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One-sentence summary: Transomic analyses of longitudinal plasma samples from severely 

injured patients identifies endotypes and trajectories that predict clinical outcomes. 
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ABSTRACT 

Understanding and managing the complexity of trauma-induced thrombo-inflammation 

necessitates an innovative, data-driven approach. This study leveraged a trans-omics analysis of 

longitudinal samples from trauma patients to illuminate molecular endotypes and trajectories that 

underpin patient outcomes, transcending traditional demographic and physiological 

characterizations. We hypothesize that trans-omics profiling reveals underlying clinical 

differences in severely injured patients that may present with similar clinical characteristics but 

ultimately have very different responses to treatment and clinical outcomes. Here we used 

proteomics and metabolomics to profile 759 of longitudinal plasma samples from 118 patients at 

11 time points and 97 control subjects. Results were used to define distinct patient states through 

data reduction techniques. The patient groups were stratified based on their shock severity and 

injury severity score, revealing a spectrum of responses to trauma and treatment that are 

fundamentally tied to their unique underlying biology. Ensemble models were then employed, 

demonstrating the predictive power of these molecular signatures with area under the receiver 

operating curves of 80 to 94% for key outcomes such as INR, ICU-free days, ventilator-free days, 

acute lung injury, massive transfusion, and death. The molecularly defined endotypes and 

trajectories provide an unprecedented lens to understand and potentially guide trauma patient 

management, opening a path towards precision medicine. This strategy presents a transformative 

framework that aligns with our understanding that trauma patients, despite similar clinical 

presentations, might harbor vastly different biological responses and outcomes. 
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INTRODUCTION 

Trauma and hemorrhage remain a leading cause of death worldwide (1, 2). Underlying this 

mortality and the prime cause of morbidity in survivors is a poorly characterized inflammatory 

perturbation (3, 4). Care for trauma patients is complicated by multiple factors that affect clinical 

outcomes. First, while improvements in major hemorrhage protocols have saved lives, infusion of 

blood-derived products can lead to subsequent complications including coagulopathies(5-9). 

Second, tissue components released into circulation following trauma activate a non-specific 

inflammatory response(10-13). This inflammatory response is in part triggered by metabolic 

derangements initiated during initial tissue hypoxia and reperfusion(14-19). Finally, resuscitated 

and ‘stabilized’ patients are at risk of infection, in part due to a dysregulated inflammatory state 

that exhibits an attenuated response to invading pathogens(10, 11). Confounding this lack of 

knowledge of the endotypic milieu after trauma is the unknown prior health status of each 

individual patient and their specific responses to injury. Changes in hemostasis and inflammation, 

termed thromboinflammation, are central to this biology and have been characterized by our group 

and others(20-25). While significant advances over the preceding decades have saved lives, a 

broader understanding of how thromboinflammation drives patient-specific responses to shock and 

trauma is essential to provide personalized care for injured warfighters and civilians(26, 27). 

While omics characterization has revolutionized cancer therapy and underlies personalized 

medicine, the care of the severely injured patient is based on overly simplified scoring systems, 

reductionist measures of a few mediators, or clinical “gestalt” which miss much of the existing 

post-injury biological dimensionality(28-34). Traditional clinical trials in trauma or associated 

sequalae have failed to provide sufficient insight and guidance to improve care(35-40).  
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Our group completed a randomized trial of plasma-based trauma resuscitation, which 

afforded a unique opportunity for controlled sampling, clinical care, and outcome data(41). We 

hypothesized that trans-omics profiling reveals underlying pathological differences in severely 

injured patients that may otherwise present with similar clinical profiles but ultimately have very 

different responses to treatment and clinical outcomes. Here, unsupervised clustering of molecular 

data obtained from severely injured patient plasma was performed to characterize untargeted 

metabolomics and proteomics signatures after trauma, and determine molecularly defined clinical 

trajectories and endotypes.   

 

RESULTS 

Trauma patient characteristics and data analysis workflow 

A total of 97 healthy control subjects and 118 patients with both plasma metabolomics and 

proteomics were enrolled in this study (Figure 1A). Blood was collected at specified timepoints 

(Field, Emergency Department arrival (ED), post-injury hours 2, 4, 6, 12, 24, 48, 72, 120, 168) 

until the patient’s discharge (Figure 1B), for a total of 856 samples (759 patient samples and 97 

healthy controls). From patient plasma, 1012 proteins and 472 metabolites were quantified using 

untargeted DIA proteomics and metabolomics by liquid-chromatography coupled with tandem 

mass spectrometry (LC-MS/MS) (Figure 1C). Metabolomics and proteomics analyses were 

performed on these longitudinal samples, while clinical records were available for all patients 

throughout the study. Patients were grouped according to their shock severity (base excess (BE) 

at ED < -10 High Shock HS) and New Injury Severity Score (NISS) > 25 High Trauma HT) into 

High-Shock-High-Trauma (HSHT, N=35), High-Shock-Low-Trauma (HSLT, N=18), Low-

Shock-High-Trauma (LSHT, N=28), and Low-Shock-Low-Trauma (LSLT, N=36) groups (Figure 
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1D). For 20 patients with missing BE at ED, omics data from an independent cohort of 333 trauma 

patients were employed to train and test an imputation model for value assignment (Figure S1). 

Patient characteristics have been previously detailed and are outlined here by S/T group (Figure 

1E)(41). In this study, longitudinal omics trends were first analyzed in the ‘average’ trauma 

patient, and according to commonly used S/T grouping. Then, unsupervised hierarchical clustering 

of metabolomic and proteomic UMAP embeddings was performed to identify omics-based patient 

states and clinical patterns (Figure 1F). Finally, omics-based patient trajectories were identified 

according to their path through omics patient state space, yielding novel clinical and biological 

insight into trauma patient trajectories through injury and/or recovery (Figure 1G).  

