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Abstract 28 

The capacity to learn enabled the human species to adapt to various challenging 29 

environmental conditions and pass important achievements on to the next generation. A 30 

growing body of research suggests links between neocortical folding and numerous 31 

aspects of human behaviour, but their impact on enhanced human learning capacity 32 

remains unexplored. Here we leverage multiple training cohorts to demonstrate that higher 33 

levels of premotor cortical folding reliably predict individual long-term learning gains in a 34 

challenging new motor task, above and beyond initial performance differences. Individual 35 

folding-related predisposition to motor learning was found to be independent of cortical 36 

thickness and several intracortical microstructural parameters, but dependent on larger 37 

cortical surface area. We further show that learning-relevant features of cortical folding 38 

occurred in close spatial proximity to practice-induced structural plasticity and were 39 

primarily localized in hominoid-specific frontal tertiary sulci. Our results suggest a new 40 

link between neocortical surface folding and human behavioural adaptability.  41 
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Introduction 47 

Cortical folding is a highly complex developmental process that depends on the genotype1 48 

and reflects the functional organization of the cortex 2–6, with striking similarities but also 49 

numerous differences between individuals and across species 7,8. It has been suggested that 50 

cortical folding evolved to fit a larger sheet-like cortex into a compact cranial space and to 51 

keep cortical nerve fiber connections short 9–11. This evolutionary expansion and folding 52 

of the human neocortex, especially in associative cortices, likely enhanced the 53 

neurocomputational capacities required for complex social interaction, tool-making and 54 

mobility 12.  55 

The impact of cortical folding on behaviour has fascinated early neuroanatomists 13–15 and 56 

stimulates contemporary research in diverse fields such as biology, anthropology or 57 

cognitive neuroscience 12,16–18. The dominant view is that higher levels of cortical folding 58 

are directly linked to improved cognitive performance both within and across species 59 
11,14,19,20. The number and interconnectivity of horizontally arranged cortical columns limit 60 

the information processing capacities of neural networks and its potential power for high 61 

cognitive performance 9. Patients with certain neurodevelopmental disorders present 62 

cortical folding abnormalities and cognitive deficits 21 and cross-sectional studies in 63 

healthy populations demonstrate positive correlations between normative cortical 64 

morphology and behavioural performance (most frequently with parameters of 65 

‘intelligence’) but with varying small to moderate effect sizes 19,22–25. However, evidence 66 

for associations between cortical folding and longitudinal trajectories of behavioural 67 

change is still missing. We here exploit multi-cohort longitudinal data to test the 68 

hypothesis that cortical folding in the motor system might form a potential predisposition 69 

for intra-individual performance gains during motor practice. 70 

A high level of behavioural performance might result from individual brain and body 71 

development, task-specific practice and/or previous experiences with similar tasks. The 72 

capability to improve performance through practice enabled the human species to adapt to 73 

various challenging environmental conditions and pass important achievements on to the 74 

next generation 26,27. It has been hypothesized that high human performance does not 75 

directly result from evolved brain features alone, but rather from an interaction between 76 

fertile learning environments (with rich opportunities for self-regulated and socially 77 

mediated learning) and remarkable learning capacities provided by the brain 28,29. Motor 78 

learning induces brain plasticity30 but behavioural genetics research also suggests that 79 

practice increases the relative importance of genetic influences on performance and 80 

reduces the effects of environmental variation resulting from different prior experiences 81 
31,32. Therefore, learning in the human brain appears to be mediated by certain 82 

predispositions and practice-induced neural plasticity in the cortical and subcortical gray 83 

and white matter 22,25,33,34. However, no study to date investigated whether neocortical 84 

folding relates to motor learning capability. Building on recent developmental studies of 85 

behaviourally relevant features of cortical shape 5, genetics research on motor learning31 86 

and our own work on motor learning-induced cortical plasticity 35, we hypothesize that 87 

individual variations in cortical folding does predict the individual potential to learn a new 88 

motor task and that such folding variations colocalize with learning-induced neural 89 

plasticity.  90 

In the human brain, local geometric features of the cortical surface appear to 91 

fundamentally constrain differences in brain function 36. Cortical geometric features, such 92 

as local cortical curvature, can be assessed in-vivo using magnetic resonance imaging 93 
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(MRI). Curvature-based metrics were used in previous cross-sectional studies to relate the 94 

local folding properties of cerebral regions to human behavioural performance 37,38 and to 95 

individual genotype 39. Moreover, surface-based metrics of cortical folding, such as local 96 

gyrification index, are particularly sensitive to differences in the size of the cortical 97 

surface buried within sulci 40,41. Morphometric analyses of cortical sulci in associative 98 

brain regions recently revealed a new role of hominoid-specific tertiary sulcus 99 

morphology for cognitive performance 8,41–44. Here we adopt a multi-scale approach to test 100 

the impact of local cortical folding on motor learning in multiple samples. In cortical 101 

regions with learning-relevant geometrical features (cortical curvature), we further 102 

investigate the contribution of cortical surface area, cortical thickness and intracortical 103 

microstructure (assessed using myelin-sensitive magnetization transfer saturation and 104 

neurite density index) to cortical geometry as well as the morphometric properties of 105 

closely overlapping tertiary sulci.  106 

Specifically, we test for aptitude-treatment interactions 45 to disentangle the contributions 107 

of cortical folding either to superior (absolute) performance or adaptive capability 108 

(performance gain). The joint analysis of multimodal MRI data from three separate motor 109 

learning experiments 35,46–48 allows us to examine individual differences in motor learning 110 

in a challenging balance task over a practice period of 4 to 6 weeks 49 (Fig. 1A). We 111 

hypothesize that a contribution of cortical folding to superior performance would manifest 112 

in positive correlations with absolute performance differences while a contribution to 113 

superior learning capability would manifest in positive correlations with intraindividual 114 

performance gains (above and beyond initial performance differences).  115 

 116 

Results  117 

Long-term motor learning improves performance, reduces intra-individual 118 

performance variability and enhances inter-individual performance differences  119 

Participants learned a whole-body balance task in six practice sessions spread over four to 120 

six weeks (Fig. 1A, B). Throughout the practice period motor performance increased 121 

continuously (main effect of session F(5, 415) = 202.61, p < .001, ηp2 = 0.709) with 122 

significant performance gains across the six practice sessions (all post-hoc comparisons 123 

between time points were significant at p < .001, Bonferroni corrected for multiple 124 

comparisons). Intraindividual (trial-to-trial) variability decreased (main effect of session 125 

F(5, 415) = 109.89, p < .001, ηp2 = 0.570, Fig. 1C) and absolute between-person 126 

performance differences (IQR) increased during practice (Fig. 1D). We found 127 

considerable inter-individual variability in motor learning (Fig. 1E). To relate variations in 128 

cortical folding to differences in the rate of motor learning, we first fitted a general power 129 

function  130 

𝑦(𝑥) = 𝑎 ∗ 𝑥𝑛                                                                131 

to the session-specific mean performance scores of each participant (Fig. 1F). The 132 

intercept a of the power function represents initial performance, while the exponent n 133 

reflects the individual learning rate and x is time. The general power function yielded an 134 

adequate fit to the individual learning data with a median coefficient of determination of 135 

