breiner et al., 2015). 200 

The ESMs computed for the four abovementioned methods were then used to build an 201 

ensemble of projections for each rare species. 202 

When projecting ENMs to new regions or time periods, it is possible to project habitat 203 

suitability for conditions outside the range represented by the training data (Elith et al., 2010). 204 

To account for the impact of model extrapolation on each species projection, we computed 205 

the Mobility-Oriented Parity (MOP) metric (Owens et al., 2013) within the calibration area of 206 

each species. We calculated the MOP metric by measuring the Euclidean distance between 207 

environmental conditions of the projected pixel and the nearest 10% training data 208 

observations (Montti et al., 2021). The MOP metric was further normalized to 1 and 209 

subtracted from 1 to reflect environmental similarity (Owens et al., 2013). We filtered habitat 210 

suitability estimates for projected pixels showing very high (MOP values ≥ 0.9), high (MOP ≥ 211 

0.8), and moderate (MOP ≥ 0.7) environmental similarity with the training data. To minimise 212 

issues with unlimited dispersal, we restricted all projections to the respective calibration area 213 

defined for each species. 214 

We calibrated the models using 5-folds cross-validation, with 80% of randomly 215 

selected observations (presences and pseudo-absences) used for training, and the remaining 216 
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20% used for testing at each iteration (Roberts et al., 2017). Model performance was 217 

evaluated through computation of Sorensen similarity index (ranging from 0 to 1) between 218 

observations and binary predictions (Leroy et al., 2018)�. The habitat suitability threshold 219 

selected to make predictions binary was chosen to maximise the Sorensen index. We also 220 

computed complementary metrics of model performance, True Skill Statistic (TSS, ranging 221 

from −1 to 1) and Area Under Curve (AUC, ranging from 0 to 1) (Liu et al., 2011), to 222 

facilitate comparisons across literature. For the current climate, and for each combination of 223 

GCM, SSP, and year, we computed the ensemble model as the average weighted habitat 224 

suitability across algorithms, with the Sorensen index used as weight (Andrade et al., 2020). 225 

The ensemble model was then made binary using average weighted binarization threshold, 226 

with weights given by the Sorensen’s index of the respective algorithm (Andrade et al., 2020; 227 

Thuiller et al., 2019). We used the standard deviation of habitat suitability across the GCMs as 228 

a measure of future model uncertainty. 229 

Lastly, we applied spatial constraints a posteriori to minimise overprediction issues 230 

associated with species binary maps derived from ENMs. We used the occurrence-based 231 

threshold method (OBR) to exclude unreachable patches of current suitable habitats for each 232 

species (Mendes et al., 2020). This approach assumes that suitable patches are reachable if 233 

they either overlap with species presence records (occupied patch) or are within an edge-edge 234 

distance threshold of an occupied suitable patch (Mendes et al., 2020). We defined the 235 

distance threshold as the maximum nearest neighbour distance among pairs of occurrences of 236 

each species. All computations were performed in R 4.2.0 (R Core Team, 2022) using the 237 

ENMTML package (Andrade et al., 2020) to build the traditional ENMs and the flexsdm 238 

package (Velazco et al., 2022) to compute the ESMs. 239 

 240 

Assemblage-level biodiversity metrics 241 
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We divided the Caatinga using an equal-area projection grid cell of 10 × 10 km. We overlaid 242 

our grid cells (i.e., species assemblages) with binary maps to build presence-absence matrices 243 

for the current time and each future scenario (2060 SSP245, 2100 SSP245, 2060 SSP585, and 244 

2100 SSP585). To represent the aggregate model uncertainty in future scenarios, we used the 245 

average standard deviation of habitat suitability for species in each grid cell (species 246 

assemblage). More specifically, we initially averaged the variances (i.e., the squared 247 

deviations) for species habitat suitability in each cell, and then square rooted the outcome to 248 

get the average standard deviation (AvgSD) for each future year–SSP scenario combination 249 

(2060 SSP245, 2060 SSP585, 2100 SSP245, and 2100 SSP585). 250 

Species richness corresponded to the number of species (S) present in each grid cell. 251 

The spatial beta-diversity was represented by the multisite Simpson dissimilarity index − βSIM 252 

(Baselga, 2010), which is recommended for macroecological investigations given its 253 

independence of richness differences (Kreft & Jetz, 2010). We computed βSIM between each 254 

focal cell and its immediate neighbouring cells. However, the number neighbouring cells is a 255 

proxy to area and can therefore affect the βSIM via species-area relationship (Baselga, 2013). 256 

