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Abstract 24 

Behavior varies even among genetically identical animals raised in the same environment. 25 

However, little is known about the circuit or anatomical origins of this individuality. We show 26 

individual Drosophila odor preferences (odor-vs-air and odor-vs-odor) are predicted by 27 

idiosyncratic calcium dynamics in olfactory receptor neurons (ORNs) and projection neurons 28 

(PNs), respectively. Variation in ORN presynaptic density also predicts odor-vs-odor preference. 29 

The ORN-PN synapse appears to be a locus of individuality where microscale variation gives 30 

rise to idiosyncratic behavior. Finally, simulating microscale stochasticity in ORN-PN synapses 31 

of a 3,062 neuron model of the antennal lobe recapitulates patterns of variation in PN calcium 32 

responses matching experiments. Our results demonstrate how physiological and microscale 33 

structural circuit variations can give rise to individual behavior, even when genetics and 34 

environment are held constant. 35 

 36 

Keywords: individuality, neural circuits, sensory processing, olfaction, behavioral preference, 37 

variation, Drosophila, antennal lobe, calcium imaging, expansion imaging  38 
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Introduction 39 

Individuality is a fundamental aspect of behavior that is observed even among genetically-40 

identical animals reared in similar environments. We are specifically interested in individuality 41 

that is evident as idiosyncratic differences in behavior that persist for much of an animal’s 42 

lifespan. Such variability is observed across species including round worms (Stern et al., 2017), 43 

aphids (Schuett et al., 2011), fish (Laskowski et al., 2022), mice (Freund et al., 2013), and people 44 

(Johnson et al., 2010). Small, genetically tractable model species, such as Drosophila, are 45 

particularly promising for discovering the genetic and neural circuit basis of individual behavior 46 

variation. Flies exhibit individuality in many behaviors (Werkhoven et al., 2021), and the 47 

mechanistic origins of this variation has been studied for phototactic preference (Kain et al., 48 

2012), temperature preference (Kain et al., 2015), locomotor handedness (Ayroles et al., 2015; 49 

Buchanan et al., 2015; de Bivort et al., 2022), object-fixated walking (Linneweber et al., 2020), 50 

and odor preference (Honegger et al., 2019). Generally, the neural substrates of individuality are 51 

poorly understood, though in a small number of instances nanoscale circuit correlates of 52 

individual behavioral biases have been identified (Linneweber et al., 2020; Skutt-Kakaria et al., 53 

2019). We hypothesize that as sensory cues are encoded and transformed to produce motor 54 

outputs, their representation in the nervous system becomes increasingly idiosyncratic and 55 

predictive of individual behavioral responses. We seek to identify “loci of individuality” – sites 56 

at which this idiosyncrasy emerges. 57 

 58 

Olfaction in the fruit fly Drosophila melanogaster is an amenable sensory system for identifying 59 

loci of individuality, as 1) individual odor preferences can be recorded readily, 2) neural 60 

representations of odors can be measured via calcium imaging, 3) the circuit elements of the 61 

pathway are well-established, and 4) a deep genetic toolkit enables mechanism-probing 62 

experiments. The neuroanatomy of the olfactory system, from the antenna through its first 63 

central-brain processing neuropil, the antennal lobe (AL), is broadly stereotyped across 64 

individuals (Couto et al., 2005; Grabe et al., 2015; Wilson et al., 2004). The AL features ~50 65 

anatomically identifiable microcircuits called glomeruli (Figure 1A). Each glomerulus represents 66 

an odor-coding channel and receives axon inputs from olfactory receptor neurons (ORNs) 67 

expressing the same olfactory receptor gene (de Bruyne et al., 2001). Uniglomerular projection 68 

neurons (PNs) carry odor information from each glomerulus deeper into the brain (Jeanne and 69 

Wilson, 2015). AL-intrinsic local neurons (LNs) project among glomeruli (Chou et al., 2010) 70 

and modulate odor representations (Wilson and Laurent, 2005). Glomerular organization is a key 71 

stereotype of the AL; using glomeruli as landmarks, one can identify comparable ORN axons 72 

and PNs across individuals. 73 

 74 

Several possible determinants of individual odor preference can already be hypothesized for the 75 

fly olfactory circuit (Rihani and Sachse, 2022). Individual flies differ in their PN calcium 76 

responses to identical odor stimuli, as well as their odor-vs-odor preference choices (Honegger et 77 

al., 2019). The extent of preference variability depends on dopamine and serotonergic 78 
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modulation (Honegger et al., 2019). Neuromodulation clearly plays a role in the regulation of 79 

behavioral individuality (Maloney, 2021), but its effects vary by modulator and behavior (de 80 

Bivort et al., 2022; Kain et al., 2012). With respect to wiring variation, the number of ORNs and 81 

PNs innervating a given glomerulus varies within hemispheres (Tobin et al., 2017) and across 82 

individuals (Grabe et al., 2016; Schlegel et al., 2020), as does the glomerulus-innervation pattern 83 

of individual LNs (Chou et al., 2010). Subpopulations of LNs and PNs express variable serotonin 84 

receptors (Sizemore and Dacks, 2016), so the effects of neuromodulation and wiring may 85 

interact to influence individuality. Little is known about possible molecular or nanoscale 86 

correlates of individual behavioral bias. Thus, individual odor preference could have its origins 87 

in many potential mechanisms, ranging from circuit wiring to modulation to neuronal intrinsic 88 

properties.   89 

 90 

Outside the olfactory system, there are two instances in which microscale circuit variation is 91 

known to predict individual behavioral preference. Wiring asymmetry in an individual fly’s 92 

dorsal cluster neurons is predictive of the straightness of its object-oriented walking behavior 93 

(Linneweber et al., 2020), and left-right asymmetry in the density of presynaptic sites of 94 

protocerebral bridge - lateral accessory lobe-projecting neurons predicts an individual fly’s 95 

idiosyncratic turning bias (Skutt-Kakaria et al., 2019). 96 

 97 

In this work, we sought to identify loci of individuality by measuring odor preferences and 98 

neural responses to odors in the same individuals and asking whether the latter predicted the 99 

former. We found that idiosyncratic calcium responses in specific neurons were predictive of 100 

olfactory preferences – variation in ORN responses predicts odor-vs-air preference; variation in 101 

PN responses predicts odor-vs-odor preference. Zooming into a molecular component, variation 102 

in the scaffolding protein Bruchpilot in ORN presynaptic terminals is also predictive of odor 103 

preference variation. To unify these results and connect wiring variation to circuit outputs, we 104 

simulated developmental variation in a 3,062-neuron spiking model of the antennal lobe. 105 

Simulated stochasticity in the ORN-PN synapse recapitulated our empirical findings. Thus, we 106 

identified the ORN-PN synapse as a locus of individuality in fly odor preference, demonstrating 107 

that behaviorally-relevant variation in neural circuits can be found in the sensory periphery at the 108 

nanoscale. 109 

 110 

Results 111 

Individual flies encode odors idiosyncratically 112 

Focusing on behavioral variation within a genotype, we used isogenic animals expressing the 113 

fluorescent calcium reporter GCamp6m (Chen et al., 2013) in either of the two most peripheral 114 

neural subpopulations of the Drosophila olfactory circuit, ORNs or PNs (Figure 1E). We 115 

performed head-fixed 2-photon calcium imaging after measuring odor preference in an 116 

untethered assay (Honegger et al., 2019) (Figure 1B-D, Figure 1 – figure supplement 1A). 117 
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Individual odor preferences are stable over timescales longer than this experiment (Figure 1 – 118 

figure supplement 1B-E). 119 

 120 

We measured volumetric calcium responses in the antennal lobe (AL), where ORNs synapse 121 

onto PNs in ~50 discrete microcircuits called glomeruli (Figure 1A) (Couto et al., 2005; Grabe et 122 

al., 2015). Flies were stimulated with a panel of 12 odors plus air (Figure 1D, Figure 1 – figure 123 

supplement 2) and k-means clustering was used to automatically segment the voxels of 5 124 

glomeruli from the resulting 4-D calcium image stacks (Figure 1E, Figure 1 – figure supplement 125 

4, Materials and Methods) (Couto et al., 2005). Both ORN and PN odor responses were roughly 126 

stereotyped across individuals (Figure 1G,H), but also idiosyncratic (Honegger et al., 2019). 127 

Responses in PNs appeared to be more idiosyncratic than ORNs (Figure 1J); a logistic linear 128 

classifier decoding fly identity from glomerular responses was more accurate when trained on 129 

PN than ORN responses (Figure 1 – figure supplement 5A). While the responses of single ORNs 130 

are known to vary more than those of single PNs (Wilson, 2013), our recordings represent the 131 

total response of all ORNs or PNs in a glomerulus. This might explain our observation that 132 

ORNs exhibited less idiosyncrasy than PNs. PN responses were more variable within flies, as 133 

measured across the left and right hemisphere ALs, compared to ORN responses (Figure 1 – 134 

figure supplement 5C), consistent with the hypothesis that odor representations become more 135 

idiosyncratic farther from the sensory periphery.  136 

 137 

Individual ORN responses predict odor-air preference  138 

Next we analyzed the relationship of idiosyncratic coding to odor preference, by asking in which 139 

neurons (if any) did calcium responses predict individual preferences of flies choosing between 140 

air and an aversive odor (3-octanol, OCT; Figure 1 – figure supplement 1B; Supplementary 141 

Video 1). Because we could potentially predict preference (a single value) using numerous 142 

glomerular-odor predictors, and had a limited number of observations (dozens), we used 143 

dimensional reduction to make parsimonious predictions. We computed the principal 144 

components (PCs) of the glomerulus-odor responses (in either ORNs or PNs) across individuals 145 

(Figure 1G-I; Figure 1 – figure supplement 3, Figure 1 – figure supplement 7) and fit linear 146 

models to predict the behavior of individual flies from their values on the odor response PCs. PC 147 

1 of ORN activity was a significant predictor of odor preference (r = 0.48; p = 0.0099; Figure 148 

1K,L). PC 1 of PN activity was also correlated with odor preference in separate model training 149 

and testing experiments (Figure 2 – figure supplement 1; statistics from combined train and test 150 

data: r = 0.29, p = 0.035, Figure 1K,M). Our interpretation is that ORN responses are 151 

idiosyncratic and predict individual odor-vs-air preference, and that these idiosyncrasies are 152 

transmitted to PNs, where they remain predictive of behavioral responses. 153 

 154 

How should we interpret the calcium PCs only predicting odor preference with r = ~0.4? This 155 

value falls short of 1.0 due to at least two factors: 1) any non-linearity in the relationship between 156 

calcium responses and behavior, and 2) sampling error in, and temporal instability of, behavior 157 
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and calcium responses over the duration of the experiment. A lower bound on the latter can be 158 

estimated from the repeatability of behavioral measures over time (Figure 1 – figure supplement 159 