 

Omics patterns of the ‘average’ trauma patient 

To analyze molecular patterns in the ‘average’ trauma patient, C-means clustering identified 10 

unique, longitudinal kinetic patterns of omics data (Figure S2). For metabolomics we observed an 

early enrichment of the tricarboxylic acid (TCA) cycle and arginine biosynthesis, and prolonged 

amino acid and thiamine metabolism (Figure 2A, Figure S3). Hypotaurine and taurine 

metabolism peaked from 2-6 hours, and sphingolipid and histidine metabolism remained elevated 

until 24 hours. At 24-48 hours, we observed increases in plasma levels of nucleic acid, glutathione, 

and cyclic-ring amino acid metabolism; as well as hormone and fatty acid biosynthesis. Finally, 

5-7 days post-injury had high levels of metabolites involved in biosynthesis of bile acids, 

aminoacyl-tRNA, proteolysis and amino acid metabolism. 

For proteomics enrichment, there were initially high levels of proteins involved in 

detoxification, management of body fluid levels, and neutrophil and platelet degranulation (Figure 

2B, Figure S4). This detoxification phase was followed by the initiation of a broad humoral 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.16.553446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553446


immune response, complement activation, and (regulation of) coagulation including clot formation 

and fibrinolysis. These proteins remained elevated out to ~24hrs, and were accompanied by a 

concomitant rise in protein-lipid (i.e. HDL) remodeling and lipid trafficking; an anti-microbial 

response, and a general response to wounding and hemostasis. From 24-48hrs there was a second 

spike in neutrophil degranulation proteins and an elevation in proteins involved in glycolysis and 

gluconeogenesis. Following this second spike was an acute phase response (APR), leukocyte 

adhesion and activity, negative regulation of complement, and a response to hypoxia.  

 For clinical measurements, consistent with the literature, we observed expected trends in 

clinical markers of shock, including early elevations in heart rate, lactate, and BE alongside 

reduced blood pressure that normalized quickly after resuscitation and hemorrhage control (Figure 

2C). Additional measures of metabolic acidosis (pH, bicarbonate) were consistent with these 

trends as well. The average patient arrived coagulopathic with reduced MA and fibrinogen 

alongside elevated LY30 (clot lysis at 30 mins measured by thromboelastography (TEG)), which 

were also corrected over time, though not as abruptly as normalization in physiologic parameters 

of hemorrhagic shock. Patients arrived, on average, hypocalcemic with exacerbation of this 

hypocalcemia within the first 2 hours, secondary to the reported influx of calcium into the 

endothelium. Subsequent administration was likely responsible for the correction in ionized 

calcium.  

 Next, linear mixed modeling (adjusted for age, sex, shock/BE, injury/NISS, and time) was 

performed to identify proteins and metabolites highly associated with common clinical 

measurements (Figure S5). For metabolomics, strongest relationships were between carnitines and 

phosphates with platelet count, PaO2, and fibrinogen (Figure 2D); measures of hypoxia and fatty 

acid oxidation and vital signs; and between tissue injury metabolites (spermine, spermidine, 
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bilirubin, carnitines) and clotting. For proteomics, the strongest relationships were between 

clotting assays and coagulation and complement proteins; blood gas and APR proteins; and platelet 

count with complement and coagulation proteins (Figure 2E). 

 To assess the influence of the administration of pre-hospital plasma vs. saline, these groups 

were compared and significantly higher levels of CSF1R (macrophage colony stimulating factor 

receptor) and NAGLU (heparan sulfate degradation) were detected in patients treated with plasma 

products (Figure S6). There were no other protein or metabolite differences at any other timepoint, 

which is unsurprising due to the lack of clinical effect of prehospital plasma reported(41).  

 

Analysis of omics by shock severity and tissue injury 

Outcome for trauma patients is thought to be governed by a ‘golden hour’ where 

interventions within the first 60 minutes are deemed to be crucial to establishing a trajectory 

towards survival and good outcome. To identify metabolomic and proteomic expression patterns 

immediately following injury within this ‘golden hour’, patients were categorized by S/T scores 

(Figure 1D), and analyte levels were compared among these groups. A proteomic signature of 

tissue injury from significantly higher levels of 186 proteins was identified in the HT groups at ED 

(Figure 3A, Figure S7). Many of these were histones, extracellular (COL18A1, PRG4) or 

cytosolic (ACTAs, TUBBs, RHOA) proteins and are involved in cell metabolic processes (PSAT1, 

ARG1, ACAT2)  or detoxification (ENO1, ADH, ALDH, SOD1) (Figure 3B). Significantly 

elevated proteins within the HS groups are primarily involved in antioxidant activity (FABP1, 

TXN, GSTA1) or glycolysis and gluconeogenesis (ALDOB, TPI1, LDHA) (Figure 3C). Beyond 

ED, HT patients had significantly elevated levels of glycolytic (ADH1B, GOT1, PGAM1), 

detoxification (FABP1, GSTA1, PRDX6, S100A9, CAT, CPN1), and tissue injury and hemolysis 
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proteins (MB, HBA, HBB) as well as decreased gelsolin (GSN) to bind circulating actin (Figure 

3D-G). From 12-24 hours, within the HT groups were elevated levels of inflammatory proteins 

(SAA1/2, CRP, IL1RL1), peptidases and anti-microbials (CTSB, LBP, CHI3L1), as well as 

protease inhibitors (SERPINA1, TIMP1) and the tPA/fibrinolysis inhibitor SERPINE1. From 24-

48 hours, HT groups also had significantly elevated fibrinogen chains (FGA, FGB, FGG), and 

decreased complement subunits (C1QB, C1QC).  