To circumvent this issue, we randomly selected four neighbouring cells around each focal cell 257 

to compute βSIM. We repeated this procedure 100 times and extracted the average βSIM across 258 

iterations to obtain the per cell βSIM. Computations were performed in R using the betapart 259 

package (Baselga & Orme, 2012). 260 

For each grid cell, we also computed the geometric mean of log10 body mass across its 261 

member species (Avgmass) as a proxy for the structure of mammal assemblages (Bogoni et al., 262 

2020). We calculated the richness difference between future and current period (∆S = Sfuture – 263 

Scurrent) and change in spatial beta-diversity (∆βSIM = βSIM.future – βSIM.current) to identify species 264 

assemblages subject to biotic homogenization (∆βSIM < 0) or heterogenization (∆βSIM > 0). 265 

Similarly, we computed the ratio of average body mass of future to current projections 266 
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(MassRatio = Avgmass.future / Avgmass.current) to quantify relative changes in mammal 267 

assemblages. MassRatio < 1 indicated future assemblage with lower average body mass than 268 

today, while MassRatio > 1 indicated the opposite. 269 

To assess the influence of potential topographical refuges in shaping assemblage-level 270 

biodiversity metrics in Caatinga, we also categorised grid cells between lowlands (i.e., areas 271 

<500 m elevation) and highlands (i.e., areas >500 m elevation). The threshold of 500 meters 272 

allowed the detection of the five major Caatinga mountain ranges (e.g., Chapada Diamantina, 273 

Planalto da Borborema, Chapada do Araripe, Serra da Ibiapaba, and the highest parts of the 274 

Serra da Capivara and Serra das Confusões, see Fig. S2). We used Kruskal-Wallis tests to 275 

assess whether the medians of (i) Current species richness, (ii) ∆S, (iii) Avgmass.current, and (iv) 276 

MassRatio differed between assemblages subject to biotic homogenisation (∆βSIM < 0) or 277 

heterogenisation (∆βSIM > 0) or located in lowlands versus highlands. Linear relationships 278 

between projected changes in species richness (∆S), changes in spatial beta-diversity (∆βSIM), 279 

relative changes in average body mass (MassRatio), and aggregated model uncertainty 280 

(AvgSD) were verified through a modified t-test (Dutilleul, 1993) to spatially correct the 281 

degrees of freedom of correlation coefficients. Computations were performed in R using the 282 

package SpatialPack (Osorio et al., 2014). 283 

 284 

RESULTS 285 

Across all non-volant mammal species in the Caatinga, the ensemble models showed 286 

moderate to high predictive performance using either the traditional Ecological Niche 287 

Modelling approach (median Sørensen similarity index = 0.68, range = 0.52–0.98; median 288 

TSS = 0.52, range = 0.12–0.97; median AUC 0.78, range=0.52–0.99) or the Ensemble of 289 

Small Models approach (median Sørensen similarity index = 0.60, range = 0.24–0.89; median 290 

TSS = 0.6, range = 0.19–0.98; median AUC 0.85, range=0.43–0.99; Fig. S3). Although 291 
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quantitative differences emerged between the SSP scenarios (SSP245 and SSP585) and year 292 

(2060 and 2100), results were qualitatively similar. Therefore, we focused here on projections 293 

for 2060 and SSP245, and based on highly similar environmental conditions (MOP values ≥ 294 

0.9), but see the Supporting Information for results on complementary projections. 295 

About 87% of non-volant mammal species were projected to lose suitable areas by 296 

2060, with substantial reductions of suitable areas (i.e., >50% of geographic range loss) 297 

occurring mainly inside the Caatinga (Fig. S4). For at least 12 modelled species (12.8%), 298 

suitable habitats within the Caatinga were projected to be completely absent by 2060 under 299 

the SSP245 scenario (Fig. 1), with this number reaching 28 species (30%) under the 300 

pessimistic scenario (SSP585) by 2100 (Figs S5-S6). Our ensemble models projected that 301 

four species would currently show suitable habitats only outside the Caatinga, suggesting 302 

potential source-sink dynamics for these species (Fig. 1). However, it is worth noting that four 303 

out of the five species without projected suitable habitats (Dasyprocta azarae, Gracilinanus 304 

microtarsus, Mirmecophaga tridactyla, and Priodontes maximus, ) lacked occurrence records 305 

in the Caatinga, despite being listed in regional checklists (Carmignotto & Astúa, 2018). 306 
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 307 