1B-E). To disentangle these effects, we performed a statistical analysis that estimated model 160 

performance in the absence of sampling error and drift in the measurement of behavior and 161 

calcium responses, i.e., the strength of the linear relationship between latent behavior and 162 

calcium states (Figure 4 – figure supplement 1; Materials and Methods). This analysis implies 163 

the nominal correlation of 0.48 between behavior and PC1 of ORN calcium responses 164 

corresponds to a correlation between latent calcium and behavior states (⍴signal) of 0.64. This 165 

makes intuitive sense because the raw model R2 (0.23) is close to the behavior repeatability R2 166 

(0.27), an upper-limit on model performance (Figure 1 – figure supplement 1B). The model 167 

predicting odor-vs-air behavior from PC1 of PN calcium responses has an estimated ⍴signal of 168 

0.40 (Figure 4).  169 

 170 

PN, but not ORN, responses predict odor-odor preference 171 

Variation in the sensory periphery has been previously implicated as a driver of behavioral 172 

variation (Michelson et al., 2017; Osborne et al., 2005), but we wondered whether ORNs would 173 

be a locus of individuality for a behavior requiring the comparison of two odors (rather than just 174 

the sensation of a single odor). So we next determined if idiosyncratic calcium responses could 175 

predict individual preferences in an odor-vs-odor choice (Figure 1 – figure supplement 1D,E; 176 

(Honegger et al., 2019); Supplementary Video 2), specifically between the aversive 177 

monomolecular odorants (OCT) and 4-methylcyclohexanol (MCH). We assessed if any of the 178 

first 5 PCs of PN calcium responses was a linear predictor of individual odor-vs-odor 179 

preferences. PC 2 accounted for 15% of preference variance in a training set of 47 flies (Figure 2 180 

– figure supplement 1C). This PC 2-based model explained 31% of preference variance on test 181 

data (n=22 flies) (Figure 2 – figure supplement 1D). Combined train/test statistics (r = 0.45; p = 182 

0.0001) are presented in Figure 1N,P. We estimate that the correlation between between latent 183 

PN calcium and odor-vs-odor behavioral states is ⍴signal = 0.75 (Figure 4). 184 

 185 

No PCs of ORN neural activity could linearly predict odor preference beyond the level of 186 

shuffled controls (n=35 flies) (Figure 1N,O; Figure 4). The best ORN PC model only predicted 187 

odor-vs-odor behavior with a nominal R2 of 0.031 (⍴signal = 0.30). Projecting ORN data onto PC 188 

2 of PN responses (the successful model) did not predict odor-vs-odor behavior (R2=0.060). 189 

Therefore, whereas idiosyncratic ORN responses (and PN responses) were predictive of odor-vs-190 

air preferences, only PN responses were predictive of odor-vs-odor preferences. 191 

 192 

We next sought an intuitive understanding of the models linking calcium responses and odor 193 

preference. The loadings of the ORN and PN PCs indicate that variation across individuals was 194 

correlated at the level of glomeruli much more strongly than odorant (Figure 1 – figure 195 

supplements 3, 7). This suggests that stochastic variation in the olfactory circuit results in 196 

individual-level fluctuations in the responses of glomeruli-specific rather than odor-specific 197 
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responses. In the case of the odor-vs-air model, the PC 1 loadings of both ORN and PN neural 198 

activity were non-negative across all glomerulus-odor response dimensions (Figure 2A,D), 199 

apparently representing each individual’s total response in all glomerulus-odorant combinations. 200 

Indeed, a linear model that simply sums all calcium responses in ORNs (Figure 2B,E) predicted 201 

behavior with R2=0.25 (⍴signal = 0.67); for PN responses, it was somewhat predictive, though less 202 

so (R2=0.098; ⍴signal = 0.43). For both ORNs and PNs, the model’s slope parameter (β) was 203 

negative (Table 1), meaning that stronger AL responses correlated with stronger preference for 204 

air, consistent with OCT being aversive. Thus, flies whose ORNs and PNs respond, as a 205 

population, more strongly to OCT are more likely to avoid it. 206 

 207 

In the odor-vs-odor preference model, the loadings of PC2 of PN calcium responses contrast the 208 

responses of the DM2 and DC2 glomeruli with opposing weights (Figure 2G), suggesting that 209 

the activation of DM2 relative to DC2 predicts the likelihood of a fly preferring OCT to MCH. 210 

Indeed, a linear model constructed from the total DM2 minus total DC2 PN response (Figure 2H) 211 

predicted individual preference for OCT versus MCH (R2=0.12; ⍴signal = 0.59; Figure 2I). The 212 

model beta coefficient was negative (Table 1), indicating that greater activation of DM2 vs DC2 213 

correlates with preference for MCH. With respect to odor-vs-odor behavior, we conclude that the 214 

relative responses of DM2 vs DC2 in PNs largely explains an individual’s preference. 215 

 216 

Odor experience has been shown to modulate subsequent AL responses (Golovin and Broadie, 217 

2016; Iyengar et al., 2010; Sachse et al., 2007). This raises the possibility that our models were 218 

actually predicting individual flies’ past odor experiences (i.e., the specific pattern of odor 219 

stimulation flies received in the behavioral assay) rather than their preferences. To address this, 220 

we imposed the specific odor experiences of previously tracked untethered flies (in the odor-vs-221 

odor assay) on naive “yoked” control flies (Figure 2J) and measured PN odor responses of the 222 

yoked flies. Applying the PN PC 2 model to the yoked calcium responses did not predict flies’ 223 

odor experience (R2=0.019; Figure 2K). Thus, the responses of DM2 vs DC2 in PNs do not 224 

predict individual open-loop odor experiences. 225 

 226 

Previous work found that PN response transients, rather than fixed points, contain more odor 227 

identity information (Mazor and Laurent, 2005). We therefore asked at which times during odor 228 

presentation an individual’s neural responses could best predict odor preference. Applying each 229 

of our three successful calcium-to-behavior models (ORN PC1-odor-vs-air, PN PC1-odor-vs-air, 230 

PN PC2-odor-vs-odor) to the time-varying calcium signals, we found that in all cases, behavior 231 

prediction generally rose during odor delivery (Figure 4 – figure supplement 2A-C). In ORNs, 232 

the predictive accuracy remained high after odor offset, whereas in PNs it declined. Thus, the 233 

overall sensitivity of ORNs that appears to predict odor-vs-air preferences may persist after odor 234 

stimulation ends. The times during which calcium responses predicted individual behavior 235 

generally aligned to the times during which a linear classifier could decode odor identity from 236 
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ORN or PN responses (Figure 4 – figure supplement 2D), suggesting that idiosyncrasies in odor 237 

encoding predict individual preferences. 238 

 239 

Variation in a presynaptic scaffolding protein predicts odor-odor preference variation 240 

We next investigated how structural variation in the nervous system might underlie the variations 241 

in neural activity that correlate with idiosyncratic behavior. Because PN, but not ORN, calcium 242 

responses predicted odor-vs-odor preference, we hypothesized that a circuit element between 243 

ORNs to PNs could confer onto PNs behaviorally-relevant physiological idiosyncrasies absent in 244 

ORNs. We therefore imaged presynaptic T-bar density in ORNs using transgenic mStrawberry-245 

tagged Brp-Short, immunohistochemistry and confocal microscopy (Mosca and Luo, 2014) after 246 

measuring individual preference for OCT versus MCH (Figure 3A). Brp-Short density was 247 

quantified as fluorescence intensity / glomerulus volume for 4 of the 5 focus glomeruli (Figure 248 

3B, Figure 3 – figure supplement 1A-F; DL5 was not readily segmentable across samples, but 249 

was dispensable in all behavior-predicting models). This measure was consistent across 250 

hemispheres (Figure 3 – figure supplement 1C), while also showing variation among individuals.  251 

 252 

To begin assessing the relationship between presynaptic structural variation and behavior, we 253 

calculated the principal components of Brp-Short density across individuals. PCs 1 and 2 were 254 

qualitatively similar to those in our calcium imaging experiments: PC 1 was non-negative 255 

positive across glomeruli, reflecting global average staining intensity, and PC 2 exhibited a sign 256 

contrast between DC2 loadings and all other glomerulus loadings (Figure 3 – figure supplement 257 

1G). As in the PN calcium response models, PC 2 of Brp-Short density was the best predictor of 258 

odor-vs-odor preferences in training data (Figure 3D-E, Figure 3 – figure supplement 1I, R2 = 259 

0.22, n=22 flies) and for test data (Figure 3 – figure supplement 1J, R2 = 0.078, n=31 flies; 260 

statistics from combined train and test data: R2 = 0.088, n=53 flies, Figure 3F). We tested our 261 

intuitive hypothesis that PC 2 captures the differential response of DM2 vs DC2 by applying the 262 

“DM2 minus DC2 model” (Figure 2H) to the Brp-Short data (Figure 3G). While this 263 

rudimentary model did not attain statistical significance, it had a negative beta coefficient, 264 

implying that higher presynaptic density in DM2 compared to DC2 correlates with preference for 265 

MCH (Table 1), consistent with the beta parameter of the PN calcium response model. 266 

 267 

The range of differences between DM2 and DC2 Brp-Short staining across individuals (-50% to 268 

40%; normalized by the average of the two glomeruli) was less than that of PN calcium response 269 

differences (-60% to 100%; Figure 3 – figure supplement 2), suggesting that presynaptic density 270 

variation is not the full explanation of calcium response variability. Consistently, the best 271 

presynaptic density models are less predictive of behavior than the best calcium response models 272 

(R2=0.088 vs R2=0.22; ⍴signal = 0.51 and 0.75, respectively; Figure 2 – figure supplement 1C,D 273 

vs Figure 3 – figure supplement 1I,J). Nevertheless, differences in presynaptic inputs to DM2 274 

and DC2 PNs may contribute to variation in DM2 and DC2 calcium dynamics, in turn giving rise 275 

to individual preferences for OCT versus MCH. 276 
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 277 

To help formulate hypotheses about what variable Brp-Short staining represented on a 278 

microstructural level, we performed paired behavior and expansion microscopy (Asano et al., 279 

2018; Gao et al., 2019) in flies expressing Brp-Short specifically in DC2-projecting ORNs 280 

(Supplementary Video 3). Expansion yielded a ~4-fold increase in linear resolution, allowing 281 

imaging of individual Brp-Short puncta (Figure 3 – figure supplement 1K) (Gao et al., 2019). 282 

While the sample size (n=8) of this imaging pipeline did not warrant a formal modeling analysis, 283 

the trend between density of Brp-Short in DC2 and odor-vs-odor preference was more consistent 284 

with a positive correlation than the trend between Brp-Short volume and odor-vs-odor preference 285 

(Figure 3 – figure supplement L,M). These results hint that variation in the density of Bruchpilot 286 

protein within presynaptic sites, rather than other biophysical properties, may be a critical factor 287 

underlying physiological and behavioral individuality.  288 

 289 

Developmental stochasticity in a simulated AL recapitulates empirical PN response variation  290 