For metabolomics, 37 metabolites were significantly elevated in the HSHT group (Figure 

3H, Figure S8). Within HT, a wide range of metabolites including amino acids, nucleotides, 

galactose, and propanoate, as well as elevated levels of the hypoxic metabolite succinate and 

creatine (Figure 3I). In HS patients, there were significantly elevated levels of succinate, lactate, 

and polyamines as well as metabolites involved in the TCA cycle and beta-alanine and 

glycero(phospho)lipid metabolism (Figure 3J). Beyond ED, high levels of these metabolites 

persisted in the HSHT group until 6 hours, at which time the LSLT group showed elevated 

metabolites involved in biosynthesis of aminoacyl-tRNA, amino acids, and fatty acids indicating 

metabolic recovery (Figure 3 K-N). 

 HT patients frequently sustain traumatic brain injury (TBI) which complicates treatment 

and outcomes. For patients with TBI, proteomic differences in HSHT (elevated EXT2), LSHT 

(elevated SIGLEC14, PAICS, HPRT1, COMT; decreased ASGR2), or HT combined (CCL18 

lymphocyte attraction) indicated differences in serum glycoprotein homeostasis, purine synthesis 

and metabolism, cell adhesion, and catecholamine degradation (Figure S9). Further, TBI patients 

within HT groups had consistently elevated levels of dopamine, and metabolites involved in 

(hypo)taurine metabolism and catecholamine biosynthesis.  
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Classification prediction and VIP analysis 

Predicting the need for massive transfusion (MTX), and adverse outcomes including coagulopathy 

(International Normalized Ratio (INR) > 1.4), acute lung injury (ALI), extended ICU- (ICU-free 

days < median) and ventilator time (Vent-free days < median), and death can be difficult. Ensemble 

machine learning which creates an optimized, complied model was employed to predict outcomes 

and the need for MTX following trauma (model details in Figure S10)(42). Proteomic and 

metabolomics data collected at the ED timepoint were split into 75%-25% training and test sets, 

respectively. With AUC ~90% for death, coagulopathy, MTX, and ventilator time, and ~80% for 

ALI and ICU time, each outcome was associated with a unique panel of analytes contributing to 

Variable Importance in Projection (VIP) scores (Figure 4). With few exceptions, all the top VIP 

features were expressed at significantly higher levels in patients who experienced worse outcomes. 

Of note, both death and MTX VIPs indicated hypoxia, short-chain fatty acid metabolism, and 

elevated polyamines; INR VIPs indicated tissue and RBC lysis, and were involved in oxidative 

response; extended ICU stay, and extended ventilator VIPs enriched for glycolysis and high tissue 

oxidation, while ALI VIPs enriched for highly elevated catabolic processes, systemic 

inflammation, and RBC lysis. Further, models trained on an independent omics dataset of 333 

trauma patients from a separate cohort (TACTIC study) predicted death (AUC 91%), ICU-free 

days (84%), and ventilator-free days (87%) in the COMBAT omic dataset (Figure S11). 

 

Metabolic characterization of patient states from unsupervised clustering 

Previously, unsupervised molecular clustering has been used to identify unique endotypes 

associated with differing outcomes within a broader patient population(43-47). Here, unsupervised 

clustering on Uniform Manifold Approximation and Projection (UMAP) embeddings of omics 
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data was employed to identify patient states based on metabolomics and proteomics profiles. 

Hierarchical clustering of 2D metabolomics UMAP embeddings yielded 8 distinct patient states 

as optimized by explained variance and power effect size analysis (Figure 5A, Figure S12). 

Datapoints associated with deaths, low ICU-free days, and severe injury (HSHT) were scattered 

across several patient states (PS 3, 5, 8. Figure S12). Two main metabolic meta states were 

observed and generally characterized by catabolism (Right), and energy production and 

biosynthesis (Left. Figure 5A. Figure S13). The density of datapoints per timepoint indicated the 

temporal nature of each patient state, with patient states classified as early injury (1, 5, 8), mid-

injury (2, 3, 4), and late injury (6, 7) (Figure 5B). Differences in analyte expression revealed 

unique sets of metabolic pathways enriched in each patient state (Figure 5C,  Figure S14). Patient 

state metabolomic signatures (median expression within the upper quartile) showed different 

longitudinal expression patterns indicating the nature of each state (Figure 5C, Figure S14). States 

1 (lysophospholipids), 3 (pentose phosphate pathway), 5 (aromatic amino acids tryptophan and its 

indole derivative; tyrosine; branched chain and other amino acids – valine, citrulline; medium to 

long-chain acyl carnitines – AcCa 6:1, 18:0, 18:1; purine metabolites: hypoxanthine, urate, 

caffeine, theophylline; lysophosphatidyl-ethanolamines, -cholines and -serines of the 16:0 and 

18:1; 20:4 C series)  and 8 (markers of blood transfusion – mannitol and S-adenosylhomocysteine; 

antibiotics – amoxicilline) showed an enrichment at earlier time points, followed by progressive 

decline. Opposite trends were observed for states 2 (exogenous metabolites from iatrogenic 

intervention), 6 (carnitine metabolism and hemolysis markers) and 7 (pharmacological 

intervention with acetaminophen and pain management with opioids). Amino acid metabolism, 

especially sulfur amino acids, were over-represented in state 4 (cysteine, homocysteine, 
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kynurenine, leucine, methionine sulfoxide, phenylalanine, taurine), which showed no major 

temporal trends. 