R² =.90. In accordance with the literature 50, initial performance a negatively predicted 136 

learning rate n (R2 = 0.350, p < .001, Fig. S1). We therefore adjusted learning rate n for 137 
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inter-individual differences in initial performance a 51. We further use term ‘learning rate’ 138 

for this during all subsequent analyses. 139 

 140 

Fig. 1. Behavioural data.  141 

Motor learning task, performance improvements, performance stabilization and increased inter-142 

individual differences in motor learning over 6 practice sessions (N=84, mean age 24.6 years, age 143 

range 19-35 years, 57 women, mean height 174 cm, height range 153-191 cm, all participants were 144 

right-handed). (A) We tested motor learning of a challenging postural task. Participants were 145 

instructed to keep a seesaw-like moving stabilometer balance platform in a horizontal target 146 

interval (±3°) as long as possible during a trial length of 30 s. (B) Motor performance was 147 

measured as the time (in seconds) in which participants kept the board within the target interval in 148 

each of 15 practice trials per session (see Supplemental Video files for motor performance of 149 

participants at the beginning and end of practice). (C) Decrease in trial-to-trial variability 150 

(coefficient of variation, COV) of session-specific motor performance. (D) Increase of the 151 

interquartile range (IQR) of session-specific between-person variation in motor performance. IQR 152 

increased from 3.7 seconds at session 1 to 8.7 seconds at session 6. (E) From the first to the sixth 153 

session, participants tended to maintain their performance rank (correlation between initial and 154 

final performance, R2 = 0.322, p < .001) but there were large individual learning differences in 155 

learning (green/red: higher/lower performance than predicted from baseline). (F) Modeled 156 

individual learning curves over sessions using parameters of the power function (see main text). 157 

Cortical folding predicts inter-individual differences in long-term motor learning  158 

We quantified vertex-wise cortical curvature to measure local cortical folding 52. Larger 159 

values indicate higher degrees of local cortical curvature. We then tested for correlations 160 

between higher cortical curvature and steeper learning curve (learning rate n adjusted for 161 

initial differences a), superior initial performance (intercept a), higher short-term 162 

adaptations during session 1 and higher asymptotic performance in session 6. All analyses 163 
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were adjusted for age, gender, body height, study, and total intracranial volume (see 164 

covariate correlation matrix in Fig. S2).  165 

We did not observe significant correlations between local curvature and initial 166 

performance or short-term adaptations (Figs. S3, S4). Instead, a steeper learning rate n was 167 

positively associated with higher cortical curvature in the left pre-168 

supplementary/supplementary motor area (pre-SMA/SMA, peak at x=-13, y=18, z=63, 169 

T=5.97, FWE correction at p < .05, nonparametric t-statistic with 5000 permutations, see 170 

Figs. 2A,B and S5). The moderate effect size was consistent across the three sub-samples 171 

(Fig 2C). These positive (sample and subsample) correlations were reproduced in a second 172 

MRI scan of the same participants (Fig. S6). These subsequent analyses revealed that 173 

approximately 30% of the variance in adjusted learning rates was explained by differences 174 

in cortical curvature in pre-SMA/SMA (R2 = 0.30, p < .001, N = 84). The positive 175 

correlation between curvature and performance or gain increased during practice (Fig. 176 

2E). In addition, cortical curvature consistently predicted learning rates within 177 

demographic, anthropometric, and performance-specific subcategories of the dataset (Figs. 178 

S7 and S8). Asymptotic (final) performance showed a non-significant trend for an 179 

association with cortical curvature in left pre-SMA/SMA (local maximum at x=-15, y=20, 180 

z=62, T=4.40, FWE-corrected p = .053) and a significant association in a small cluster in 181 

left supramarginal gyrus (local maximum at x=-59, y=-56, z=21, T=4.55, FWE correction 182 

at p < .05, see Fig. S9). In order to confirm the links between cortical folding, learning 183 

rates and final performance, we used structural equation modeling (see Materials for SEM 184 

fit indices) to show that the effect of cortical folding on final performance was mediated 185 

via learning rate n (Fig. 2D).  186 

 187 

Fig. 2. Cortical folding predicts learning.  188 

Results of whole-brain correlation of vertex-wise cortical curvature and learning rate. (A) 189 

Uncorrected results at p < .001 (left) and family-wise error-corrected results at p < .05 (right) were 190 

projected onto a template brain showing variations in sulcus depth. (B) Positive correlation of 191 

residual cortical folding (in the cluster representing the FWE-corrected effect in the exploratory 192 

analysis [A]) and learning rate. (C) Subsample results in the three independent learning 193 

experiments. (D) Structural equation model depicting relationships between cortical folding in pre-194 

SMA/SMA (cluster from 2A, unadjusted for a), learning rate (adjusted for a) and final 195 

performance on session 6 (unadjusted for a). Standardized coefficients with 95% bootstrapped 196 

confidence intervals (CI) are represented on paths. (E) Pearson correlation coefficients between 197 
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residualized cortical folding and motor performance (N = 84). Grey bars represent session-specific 198 

performance controlled for initial performance in session 1 (i.e., residual gain) and black bars 199 

represent correlations with actual session-specific performance.  * indicate significant paths at p < 200 

.05 (with CIs not including zero). 201 

Individual folding-related predisposition to motor learning was independent of 202 

cortical thickness, but dependent on cortical surface area  203 

At the macroscopic level, cortical folding depends on the size and thickness of the cortical 204 

sheet (surface area and cortical thickness, see 53). Thus, we tested the potential 205 

contributions of cortical surface area and cortical thickness to the observed relationship 206 

between cortical folding and learning rate using structural equation modeling (SEM).  207 

Modelling results are shown in Figure 3B (see Materials for model fit indices). Within a 208 

larger region encompassing left pre-SMA/SMA (see Methods for ROI description), 209 

cortical surface area, but not cortical thickness, exerted an indirect effect on learning rate n 210 

via folding (indirect effect of surface area on n: 0.54 [95% CI = .305, .749], p < .001; no 211 

indirect effect of thickness on n: 0.02 [95% CI = -.076, .134], p = .686). In the context of 212 

this model, there was a direct effect of cortical folding on learning rate n (R2 = 0.21). 213 

Figure 3C shows a simple Pearson correlation between cortical folding and n (R2 = 0.16, p 214 

< .001). Importantly, the positive relationship between cortical folding and learning rate n 215 

remained significant when adjusting for differences in surface area and cortical thickness 216 

in a partial correlation analysis (R2 = 0.17, p < .001, Fig. 3D). In order to validate the 217 

effect of premotor cortical curvature on learning rate, we used a surface area-dependent 218 

gyrification index40 and found a spatial pattern of positive correlation in the same cortical 219 

region (Fig. S10). Thus, while surface area affected cortical folding, surface area-220 

independent contributions to local cortical geometry also affected learning rate. 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 
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 229 

Fig. 3. Cortical surface area, but not cortical thickness, is related to the effect of cortical 230 

folding on learning.  231 

Interrelationship between folding, thickness and surface area. (A) SEM model depicting the 232 

relationships between cortical folding ('folding'), cortical surface area ('surface'), cortical thickness 233 