Figure 1. Projected range shift for non-volant mammals in the Caatinga. The four species below the red 308 

dashed line showed no current suitable habitats within the Caatinga, although they are projected to occur 309 

elsewhere in the Neotropical realm. Species labelled in red elsewhere indicate taxa without projected suitable 310 

habitats for 2060 according to the scenario SSP245. Symbol colour on the left panel indicate if species body 311 

mass is ≤ 1 kg (green, small-sized) or not (pink, large-sized). Symbol shape follow the taxonomic order indicated 312 

in the top-left inset plot. See Figs S4-S6 for results on complementary projections. 313 

 314 
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Species loss was projected for 91.6% of species assemblages, with an average richness 315 

difference of -4.7 species (range ∆S = -23–8) across all assemblages, whereas 69.9% of 316 

assemblages showed projected biotic homogenisation (Fig. 2). Median current species 317 

richness is higher in regions projected to become more heterogeneous (χ² = 1167.7, d. f. = 7, p 318 

< 0.001, Fig. 3a). Similarly, future assemblages projected to be more heterogeneous in the 319 

future showed the most pronounced species loss (Fig. S11, Table S1), particularly those in 320 

northern Caatinga (Fig. 2), with model uncertainty increasing with richness difference (Fig. 321 

S20). Notably, model projections showed low uncertainty across regions subject either to 322 

biotic homogenisation or heterogenization (Fig. S21). Assemblages located in lowlands or 323 

highlands showed similar changes in species richness and spatial-beta diversity (Figs S12 and 324 

S17-18). 325 

Average body mass in current assemblages was generally higher in lowlands than in 326 

highlands (χ² = 435.6, d. f. = 7, p < 0.001, Fig. 3c). Surprisingly, 87.7% of assemblages were 327 

projected to experience an increase in average body mass of their member species, 328 

particularly in the southern and northwestern portions of Caatinga (Fig. 2). The relative 329 

change in average body mass was not associated with changes in either species richness (Figs 330 

4c and S14d) or biotic change (Figs 4e and S15d), but tended to slightly increase with 331 

elevation (Fig. S12i-l). Across most the SSP scenarios, time periods, and levels of 332 

extrapolation constraints, our findings indicated no relationship between changes in average 333 

body mass and aggregated model uncertainty (Fig. S22). 334 
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 335 

Figure 2. Geographical patterns of species richness, spatial beta-diversity, and average body mass for 336 

mammals in the Caatinga. (a) Current species richness, (b) Spatial beta-diversity (βSIM), (c) Average log10 body 337 

mass (g), (d) Projected richness difference (∆S), (e) Projected change in spatial beta-diversity (∆βSIM), (f) 338 

Projected relative change in average body mass. All geographical patterns were derived from species projections 339 

holding at least 90% of environmental similarity with training data. The contour lines denote the assemblages 340 

(cells) in the upper and lower 10% of the mapped pattern. Plots are shown for the scenario SSP245 at the year 341 

2060. See Figs S7-S10 for results on complementary projections and mapped uncertainty. 342 

 343 
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 344 

Figure 3. Species richness and average body mass across mammal assemblages at different elevations and 345 

levels of biotic change. (a-b) Species richness and (c-d) average body mass. Each box denotes the median 346 

(horizontal line), the 25th and 75th percentiles, the 95% confidence intervals (vertical line), and outliers (black 347 

dots). Boxplots in darker greenish or pinkish colours denote were computed using the upper and lower 10% 348 

assemblages (cells) in terms of biotic change (a, c) and elevation (b, d). Small capital letters denote the results of 349 

the Kruskal–Wallis tests for the difference in medians across assemblages subject to different levels of biotic 350 

homogenisation or located in lowlands or highlands (boxplots holding the same letter show statistically similar 351 

median values under p = 0.05, using Bonferroni correction). Plots are shown for the scenario SSP245 at the year 352 

2060. See Figs S11-S12 and Tables S1-S2 for complementary projections.  353 
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 354 

Figure 4. Change in species richness, spatial beta-diversity, average body mass of mammal assemblages in 355 

Caatinga. Plots (a, c, e) illustrate the relationship between assemblage-level biodiversity metrics at the current 356 

time and elevation, whereas plots (b, d, f) indicate how changes in biodiversity metrics are inter-related. All 357 

geographical patterns were derived from species projections holding at least 90% of environmental similarity 358 

with training data. Pearson correlations at the top of each panel were based on spatially corrected degrees of 359 

freedom. Plots are shown for the scenario SSP245 at the year 2060. See Figs S13-S22 for results on 360 

complementary projections.  361 
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DISCUSSION 362 

Drylands in northern South America are expected to face temperature rise of up to 2.7°C by 363 

2060, with changes in the number of consecutive dry days increasing by as much as 21 days  364 