 Clinically, each state expressed unique static and dynamic continuous clinical 

measurements associated with its omics signature (Figure 5E-J, Figure S15). For example, patient 

state 8 had the most perturbed vital signs (lowest body temperature and blood pressure), reflected 

the most shock (lowest BE and bicarbonate, highest lactate), and was the most coagulopathic 

(highest INR, lowest clotting factors). This state was further characterized by persistent brain 

injury (low GCS) and a longitudinal fibrinogenemic and thrombocytopenic coagulopathy. Other 

notable differences included those in blood chemistry (low PaO2 in state 4; low pH states 3 & 8), 

blood count (high WBCs, platelets, and hemoglobin and hematocrit in states 1, 2, 5), clotting 

(lowest PTT, INR, D-dimer in state 5; lowest Von Klauss fibrinogen in state 5), and transfusion of 

blood products (high tranexamic acid (TXA) in state 4; high RBCs, FFP, and crystalloids in states 

4 & 8) (Figure 5G-J). Several states were clinically similar reflecting our hypothesis that 

metabolomic differences would distinguish otherwise clinically indistinguishable states.  

 

Proteomics characterization of patient states from unsupervised clustering 

For proteomics, hierarchical clustering of 2D UMAP embeddings also produced 8 distinct patient 

states (Figure 6A. Figure S16). Datapoints associated with death, low ICU-free days, and severe 

injury (HSHT) were more localized, clearly demarcating more severely (Right) and less severely-

injured (Left) patient states (Figure S16). As with metabolomics, density of datapoints defined 

patient states to be associated with early- (states 1, 2, 7), mid- (3, 8), or late-injury (4, 5, 6) (Figure 

6B). States 1 (early severe injury) and 3 (mid- severe injury) showed high levels of tissue injury 

proteins that enriched for catabolism, response to ROS, and neutrophil and platelet degranulation 
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(state 1), and proteasome expression, FA degradation, and response to stimuli in state 3 (Figure 

6B, C. Figure S17). For later-injury states, state 4 had high levels of acute phase response (APR) 

proteins and early complement activation; while state 5 enriched for complement, cell adhesion, 

and acute inflammation. Other patient states contained less injured patient-timepoints and had 

higher levels of coagulation proteins such as F2 and F13B (states 2, 6, 8). State 7, an early injury 

cluster in between high injury state 1 and low injury state 2 had high levels of proteins involved in 

hemolysis and oxygen transport.  

 Clinically, states 1 and 3 had most perturbed vitals (lowest temp, blood pressure, GCS, and 

highest heart rate) and blood chemistry (lowest VCO2, BE, bicarbonate; high lactate) (Figure 6D-

J, Figure S18). These states also had coagulopathy and evidence of fibrinolysis (high PTT, INR, 

D-Dimer, TEGs; low clotting factors 7 and 9), and received high amounts of transfused blood 

products (RBCs, platelets, cryoprecipitate). States 2 (high PaO2, platelets, HGB, HCT, clotting 

factors; low body temp, D-Dimer), 7 (high PaO2, lactate; low body temp, clotting factors), and 8 

(low heart rate, D-Dimer; high VCO2) were mixed. The remaining states 4, 5, and 6 were clinically 

similar but had intermediate levels of clinical measurements operating at later timescales. Notable 

differences include SBP (high in states 4, 8; low in states 1, 5), D-dimer levels (low in states 2, 6, 

8; high in states 1, 3, 4, 7), transfusion of FFP (high in states 1, 7), and pH (low in state 1, high in 

states 5, 6). 

The combined metabolomics and proteomics model contained aspects of both models 

(Figure S19). Early severe injury state 4 had high levels of tissue injury proteins enriching for 

both metabolism and biosynthesis of organic molecules, response to stress, and neutrophil 

degranulation; and high levels of succinate, lactate (hypoxia), creatine, and carnitines. Late severe 

injury state 8 had high levels of analytes involved in glycolysis, gluconeogenesis, and 
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methylhistidine and pyruvate metabolism. Adjacent states 6 and 7 enriched for complement and 

coagulation cascades, acute phase response, bile acid synthesis, and fatty acid metabolism. Less 

sick patient states (1, 2, 3, 5) had high levels of taurine metabolism, complement proteins, 

glycolysis, fatty acid synthesis, and immunoglobulins.  

 

Patient trajectories through metabolic patient states 

To identify longitudinal trauma patient trajectories, patients were clustered according to their path 

through omic patient state UMAP space described above (Figure 7A). Dual multiple factor 

analysis was used to map each patient’s omic data to a single point using a series of principal 

component normalization and reductions, similar in nature to patient-specific PCA analysis in 

identifying inflammatory endotypes (45, 48). Patients were then grouped by hierarchical clustering 

and their pathway through metabolomics-informed state space (Figure S20). Each trajectory had 

a unique signature of highly expressed metabolites that shifted dynamically across patient states 

over time (Figure 7B). Briefly, trajectories 2, 6, and 7 began with high tryptophan and 

methylhistidine metabolism (patient states 5, 8), markers of proteolysis, (muscle) tissue breakdown 

and catabolism(49). Trajectory 2 was short-lived, ending with high nicotinate and nicotinamide 

metabolism (Figure 7B,C), markers of NAD(P) breakdown. Patients in trajectory 6 transitioned 

to an increased metabolism of most substrates and most patients exited the study at ~24hours, 

while trajectory 7 patients ended with high levels of methylhistidine and FA metabolism and 

carnitine synthesis and stayed in the study out to 168 hrs. Patients in trajectory 4 began and ended 

with high (hypo)taurine and glutathione metabolism out to 168hr. Trajectory 1 began and ended 

mostly in state 1, was characterized by high aerobic glycolysis, and was short-lived (12hr). Patients 

in trajectories 3 and 5 also began in states of high glycolysis, transitioned to high thiamine, 
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riboflavin, and CoA metabolism, and metabolism of most substrates; and were both long-lived 

(168hr). 