('thickness'), and learning rate n ('learning') in the left caudal superior frontal gyrus. Standardized 234 

coefficients with 95% bootstrapped CIs are represented on paths. (B and C) Correlations between 235 

folding index and surface area with learning rate n. Folding index is either adjusted (C) or 236 

unadjusted (B) for differences in surface area and cortical thickness. Note that all variables used in 237 

the model and for correlation analyses were corrected for differences in age, gender, height, study, 238 

head coil, baseline performance, and total intracranial volume. * indicate significant 239 

paths/correlations at p < .05 (with CIs not including zero). 240 

Cortical folding ties to learning rates independent of cortical myelination and 241 

cortical neurite density  242 

Cross-species comparisons do suggest that highly convoluted cortices have lower neuronal 243 

densities than less convoluted cortices 54. Also, the folding process in regions developing 244 

late during gestation (secondary and tertiary sulci) is likely to be mediated by intracortical 245 

microstructure 6 and biomechanical constraints 55. Intracortical myelination of deep 246 

cortical gray matter (GM), as measured by myelin-sensitive magnetization transfer 247 

saturation (MT), is a signature of cortical maturation in late adolescence and early 248 

adulthood 56,57. In order to test whether the folding effect on learning rate is significantly 249 

influenced by interindividual differences in intracortical microstructure, we measured 250 

myelin-sensitive MT saturation in superficial cortical to cortex-adjacent white matter 251 

compartments and intracortical neurite density index (NDI) of pre-SMA/SMA (N = 26; 252 

mean age 22.1 years, range 19-29 years, Fig. 4C). In line with previous studies, we 253 

observed a positive correlation between MT, in particularly in deep cortical GM, and 254 

chronological age in vertex-wise (Fig. S11) and ROI-wise correlation analyses (R2 = 0.33, 255 

p = .002, Fig. 4D). Importantly, we found no significant correlation between MT and 256 

learning rate n either using mean ROI (R2 ranged from 0.017 to 0.034, p > 0.36, Fig. 4E) 257 
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or vertex-wise analyses (Fig. S9). Variations in MT had no impact on the association 258 

between cortical folding and learning rate n (partial R2 ranged from 0.26 to 0.27, all p < 259 

.009, Fig. 4F). In line with the MT analysis, learning rate n was not related to NDI values 260 

in pre-SMA/SMA. These results via imaging proxies indicate that the effect of higher 261 

cortical folding on steeper learning curves is less likely to be mediated by lower 262 

intracortical myelin content or neurite density across individuals.  263 

 264 

Fig. 4. Cortical folding ties to learning rates independent of cortical myelination and cortical 265 

neurite density. 266 

Analysis of microstructural tissue properties of the premotor cortex. (A and B) Distribution of 267 

myelin-sensitive magnetization transfer saturation (MT) values (A) and the neurite density index 268 

NDI (B) across the left hemisphere. Color bars show regions of high MT or NDI in red (e.g., 269 

primary motor and somatosensory cortices) and regions of lower MT and NDI in blue (e.g., 270 

anterior prefrontal regions). Note the MT product-sequence-specific representation of MT values 271 

with a factor of 2. (C) MT and NDI values were analyzed in pre-SMA/SMA, the cluster in which 272 

cortical folding positively correlated with learning rate n (Fig. 2A). (D) Pearson correlations 273 

between MT in superficial GM, deep GM, and cortex-adjacent white matter with chronological 274 

age. (E) Pearson correlations between MT in superficial GM, deep GM, and cortex-adjacent white 275 

matter with learning rate n. (F) Partial correlations between cortical folding and learning rate 276 

adjusted for MT in superficial GM, deep GM, and cortex-adjacent white matter. * indicate 277 

significant correlations at p < .05, while ns indicates no significant correlation. 278 

 279 

 280 
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Coincident effects of cortical folding and practice-induced plasticity 281 

Our previous study showed structural gray matter plasticity in the pre-SMA/SMA after 282 

practice of the very same balance task 35 (Fig. 5A left). This gives us the opportunity to 283 

test the spatial coincidence of folding predispositions for learning and short-term learning-284 

induced plasticity. Within the clusters that showed gray matter increases across the whole 285 

motor practice period (Fig. 2 in 35), higher cortical curvature in pre-SMA/SMA 286 

significantly predicted higher learning rate (peak at x=-15, y=18, z=59, T=5.64, FWE 287 

corrected p-value = .001, Fig. 5A right).   288 

We averaged cortical curvature values within the previously identified pre-SMA/SMA 289 

cluster 35 (gray matter increase at MNI coordinate xyz -12 13 64, peak Z-value = 4.35). 290 

Average cortical curvature in this cluster predicted individual differences in learning rate 291 

(R2 = 0.29, p < .001 for the whole sample, Fig. 5B). This effect was consistent across the 292 

three sub-samples (Fig. 5C). Using SEM of ‘plasticity’ ROI values confirmed the effect of 293 

cortical folding on final performance (both unadjusted for a, Fig. 5D) that was mediated 294 

via learning rate n (adjusted for a). 295 

 296 

Fig. 5. Cortical folding predicts learning in regions undergoing practice-induced structural 297 

plasticity.  298 

Relationship between folding and plasticity in the premotor cortex. (A) Positive correlation of 299 

cortical curvature in pre-SMA/SMA (in the cluster of significant learning-induced gray matter 300 

changes in 35) and learning rate. Practice-induced plasticity is depicted across the whole brain on 301 

the left side and the overlapping effect of cortical folding on learning rate is shown on the right 302 

side (only pre-SMA/SMA was significant). (B and C) Whole-sample and sub-sample correlations 303 

between learning rate and cortical curvature in the pre-SMA/SMA cluster in A. (D) SEM depicting 304 

the relationship between cortical folding in pre-SMA/SMA, learning rate (adjusted for a) and final 305 

performance on session 6. Standardized coefficients with 95% bootstrapped confidence intervals 306 

(CI) are represented on paths. (E) Pearson correlation coefficients between residualized cortical 307 

folding and motor performance. Grey bars represent session-specific performance controlled for 308 

initial performance in session 1 (i.e., residual gain) and black bars represent correlations with 309 

actual session-specific performance. * indicate significant correlations/paths at p < .05 (with CIs 310 

not including zero). 311 
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Morphology of tertiary sulci predicts learning rate 312 

Recent studies have linked higher cognitive performance to the presence and prominence 313 

of tertiary sulci in the frontal cortex of human participants 8,41,44. Tertiary sulci are small, 314 

evolutionarily new cortical structures with great potential for identifying new connections 315 

between neuroanatomical substrates and human-specific aspects of cognition 5. Here we 316 

tested whether variations in the presence of tertiary sulci (PaM) in a region encompassing 317 

the left caudal superior frontal gyrus affect learning rate via its prominence (sulcal surface 318 

area) and folding characteristics. 319 

We used the nomenclature and sulcus labeling methodology of 58 to manually define the 320 

sulcal landscape in the left caudal superior frontal gyrus (SFG) and adjacent precentral 321 

regions. We labeled 458 sulci in the left hemisphere (labeled sulci for each individual are 322 

shown in Figs. S12-S14). According to Germann et al. 58, the caudal SFG includes major 323 

sulci found in each individual brain (Fig. 6A): the interhemispheric fissure (IF), the 324 

superior precentral sulcus (SPr), the superior frontal sulcus (SFS), and the central sulcus 325 