(IPCC, 2021). Our study reveals the potential for such changes to drastically erode the 365 

diversity of non-volant mammals in the Caatinga. Our projections indicate that most species 366 

will lose suitable environmental conditions within the Caatinga, while a few will expand their 367 

distribution, which will result in lower species richness and increased compositional similarity 368 

to nearby assemblages. Our results show that the biotic homogenisation and species loss are 369 

projected in opposite directions, with species gain occurring mostly in regions that are 370 

currently species-poor. Although the current beta-diversity is higher in highlands than 371 

lowlands, projected changes in biotic composition are only weakly or not at all associated 372 

with elevation. Most assemblages are expected to lose small-sized mammals, while large-373 

sized species are projected to colonise neighbouring assemblages. Overall, we reveal how 374 

climate change strengthen the defaunation of non-volant mammals and produce complex 375 

spatial patterns in the largest tropical dry forest of South America. 376 

Despite mammal adaptations to survive in drylands (e.g., insectivorous diet, night 377 

activity, and subterranean shelters), climate change can restrict their physiology and fitness by 378 

increasing dehydration, overheating, starvation, and reducing reproduction (Fuller et al., 379 

2021). The projected loss of suitable habitat for almost 90% of all non-volant mammals of 380 

Caatinga suggests that these species will have to cope with extreme climate conditions for 381 

their dispersion across the biome. Among the main climatic “losers”– species with greatest 382 

suitable habitat loss – are primates and the Brazilian cottontail rabbit, but several species from 383 

the orders Didelphimorphia and Rodentia also emerge, such as the agile gracile opossum 384 

(Gracilinanus agilis), the long-tailed climbing mouse (Rhipidomys mastacalis), and the white-385 

spined Atlantic spiny-rat (Trinomys albispinus). These animals are typically small-sized and 386 
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occupy lower trophic levels, usually producing a greater number of offspring when compared 387 

with large-sized mammals (Carmignotto & Astúa, 2018; Feijó & Langguth, 2013; Santini et 388 

al., 2013). The few “winner” species include the brown brocket (Mazama gouazoubira), the 389 

black-rumped agouti (Dasyprocta prymnolopha), which have a wide-ranging distribution and 390 

a large body size (Carmignotto & Astúa, 2018; Hetem et al., 2014; Santini et al., 2013), and 391 

different species of armadillos, which generally have wide tolerance to warm-dry climates 392 

(Soibelzon, 2019). These examples illustrate how animals with low vagility can be 393 

disproportionally impacted by climate change, which is supported by our findings on the 394 

decrease in the relative contribution of small-sized species across mammal assemblages. 395 

The drastic species loss projected for the assemblages of non-volant mammals can be 396 

attributed to changes in dispersal, behaviour, and resource availability due to increasing 397 

aridity (Marengo et al., 2017; Torres et al., 2017). Firstly, increased aridity can shorten the 398 

optimal period for foraging and breeding (Hetem et al., 2014), and ultimately impact the 399 

ecological fitness and maintenance of mammal populations (Fuller et al., 2021). Secondly, 400 

geographical barriers may further restrict dispersal and hinder access to suitable habitats 401 

(Fuller et al., 2021). Thirdly, hotter and dryer conditions can reduce aboveground biomass 402 

(Rito et al., 2017; Souza et al., 2019) and alter floristic composition (Rito et al., 2017; Vieira 403 

et al., 2022), thereby impacting competition for food resources not only to herbivores, but also 404 

to omnivores and carnivores (Marinho et al., 2020; Oliveira & Diniz-Filho, 2010)��. Since 405 

mammals can exhibit size-dependent variation in vagility, behaviour, and energy needs 406 

(Ramesh et al., 2015; Santini et al., 2013; Shipley et al., 1994), prolonged periods of heat and 407 

droughts can trigger heterogeneous species responses and enhance negative biotic 408 

interactions, ultimately leading to the depletion of faunal assemblages. 409 

The predominance of highly-vagile large-sized species across lowland assemblages 410 

and the faster turnover of small-sized species in highlands help to explain the increase in 411 
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mammal beta-diversity along elevational gradients in the Caatinga� (Lopez et al., 2016; Melo 412 

et al., 2009). While small-sized mammals certainly occur across Caatinga lowlands, the future 413 

homogenisation is expected to be primarily driven by the loss of suitable habitats for typically 414 

small-sized mammals − adults weighting ≤ 1 kg, sensu Chiarello (2000) − which constitute 415 

54% of species in the region (Fig. 1). The current predominance of small-sized mammals 416 

across highlands can be related to species persistence through elevational range shift across 417 

time (Chen et al., 2011)�, which is especially important in the Caatinga due to its climate 418 

instability when compared with other regions in South America (Costa et al., 2018)�. 419 