 Clinically, there were no significant differences in ICU-free or Ventilator-free days, NISS, 

coagulopathy by INR, or incidences of TBI, ALI, or MTX (Figure S21). There were death-free 

trajectories (3, 4, 5) and trajectories with high incidences of blunt vs. penetrating injury although 

both were not significant. Trajectory 8, which began with high polyamine synthesis had a high 

heart rate, F11, and RBC transfusion; and low GCS and bicarbonate (Figure 7D-E, Figure S21). 

Additionally, only patients in this trajectory demonstrated high transition rates between the two 

meta-states of catabolism and biosynthesis. Trajectory 2 which began with high kynurenine 

biosynthesis and tissue injury, had clinically lower heart rate, body weight, GCS, von Clauss 

fibrinogen; and high fibrinolysis (ly30) and ended early (~12 hrs) with a high (29%) death rate 

(Figure 7D-N). Beginning in the same metabolic state was trajectory 6, with patients in this state 

shifting to polyamine biosynthesis and maintaining high levels of lactate and PaO2, and a lower 

heart rate and PaCO2. Trajectory 7 was similar but switched to the NAD salvage pathway, and was 

accompanied by lower lactate and a low D-Dimer and platelet count. Trajectory 4 uniquely began 

and remained in an energy and anti-oxidant biosynthesis metabolic state, and had a high heart rate, 

Von Clauss fibrinogen, transfusion with crystalloids, clotting F7; and low PaO2. Trajectory 1 began 

in the same state, but switched to an enriched TCA cycle state, and was accompanied by low 

fibrinogen and D-Dimer; and high HGB, HCT, and platelet count. 

 

Patient trajectories through proteomic patient states 

For proteomics, more severely- vs. less severely-injured, short- vs long-lived, and transitional 

trajectories were identified, each associated with unique proteomic signatures (Figure 8A-C, 
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Figure S22). Trajectories 1, 2, and 4 began in oxygen transport and clot stabilization states, and 

were short (6hr), medium (24hr), and long-lived (72-120hr), respectively (Figure 8C). Signatures 

for these trajectories enriched for hydrolase and peptidase activity and complement and 

coagulation cascades with high levels of IgGs and complement and coagulation proteins. Patients 

in trajectory 3 began with high levels of proteins involved in catabolism, degranulation, and 

oxidation; traveled through states of hemostasis, opsonization, and response to xenobiotics; and 

ended with high levels of complement, cell adhesion, and acute phase response proteins. Trajectory 

5 was generalized by hemostasis, was long-lived (72-120hr), and also ended with high levels of 

complement and coagulation proteins. Trajectories 6, 7, and 8 represented patients with high 

transition among patient states (mainly between hemostasis and proteasome activation) and ending 

in complement activation and coagulation; and were short (6hr), medium (24hr), and long-lived 

(168hr) respectively. These trajectories enriched for adaptive immune response, phagocytosis, and 

fructose and aldehyde metabolism, respectively.  

 Clinically, trajectories 3 and 8 had the highest incidences of ALI, lung failure, liver failure, 

and heart failure (n.s.) (Figure S23). Interestingly trajectory 8 suffered predominately penetrating 

injuries and had no deaths, while 84% of trajectory 3 sustained blunt injuries. As with 

metabolomics, there were no significant differences in death, ventilator-free days, TBI, or MTX, 

and further there were no significant differences in BE among trajectories. Regarding other 

relevant outcomes, trajectory 8 had the lowest ICU-free days; and highest INR and days in the 

hospital. Further, trajectory 8 had high abdominal injury score and INR; low GCS, potassium, 

platelet count, HGB, and HCT, with this trajectory largely fluctuating between detoxification and 

hemostasis. Similarly, trajectory 3 had high NISS, Von Clauss fibrinogen, and D-Dimer; and low 

PaO2 and ly30. Beginning with clot formation and proteasome activation and ending with acute 
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phase response, trajectory 6 had pre-existing liver conditions and high BMI. Beginning with 

hemostasis, trajectory 1 had low hospital days, tissue injury, INR, Von Klauss fibrinogen, and D-

Dimer; and high PaCO2, HCT, HGB, ly30 and ended with clot stabilization. Trajectory 2 began in 

a similar proteomic state and had low tissue injury and hospital days, but had high lactate and 

WBC and platelet count, ending with more complement activation and humoral immune response. 

Finally, trajectory 4 beginning with clot stabilization and ending with O2 transport and hemostasis 

had high potassium, PaO2, platelet count, and PTT; and low HGB, HCT, and D-Dimer. 

 

DISCUSSION 

Clinicians rely on years of experience to gain the clinical acumen necessary to characterize the 

physiologic state of a patient, and predict the patients’ likely clinical transition and outcome. While 

most wouldn't label it as such, treatment occurs in a Bayesian-like manner by considering the prior, 

perturbing the system via clinical management combined with clinical experience and scientific 

knowledge, and monitoring the change and clinical effectiveness in the next time iteration. This 

paradigm re-informs the prior and the process repeats as patients are hopefully guided toward 

recovery and away from death, significant morbidity, or complications. As more data becomes 

available, better clinical measurements and perturbations continue to narrow the confidence 

interval of a patient’s given physiologic state. This will be accompanied by a more precise 

prediction of the patient’s trajectory and what an effective treatment will be at a given time. 