Finally, we sought an integrative understanding of how synaptic variation plays out across the 291 

olfactory circuit to produce behaviorally-relevant physiological variation. We developed a leaky-292 

integrate-and-fire model of the entire AL, comprising 3,062 spiking neurons and synaptic 293 

connectivity taken directly from the Drosophila hemibrain connectome (Scheffer et al., 2020). 294 

After tuning the model to perform canonical AL computations, we introduced different kinds of 295 

stochastic variations to the circuit and determined which (if any) would produce the patterns of 296 

idiosyncratic PN response variation observed in our calcium imaging experiments (Figure 5A). 297 

This approach assesses potential mechanisms linking developmental variation in synapses to 298 

physiological variation that apparently drives behavioral individuality. 299 

 300 

The biophysical properties of neurons in our model (Figure 5B, Table 2) were determined by 301 

published electrophysiological studies (See Voltage model in Materials and Methods) and were 302 

similar to those used in previous fly models (Kakaria and de Bivort, 2017; Pisokas et al., 2020). 303 

The polarity of neurons was determined largely by their cell type (ORNs are excitatory, PNs 304 

predominantly excitatory, and LNs predominantly inhibitory – explained further in Materials and 305 

Methods). The strength of synaptic connections between any pair of AL neurons was given by 306 

the hemibrain connectome (Scheffer et al., 2020) (Figure 5C). Odor inputs were simulated by 307 

injecting current into ORNs to produce spikes in those neurons at rates that match published 308 

ORN-odor recordings (Münch and Galizia, 2016), and the output of the system was recorded as 309 

the firing rates of PNs during odor stimulation (Figure 5D). At this point, there remained only 310 

four free parameters in our model, the relative sensitivity (postsynaptic current per upstream 311 

action potential) of each AL cell type (ORNs, PNs, excitatory LNs and inhibitory LNs). We 312 

explored this parameter space manually, and identified a configuration in which AL simulation 313 

(Figure 5 – figure supplement 1) recapitulated four canonical properties seen experimentally 314 

(Figure 5 – figure supplement 2): 1) typical firing rates at baseline and during odor stimulation 315 

(Bhandawat et al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), 2) 316 
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a more uniform distribution of PN firing rates compared to ORN rates (Bhandawat et al., 2007), 317 

3) greater separation of PN odor representations compared to ORN representations (Bhandawat 318 

et al., 2007), and 4) a sub-linear transfer function between ORNs and PNs (Bhandawat et al., 319 

2007). Thus, our simulated AL appeared to perform the fundamental computations of real ALs, 320 

providing a baseline for assessing the effects of idiosyncratic variation. 321 

 322 

We simulated stochastic individuality in the AL circuit in two ways (Figure 5E): 1) glomerular-323 

level variation in PN input-synapse density (reflecting a statistical relationship observed between 324 

glomerular volume and synapse density in the hemibrain, Figure 5 – figure supplement 4), and 2) 325 

bootstrapping of neuronal compositions within cell types (reflecting variety in developmental 326 

program outcomes for ORNs, PNs, etc.). Supplementary Video 4 shows the diverse connectivity 327 

matrices attained under these resampling approaches. We simulated odor responses in thousands 328 

of ALs made idiosyncratic by these sources of variation, and in each, recorded the firing rates of 329 

PNs when stimulated by the 12 odors from our experimental panel (Figure 5F, Figure 5 – figure 330 

supplement 1).  331 

 332 

To determine which sources of variation produced patterns of PN coding variation consistent 333 

with our empirical measurements, we compared principal components of PN responses from real 334 

idiosyncratic flies to those of simulated idiosyncratic ALs. Empirical PN responses are strongly 335 

correlated at the level of glomeruli (Figure 5G; Figure 1 – figure supplement 7). As a positive 336 

control that the model can recapitulate this empirical structure, resampling PN input-synapse 337 

density across glomeruli produced PN response correlations strongly organized by glomerulus 338 

(Figure 5I). As a negative control, variation in PN responses due solely to poisson timing of 339 

ORN input spikes (i.e., absent any circuit idiosyncrasy) was not organized at the glomerular level 340 

(Figure 5H). Strikingly, bootstrapping ORN membership yielded a strong glomerular 341 

organization in PN responses (Figure 5J). The loadings of the top PCs under ORN bootstrapping 342 

are dominated by responses of a single glomerulus to all odors, including DM2 and DC2. This is 343 

reminiscent of PC2 of PN calcium responses, with prominent (opposite sign) loadings for DM2 344 

and DC2. Bootstrapping LNs, in contrast, produced much less glomerular organization (Figure 345 

5K), with little resemblance to the loadings of the empirical calcium PCs. The PCA loadings for 346 

simulated PN responses under all combinations of cell type bootstrapping and PN input-synapse 347 

density resampling are given in Figure 5 – figure supplement 5.  348 

 349 

DM2 and DC2 (also DL5) stand out in the PCA loadings under PN input-synapse density 350 

resampling and ORN bootstrapping (Figure 5I,J), suggesting that behaviorally-relevant PN 351 

coding variation is recapitulated in this modeling framework. To formalize this analysis, for each 352 

idiosyncratic AL, we computed a “behavioral preference” by applying the PN PC2 linear model 353 

(Figure 1N,P) to simulated PN responses. We then determined how accurately a linear classifier 354 

could distinguish OCT- vs MCH-preferring ALs in the space of the first 3 PCs of PN responses 355 

(Figure 5 – figure supplement 6). High accuracy was attained under PN input-synapse density 356 
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resampling and ORN bootstrapping (sources of circuit variation that produced PN response 357 

loadings highlighting DM2 and DC2). Thus, developmental variability in ORN populations may 358 

drive patterns of PN physiological variation that in turn drive individuality in odor-vs-odor 359 

choice behavior. 360 

 361 

 362 

Discussion 363 

We found elements of the Drosophila olfactory circuit where patterns of physiological activity 364 

emerge that are predictive of individual behavioral preferences. These circuit elements can be 365 

considered loci of individuality, as they appear to harbor the origins of idiosyncratic preferences 366 

among isogenic animals reared in the same environment. Specifically, the total responsiveness of 367 

ORNs predicts idiosyncratic odor-vs-air preferences, and contrasting glomerular activation in 368 

PNs predicts idiosyncratic odor-vs-odor preferences (Figures 1, 2). Both of these circuit elements 369 

are in the olfactory sensory periphery, suggesting that behavioral idiosyncrasy arises early in the 370 

sensorimotor transformation. We were particularly surprised at the extent to which PN activity 371 

could predict preference between two aversive odors. We estimated that the strength of the 372 

correlation between latent PN activity and behavioral states was 0.75 (Figure 4B). 373 

 374 

Previous work has found mammalian peripheral circuit areas are predictive of individual 375 

behavior (Britten et al., 1996; Michelson et al., 2017; Newsome et al., 1989; Osborne et al., 376 

2005), but this study is among the first (Linneweber et al., 2020; Mellert et al., 2016; Skutt-377 

Kakaria et al., 2019) to link cellular-level circuit variants and individual behavior in the absence 378 

of genetic variation. Another key conclusion is that loci of individuality are likely to vary, even 379 

within the sensory periphery, with the specific behavioral paradigm (i.e., odor-vs-odor or odor-380 

vs-air). Our ability to predict behavioral preferences was limited by the repeatability of the 381 

behavior itself (Figure 4 – figure supplement 1). Low persistence of odor preference may be 382 

attributable to factors like internal states or plasticity. It may be fruitful in future studies to map 383 

circuit elements whose activity predicts trial-to-trial behavioral fluctuations within individuals. 384 

 385 

Seeking insight into the molecular basis of behaviorally-relevant physiological variation, we 386 

imaged Brp in the axon terminals of the ORN-PN synapse, using confocal and expansion 387 

microscopy. Brp glomerular (and probably puncta) density was a predictor of individual odor-vs-388 

odor preferences (Figure 3). Higher Brp in DM2 predicted stronger MCH preference, like higher 389 

calcium responses in DM2 PNs, suggesting that variation in PN inputs underlies PN 390 

physiological variation. This is consistent with the recent finding of a linear relationship between 391 

synaptic density and excitatory postsynaptic potentials (Liu et al., 2022) and another study in 392 

which idiosyncratic synaptic density in central complex output neurons predicts individual 393 

locomotor behavior (Skutt-Kakaria et al., 2019). The predictive relationship between Brp and 394 

behavior was weaker than that of PN calcium responses, suggesting there are other determinants, 395 
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such as other synaptic proteins, neurite morphology, or the influence of idiosyncratic LNs (Chou 396 

et al., 2010) modulating the ORN-PN transformation (Nagel et al., 2015). 397 

 398 

To integrate our synaptic and physiological results, we implemented a spiking model with 3,062 399 

neurons and synaptic weights drawn directly from the fly connectome (Scheffer et al., 2020) 400 

(Figure 5). With light parameter tuning, this model recapitulated canonical AL computations, 401 

providing a baseline for assessing the effects of idiosyncratic stochastic variation. The apparent 402 

variation in odor responses across simulated individuals (Figure 5F) is less than that seen in the 403 

empirical calcium responses (Figure 1H), likely due to 1) biological phenomena missing from 404 

the model, 2) the lack of measurement noise, and 3) the fact that our perturbations are applied to 405 

the connectome of a single fly. When examining PCA loadings, however, simulating 406 

idiosyncratic ALs by varying PN input synapse density or bootstrapping ORNs produced 407 

correlated PN responses across odors in DC2 and DM2, matching our experimental results. 408 

These sources of variation specifically implicate the ORN-PN synapse (like our Brp results) as 409 

an important substrate for establishing behaviorally-relevant patterns of PN response variation. 410 

 411 

The flies used in our experiments were isogenic and reared in standardized laboratory conditions 412 

that produce reduced behavioral individuality compared to enriched environments (Akhund-Zade 413 

et al., 2019; Körholz et al., 2018; Zocher et al., 2020). Yet, even these conditions yield 414 

substantial behavioral individuality. We do not expect variability in the expression of the flies’ 415 

transgenes to be a major driver of this individuality, as wildtype flies have a similarly broad 416 

distribution of odor preferences (Honegger et al., 2019). The ultimate source of stochasticity in 417 

this behavior remains a mystery, with possibilities ranging from thermal fluctuations at the 418 

molecular scale to macroscopic, but seemingly irrelevant, variations like the exact fill level of the 419 

culture media (Honegger and de Bivort, 2018). Developing nervous systems employ various 420 

compensation mechanisms to dampen out the effects of these fluctuations (Marder, 2011; Tobin 421 

et al., 2017). Behavioral variation may be beneficial, supporting a bet-hedging strategy (Hopper, 422 

1999) to counter environmental fluctuations (Akhund-Zade et al., 2020; Honegger et al., 2019; 423 