(CS). The SPr in 58 appeared continuous for 76% of participants and was split in two 326 

branches for the remaining 24% of participants. One branch is usually caudal to the SFG 327 

and forms the base of the superior frontal sulcus, and the other branch is caudal to the 328 

dorsal portion of the middle frontal gyrus. Largely consistent with 58, we show a 329 

continuous SPr in the majority of participants in our sample (65%, 55 out of 84) and the 330 

two-branch pattern in 35% of participants (29 out of 84). Germann et al. 58 noted several 331 

smaller tertiary sulci that were heterogeneous in presence, appearance, and number (see 332 

also Fig. 6A): the medial precentral sulcus (MeP), the marginal precentral sulcus (MaP) as 333 

well as the paramidline sulci (PaM) with one or more short portions within caudal SFG 334 

oriented parallel to the SFS 13,58. While MeP and PaM were found in almost every 335 

participant within the boundaries of our region-of-interest in caudal SFG, MaP occurred in 336 

66% of participants in 58 and in 50% of the participants (42 out of 84) in our sample. The 337 

cluster of vertices representing the effect of cortical curvature on learning rate n (see Fig. 338 

2A) was anterior to MeP and medial to SFS (see white outline in one participant's left 339 

hemisphere in Fig. 6A) and likely colocalized with PaM sulci. Thus, we tested the 340 

influence of PaM number and PaM morphology (folding index and surface area) on 341 

learning rate n using a structural equation model (SEM) that extends our above model 342 

(illustrated in Figure 3A). 343 

PaM sulci number, PaM surface area, and PaM folding index were submitted to SEM to 344 

predict learning rate n (Fig. 6C). Significant relationships were found for (a) the presence 345 

of PaM (number) and PaM surface area, (b) PaM surface area and PaM sulcal folding as 346 

well as (c) PaM sulcal folding and learning rate n (Fig. 6C,D). Importantly, PaM number 347 

and surface area indirectly affected learning rate n via folding (presence: indirect effect of 348 

PaM number on n: 0.09 [95% CI = .006, .192], p = .046; prominence: indirect effect of 349 

PaM surface area on n: 0.37 [95% CI = .186, .538], p < .001). Moreover, a partial 350 

correlation analysis revealed a significant positive correlation between PaM sulcal folding 351 

and n when controlling for PaM number and PaM surface area (partial R2 = 0.12, p = .001, 352 

Fig. 6E).  353 
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 354 

Fig. 6. The morphology of tertiary sulci predicts individual learning rate.  355 

Analysis of tertiary sulci in the premotor cortex. (A) Labeling of cortical sulci in the left caudal 356 

superior frontal gyrus and adjacent precentral regions in a representative participant. Labeled left 357 

hemisphere sulci from all participants (n = 84) are shown in Figs. S12-S14. (B) The number of 358 

paramidline sulci for all participants is shown. The presence of PaM in the left caudal SFG 359 

(overlapping with the target cluster thresholded at p < .001) varies from PaM absence (no overlap 360 

between target cluster and PaM) in three participants to 3 PaM sulci in eight participants (Nabsence = 361 

3, N1xPaM = 35, N2xPaM = 38, N3xPaM = 8). Surfaces of representative participants per number 362 

category (PaM are marked in yellow) are shown on the right-hand side. (C) A model representing 363 

the relationships between PaM sulcal folding index (“Folding”), PaM sulcal surface area 364 

(“Surface”), PaM sulcal number (“PaM”), and learning rate n (“Learning”). Standardized 365 

coefficients with 95% bootstrapped CIs are represented on paths. (D and E) Correlations between 366 

PaM sulcal folding index and learning rate. Folding index is either adjusted (D) or unadjusted (C) 367 

for differences in surface area and PaM presence. Note that all variables in the model and 368 

correlation analyses were corrected for differences in age, gender, height, head coil, study, 369 

baseline performance, and total intracranial volume. * indicate significant paths/correlations at p < 370 

.05 (with CIs not including zero). 371 

 372 

Discussion  373 

Given the complexity of mechanisms involved in the expansion and folding of the cerebral 374 

cortex, and thus its tremendous costs in terms of genetic, cellular, and histogenic 375 

evolution, the ecological advantages of cortical folding must be more than remarkable 59. 376 

Using longitudinal training data, we show that human participants with higher degrees of 377 

cortical folding in premotor areas have larger performance gains (steepness of the learning 378 

rate) across several sessions of motor practice. Cortical folding had an indirect effect on 379 

attained performance levels via its strong impact on performance gain. The observed local 380 

associations between performance gain and cortical folding overlapped with practice-381 
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induced structural plasticity in premotor areas and with the morphological characteristics 382 

of hominoid-specific tertiary sulci. Higher cortical folding was related to larger cortical 383 

surface area, but not at the expense of lower cortical thickness or intracortical 384 

microstructure. Our results support the hypothesis that higher levels of cortical folding 385 

endow individuals with enhanced adaptive capacities, but not with superior performance 386 

per se.  387 

Interindividual differences in global and local folding metrics were correlated with 388 

behavioural performance scores in previous studies involving adult humans 389 
8,19,24,37,38,43,44,60–63. These studies usually assessed cognitive or memory performance at a 390 

single point in time – with intelligence quotient being the most commonly assessed 391 

variable to date. The effect size of brain-behaviour correlations varied considerably but 392 

generally suggest a positive association between higher folding and performance. Using a 393 

longitudinal measure of performance change, we report that approx. 30% of variance in 394 

learning rate are predicted by the degree of local cortical folding in premotor cortical 395 

regions (pre-supplementary/supplementary motor areas). In line with 24, larger cortical 396 

surface area contributed to the folding effect on learning but there was an additional 397 

significant surface area-independent contribution to cortical folding’s relationship with 398 

learning (Figs. 3 and 6). While the technical reproducibility of the folding-learning 399 

relationship (Fig. S6) was expected because of the high stability of non-invasive markers 400 

of external brain morphology, we were surprised by the consistency of positive 401 

correlations within an independent region-of-interest and for smaller sub-samples (Fig. 5C 402 

and S7). 403 

We report a comparably large effect size for a brain behavioural study of cortical folding 404 

in adult humans (see correlation coefficients represented in both ROI and vertex-wise 405 

analyses, Figs. 2 and S5). The comparatively long practice time could have favored the 406 

identification of brain-behavioural relationships64. We found that associations between 407 

cortical folding and motor performance increased with practice. This can be explained by 408 

the increasing impact of residual gains on absolute performance levels across practice 409 

(Figs. 2E, 5E, S6D). In fact, performance gain mediated the effect of cortical folding on 410 

final performance (Figs. 2D and 5D). This suggests that cortical folding effects on 411 

acquired performance level may be an indirect consequence of cortical folding's 412 

relationship with an underlying learning ability.  413 

Practice augments individual performance differences which are associated with relatively 414 

stable factors (e.g., aptitude, genotype, phenotypic, and other psychological traits), a view 415 

held in developmental psychology and behavioural genetics 32,65. We interpret our finding 416 

as a reflection of interindividual differences in capabilities (rather than actual performance 417 

levels), mediated by the degree of cortical folding 28,29. Although in prospective cohort 418 

studies, within-person change trajectories generally have lower heritability rates than 419 

cross-sectional measurements obtained from different groups of individuals 66, the 420 

stimulus for performance change is usually under experimental control in an intervention 421 

study. Intervention studies from behavioural genetics report higher heritability rates with 422 

motor practice 31,32. In particular, the twin study by Williams & Gross 31 used the same 423 

postural learning task as in the present work (stabilometer task) and found increased 424 

genetic influences on motor performance across six practice sessions. When our 425 

participants learned the same postural task (also across six sessions), the impact of initial 426 

performance differences on subsequent achievements decreased during practice (Fig. 427 