Unfortunately, the trauma literature is filled with single and multivariate regression models and 

scoring systems, an approach that leads to overfit and misspecified models for outcome prediction. 

To remedy this gap, we here utilize longitudinal omics data to provide a more comprehensive 

characterization of the post-trauma response to injury and subsequent treatment. These findings 
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provide a more holistic/global view of the post trauma-milieu, and most importantly reveal that 

patients separate into biologic phenotypes which cannot be discerned by demographic, injury, or 

clinical data.  

We report distinct metabolomics- and proteomics-informed trauma patient states and 

trajectories. In doing so we characterized injured patients via their underlying biology rather than 

their demographic or physiologic readouts. This allowed for an agnostic characterization in line 

with our clinical conjecture that patients often have similar demographic, injury or physiologic 

traits yet seemingly different underlying biology, responses to injury and treatment, and resultant 

outcomes. Indeed, while there are some clinical differences which may be identifiable to the astute 

clinician, most of these endotypes and trajectories are based on molecular omics signatures. Taken 

together these data indicate that patients can fall under multiple endotypes of metabolic energy 

crisis, coagulopathies, complement activation and dysfunctional thromboinflammation. As 

expected, these states are dynamic and transition as the patients do based on response to injury, 

resuscitation and treatment. We thus determined trajectories comprised of those states which 

reflect dynamic signatures that are not necessarily distinguishable by clinical characteristics.  This 

novel finding helps to explain the clinical observation of multiple clinically identical patients with 

divergent responses to injury, resuscitation, and divergent outcomes.  

We expect molecular-based trajectory data like these –when optimized, to augment our 

current patient classification, and  outcome prediction. For example, there were no significant 

differences in BE upon arrival or NISS among trajectories, yet trajectories 1 and 2 had relatively 

high mortality rates (24%, 29%) compared to others. Further, trajectories 2, 6, and 7 begin with 

similar metabolic starting points of high kynurenine and methylhistidine synthesis (tissue injury). 

Trajectory 2 is relatively short-lived with a high mortality rate, while 6/7 are long-lived and are 
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accompanied by metabolic shifts to purine metabolism/NAD salvage respectively as well as 

clinical differences in clotting factors, blood gas and blood composition (hematocrit, hemoglobin, 

platelet count), and vitals (heart rate and body weight). For proteomics, trajectory 8 had 

significantly elevated INR and hospital stay, and lower ICU-free days despite no significant 

differences in BE or NISS (although elevated). Additionally, trajectories 5 and 6 both share similar 

clinical measurements but 5 shift to acute phase response and proteasome activation while 6 stays 

in detoxification and hemostasis states. We expect that for direct applicability to the clinic, a rapid 

means of quick state identification and transition propensity can be employed from similar work. 

This would allow for phenotypes based on omics endotypes to provide prediction and decision 

support based on multivariate data which would otherwise be too complicated to discern. This then 

is a more formalistic modeling of experienced clinician gestalt. Future work to refine, rapidly 

identify states via quick (perhaps targeted field) measurement (with portable devices), dimension 

reduction, trajectory tracking and prediction is planned and essential to realize the goal of 

personalized omics for the dual goal of identifying intervenable mechanistic pathways and guiding 

individual treatment toward the unified goal of saving lives. 

Previously, several groups have reported on the use of omics signatures to phenotype after 

trauma. The Glue Grant utilized then novel technologies to assay gene expression after trauma, 

and was revolutionary for showing a genomic storm with an estimated ~80% of the genome 

disturbed following trauma (50, 51). Unfortunately, the durability of the Glue Grant findings was 

hampered by methodologic concerns including sample timing, which was taken at nonstandard 

intervals over a long period of time after injury. In addition, while there were a small number of 

individual metabolites assayed the technology was not sufficiently advanced and only evaluated 

gene expression with no evaluation of proteomic and metabolomic changes. Most recently several 
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groups have reported characterization of gene expression, and trans-omic changes after trauma. 

These analyses include test and training set clustered prediction modeling and evaluation of 

endotypes related to beneficial outcome from the PAMPer trial(47). These advances in omics 

(proteomics, metabolomics) studies have allowed for readouts closer to patient phenotype. 

However, to date, they have not been used to identify unsupervised molecular patient states and 

trajectories. Our group and others have utilized longitudinal multivariate biomarker data to 

characterize illness and injury, have shown effective prediction of outcomes, and garnered biologic 

pathway insight(42-47, 52-71). Inspired by this work, here we identified unique endotypes and 

trajectories that can be guided or annotated through clinical supervision. It is identification of these 

endotypes and trajectories which makes this analysis most unique, and allows us to use clinical 

knowledge and context to ascertain their meaning. Future work will center around codifying and 

clinically understanding the drivers of these discrete trajectories with the ultimate goal of rapid 

point of care precision medicine guided by state and trajectory identification. This therefore would 

allow for tailored treatment and clinical guidance of trajectories towards recovery. 

Limitations with this study include sample size and sparsity in some outcomes (mortality).  

While sample collection was very good for this study there is some natural missingness of 

measurements based on censoring (death or discharge) and random missingness due to the 

occasional inability to collect some clinical samples due to logistics and priority of treatment in 

the harried nature of trauma care. Because of this we further understand that this can negatively 

impact our model outputs. We have attempted to mitigate this with cross validation with an 

independent cohort of patients as described in the methods. Furthermore, we believe the novelty 

of this work is the ability to clinically and biologically supervise our results giving clinical context 
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to the model outputs. We expect that future studies and resulting data will mitigate and allow for 

testing and refinement of our models. 