Kain et al., 2015; Krams et al., 2021). Empirically, the net effect of dampening and accreted 424 

ontological (Gomez-Marin and Ghazanfar, 2019) fluctuations is individuals with diverse 425 

behaviors. This process unfolds across all levels of biological regulation. Just as PN response 426 

variation appears to be partially rooted in glomerular Brp variation, the latter has its own 427 

molecular roots, including, perhaps, stochasticity in gene expression (Li et al., 2017; Raj et al., 428 

2010), itself a predictor of idiosyncratic behavioral biases (Werkhoven et al., 2021). Improved 429 

methods to longitudinally assay the fine-scale molecular and anatomical makeup of behaving 430 

organisms throughout development and adulthood will be invaluable to further illuminate the 431 

mechanistic origins of individuality.  432 

  433 
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Materials and Methods 434 

 435 

Data and code availability 436 

All raw data, totaling 600 GB, are available via hard drive from the authors. A smaller (7 GB) 437 

repository with partially processed data files and MATLAB/Python scripts sufficient to generate 438 

figures and results is available at Zenodo (doi:10.5281/zenodo.8092972). 439 

 440 

Fly rearing 441 

Experimental flies were reared in a Drosophila incubator (Percival Scientific DR-36VL) at 22° 442 

C, 40% relative humidity, and 12:12h light:dark cycle. Flies were fed cornmeal/dextrose 443 

medium, as previously described (Honegger et al., 2019). Mated female flies aged 3 days post-444 

eclosion were used for behavioral persistence experiments. Mated female flies aged 7 to 15 days 445 

post-eclosion were used for all paired behavior-calcium imaging and immunohistochemistry 446 

experiments. 447 

 448 

Fly stocks 449 

The following stocks were obtained from the Bloomington Drosophila Stock Center: 450 

P{20XUAS-IVS-GCaMP6m}attP40 (BDSC #42748), w[*]; P{w[+mC]=Or13a-GAL4.F}40.1 451 

(BDSC #9945), w[*]; P{w[+mC]=Or19a-GAL4.F}61.1 (BDSC #9947), w[*]; 452 

P{w[+mC]=Or22a-GAL4.7.717}14.2 (BDSC #9951), w[*]; P{w[+mC]=Orco-GAL4.W}11.17; 453 

TM2/TM6B, Tb[1] (BDSC #26818). Transgenic lines were outcrossed to the isogenic line 454 

isokh11 (Honegger et al., 2019) for at least 5 generations prior to being used in any experiments. 455 

GH146-Gal4 was a gift provided by Y. Zhong (Honegger et al., 2019). w; UAS-Brp-Short-456 

mStrawberry; UAS-mCD8-GFP; + was a gift of Timothy Mosca and was not outcrossed to the 457 

isokh11 background (Mosca and Luo, 2014). 458 

 459 

Odor delivery 460 

Odor delivery during behavioral tracking and neural activity imaging was controlled with 461 

isolation valve solenoids (NResearch Inc.) (Honegger et al., 2019). Saturated headspace from 40 462 

ml vials containing 5 ml pure odorant were serially diluted via carbon-filtered air to generate a 463 

variably (10-25%) saturated airstream controlled by digital flow controllers (Alicat Scientific) 464 

and presented to flies at total flow rates of ~100 mL/min. The odor panel used for imaging was 465 

comprised of the following odorants: 2-heptanone (CAS #110-43-0, Millipore Sigma), 1-466 

pentanol (CAS #71-41-0, Millipore Sigma), 3-octanol (CAS #589-98-0, Millipore Sigma), hexyl-467 

acetate (CAS #142-92-7, Millipore Sigma), 4-methylcyclohexanol (CAS #589-91-3, Millipore 468 

Sigma), pentyl acetate (CAS #628-63-7, Millipore Sigma), 1-butanol (CAS #71-36-3, Millipore 469 

Sigma), ethyl lactate (CAS #97-64-3, Millipore Sigma), geranyl acetate (CAS #105-87-3, 470 

Millipore Sigma), 1-hexanol (CAS #111-27-34, Millipore Sigma), citronella java essential oil (471 

191112, Aura Cacia), and 200 proof ethanol (V1001, Decon Labs).  472 

 473 
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Odor preference behavior 474 

Odor preference was measured at 25°C and 20% relative humidity. As previously described 475 

(Honegger et al., 2019), individual flies confined to custom-fabricated tunnels were illuminated 476 

with infrared light and behavior was recorded with a digital camera (Basler) and zoom lens 477 

(Pentax). The odor choice tunnels were 50 mm long, 5 mm wide, and 1.3 mm tall. Custom real-478 

time tracking software written in MATLAB was used to track centroid, velocity, and principal 479 

body axis angle throughout the behavioral experiment, as previously described (Honegger et al., 480 

2019). After a 3-minute acclimation period, odorants were delivered to either end of the tunnel 481 

array for 3 minutes. Odor preference score was calculated as the fraction of time spent in the 482 

reference side of the tunnel during odor-on period minus the time spent in the reference side of 483 

the tunnel during the pre-odor acclimation period.  484 

 485 

Behavioral preference persistence measurements 486 

After measuring odor preference, flies were stored in individual housing fly plates (modified 96-487 

well plates; FlySorter, LLC) on standard food, temperature, humidity, and lighting conditions. 488 

Odor preference of the same individuals was measured 3 and/or 24 hours later. In some cases, fly 489 

tunnel position was randomized between measurements. We observed that randomization had 490 

little effect on preference persistence. 491 

 492 

Calcium imaging 493 

Flies expressing GCaMP6m in defined neural subpopulations were imaged using a custom-built 494 

two-photon microscope and ultrafast Ti:Sapphire laser (Spectra-Physics Mai Tai) tuned to 930 495 

nm, at a power of 20 mW out of the objective (Olympus XLUMPlanFL N 20x/1.00 W). For 496 

paired behavior and imaging experiments, the time elapsed between behavior measurement and 497 

imaging ranged from 15 minutes to 3 hours. Flies were anesthetized on ice and immobilized in 498 

an aluminum sheet with a female-fly-sized hole cut in it. The head cuticle between the antennae 499 

and ocelli was removed along with the tracheae to expose the ALs from the dorsal side. Volume 500 

scanning was performed using a piezoelectric objective mount (Physik Instrumente). ScanImage 501 

2013 software (Vidrio Technologies) was used to coordinate galvanometer laser scanning and 502 

image acquisition. Custom Matlab (Mathworks) scripts were used to coordinate image 503 

acquisition and control odor delivery. 256 by 192 (x-y) pixel 16-bit tiff images were recorded. 504 

The piezo travel distance was adjusted between 70 and 90 μm so as to cover most of the AL. The 505 

number of z-sections in a given odor panel delivery varied between 7 and 12 yielding a volume 506 

acquisition rate of 0.833 Hz. Odor delivery occurred from 6-9.6s of each recording. 507 

 508 

Each fly experienced up to four deliveries of the odor panel. The antennal lobe being recorded 509 

(left or right) was alternated after each successful completion of an odor panel. Odors were 510 

delivered in randomized order. In cases where baseline fluorescence was very weak or no 511 

obvious odor responses were visible, not all four panels were delivered. 512 

 513 
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Glomerulus segmentation and labeling 514 

Glomerular segmentation masks were extracted from raw image stacks using a k-means 515 

clustering algorithm based on time-varying voxel fluorescence intensities, as previously 516 

described (Honegger et al., 2019). Each image stack, corresponding to a single odor panel 517 

delivery, was processed individually. Time-varying voxel fluorescence values for each odor 518 

delivery were concatenated to yield a voxel-by-time matrix consisting of each voxel’s recorded 519 

value during the course of all 13 odor deliveries of the odor panel. After z-scoring, principal 520 

component analysis was performed on this matrix and 75% of the variance was retained. Next, k-521 

means (k=80, 50 replicates with random starting seeds) was performed to produce 50 distinct 522 

voxel cluster assignment maps which we next used to calculate a consensus map. This approach 523 

was more accurate than clustering based on a single k-means seed.  524 

 525 

Of the 50 generated voxel cluster assignment maps, the top 5 were selected by choosing those 526 

maps with the lowest average within-cluster sum of distances, selecting for compact glomeruli. 527 

The remaining maps were discarded. Next, all isolated voxel islands in each of the top 5 maps 528 

were identified and pruned based on size (minimum size = 100 voxels, maximum size = 10000 529 

voxels). Finally, consensus clusters were calculated by finding voxel islands with significant 530 

overlap across all 5 of the pruned maps. Voxels which fell within a given cluster across all 5 531 

pruned maps were added to the consensus cluster. This process was repeated for all clusters until 532 

the single consensus cluster map was complete. In some cases we found by manual inspection 533 

that some individual glomeruli were clearly split into two discrete clusters. These splits were 534 

remedied by automatically merging all consensus clusters whose centroids were separated by a 535 

physical distance of less than 30 voxels and whose peak odor response Spearman correlation was 536 

greater than 0.8. Finally, glomeruli were manually labeled based on anatomical position, 537 

morphology, and size (Grabe et al., 2015). We focused our analysis on 5 glomeruli (DM1, DM2, 538 

DM3, DL5, and DC2), which were the only glomeruli that could be observed in all paired 539 

behavior-calcium datasets. However, not all 5 glomeruli were identified in all recordings (Figure 540 

1 – figure supplement 3). Missing glomerular data was later mean-imputed. 541 

 542 

Calcium image data analysis 543 

All data was processed and analyzed in MATLAB 2018a (Mathworks). Calcium responses for 544 

each voxel were calculated as Δf/f = [f(t) - F]/F, where f(t) and F are the instantaneous and 545 

average fluorescence, respectively. Each glomerulus' time-dependent calcium response was 546 

calculated as the mean Δf/f across all voxels falling within the glomerulus’ automatically-547 

generated segmentation mask during a single volume acquisition. Time-varying odor responses 548 

were normalized to baseline by subtracting the median of pre-odor Δf/f from each trace. Peak 549 

odor response was calculated as the maximum fluorescence signal from 7.2s to 10.8s (images 6 550 

through 9) of the recording. 551 

 552 
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To compute principal components of calcium dynamics, each fly’s complement of odor panel 553 

responses (a 5 glomeruli by 13 odors = 65-dimensional vector) was concatenated. Missing 554 

glomerulus-odor response values were filled in with the mean glomerulus-odor pair across all fly 555 

recordings for which the data was not missing. After infilling, principal component analysis was 556 

carried out with individual odor panel deliveries as observations and glomerulus-odor responses 557 

pairs as features.  558 

 559 

Inter- and intra-fly distances (Figure 1J) were calculated using the projections of each fly’s 560 

glomerulus-odor responses onto all principal components. For each fly, the average Euclidean 561 

distance between response projections 1) among left lobe trials, 2) among right lobe trials, and 3) 562 

between left and right lobe trials were averaged together to get a single within-fly distance. Intra-563 

fly distances were computed in a similar fashion (for each fly, taking the average distance of its 564 

response projections to those of other flies using only left lobe trials / only right lobe trials / 565 

between left-right trials, then averaging these three values to get a single across-fly distance). 566 