Therefore, the impoverished and compositionally similar mammal assemblages in the 420 

lowlands may have resulted from the historic accumulation of local extinctions in the 421 

Caatinga, particularly of small-sized species with low vagility (Schloss et al., 2012). 422 

Ecological niches of large-sized species may have been underestimated due to past 423 

hunting and overexploitation (Sales et al., 2022), which could further increase in the relative 424 

contribution of large-sized species in shaping mammal assemblage. However, our data entries 425 

may have missed species entirely if past defaunation resulted in the extinction of large-sized 426 

species in the Caatinga. Ungulates like the tapir, peccaries, and different deer species that had 427 

wider ranges before European colonization are considered locally extinct across most regions 428 

within the biome limits (Barboza et al., 2016). The largest extant mammal in most sites, and 429 

the ones projected to increase in range are armadillos, which can be very resilient and often 430 

thrive in human-modified landscapes (Bovo et al., 2018; Magalhães et al., 2023), with most 431 

small mammals including rodents and marsupials projected to undergo range contractions 432 

while the potential range of some of the larger-bodied extant species are projected to increase, 433 

the average body mass increases as well. In that sense the pattern we found of increasing 434 

mean average body mass is the consequence of the expansion of opportunistic species as well 435 

as a legacy of past defaunation. It is worth noting that while the geographical pattern of 436 
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average body mass indicates a general increase in the relative contribution of large-sized 437 

species, intraspecific responses may cause mammal body size to decrease in response to a 438 

warming climate (Gardner et al., 2011; Villar & Naya, 2018). 439 

While methodical choices and theoretical limitations like climate uncertainty, dispersal 440 

limitations, niche conservatism and model transferability (Barve et al., 2012; Diniz-Filho et 441 

al., 2009; Guisan & Thuiller, 2005; Owens et al., 2013; Thuiller et al., 2019) may have 442 

affected our projections, wee minimized these issues by offering an ensemble of projections 443 

across various modelling algorithms (Araújo & New, 2007). We also implemented an 444 

ensemble of future projections across different generalized circulation models and future 445 

scenarios of climate change (Diniz-Filho et al., 2009; Thuiller et al., 2019). We also applied 446 

species-specific spatial restrictions to remove unreachable patches of projected suitable 447 

habitats and minimise overprediction issues related to unlimited dispersal by constraining 448 

projections to species-specific calibration areas (Mendes et al., 2020). In addition, 449 

assumptions of niche conservatism are likely applicable to mammals in the Caatinga, as the 450 

upper limits of mammal thermal tolerance are highly conserved in tropical species (Araújo et 451 

al., 2013; Khaliq et al., 2015). To minimise model transferability issues, we constrained 452 

habitat suitability estimates to environmental conditions similar to those in the training data 453 

(Owens et al., 2013). Although the models used in this study varied quantitatively, the 454 

projected changes consistently pointed in the same direction, conveying a unified message. 455 

Our findings indicate a higher species loss for mammal assemblages in the eastern half 456 

of Caatinga, which is also affected by chronic disturbances (Antongiovanni et al., 2020). The 457 

highly fragmented and diminished vegetation cover of eastern Caatinga (Castanho et al., 458 

2020) impose additional challenges for non-volant mammals to track suitable habitats (Alves 459 

et al., 2020), further contributing to depauperate the trophic structure of species assemblages 460 

(Mendoza & Araújo, 2019). Although mammal assemblages subject to high species loss 461 
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exhibit more future uncertainty, a more optimistic outlook is unlikely as these regions also 462 

overlap with heavily settled human-modified landscapes in the Caatinga (Antongiovanni et 463 

al., 2018, 2020) and regions projected to vegetation complexity and diversity (Moura et al., 464 

2023). Therefore, the severe defaunation of Caatinga mammal assemblages is a probable 465 

outcome, with small-sized species loss driven by climate change − at least partially − and the 466 

depauperating of large-sized mammal further exacerbated by overexploitation and habitat 467 

destruction (Alves et al., 2023; Bogoni et al., 2020). In the long-term, this drastic 468 

simplification of mammal assemblages can disrupt biotic interactions and impact ecosystem 469 

services in tropical dry forests, by reducing the potential for vegetation regeneration and 470 

carbon storage (Bello et al., 2015; Fricke et al., 2022; Gardner et al., 2019). The success of 471 

long-term socioenvironmental policy and biodiversity conservation planning necessitates that 472 

findings derived from biodiversity forecasts are considered. 473 

 474 
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