 

MATERIALS AND METHODS 

See Supplementary files for extended methods 

Experimental design: The overall hypothesis for this observational study was that plasma omics 

data will give new insights into trauma patient classification, endotypes, and clinical outcome 

prediction. The objectives of this study were 1) to identify standard S/T omics signatures; and 2) 

identify trauma patient omics endotypes and trajectories. All patients enrolled in COMBAT with 

both metabolomic and proteomic data available were included, totaling 118 patients and 97 healthy 

controls, and none were treated as outliers. Plasma underwent LC-MS/MS proteomics and 

metabolomics. Blood was used to measure biochemical and coagulation data using standard 

clinical measurements, viscoelastic hemostatic assays, coagulation factor levels, and cytokine and 

chemokine levels using ELISA. Endpoints for the study were 168 hours post-injury, or the final 

timepoint of hospital care regardless of discharge status. For biological and technical replicates, 

N=1 plasma samples were collected from each patient at each timepoint.  

 

Proteomics: Plasma samples were digested in an S-Trap 96-well plate using trypsin. Peptide 

solutions were pooled, lyophilized, resuspended in 0.1% formic acid, and loaded onto Evotips. 

Peptides were separated using the Evosep One system coupled to the timsTOF Pro mass 

spectrometer (diaPASEF mode) via the nano-electrospray ion source. M/Z spectra were searched 

in Spectronaut, and data are presented as units of relative intensity. 
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Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry metabolomics: Frozen plasma 

aliquots (10 µL) were extracted 1:25 in ice cold extraction solution (methanol:acetonitrile:water 

5:3:2 v/v/v). Samples were vortexed for 30 min at 4℃, prior to centrifugation for 10 min at 15,000g 

at 4℃. Analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive mass 

spectrometer (ThermoFisher). Samples were analyzed using a 1 min and 5 minute gradient-based 

method, spectra were searched in Maven, and data are presented as units of relative intensity. 

 

Bioinformatics and data processing: Omics variables with constant values were removed, and 

values at or below the limit of detection were imputed with 20% the minimum value for that 

analyte. R software and packages (versions and citations in supplemental files) were used for data 

analysis and generating all graphs. Mfuzz was used for C-means clustering, EnhancedVolcano 

created volcano plots, and pheatmap generated heatmaps. UMAP was used to create a 2D 

embedding of the omic manifold, followed by hierarchical clustering to identify patient states. 

Dual multiple factor analysis was employed on embeddings for hierarchical clustering to identify 

patient trajectories. The number of clusters was chosen using a combination of percent of variance 

explained, power effect size (h2), the gap statistic, and silhouette method. Metaboanalyst and 

Metascape were used for pathway enrichment. 

 

Statistical analysis: Data were log2-transformed to approximate and assume normal distribution 

for statistical analyses (Figure S24). Significant differences were determined as P<0.05 using one-

way ANOVA with TukeyHSD post-hoc analysis, Student’s t-test, or Pearson Chi-squared test. 

Omic comparisons were corrected using the Benjamini-Hochberg FDR method, and shown with 

median +/- IQR in boxplots or median +/- SEM in timeseries line graphs. Continuous clinical data 
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with P < 0.05 was considered statistically significant, and shown using median +/- IQR. Linear 

mixed modeling was used to determine associations between analytes and clinical measurements 

(fixed effects age, sex, and time; random effects S/T group, individual patient); and to identify 

analytes and clinical measurements that had significant interactions with time per group 

(group*time; random effect of individual patient). Sidak post-hoc correction was performed on the 

estimated marginal means of mixed models. The partial slope was used as the primary 

measurement and for visualization in the circus plots. Ensemble methods for classification were 

built using SuperLearner with full details in SF10, receiver operating characteristic curves were 

calculated to show model performance using the area under the curve, and VIP of analytes were 