 567 

In a subset of experiments in which we imaged calcium activity, some solenoids failed to open, 568 

resulting in the failure of odor delivery in a small number of trials. In these cases, we identified 569 

trials with valve failures by manually recognizing that glomeruli failed to respond during the 570 

nominal odor period. These trials were treated as missing data and infilled, as described above. 571 

Fewer than ~10% of flies and 5% of odor trials were affected. 572 

 573 

For all predictive models constructed, the average principal component score or glomerulus-odor 574 

Δf/f response across trials was used per individual; that is, each fly contributed one data point to 575 

the relevant model. Linear models were constructed from behavior scores and the relevant 576 

predictor (principal component, average Δf/f across dimensions, specific glomerulus 577 

measurements) as described in the text and Tables 1-2. 95% confidence intervals around model 578 

regression lines were estimated as +/- 2 standard deviations of the value of the regression line at 579 

each x-position across 2000 bootstrap replicates (resampling flies). To predict behavior as a 580 

function of time during odor delivery, we analyzed data as described above, but considered only 581 

Δf/f at each single time point (Figure 4 – figure supplement 2A-C), rather than averaging during 582 

the peak response interval. 583 

 584 

To decode individual identity from neural responses, we first performed PCA on individual odor 585 

panel peak responses. We retained principal component scores constituting specified fractions of 586 

variance (Figure 1 – figure supplement 5A) and trained a linear logistic classifier to predict 587 

individual identity from single odor panel deliveries. 588 

 589 

To decode odor identity from neural responses, each of the 5 recorded glomeruli were used as 590 

features, and the calcium response of each glomerulus to a specific odor at a specified time point 591 

were used as observations (PNs, n=5317 odor deliveries; ORNs, n=2704 odor deliveries). A 592 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


linear logistic classifier was trained to predict the known odor identity using 2-fold cross-593 

validation. That is, a model was trained on half the data and evaluated on the remaining half, and 594 

then this process was repeated with the train and test half reversed. The decoding accuracy was 595 

quantified as the fraction of odor deliveries in which the predicted odor was correct. 596 

 597 

Inference of correlation between latent calcium and behavior states 598 

We performed a simulation-based analysis to infer the strength of the correlation between latent 599 

calcium (Brp) and behavior states, given the R2 of a given linear model. Figure 4 – figure 600 

supplement 1A is a schematic of the data generation process we assume underlies our observed 601 

data. We assume that the “true” behavioral and calcium values of the animal are captured by 602 

unobserved latent states Xc and Xb, respectively, such that the correlation between Xc and Xb is the 603 

biological signal captured by the model, having adjusted for the noise associated with actually 604 

measuring behavior and calcium (⍴signal ). Our calcium and odor preference scores are subject to 605 

measurement error and temporal instability (behavior and neural activity were measured 1-3 606 

hours apart). These effects are both noise with respect to estimating the linear relationship 607 

between calcium and behavior. Their magnitude can be estimated using the empirical 608 

repeatability of behavior and calcium experiments respectively. Thus, our overall approach was 609 

to assume true latent behavior and calcium signals that are correlated at the level ⍴signal, add noise 610 

to them commensurate with the repeatability of these measures to simulate measured behavior 611 

and calcium, and record the simulated empirical R2 between these measured signals. This was 612 

done many times to estimate distributions of empirical R2 given ⍴signal. These distributions could 613 

finally be used in the inverse direction to infer ⍴signal given the actual model R2 values computed 614 

in our study. 615 

 616 

Specifically, we simulated Xc as a set of N standard normal variables (N equalling the number of 617 

flies used to compute a correlation between predicted and measured preference) and generated Xb 618 

= ⍴signal Xc + (1-⍴signal
2Z)½, where Z is a set of N standard normal variables uncorrelated with Xc, a 619 

procedure that ensures that corr(Xc, Xb) = ⍴signal. Next, we simulated observed calcium readouts 620 

Xc’ and Xc”, such that corr(Xc, Xc’) = corr(Xc, Xc”) = rc. Similarly, we simulated noisy observed 621 

behavioral assay readouts Xb’ and Xb”, such that corr(Xb, Xb’) = corr(Xb, Xb”) = rb. The values 622 

of rc and rb were fixed by the empirical repeatability of calcium (Rc,c
2) and behavior (Rb,b

2) 623 

respectively as follows. Since calcium is a multidimensional measure, and our calcium model 624 

predictors are based on principal components of glomerulus-odor responses, we used variance 625 

explained along the PCs to calculate a single value for the calcium repeatability Rc,c
2. We 626 

compared the eigenvalues of the real calcium PCA to those of shuffled calcium data (shuffling 627 

glomerulus/odor responses for each individual fly), computing Rc,c
2  by summing the variance 628 

explained along the PCs of the calcium data up until the component-wise variance for the 629 

calcium data fell below that of the shuffled data, a similar approach as done in Berman et al., 630 

2014 and Werkhoven et al., 2021. Rc,c
2 was calculated to be 0.77 for both ORN and PN calcium; 631 

we set rc = (Rc,c
2)1/4 to ensure corr(Xc’, Xc”)2 = Rc,c

2. We matched rb to the repeatability across 632 
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odor preference trials in the same flies measured 3h apart (Rb,b
2 =0.23 for OCT vs AIR, and 0.12 633 

for OCT vs MCH, Figure 1 – figure supplement 1B-D), setting rb = (Rb,b
2)1/4 to ensure corr(Xb’, 634 

Xb”)2 = Rb,b
2.  635 

 636 

We varied ⍴signal from 0 to 1 in increments of 0.01, and for each ⍴signal , we simulated a set of N Xc 637 

and generated Xb , Xc’, Xc”, Xb’, and Xb”, then we computed a simulated observed calcium-638 

behavior relationship strength Rc,b
2 = corr(Xc’, Xb’)

2. We repeated this simulation 10,000 times 639 

for each ⍴signal  and plotted the resultant relationship between ⍴signal against Rc,b
2  (percentiles of 640 

Rc,b
2 are displayed in Figure 4 – figure supplement 1B). Then, for each linear model of interest, 641 

we inferred ⍴signal  by extracting the marginal distribution of ⍴signal near the model’s R2 (+/- 20%) 642 

and report the median ⍴signal. 643 

 644 

The procedure outlined above was done analogously for models using Brp-short relative 645 

fluorescence intensity, performing the PCA-based calcium response repeatability step with PCA 646 

on the multidimensional Brp-short relative fluorescence intensity (which yielded  Rbrp,brp
2 = 647 

0.75). 648 

 649 

DoOR data 650 

DoOR data for the glomeruli and odors relevant to our study was downloaded from 651 

http://neuro.uni-konstanz.de/DoOR/default.html (Münch and Galizia, 2016).  652 

 653 

Yoked odor experience experiments 654 

We selected six flies for which both odor preference and neural activity were recorded to serve 655 

as the basis for imposed odor experiences for yoked control flies. The experimental flies were 656 

chosen to represent a diversity of preference scores. Each experimental fly’s odor experience was 657 

binned into discrete odor bouts to represent experience of either MCH or OCT based on its 658 

location in the tunnel as a function of time (Figure 2J). Odor bouts lasting less than 100 ms were 659 

omitted due to limitations on odor-switching capabilities of the odor delivery apparatus. To 660 

deliver a given experimental fly’s odor experience to yoked controls, we set both odor streams 661 

(on either end of the tunnel apparatus) to deliver the same odor experienced by the experimental 662 

fly at that moment during the odor-on period. No odor was delivered to yoked controls during 663 

time points in which the experimental fly resided in the tunnel choice zone (central 5 mm). See 664 

Figure 2J for an example pair of experimental fly and yoked control behavior and odor 665 

experience. 666 

 667 

Immunohistochemistry 668 

After measuring odor preference behavior, 7-15 day-old flies were anesthetized on ice and brains 669 

were dissected in phosphate buffered saline (PBS). Dissection and immunohistochemistry were 670 

carried out as previously reported (Wu and Luo, 2006). The experimenter was blind to the 671 

behavioral scores of all individuals throughout dissection, imaging, and analysis. Individual 672 
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identities were maintained by fixing, washing, and staining each brain in an individual 0.2 mL 673 

PCR tube using fluid volumes of 100 uL per brain (Fisher Scientific). Primary incubation 674 

solution contained mouse anti-nc82 (1:40, DSHB), chicken anti-GFP (1:1000, Aves Labs), rabbit 675 

anti-mStrawberry (1:1000, biorbyt), and 5% normal goat serum (NGS, Invitrogen) in PBT (0.5% 676 

Triton X-100 in PBS). Secondary incubation solution contained Atto 647N-conjugated goat anti-677 

mouse (1:250, Millipore Sigma), Alexa Fluor 568-conjugated goat anti-rabbit (1:250), Alexa 678 

Fluor 488-conjugated goat anti-chicken (1:250, ThermoFisher), and 5% NGS in PBT. Primary 679 

and secondary incubation times were 2 and 3 overnights, respectively, at 4° C. Stained samples 680 

were mounted and cleared in Vectashield (H-1000, Vector Laboratories) between two coverslips 681 

(12-568B, Fisher Scientific). Two reinforcement labels (5720, Avery) were stacked to create a 682 

0.15 mm spacer.  683 

 684 

Expansion microscopy 685 

Immunohistochemistry for expansion microscopy was carried out as described above, with the 686 

exception that antibody concentrations were modified as follows: mouse anti-nc82 (1:40), 687 

chicken anti-GFP (1:200), rabbit anti-mStrawberry (1:200), Atto 647N-conjugated goat anti-688 

mouse (1:100), Alexa Fluor 568-conjugated goat anti-rabbit (1:100), Alexa Fluor 488-conjugated 689 

goat anti-chicken (1:100). Expansion of stained samples was performed as previously described 690 

(Asano et al., 2018; Gao et al., 2019). Expanded samples were mounted in coverslip-bottom petri 691 

dishes (MatTek Corporation) and anchored by treating the coverslip with poly-l-lysine solution 692 

(Millipore Sigma) as previously described (Asano et al., 2018).  693 

 694 

Confocal imaging 695 

All confocal imaging was carried out at the Harvard Center for Biological Imaging. Unexpanded 696 

samples were imaged on an LSM700 (Zeiss) inverted confocal microscope equipped with a 40x 697 

oil-immersion objective (1.3 NA, EC Plan Neofluar, Zeiss). Expanded samples were imaged on 698 

an LSM880 (Zeiss) inverted confocal microscope equipped with a 40x water-immersion 699 

objective (1.1 NA, LD C-Apochromat, Zeiss). Acquisition of Z-stacks was automated with Zen 700 

Black software (Zeiss). 701 

 702 

Standard confocal image analysis 703 

We used custom semi-automated code to generate glomerular segmentation masks from confocal 704 

z-stacks of unexpanded Orco>Brp-Short brains. Using Matlab, each image channel was median 705 

filtered (σx, σy, σz = 11, 11, 1 pixels) and downsampled in x and y by a factor of 11. Next, an 706 