S15). A large portion of this increasing residual variance during practice was explained by 428 

variations in cortical folding of the pre-SMA/SMA. Future studies are required to 429 
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disentangle the specific contributions of genetic or (early) environmental factors to 430 

behaviourally meaningful variations in cortical folding. 431 

A large network of cortical and sub-cortical regions is involved in gait and postural 432 

control 67 and our analyses specifically focused on the cerebral cortical contributions to 433 

individual differences in postural learning. The supplementary motor area is critically 434 

involved in anticipatory postural control and gait 68,69. This region also adapts its structure 435 

in response to postural training 70. Practice of the stabilometer task (used in the present 436 

work) induces structural gray matter changes in the left pre-SMA/SMA and 437 

microstructural changes in the underlying white matter tracts of the left centrum semiovale 438 
35. Practice-induced structural changes were also accompanied by increased functional 439 

connectivity between the pre-SMA/SMA and medial parietal areas 71. This indicates that 440 

postural learning is associated with the connectivity and folding pattern of the pre-441 

SMA/SMA embedded within a wider cortical-subcortical network responsible for posture 442 

and gait control.  443 

An individual’s genotype has a significant impact on practice-induced motor performance 444 

gains 32 as well as on sulcal morphology 39. To which extent variations in cortical folding 445 

are predictive of learning success in different types of motor tasks remains unclear. The 446 

folding-learning associations observed in our study suggest a comparably homogeneous 447 

effect within some selected anthropometric, demographic, and performance sub-categories 448 

of our sample (Fig. S8). Although the overall pattern of cortical folding is relatively stable 449 

across life, supportive interventions could have a significant impact on motor learning. In 450 

line with this, we found an overlap of meaningful folding variations with practice-induced 451 

plasticity in pre-SMA/SMA which is consistent with research using juggling as long-term 452 

motor learning paradigm25. A spatial overlap was found between juggling-induced gray 453 

matter changes in parietal regions and an association between baseline parietal gray matter 454 

volume with subsequent learning-induced performance improvements25. Together, this 455 

supports future efforts to mitigate potential behavioural deficits related to cortical 456 

predispositions by using appropriate training methods. Second, additional interventions 457 

such as vigorous physical exercise in the weeks prior to motor practice can further 458 

improve learning in this particular postural task 47. The beneficial effect of vigorous 459 

exercise on postural learning is mediated by structural and functional changes in the 460 

fronto-parietal brain network 47,72. Thus, plasticity-inducing intervention strategies may be 461 

a fruitful approach to enhance learning beyond neural predispositions (see Supplementary 462 

text).  463 

Cortical folding is the result of different mechanisms extrinsic and intrinsic to the cortical 464 

sheet. Extrinsic sources can be the volumetric constraints of the cranial vault harboring an 465 

expanded cortex or connected axons pulling cortical and sub-cortical regions closer 466 

together to enhance information transmission speed 73. Intrinsic mechanisms can be a 467 

higher level of cortical neurogenesis, differential tangential expansion of upper cortical 468 

layers or neuropile growth 4,6. Cross-species comparisons show that humans possess a 469 

remarkably large number of neurons in the cerebral cortex 74. Studies in ferret, macaque 470 

and human brain found that, in species with a folded cortex, the rate of neurogenesis is 471 

heterogeneous along the developing cortical mantle 4. Higher rates of neurogenesis 472 

emerging in upper cortical layers of human-specific gene knock-in mice 18 result in 473 

cortical buckling of the otherwise lissencephalic mouse brain and in better spatial learning 474 

capabilities in these animals. In addition, neuropile expansion influences the growth of 475 

late developing cortical regions (e.g. tertiary sulci) 6. Thus, higher adaptive requirements 476 

of the postural system during development or evolution could have fostered surface 477 

expansion and folding in task-specific cortical regions 1,75–77. Our study revealed that intra-478 
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specific variations in cortical folding and tertiary sulcus morphology predict learning of a 479 

challenging postural task. The results also show that the impact of cortical folding on 480 

learning is related to differences in cortical surface area as well as surface area-481 

independent extrinsic and/or intrinsic factors of folding, but not to differences in 482 

intracortical microstructure (Fig. 3, 4 and 6). The pattern of correlations in Fig. 3 and 6 483 

indicates that (1) sulcal and gyral surface area exerts both significant positive and negative 484 

influences on learning rate, (2) the significant positive influence of surface area on 485 

learning rate is mediated via its impact on cortical folding and (3) the significant negative 486 

influence of surface area on learning rate likely arises from the gyral regions around the 487 

tertiary paramidline sulci. Further studies with higher-resolution MRI techniques are 488 

required to disentangle the contributions of extrinsic and intrinsic sources of cortical 489 

folding (e.g. U-fibres, layer-specific microstructure) and of gyral, sulcal and fundal 490 

points78 to behavioural differences. 491 

While the underlying factors of cortical folding are subject to intense research in the 492 

biological and physical sciences 79, our study investigated the behavioural capacities that 493 

are enabled by higher levels of local cortical folding in humans. Cortical folding was 494 

related to learning rates over multiple motor practice sessions. The fact that the learning 495 

rates were adjusted for differences in initial performance (and that cortical folding was 496 

also not related to initial performance differences) has implications for inclusive learning 497 

approaches. Individual learning capabilities, irrespective of initial performance conditions, 498 

may be associated with stable and region-specific morphological characteristics of the 499 

cortex. Under the assumption of physical constraints to the information processing 500 

capacity of the cerebral cortex 9, education seems critical for an individual to realize its 501 

potential in a particular domain regardless of their initial performance in that domain. Our 502 

study also showed that learning rates mediated between higher cortical folding and 503 

asymptotic levels of performance at the end of a practice period. In that sense, improved 504 

human performance does not necessarily emerge from an extraordinary brain morphology, 505 

but rather from an interaction between fertile learning environments and remarkably high 506 

learning capabilities 29. In our study with healthy human participants, high learning 507 

capability was partially reflected in the surface morphology of the human neocortex. 508 

 509 

 510 

 511 

Methods 512 

 513 

Experimental Design  514 

We analyzed MRI and behavioural data from three independent motor learning 515 

experiments involving adult human participants (see Participants). All participants with 516 

complete MRI and behavioural data from these three studies were included in the 517 

analyses. MRI of the brain was performed before motor practice of a challenging new 518 

postural task on a stabilometer (see Postural task practice). Indices of motor performance 519 

and learning rate over several practice sessions (see Analysis of motor learning) were 520 

correlated with local indices of cortical folding from preprocessed MRI data (see MRI 521 

acquisition and MRI preprocessing). Statistical analyses involved vertex-wise 522 

comparisons of cortical curvature and region-of-interest (ROI) comparisons of cortical and 523 

sulcal morphology as well as intracortical microstructure (see Statistical analysis).    524 

 525 

Participants 526 

A sample of 131 right-handed participants with normal or corrected-to-normal vision 527 

(mean age of 24.6 years, age range of 19-35 years, 57 females, mean body height 174 cm, 528 
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body height range 153-191 cm) was included from the datasets of three independent motor 529 

learning experiments 35,46–48. In addition, data from 80 was used to increase the sample size 530 

for the analysis of short-term improvements in motor performance (only data for session 531 