calculated using 5x repeated 5-fold cross-validation with RandomForest.  
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Figure 1 caption: Overview of data collection, study design, and patient characteristics. (A) 
Patients who met the COMBAT criteria for shock and trauma were enrolled at the Field timepoint. 
Blood was collected in the Field, and at 10 subsequent timepoints. (B) The number of patients 
currently enrolled, deceased, or discharged varied by timepoint. (C) Blood collected at each 
timepoint was processed for LC-MS/MS proteomics and metabolomics, and also for routine 
clinical blood chemistry assays. (D) Patients were categorized into Shock/Trauma (S/T) groups 
Low-Shock-Low-Trauma (LSLT); Low-Shock-High-Trauma (LSHT); High-Shock-Low-Trauma 
(HSLT); or High-Shock-High-Trauma (HSHT) based on NISS and BE at ED arrival (NISS >= 25 
is HT; BE <=  -10 is HS); diamond is deceased. (E) Clinical characteristics and clinical blood 
chemistry measurements are outlined with median values +/- IQR (*p<0.05, ANOVA, TukeyHSD 
post-hoc) , or percent (% *p<0.05, c2). (F-G) S/T groups were then compared to outcomes based 
on unsupervised clustering of omic data followed by prediction learning to identify omic-based 
patient trends and outcome trajectories. 
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Figure 2 caption: Metabolomic, proteomic, and clinical trends of the “average” trauma 
patient. (A) Heatmap of median values of metabolites sharing similar temporal, kinetic patterns 
from C-means clustering (left side); and enrichment terms of each cluster (right side, enrichment 
scores from MetaboAnalyst). (B) Heatmap of median values of proteins sharing similar temporal, 
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kinetic patterns from C-means clustering (left side); and GO enrichment terms of each cluster 
(right side, enrichment scores from Metascape). (C) Clinical chemistry labs showing the relative, 
median value at each timepoint. (D-E) Strength of association (partial slope from mixed modeling) 
between clinical measurements and associated metabolites D) or proteins E), with line thickness 
showing relative partial slope. dec.a = Decanoic acid. Ddec.a = Dodecanoic acid. Hdec.a = 
Hexadecenoic acid. Hexanoic.a = Hexanoic acid. OAneur.a = OAcetylneuraminic.acid. d8tCBD 
= delta-8-tetrahydrocannabinol. Nsprmid = N1-Acetylspermidine. Hex.carnitine = 
Hexenoylcarnitine. Non.carnitine = Nonanoylcarnitine. DE4.phos = DErythrose.4phosphate. 
Test.ace = Testosterone.acetate. ProlylArg = Prolyl-Arginine. TEG = Thromboelastography. 
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Figure 3: Golden hour trauma patient plasma omics. (A) Proteomic heatmap of significant 
analytes at ED by S/T group (FDR-corrected p<0.05 following ANOVA). (B) Proteomic volcano 
plot between HT (right. N=63) vs. LT (left N = 54) colored by significance (FDR-corrected p<0.05 
following t-test) and relative fold change (red for HT/LT > 2x; blue for LT/HT > 2x). (C) 
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Proteomic volcano plot between HS (right. N=53) vs. LS (left. N=64) colored by significance 
(FDR-corrected p<0.05 following t-test) and relative fold change (red for HS/LS > 2x; blue for 
LS/HS > 2x). (D-G) Line plots of median +/-SEM of tissue injury (GSN/Actin), detox (S100A9), 
clotting (FGA), and protease inhibitor (SERPINA1) proteins over time (*p<0.05 Sidak correction 
on estimated marginal means of mixed model). Green line = HC values. (H-J) Similar analysis for 
metabolomics showing S/T heatmap (H), and HT/LT (I) and HS/LS (J) volcano plots at ED. (K-
N) Line plots of metabolites involved in tissue injury (creatine), lipid synthesis (LPE(18:1)), 
hypoxia (spermidine),  protein synthesis (L-Threonine).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.16.553446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553446


 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.16.553446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553446


Figure 4: Ensemble learning to predict patient outcomes. Ensemble models were trained and 
tested on separate sets of ED data to predict patient outcomes, and identify important analytes (VIP 
analysis from RandomForest) contributing to outcomes. ROC analysis of Ensemble model 
performance with AUC (1st column), VIP analysis (2nd column), and boxplots of top VIP analytes 
(3rd column, t-test) identified to predict (A-C) coagulopathy by INR, (D-F) Ventilator-free days, 
(G-I) ICU-free days, (J-K) the need for massive transfusion (MTX), (M-O) acute lung injury 
(ALI), and (P-R) death. 
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Figure 5: Metabolomic patient states. (A) 3D UMAP of clustered metabolomic data stratified 
by timepoint; two meta groups generally defined by biosynthesis of macromolecules (L) versus 
elevated catabolism (R). (B) Patient states vary temporally with early injury (states 1, 5, 8), mid-
injury (2, 3, 4), and late-injury (6, 7) enriched clusters. (C) Each state had a significantly elevated 
metabolite signature that enriched for different cellular metabolic processes. Top 5 shown, full list 
in Figure S14 (D) Clinical measurements for each metabolic state is outlined as median +/-IQR 
(*p<0.05 via ANOVA, TukeyHSD post-hoc). (E-J) Line graphs (*p<0.05 Sidak correction on 
estimated marginal means of mixed models) showing temporal trends and (G-J) box plots showing 
static trends (*p<0.05 by ANOVA, TukeyHSD post-hoc) of clinically relevant measurements. Full 
list of clinical results in SF15. 
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Figure 6: Proteomic patient states. (A) 3D UMAP of clustered proteomic data stratified by 
timepoint with sicker (R), and less sick (L) sides. (B) Patient states varied temporally with early 
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injury (states 1, 2, 7), mid-injury (3, 8), and late-injury (4, 5, 6) enriched clusters. (C) Each state 
had a significantly elevated proteomic signature that enriched for different GO processes. (D) 
Clinical measurements for each proteomic state is outlined as median +/-IQR (*p<0.05 via 
ANOVA, TukeyHSD post-hoc). (E-J) Line graphs (*p<0.05 Sidak correction on estimated 
marginal means of mixed models) showing temporal trends and (G-J) box plots showing static 
trends (*p<0.05 by ANOVA, TukeyHSD post-hoc) of clinically relevant measurements. Full list 
in SF16. 
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Figure 7: Metabolomic patient trajectories. (A) UMAP colored by metabolomic patient 
trajectories. (B) Line plot of each trajectory through metabolomic patient state space +/- 95% CI; 
x-axis is time, y-axis is patient state. (C) Temporal nature of trajectories, with most patients in 
trajectories 2 and 6 leaving relatively early. (D-K) Box plots (*p<0.05 ANOVA, TukeyHSD post-
hoc) and line graphs (*p<0.05 Sidak correction on estimated marginal means of mixed models) 
showing temporal trends of clinically relevant measurements for each trajectory. 
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Figure 8: Proteomic patient trajectories. (A) UMAP colored by proteomic patient trajectories. 
(B) Line plot of each trajectory through proteomic patient state space +/- 95% CI; x-axis is time, 
y-axis is patient state. (C) Temporal nature of trajectories. (D-K) Box plots (*p<0.05 ANOVA, 
TukeyHSD post-hoc) and line graphs (*p<0.05 Sidak correction on estimated marginal means of 
mixed models) showing temporal trends of clinically relevant measurements for each trajectory. 
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