ORN mask was generated by multiplying and thresholding the Orco>mCD8 and Orco>Brp-Short 707 

channels. Next, a locally normalized nc82 and Orco>mCD8 image stack were multiplied and 708 

thresholded, and the ORN mask was applied to remove background and other undesired brain 709 

structures. This pipeline resulted in a binary image stack which maximized the contrast of the 710 

glomerular structure of the antennal lobe. We then applied a binary distance transform and 711 
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watershed transform to generate discrete subregions which aimed to represent segmentation 712 

masks for each glomerulus tagged by Orco-Gal4.  713 

 714 

However, this procedure generally resulted in some degree of under-segmentation; that is, some 715 

glomerular segmentation masks were merged. To split each merged segmentation mask, we 716 

convolved a ball (whose radius was proportional to the cube root of the volume of the 717 

segmentation mask in question) across the mask and thresholded the resulting image. The 718 

rationale of this procedure was that 2 merged glomeruli would exhibit a mask shape resembling 719 

two touching spheres, and convolving a similarly-sized sphere across this volume followed by 720 

thresholding would split the merged object. After ball convolution, we repeated the distance and 721 

watershed transform to once more generate discrete subregions representing glomerular 722 

segmentation masks. This second watershed step generally resulted in over-segmentation; that is, 723 

by visual inspection it was apparent that many glomeruli were split into multiple subregions. 724 

Therefore, we finally manually agglomerated the over-segmented subregions to generate single 725 

segmentation masks for each glomerulus of interest. We used a published atlas to aid manual 726 

identification of glomeruli (Grabe et al., 2015). The total Brp-Short fluorescence signal within 727 

each glomerulus was determined and divided by the volume of the glomerulus’ segmentation 728 

mask to calculate Brp-Short density values. 729 

 730 

Expansion microscopy image analysis 731 

The spots function in Imaris 9.0 (Bitplane) was used to identify individual Brp-Short puncta in 732 

expanded sample image stacks of Or13a>Brp-Short samples (Mosca and Luo, 2014). The spot 733 

size was set to 0.5 um, background subtraction and region-growing were enabled, and the default 734 

spot quality threshold was used for each image stack. Identified spots were used to mask the Brp-735 

Short channel and the resultant image was saved as a new stack. In MATLAB, a glomerular 736 

mask was generated by smoothing (σx, σy, σz = 40, 40, 8 pixels) and thresholding (92.5th 737 

percentile) the raw Brp-Short image stack. The mask was then applied to the spot image stack to 738 

remove background spots. Finally, the masked spot image stack was binarized and spot number 739 

and properties were quantified. 740 

 741 

Antennal Lobe modeling 742 

We constructed a model of the antennal lobe to test the effect of circuit variation on PN activity 743 

variation across individuals. Our general approach to producing realistic circuit activity with the 744 

AL model was 1) using experimentally-measured parameters whenever possible (principally the 745 

connectome wiring diagram and biophysical parameters measured electrophysiologically), 2) 746 

associating free parameters only with biologically plausible categories of elements, while 747 

minimizing their number, and 3) tuning the model using those free parameters so that it 748 

reproduced high-level patterns of activity considered in the field to represent the canonical 749 

operations of the AL. Simulations were run in Python (version 3.6) (van Rossum and Drake, 750 

2011), and model outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and 751 
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Python and Matlab scripts.  752 

 753 

AL model neurons 754 

Release 1.2 of the hemibrain connectomics dataset (Scheffer et al., 2020) was used to set the 755 

connections in the model. Hemibrain body IDs for ORNs, LNs, and PNs were obtained via the 756 

lists of neurons supplied in the supplementary tables in Schlegel et al., 2020. ORNs and PNs of 757 

non-olfactory glomeruli (VP1d, VP1l, VP1m, VP2, VP3, VP4, VP5) were ignored, leaving 51 758 

glomeruli. Synaptic connections between the remaining 2574 ORNs, 197 LNs, 166 mPNs, and 759 

130 uPNs were queried from the hemibrain API. All ORNs were assigned to be excitatory 760 

(Wilson, 2013). Polarities were assigned to PNs based on the neurotransmitter assignments in 761 

Bates et al., 2020. mPNs without neurotransmitter information were randomly assigned an 762 

excitatory polarity with probability equal to the fraction of neurotransmitter-identified mPNs that 763 

are cholinergic; the same process was performed for uPNs. After confirming that the model’s 764 

output was qualitatively robust to which mPNs and uPNs were randomly chosen, this random 765 

assignment was performed once and then frozen for subsequent analyses. 766 

 767 

Of the 197 LNs, we assigned 31 to be excitatory, based on the estimated 1:5.4 ratio of eLNs to 768 

iLNs in the AL (Tsai et al., 2018). To account for observations that eLNs broadly innervate the 769 

AL (Shang et al., 2007), all LNs were ranked by the number of innervated glomeruli, and the 31 770 

eLNs were chosen uniformly at random from the top 50% of LNs in the list. This produced a 771 

distribution of glomerular innervations in eLNs qualitatively similar to that of krasavietz LNs in 772 

Supplementary Figure 6 of Chou et al., 2010. 773 

 774 

Voltage model 775 

We used a single-compartment leaky-integrate-and-fire voltage model for all neurons as in 776 

Kakaria and de Bivort, 2017, in which each neuron had a voltage Vi(t) and current Ii(t). When the 777 

voltage of neuron i was beneath its threshold Vi, thr, the following dynamics were obeyed: 778 

 779 

𝐶𝑖

𝑑𝑉𝑖

𝑑𝑡
 =  

𝑉𝑖,0 − 𝑉𝑖(𝑡)

𝑅𝑖
+ 𝐼𝑖,𝑜𝑑𝑜𝑟(𝑡)  +  ∑ 𝑎𝑖𝑊𝑗𝑖𝐼𝑗(𝑡)

𝑁

𝑗 =1

 780 

 781 

Each neuron i had electrical properties: membrane capacitance Ci, resistance Ri, and resting 782 

membrane potential Vi,0 with values from electrophysiology measurements (Table 2). 783 

 784 

When the voltage of a neuron exceeded the threshold Vi, thr, a templated action potential was 785 

filled into its voltage time trace, and a templated postsynaptic current was added to all 786 

downstream neurons, following the definitions in Kakaria and de Bivort, 2017. 787 

 788 

Odor stimuli were simulated by triggering ORNs to spike at frequencies matching known 789 

olfactory receptor responses to the desired odor. The timing of odor-evoked spikes was given by 790 
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a Poisson process, with firing rate FR for ORNs of a given glomerulus governed by: 791 

 792 

𝐹𝑅𝑔𝑙𝑜𝑚,𝑜𝑑𝑜𝑟(𝑡)  =  𝐹𝑅𝑚𝑎𝑥𝐷𝑔𝑙𝑜𝑚,𝑜𝑑𝑜𝑟(𝑓𝑎 + (1 − 𝑓𝑎)𝑒−𝑡/𝑡𝑎) 793 

 794 

FRmax, the maximum ORN firing rate, was set to 400 Hz. Dglom, odor is a value between 0 and 1 795 

from the DoOR database, representing the response of an odorant receptor/glomerulus to an 796 

odor, estimated from electrophysiology and/or fluorescence data (Münch and Galizia, 2016). 797 

ORNs display adaptation to odor stimuli (Wilson, 2013), captured by the final term with 798 

timescale ta = 110 ms to 75% of the initial value, as done in Kao and Lo, 2020. Thus, the 799 

functional maximum firing rate of an ORN was 75% of 400 Hz = 300 Hz, matching the highest 800 

ORN firing rates observed experimentally (Hallem et al., 2004). After determining the times of 801 

ORN spikes according to this firing-rate rule, spikes were induced by the addition of 106 802 

picoamps in a single time step. This reliably triggered an action potential in the ORN, regardless 803 

of currents from other neurons. In the absence of odors, spike times for ORNs were drawn by a 804 

Poisson process at 10 Hz, to match reported spontaneous firing rates (de Bruyne et al., 2001).  805 

 806 

For odor-glomeruli combinations with missing DoOR values (40% of the dataset), we performed 807 

imputation via alternating least squares (using the pca function with option ‘als’ to infill missing 808 

values (MATLAB documentation) on the odor x glomerulus matrix 1000 times and taking the 809 

mean infilled matrix, which provides a closer match to ground truth missing values than a single 810 

run of ALS (Figure 1 – figure supplement 5 of Werkhoven et al., 2021).  811 

 812 

A neuron j presynaptic to i supplies its current Ij(t) scaled by the synapse strength Wji, the 813 

number of synapses in the hemibrain dataset from neuron j to i. Rows in W corresponding to 814 

neurons with inhibitory polarity (i.e. GABAergic PNs or LNs) were set negative. Finally, post-815 

synaptic neurons (columns of the connectivity matrix) have a class-specific multiplier ai, a hand-816 

tuned value, described below. 817 

 818 

AL model tuning 819 

Class-specific multiplier current multipliers (ai) were tuned using the panel of 18 odors from 820 

Bhandawat et al., 2007 (our source for several experimental observations of high-level AL 821 

function): benzaldehyde, butyric acid, 2,3-butanedione, 1-butanol, cyclohexanone, Z3-hexenol, 822 

ethyl butyrate, ethyl acetate, geranyl acetate, isopentyl acetate, isoamyl acetate, 4-methylphenol, 823 

methyl salicylate, 3-methylthio-1-propanol, octanal, 2-octanone, pentyl acetate, E2-hexenal, 824 

trans-2-hexenal, gamma-valerolactone. Odors were “administered” for 400 ms each, with 300 ms 825 

odor-free pauses between odor stimuli. 826 

 827 

The high-level functions of the AL that represent a baseline, working condition were: (1) firing 828 

rates for ORNs, LNs, and PNs matching the literature (listed in Table 2 and see (Bhandawat et 829 

al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), (2) a more 830 
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uniform distribution of PN firing rates during odor stimuli compared to ORN firing rates, (3) 831 

greater separation of representations of odors in PN-coding space than in ORN-coding space, and 832 

(4) a sublinear transfer function between ORN firing rates and PN firing rates. Features (2) - (4) 833 

relate to the role of the AL in enhancing the separability of similar odors (Bhandawat et al., 834 

2007). 835 

 836 

To find a parameterization with those functions, we tuned the values of ai as scalar multipliers on 837 

ORN, eLN, iLN, and PN columns of the hemibrain connectivity matrix. Thus, these values 838 

represent cell type-specific sensitivities to presynaptic currents, which may be justified by the 839 

fact that ORNs/LNs/PNs are genetically distinct cell populations (McLaughlin et al., 2021; Xie 840 

et al., 2021). A grid search of the four class-wise sensitivity parameters produced a configuration 841 

that reasonably satisfied the above criteria (Figure 5 – figure supplement 2). In this 842 

configuration, the ORN columns of the hemibrain connectivity matrix are scaled by 0.1, eLNs by 843 