1). The studies were performed in accordance with the Declaration of Helsinki and 532 

approved by the Ethics Committees of the Universities of Leipzig and Magdeburg 533 

(Germany). Exclusion criteria were contraindications to magnetic resonance imaging 534 

(MRI), body mass index (BMI) > 30 kg/cm2, a history of neuropsychiatric diseases, left-535 

handedness and prior experience with the task to be learnt. Participants were screened for 536 

contraindications of MRI before participation. Participants were naive to the experimental 537 

setup and postural training procedure and were of comparable educational level (all 538 

participants had A-level).  539 

 540 

Postural task practice 541 

Participants learned a challenging whole-body postural task on a stabilometer either on 542 

one practice session (N=131) or over six practice sessions (N=84). From the 84 543 

participants, practice sessions were either distributed over six consecutive weeks with one 544 

training session per week (N=58, study 1 and study 3) or distributed over four consecutive 545 

weeks with 1-2 practice sessions per week (N=26, study 2). The stabilometer is a movable, 546 

seasaw-like platform attached to a superimposed pivot with a maximum board deviation 547 

of 26° to each tilt side (stability platform, model 16030L, Lafayette Instrument). 548 

Participants were instructed to stand on the stabilometer board and hold/restabilize the 549 

platform within a tolerance interval of +- 3° from the horizontal (see Supplementary 550 

Video files). After each of the 15 trials (30 seconds in each trial) per practice session, 551 

participants received verbal performance feedback. Performance was measured as 552 

accumulated time (in seconds) participants were able to maintain the platform in the +- 3° 553 

tolerance interval (Time-in-balance). A short break of 2 minutes between trials was used 554 

to avoid fatigue. Each practice session lasted approx. 45 minutes. To familiarize subjects 555 

with the task and to prevent falls, we allowed the use of a supporting hand rail in the first 556 

trial of session 1. Familiarization trials were excluded from the analysis. We used a 557 

discovery learning approach 81 in which no information about the performance strategy 558 

(only the trial-wise quantitative performance feedback) was provided during practice. 559 

Therefore, participants had to discover their optimal strategy to improve task performance 560 

(e.g. error correction strategy with legs, hip, and arms) based on by trial and error. 561 

 562 

Analysis of motor learning  563 

The mean performance scores (mean of time-in-balance values across 15 trials) on each of 564 

the six practice sessions for each individual participant were fitted to a general power 565 

function, y(x) = a * xn, which describes motor learning over longer timescales well 82. In 566 

this function, the base a denotes initial task performance, x is training session (time 567 

devoted to practice), and the exponent n indicates the slope of the function (rate of 568 

learning). Furthermore, early learning was calculated from performance data on the first 569 

practice session. For that, we subtracted the mean of the first five trials from the mean of 570 

the last five trials. We used learning rate (n), initial performance (a) and early learning 571 

(performance gain during session 1) as dependent variables in statistical analyses of brain-572 

behavioural relationships. As expected from motor learning literature 50, initial 573 

performance negatively predicted learning rate (Fig. S1). To get an unbiased readout of 574 

learning ability, we adjusted n for differences in a 51.  575 

 576 

Magnetic resonance imaging (MRI) acquisition 577 
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Anatomical T1-weighted MPRAGE data 83 were acquired on a 3T MAGNETOM 578 

magnetic resonance imaging (MRI) system (Siemens Healthcare) with 176 slices in 579 

sagittal orientation (study 1 N=27: Tim Trio system using a 32-channel head coil, study 2 580 

N=26: Prisma system using a 64-channel head coil, study 3 N=31: Prisma system using a 581 

32-channel head coil). The imaging parameters used were as follows. Study 3: inversion 582 

time (TI) = 900 ms, repetition time (TR) = 2300 ms, echo time (TE) = 2.98 ms, flip angle 583 

= 9°, field-of-view (FOV) = 256 x 240 mm2, spatial resolution = 1 x 1 x 1 mm3; study 1: 584 

(TI) = 650 ms, (TR) = 1300 ms, (TE) = 3.46 ms, flip angle = 10°, (FOV) = 256 x 240 585 

mm2, spatial resolution = 1 x 1 x 1 mm3; study 2: (TR) = 2600 ms; (TE) = 5.18 ms; flip 586 

angle = 7°; (FOV) = 256 x 256 mm2; spatial resolution =  0.8 x 0.8 x 0.8 mm3. Due to the 587 

potential influence of the radiofrequency head coil on brain morphometric indices 84 we 588 

corrected for this factor in the statistical models. In addition, we corrected for MRI 589 

scanner and MPRAGE sequence-specific effects using a separate nuisance covariate for 590 

each of the three studies.  591 

 592 

MRI preprocessing  593 

MR images of all participants passed both the visual quality inspection and the CAT12 594 

data quality checks. All scans from 131 participants reached a weighted average image 595 

quality rating (IQR) of 86.79% (range 80.64%–89.87%) corresponding to a quality grade 596 

B while the long-term practice cohort (N=84) reached a weighted average (IQR) of 597 

87.32% (quality grade B; range 85.62%-89.87%). T1-weighted images were preprocessed 598 

using the CAT12 toolbox, v12.7 r1738 (Christian Gaser, Structural Brain Mapping Group, 599 

Jena University Hospital; http://www.neuro.uni-jena.de/cat12/, 85) within SPM12 v7771 600 

(Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging; 601 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) for Matlab R2017b (The MathWorks, 602 

Inc.). This image analysis pipeline allows for the computation of surface-based parameters 603 

based on, e.g., the mean curvature and procedures are described in detail on the CAT 12 604 

website and manual (https://neuro-jena.github.io/cat/index.html#DOWNLOAD). All 605 

procedures followed the recommendations in the CAT 12 manual. Briefly, initial voxel-606 

based processing involves spatially adaptive denoising, resampling, bias correction, affine 607 

registration and unified segmentation and provides starting estimates for subsequently 608 

refined image processing. Output images were then skull-stripped, parcellated into left and 609 

right hemisphere, cerebellum and subcortical areas as well as corrected for local intensity 610 

differences and adaptively segmented followed by spatial normalization. Subsequently, 611 

central cortical surfaces were reconstructed and topological defects were repaired using 612 

spherical harmonics. The refined central surface mesh provided the basis for extraction of 613 

local cortical folding metrics (e.g., local curvature) and resulting local values were 614 

projected onto each mesh node. Local gyrification 52 is revealed through estimations of 615 

“smoothed absolute mean curvature” based on averaging curvature values from each 616 

vertex of the surface mesh. Mean curvature is an extrinsic surface measure and represents 617 

change in direction of surface normals along the surface (normal are vectors pointing 618 

outwards perpendicular to the surface). Large negative values correspond to sulci and 619 

large positive values to gyri. The resulting values were averaged within a distance of 3 620 

mm and converted to absolute values (both sulcal and gyral regions have positive values, 621 

see 52). We then applied a surface-based heat kernel filter with FWHM = 20 mm, as 622 

recommended for vertex-wise gyrification in the CAT12 user manual. The resulting 623 

values give information about the local amount of gyrification. Finally, individual central 624 

surfaces were registered to the Freesurfer “FsAverage” template using spherical mapping 625 

with minimal distortions. Local gyrification values are transferred onto this FsAverage 626 

template.  627 
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To assess local interactions of cortical folding, surface area and cortical thickness in the 628 

left caudal superior frontal gyrus and to manually define and label sulci in individual 629 

subjects native space, we additionally used FreeSurfer automated segmentation tools 86,87 630 