0.04, iLNs by 0.02, and PNs by 0.4. The relatively large multiplier on PNs is potentially 844 

consistent with the fact that PNs are sensitive to small differences between weak ORN inputs 845 

(Bhandawat et al., 2007). Model outputs were robust over several different sets of ai, provided 846 

iLN sensitivity ≃ eLN < ORN < PN.  847 

 848 

We analyzed the sensitivity of the model’s parameters around their baseline values of aORN, aeLN, 849 

aiLN, aPN = (0.1, 0.04, 0.02, 0.4). Each parameter was independently scaled up to 4x or 1/4x of its 850 

baseline value (Figure 5 – figure supplement 3), and the PN firing rates recorded. Separately, 851 

multiple-parameter manipulations were performed by multiplying each parameter by a random 852 

log-Normal value with mean 1 and +/-1 standard deviation corresponding to a 2x or 0.5x scaling 853 

on each parameter. Mean PN-odor responses were calculated for all manipulated runs and 854 

compared to the mean PN-odor responses for the baseline configuration. A manipulation effect 855 

size was calculated by cohen’s d ((mean manipulated response - mean baseline response)/(pooled 856 

standard deviation)). None of these manipulations reached effect size magnitudes larger than 0.9 857 

(which can be roughly interpreted as the number of standard deviations in the baseline PN 858 

responses away from the mean baseline PN response), which signaled that the model was robust 859 

to the sensitivity parameters in this range. The most sensitive parameter was, unsurprisingly, aPN. 860 

 861 

Notable ways in which the model behavior deviates from experimental recordings (and thus 862 

caveats on the interpretation of the model) include: 1) Model LNs appear to have more 863 

heterogeneous firing rates than real LNs, with many LNs inactive for this panel of odor stimuli. 864 

This likely reflects a lack of plastic/homeostatic mechanisms in the model to regularize LN firing 865 

rates given their variable synaptic connectivity (Chou et al., 2010). 2) Some PNs had off-odor 866 

rates that are high compared to real PNs, resulting in a distribution of ON-OFF responses that 867 

had a lower limit than in real recordings. Qualitatively close matches were achieved between the 868 

model and experimental data in the distributions of odor representations in ORN vs PN spaces 869 

and the non-linearity of the ORN-PN transfer function. 870 
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 871 

AL model circuit variation generation 872 

We generated AL circuit variability in two ways: cell-type bootstrapping, and synapse density 873 

resampling. These methods assume that the distribution of circuit configurations across 874 

individual ALs can be generated by resampling circuit components within a single individual’s 875 

AL (neurons and glomerular synaptic densities, respectively, from the hemibrain EM volume).  876 

 877 

To test the effect of variation in the developmental complement of neurons of particular types, 878 

we bootstrapped populations of interest from the list of hemibrain neurons. Resampling with 879 

replacement of ORNs was performed glomerulus-by-glomerulus, i.e., separately among each 880 

pool of ORNs expressing a particular Odorant receptor gene. The same was done for PNs. For 881 

LNs, all 197 LNs were treated as a single pool; there was no finer operation based on LN 882 

subtypes or glomerular innervations. This choice reflects the high developmental variability of 883 

LNs (Chou et al., 2010). The number of synapses between a pair of bootstrapped neurons was 884 

equal to the synapse count between those neurons in the hemibrain connectivity matrix. 885 

 886 

In some glomeruli, bootstrapping PNs produced unreasonably high variance in the total PN 887 

synapse count. For instance, DP1m, DC4, and DM3 each harbor PNs that differ in total synapse 888 

count by a factor of ~10. Since these glomeruli have between two to three PNs each, in a sizable 889 

proportion of bootstrap samples, all-highly connected (or all-lowly) connected PNs are chosen in 890 

such glomeruli. To remedy this biologically unrealistic outcome, we examined the relationship 891 

between total input PN synapses within a glomerulus and glomerular volume (Figure 5 – figure 892 

supplement 4). In the “synapse density resampling” method, we required that the number of PN 893 

input synapses within a glomerulus reflect a draw from the empirical relationship between total 894 

input PN synapses and glomerular volume as present in the hemibrain data set. This was 895 

achieved by, for each glomerulus, sampling from the following distribution that depends on 896 

glomerular volume, then multiplying the number of PN input synapses by a scalar to match that 897 

sampled value: 898 

 899 

𝑙𝑜𝑔 𝑆𝑔  = 𝑙𝑜𝑔 (𝑎 𝑉𝑔
𝑑)  + 𝜀𝑔, 𝜀𝑔 ∼ 𝑁(0, 𝜎2)  900 

 901 

Here Sg is the PN input synapse count for glomerulus g, Vg is the volume of glomerulus g (in 902 

cubic microns), ε is a Gaussian noise variable with standard deviation σ, and a, d are the scaling 903 

factor and exponent of the volume term, respectively. The values of these parameters (a = 8.98, 904 

d = 0.73, σ = 0.38) were fit using maximum likelihood. 905 

 906 

Quantification and statistical analysis 907 

All fly behavior and calcium data was processed and analyzed in MATLAB 2018a (Mathworks). 908 

AL simulations were run in Python (version 3.6) (van Rossum and Drake, 2011), and model 909 

outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and Python scripts. We 910 
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performed a power analysis prior to the study to determine that recording calcium activity in 20-911 

40 flies would be sufficient to identify moderate calcium-behavior correlations. Sample sizes for 912 

expansion microscopy were smaller, as the experimental procedure was more involved – 913 

therefore, we did not conduct a formal statistical analysis. Linear models were fit using the fitlm 914 

MATLAB function (https://www.mathworks.com/help/stats/fitlm.html); coefficients and p-915 

values of models between measured preferences and predicted preferences are listed in Table 1. 916 

95% confidence intervals around model regression lines were estimated as +/- 2 standard 917 

deviations of the value of the regression line at each x-position across 2000 bootstrap replicates 918 

(resampling flies). Boxplots depict the median value (points), interquartile range (boxes), and 919 

range of the data (whiskers). 920 
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1179 
Figure 1. Idiosyncratic calcium dynamics predict individual odor preferences.  1180 

(A) Olfactory circuit schematic. Olfactory receptor neurons (ORNs, peach outline) and 1181 

projection neurons (PNs, plum outline) are comprised of ~51 classes corresponding to odor 1182 
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receptor response channels. ORNs (gray shading) sense odors in the antennae and synapse on 1183 

dendrites of PNs of the same class in ball-shaped structures called glomeruli located in the 1184 

antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and 1185 

presynaptic inhibition, amongst other roles (Olsen and Wilson, 2008; Yaksi and Wilson, 2010). 1186 

Odor signals are normalized and whitened in the AL before being sent to the mushroom body 1187 

and lateral horn for further processing. Schematic adapted from Honegger et al., 2019 (B) 1188 

Experiment outline. (C) Odor preference behavior tracking setup (reproduced from Honegger, 1189 

Smith, et al. (Honegger et al., 2019)) and example individual fly ethograms. OCT (green) and 1190 

MCH (magenta) were presented for 3 minutes. (D) Head-fixed 2-photon calcium imaging and 1191 

odor delivery setup (reproduced from Honegger et al., 2019) (E) Orco and GH146 driver 1192 

expression profiles (left) and example segmentation masks (right) extracted from 2-photon 1193 

calcium images for a single fly expressing Orco>GCaMP6m (top, expressed in a subset of all 1194 

ORN classes) or GH146>Gcamp6m (bottom, expressed in a subset of all PN classes). (F) Time-1195 

dependent Δf/f for glomerular odor responses in ORNs (peach) and PNs (plum) averaged across 1196 

all individuals: DC2 to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), 1197 

and DM2 to OCT (lower right). Shaded error bars represent S.E.M. (G) Peak Δf/f for each 1198 

glomerulus-odor pair averaged across all flies. (H) Individual neural responses measured in 1199 

ORNs (left) or PNs (right) for 50 flies each. Columns represent the average of up to 4 odor 1200 

responses from a single fly. Each row represents one glomerulus-odor response pair. Odors are 1201 

the same as in panel (G). (I) Principal component analysis of individual neural responses. 1202 

Fraction of variance explained versus principal component number (left). Trial 1 and trial 2 of 1203 

ORN (middle) and PN (right) responses for 20 individuals (unique colors) embedded in PC 1-2 1204 

space. (J) Euclidean distances between glomerulus-odor responses within and across flies 1205 

measured in ORNs (n=65 flies) and PNs (n=122 flies). Distances calculated without PCA 1206 

compression. Points represent the median value, boxes represent the interquartile range, and 1207 

whiskers the range of the data. (K) Bootstrapped R2 of OCT-AIR preference prediction from 1208 

each of the first 5 principal components of neural activity measured in ORNs (top, all data) or 1209 

PNs (bottom, training set). (L) Measured OCT-AIR preference versus preference predicted from 1210 

PC 1 of ORN activity (n=30 flies). (M) Measured OCT-AIR preference versus preference 1211 

predicted from PC 1 of PN activity in n=53 flies using a model trained on a training set of n=18 1212 

flies (see Figure 2 – figure supplement 1A-B for train/test flies analyzed separately). (N) 1213 

Bootstrapped R2 of OCT-MCH preference prediction from each of the first 5 principal 1214 

components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set). 1215 

(O) Measured OCT-MCH preference versus preference predicted from PC 1 of ORN activity 1216 

(n=35 flies). (P) Measured OCT-MCH preference versus preference predicted from PC 2 of PN 1217 

activity in n=69 flies using a model trained on a training set of n=47 flies (see Figure 2 – figure 1218 

supplement 1C-D for train/test flies analyzed separately). Shaded regions in L,M,O,P are the 1219 

95% CI of the fit estimated by bootstrapping.  1220 
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1221 

Figure 1 – figure supplement 1. Behavioral measurements and individual preference 1222 

persistence. 1223 

(A) Behavioral measurement apparatus (adapted from Honegger et al., 2019) (B) Odor 1224 

preference persistence over 3 hours for flies given a choice between 3-octanol and air (n=34 1225 

flies). (C) Odor preference persistence over 24 hours for flies given a choice between 3-octanol 1226 

and air (n=97 flies). (D) Odor preference persistence over 3 hours for flies given a choice 1227 

between 3-octanol and 4-methylcyclohexanol (n=51 flies). (E) Odor preference persistence over 1228 

24 hours for flies given a choice between 3-octanol and 4-methylcyclohexanol (n=49 flies).   1229 
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1230 
Figure 1 – figure supplement 2. Average glomerulus-odor time-dependent responses. 1231 

Time-dependent responses of each glomerulus identified in our study to the 13 odors in our odor 1232 

panel. Data represents the average across flies (ORN, peach curves, n=65 flies; PN, plum curves, 1233 

n=122 flies). Shaded error bars represent S.E.M. 1234 
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1235 
Figure 1 – figure supplement 3. Individual glomerulus-odor responses.  1236 