(FreeSurfer 6) to reconstruct cortical surfaces (recon-all command; 631 

https://freesurfer.net/fswiki/recon-all) from all baseline T1-weighted MRI images of the 632 

long-term practice cohort (N=84). Cortical reconstruction and volumetric segmentation 633 

were performed with the Freesurfer image analysis suite, which is documented and freely 634 

available for download online (http://surfer.nmr.mgh.harvard.edu/). The technical details 635 

of these procedures are described on the FreeSurfer website 636 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation). Briefly, this 637 

processing includes motion correction of volumetric T1 weighted images, removal of non-638 

brain tissue using a hybrid watershed/surface deformation procedure, automated Talairach 639 

transformation, segmentation of the subcortical white matter and deep gray matter 640 

volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles) 641 

intensity normalization, tessellation of the grey matter white matter boundary, automated 642 

topology correction, and surface deformation following intensity gradients to optimally 643 

place the grey/white and grey/cerebrospinal fluid borders at the location where the greatest 644 

shift in intensity defines the transition to the other tissue class. Once the cortical models 645 

are complete, a number of deformable procedures can be performed for further data 646 

processing and analysis including surface inflation, registration to a spherical atlas which 647 

is based on individual cortical folding patterns to match cortical geometry across subjects, 648 

parcellation of the cerebral cortex into units with respect to gyral and sulcal structure, and 649 

creation of a variety of surface-based data including maps of curvature and surface area. 650 

This method uses both intensity and continuity information from the entire three-651 

dimensional MR volume in segmentation and deformation procedures to produce 652 

representations of cortical thickness, calculated as the closest distance from the grey/white 653 

boundary to the grey/CSF boundary at each vertex on the tessellated surface. The maps are 654 

created using spatial intensity gradients across tissue classes and are therefore not simply 655 

reliant on absolute signal intensity. The maps produced are not restricted to the voxel 656 

resolution of the original data thus are capable of detecting submillimeter differences 657 

between groups. Procedures for the measurement of cortical thickness have been validated 658 

against histological analysis and manual measurements. We supplemented the analysis of 659 

local cortical geometry (curvature) with an analysis of a gyrification metric that depends 660 

on the ratio between the outer hull surface area and the local cortical surface area (called 661 

outer-surface-based gyrification indices). Therefore, we computed the local gyrification 662 

index 40 of freesurfer cortical reconstructions.  663 

Based on the group-level result of a correlation between motor learning ability and local 664 

cortical curvature in the left pre-SMA/SMA (Fig. 2A), we manually defined a region-of-665 

interest (ROI) in the left caudal SFG (including pre-SMA/SMA) encompassing the cortex 666 

in SFG extending from the anterior edge of the superior precentral sulcus (joining the 667 

medial precentral sulcus) to the caudal part of the superior frontal sulcus (at the level of 668 

the gyral bridge between middle and superior frontal gyrus) and, in the medio-lateral 669 

dimension, the cortex running from the interhemispheric fissure to the superior frontal 670 

sulcus 58 on the Freesurfer “FsAverage” template brain. This ROI was projected to each 671 

participant’s native space and local indices of cortical folding 88, cortical surface area and 672 

cortical thickness were extracted from the white matter surface (to avoid blood vessel 673 

contamination 8) and averaged in this ROI. In addition to that, we manually defined the 674 

sulcal landscape in the left caudal SFG using the freeview tool in FreeSurfer and the 675 

labeling methodology of 58. The following sulci were investigated: the superior precentral 676 

sulcus (SP), the superior frontal sulcus (SF), the central sulcus (CS), the medial precentral 677 
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sulcus (MeP), the marginal precentral sulcus (MaP) and the paramidline sulci (PaM). 678 

Based on 58, we first drew the sulcal lines on the inflated cortical surfaces and validated 679 

the position and shape of each sulcus using the corresponding pial surface image 8. Thus, 680 

information from the inflated and pial surfaces informed our labeling and allowed us to 681 

form a consensus across surfaces and clearly determine each sulcal boundary. Although 682 

our analysis focused on PaM, we manually identified all sulci in the caudal and superior 683 

part of the lateral frontal cortex (in total 458 sulci in left hemispheres; labeled sulci from 684 

each individual are depicted in Figs. S12-S14) to ensure the most accurate definition of 685 

PaM components 13,58,89. 686 

The superior frontal gyrus of the human brain typically contains three PaM components 687 

(anterior, intermediate and posterior component) that are arranged in parallel or 688 

orthogonal to and in-between the interhemispheric fissure and the superior frontal sulcus 689 
13,58,89. We focused our analysis on the posterior and intermediate PaM components that 690 

are located in close spatial relationship to the pre-SMA/SMA. PaM sulci were located on 691 

the lateral surface of the left hemisphere, medial to SF, anterior to SP and MeP. We 692 

labeled PaM sulci which overlap with the cluster found in the group-level analysis (Fig. 2; 693 

group-level cluster was projected to individual surfaces).  694 

Next, we quantified the surface area and folding index of each labeled PaM sulcus using 695 

mris_anatomical_stats function included in FreeSurfer. In case of more than one identified 696 

PaM sulcus per hemisphere, we added surface area and folding values.    697 

 698 

Statistical analysis  699 

Our main goals were to test for positive relationships between inter-individual differences 700 

in learning rate or motor performance with local cortical folding. In these analyses, we 701 

corrected for the influence of age, gender, body size, total intracranial volume (estimated 702 

using CAT12 module “Estimating TIV”) and study (initial differences in a were only 703 

adjusted in the analysis of learning rate). 704 

 705 

Motor behaviour 706 

Short-term changes in motor performance (time-in-balance in seconds) in the first practice 707 

session (N=131) were analyzed with repeated measures analysis of variance (RM-708 

ANOVA) with within-subject factor TRIAL (15 levels) in SPSS (IBM SPSS Statistics, 709 

Version 28.0.1.0, Armonk, NY). Long-term changes in motor performance across the six 710 

practice sessions were analyzed with RM-ANOVA of the session mean values (mean of 711 

15 trails per session) with within-subject factor SESSION (6 levels). Trial-to-trial 712 

variation in performance were calculated with the coefficient-of-variation (COV, standard 713 

deviation divided by the mean) for each session and subjected to RM-ANOVA with factor 714 

SESSION (6 levels). Session-specific inter-individual variation was quantified using 715 

interquartile range between the upper and lower 25% of mean performance values. 716 

Pearson correlations were used to relate mean performance values across sessions.    717 

 718 

Analysis of cortical folding on long-term learning, initial performance and short-term 719 

adaptation  720 

Our main predictions were tested with a multiple linear regression model in SPM12 721 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) with local cortical folding values 722 

across the cortex as dependent variable and learning rate n (N=84, corrected for individual 723 

differences in initial performance level a) or initial performance a as well as short-term 724 

adaptation (N=84 and N=131) as predictors. In each analysis, we corrected for the 725 

influence of age 90, gender 91, body height 46, head coil 84, total intracranial volume 92 and 726 

training study 35,47,48. Covariation between (nuisance) variables are shown in Fig. S2. 727 
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Statistical inference of positive relationships between behavioural parameters and cortical 728 

curvature was performed across the whole cortex (exploratory analysis) with non-729 

parametric permutation test (vertex-level T-statistics) and 5000 permutations. p-values 730 

were considered significant at an FWE corrected threshold of p < 0.05. Technical 731 

reproduction of significant effects was performed using a further MRI scan from the same 732 

participants. This further MRI scan was obtained after the last motor practice session 733 

either six weeks (study 1 and study 3) or four weeks (study 2) after the baseline MRI scan. 734 

The cluster extent from the initial exploratory whole-cortex analysis (Fig. 2A) was used as 735 

inclusive mask and surface measures from the second time point were averaged in this 736 

respective mask. Cortical folding values in this mask were highly reliable across the two 737 

MRI time points (r = 0.964). The overlap between cortical folding and practice-induced 738 

plasticity in grey matter volume was calculated using a group-space mask of the cluster in 739 

pre-SMA/SMA where we previously identified grey matter changes across the six-week 740 

practice period 35 (xyz MNI coordinate -12, 13, 64, cluster with highest Z-value=4.35 741 

across the whole brain). The voxel-space cluster (rendered brain see Fig. 2) was projected 742 

to the FsAverage surface template using CAT12 surface tools. The cortical folding values 743 

in this mask as well as in the mask for technical replication were averaged and subjected 744 

to statistical analysis in SPSS. In subsequent correlation analyses, we used residualized 745 

learning rate and cortical curvature values (corrected for age, gender, initial performance, 746 

body height, head coil, TIV, training study) to determine reproducibility, effect sizes and 747 

coincidence of folding and plasticity (Figs. 2, 5 and S6). Variations of the effect were 748 

tested with Pearson correlation analyses of the positive relationship between learning rate 749 

and cortical folding in pre-SMA/SMA (time point 1) in differently categorized sub-groups 750 

of the original sample (N=84, Fig. S8). We categorized this sample with respect to the 751 

following demographic, anthropometric, sub-group-related, activity-related and 752 

performance-related variables by means of binarized dummy variables or median split: 753 

age, gender, body height, initial performance level, physical activity level (above or below 754 

4 hours per week), vigorous physical exercise in 2 weeks prior to motor practice, study-755 

specific sub-groups. For each correlation of the categorized groups, we used residualized 756 

learning rate and cortical folding variables with the categorization variable not included in 757 

the residualization procedure.                758 

In addition to the main cohort (N=84) we included additional 47 participants from 46 in the 759 

correlation of initial performance and short-term adaptation with cortical folding. These 760 

additional participants were measured on a Tim Trio MRI system using either 12-channel 761 

or 32-channel head coil (which was corrected for in the respective statistical model, for 762 

more details see 46). Dependent variables were either initial performance (mean 763 

performance of 15 trials in practice session 1) or early learning calculated as the difference 764 

between the mean of the last 5 trials and the mean of the first 5 trails from practice session 765 

one.  766 

 767 

Myelin-sensitive magnetization transfer saturation (MT) and estimates of neurite density 768 

index (NDI) from neurite-orientation-and-dispersion-imaging (NODDI) modeling of 769 

diffusion MRI 770 

Myelin-sensitive MT values were calculated from multiparametric quantitative MRI 771 

protocol with 0.8 mm isotropic voxel size 48 and NDI values were calculated from NODDI 772 

modeling of diffusion MRI data with 1.6 mm resolution 93 within the gray matter in the 773 

study2-subsample (N=26). Both MT and NODDI metrics are highly reliable 48,93 and 774 

calculation of NDI values within gray matter was adjusted according to 94. Based on 775 

previous findings 1, MT values were extracted and averaged within three cortical depth-776 

dependent tissue compartments (superficial and deep cortical gray matter [GM] and 777 
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cortex-adjacent white matter) in individual space using CAT12 surface tools. For each 778 

compartment, a mean sampling function (average along surface normal) and a equi-779 

distance mapping model with 7 steps was employed (startpoint: superficial=-0.5, deep=0, 780 

white matter=0.5; endpoint: superficial=0, deep=0.5, white matter=1.0). Superficial GM 781 

extends from the gray matter/CSF border to the central surface. Deep GM extends from 782 

the central surface to the gray/white matter border and the cortex-adjacent white matter 783 

extends from the gray/white matter border into the cortex-adjacent white matter. Due to 784 

lower resolution of diffusion data, NDI values were sampled from the whole GM 785 

compartment (startpoint=-0.5, endpoint=0.5). Resulting MT maps and NDI maps were 786 

resampled into template space and smoothed with filter size of 15 mm FWHM. To 787 

visualize MT/NDI distribution across the whole cortex (Fig. 4A,B), we additionally 788 

mapped and averaged MT values in the whole gray matter compartment (from gray 789 

matter/CSF to gray/white matter boundary). For statistical analysis, compartment-specific 790 

values were extracted from the region overlapping with the pre-SMA/SMA cluster (Fig. 791 

2A), but also analyzed vertex-wise. We used residualized (corrected for age, gender, body 792 

height, TIV, initial performance) MT/NDI, learning rate, cortical folding and age 793 

parameters for all Pearson and partial correlation analyses or adjusted for these nuisance 794 

variables in SPM statistical models for vertex-wise analyses (except of the age by 795 

MT/NDI correlation in which we did not correct for age and initial performance).        796 

 797 

Structural equation modeling (SEM)  798 

SEM was used to better understand the dependencies between motor behaviour and 799 

cortical folding (Figs. 2 and 5) as well as between cortex morphology variables (Fig. 3 and 800 

6). For this purpose, we used the lavaan package 95 running in R (i386 4.1.1, R Core 801 

Team, 2020) and RStudio. In the first model (Fig. 2D), cortical folding in the pre-802 

SMA/SMA and residualized learning rate n were used as exogenous variables to predict 803 

final performance in practice session 6 (SEM fit indices RMSEA = 0.000, SRMR = 0.000, 804 

CFI = 1.000, TLI = 1.000). Note that values of cortical folding and final performance were 805 

not adjust for differences in initial performance in this analysis. In the second model (SEM 806 

fit indices RMSEA = 0.000, SRMR = 0.000, CFI = 1.000, TLI = 1.000, Fig. 5) we used the 807 

independent ROI in which practice-induced gray matter changes were found previously 35 808 

(Fig. 2G-I). In the third model (Fig. 3, SEM fit indices RMSEA = 0.000, SRMR = 0.000, 809 

CFI = 1.000, TLI = 1.000), surface area, cortical thickness and cortical folding indices in 810 

the left caudal SFG were used as exogenous variables to predict learning rate n. In the 811 

fourth model (Fig. 6, SEM fit indices RMSEA = 0.000, SRMR = 0.019, CFI = 1.000, TLI = 812 

1.025), the number of PaM sulci, PaM surface area and PaM folding index were used as 813 

exogenous variables to predict learning rate n. All values were residualized for age, 814 

gender, body height, TIV, initial performance and training study with the exception that 815 

values of cortical folding and final performance in the first two models were not adjust for 816 

differences in initial performance. We calculated direct and indirect effects with 95% 817 

bootstrapped CIs using 5000 permutations.       818 
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