Idiosyncratic odor coding measured in ORNs (left, n=65 flies) and PNs (right, n=122 flies). Each 1237 

column represents the response (max Δf/f attained over the odor trial) of a single fly averaged 1238 

over up to 4 odor deliveries. Each row represents a glomerulus-odor response pair. Missing data 1239 

are indicated in gray.   1240 
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1241 
Figure 1 – figure supplement 4. Glomerulus responses and identification. 1242 

(A) Glomerulus odor responses measured in PNs versus those measured in ORNs. Points 1243 

correspond to the odorants listed in Figure 1G. (B) Cross-odor trial correlation matrix between 1244 

glomerular odor responses in ORNs and PNs. (C) Peak calcium responses for each glomerulus-1245 

odor pair measured in this study plotted against those recorded in the DoOR dataset (Münch and 1246 

Galizia, 2016). (D) Peak calcium responses for each individual glomerulus plotted against those 1247 

recorded in the DoOR dataset.   1248 
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1249 

Figure 1 – figure supplement 5. Idiosyncrasy of ORN and PN responses. 1250 

(A) Logistic regression classifier accuracy of decoding individual identity from individual odor 1251 

panel peak responses. PCA was performed on population responses and the specified fraction of 1252 

variance (x-axis) was retained. Individual identity can be better decoded from PN responses than 1253 

ORN responses in all cases. (B) Individual trial-to-trial glomerulus-odor responses embedded in 1254 

PC 1-2 space. Responses for the same flies as Figure 1I are shown. Each linked color represents 1255 

one fly. Trial 1 and trial 2 responses are shown for ORN left lobe (upper left), ORN right lobe 1256 

(upper right), PN left lobe (lower left), and PN right lobe (lower right). (C) Distance in the full 1257 

glomerulus-odor response space between recordings within a lobe (trial-to-trial), across lobes 1258 

(within fly), and across flies for ORNs and PNs. Points represent the median value, boxes 1259 

represent the interquartile range, and whiskers the range of the data.  1260 
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 1261 

 1262 
Figure 1 – figure supplement 6. Calcium response correlation matrices. 1263 

Correlation between calcium response dimensions across flies measured in ORNs (top) and PNs 1264 

(bottom). Glomerulus-odor responses are correlated at the level of glomeruli in both cell types. 1265 

Inter-glomerulus correlations are more prominent in ORNs than PNs, consistent with known AL 1266 

transformations that result in decorrelated PN activity (Bhandawat et al., 2007; Luo et al., 2010). 1267 
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1268 

Figure 1 – figure supplement 7. Calcium imaging principal component loadings. 1269 

(A-B) First 10 principal component loadings measured from calcium responses in ORNs (A, 1270 

n=65 flies) and PNs (B, n=122 flies). Loadings are grouped by glomerulus, with each loading 1271 

within a glomerulus representing the response of that glomerulus to one odor in the odor panel. 1272 

Odors are the same as those listed in Figure 1G. (C-D) The same 10 principal component 1273 

loadings as those shown in panels (A-B) grouped by odor rather than glomerulus. Glomeruli 1274 

within each odor block are given in the order of panels (A) and (B).  1275 
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1276 

Figure 2. Variation in global and relative glomerular responses explains individual 1277 

preferences. 1278 

(A) PC 1 loadings of PN activity for flies tested for OCT-AIR preference (n=53 flies). (B) 1279 

Interpreted PN PC 1 loadings. (C) Measured OCT-AIR preference versus preference predicted 1280 

by the average peak response across all PN coding dimensions (n=53 flies). (D) PC 1 loadings of 1281 

ORN activity for flies tested for OCT-AIR preference (n=30 flies). (E) Interpreted ORN PC 1 1282 

loadings. (F) Measured OCT-AIR preference versus preference predicted by the average peak 1283 

response across all ORN coding dimensions (n=30 flies). (G) PC 2 loadings of PN activity for 1284 

flies tested for OCT-MCH preference (n=69 flies). (H) Interpreted PN PC 2 loadings. (I) 1285 

Measured OCT-MCH preference versus preference predicted by the average peak PN response 1286 

in DM2 minus DC2 across all odors (n=69 flies). (J) Yoked control experiment outline and 1287 

example behavior traces. Experimental flies are free to move about tunnels permeated with 1288 

steady state OCT and MCH flowing into either end. Yoked control flies are delivered the same 1289 

odor at both ends of the tunnel which matches the odor experienced at the nose of the 1290 

experimental fly at each moment in time. (K) Imposed odor experience versus the odor 1291 

experience predicted from PC 2 of PN activity (n=27 flies) evaluated on the model trained from 1292 

data in Figure 1P. Shaded regions in C,F,I,K are the 95% CI of the fit estimated by 1293 

bootstrapping.  1294 
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 1295 

 1296 
Figure 2 – figure supplement 1. Measured preference vs. PN activity-based predicted 1297 

preference, split by training/testing set. 1298 

(A) Measured OCT-AIR preference versus preference predicted from PC 1 of PN activity in a 1299 

training set (n=18 flies). (B) Measured OCT-AIR preference versus preference predicted from 1300 

PC 1 on PN activity in a test set (n=35 flies) evaluated on a model trained on data from panel 1301 

(A). (C) Measured OCT-MCH preference versus preference predicted from PC 2 of PN activity 1302 

in a training set (n=47 flies). (D) Measured OCT-MCH preference versus preference predicted 1303 

from PC 2 on PN activity in a test set (n=22 flies) evaluated on a model trained on data from 1304 

panel (C).  1305 
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 1306 

 1307 
Figure 3. Idiosyncratic presynaptic marker density in DM2 and DC2 predicts OCT-MCH 1308 

preference. 1309 

(A) Experiment outline. (B) Example slice from a z-stack of the antennal lobe expressing 1310 

Orco>Brp-Short (green) with DC2 and DM2 visible (white dashed outline). nc82 counterstain 1311 

(magenta). (C) Example glomerulus segmentation masks extracted from an individual z-stack. 1312 

(D) Bootstrapped R2 of OCT-MCH preference prediction from each of the first 4 principal 1313 

components of Brp-Short density measured in ORNs (training set, n=22 flies). (E) PC 2 loadings 1314 

of Brp-Short density. (F) Measured OCT-MCH preference versus preference predicted from PC 1315 

2 of ORN Brp-Short density in n=53 flies using a model trained on a training set of n=22 flies 1316 

(see Figure 3 – figure supplement 1 for train/test flies analyzed separately). (G) Measured OCT-1317 

MCH preference versus preference predicted from ORN Brp-Short density in DM2 minus DC2 1318 

(n=53 flies).   1319 
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1320 
Figure 3 – figure supplement 1. ORN>Brp-Short characterization and model predictions. 1321 

(A-C) Right versus left glomerulus properties measured from z-stacks of stained Orco>Brp-1322 

Short samples: (A) Volume, (B) total Brp-Short fluorescence, (C) Brp-Short fluorescence 1323 

density. (D-F) Same data as panels (A-C) represented in violin plots (kernel density estimated). 1324 

(G) Principal component loadings of Brp-Short density calculated using only training data (n=22 1325 

flies). (H) Principal component loadings of Brp-Short density calculated using all data (n=53 1326 

flies). (I) Measured OCT-MCH preference versus preference predicted from PC 2 of ORN Brp-1327 

Short density in a training set (n=22 flies). (J) Measured OCT-MCH preference versus 1328 
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preference predicted from PC 2 on ORN Brp-Short density in a test set (n=31 flies) evaluated on 1329 

a model trained on data from panel (I). (K) Example expanded AL expressing Or13a>Brp-Short 1330 

(left) and Imaris-identified puncta from that sample (right). (L) OCT-MCH preference score 1331 

plotted against Brp-Short puncta density in expanded Or13a>Brp-Short samples (n=8 flies). (M) 1332 

OCT-MCH preference score plotted against Brp-Short median puncta volume in expanded 1333 

Or13a>Brp-Short samples (n=8 flies). Shaded regions in F,G,I,J are the 95% CI of the fit 1334 

estimated by bootstrapping.  1335 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


1336 
Figure 3 – figure supplement 2. Calcium and Brp-Short predictor variation. 1337 

(A) Histogram of average PN Δf/f across all coding dimensions in flies in which OCT-AIR 1338 

preference was measured (top) and OCT-AIR preference versus average PN Δf/f (n=53 flies) 1339 

(bottom). (B) Similar to (A) for ORN Δf/f and OCT-AIR preference (n=30 flies). (C) Similar to 1340 

(A) for Δf/f difference between DM2 and DC2 PN responses and OCT-MCH preference (n=69 1341 

flies). (D) Similar to (A) for % Brp-Short density difference between DM2 and DC2 ORNs and 1342 

OCT-MCH (n=53 flies).  1343 
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1344 
Figure 4. Loci of individuality across the olfactory periphery. 1345 

(A) Table summarizing circuit element predictors, the strength of their nominal correlation with 1346 

odor-vs-air behavior scores, and the inferred correlation between latent calcium / latent behavior. 1347 

See analysis in Figure 4 – figure supplement 1. Schematic at right places these values in the 1348 

context of the olfactory circuit. ORN Ca++ corresponds to PC 1 of ORN calcium (Figure 1L), 1349 

PN Ca++ corresponds to PC1 of PN calcium (Figure 1M; trained model applied to train+test 1350 

data). (B) As in (A) but for odor-vs-odor experiments. ORN Ca++ corresponds to PC 1 of ORN 1351 

calcium (Figure 1O), ORN pre-synapse density corresponds to PC2 of Brp-Short relative 1352 

fluorescence (Figure 3F; trained model applied to train+test data), PN Ca++ corresponds to PC 2 1353 

of PN calcium (Figure 1P; trained model applied to train+test data).  1354 
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1355 
Figure 4 – figure supplement 1. Estimating latent calcium - behavior correlations. 1356 

(A) Schematic of inference approach to estimate the correlation between latent calcium (c) and 1357 

behavioral (b) states (⍴signal). This method can be applied identically to infer ⍴signal between Brp 1358 

measurements and behavior. (B) Demonstration of ⍴signal inference for OCT vs MCH models 1359 

presented in Figure 4: ORN calcium PC 1 (left, N=30, R2=0.25 indicated in dashed line), ORN 1360 

Brp-Short PC 2 from trained model applied to train+test data (middle, N=53, R2=0.088 indicated 1361 

in dashed line), PN calcium PC 2 from trained model applied to train+test data (right, N=69,  1362 

R2=0.20). Black line indicates median Rc,b
2 (Rbrp,b

2 for Brp-Short model) among the 10,000 1363 

simulations for each ⍴signal, shaded areas (from lightest to darkest to lightest) indicate 5-15th, 15-1364 

25th, …, 85-95th percentile Rc,b
2 (Rbrp,b

2). The marginal distribution for ⍴signal was estimated as 1365 

the distribution of simulations for each ⍴signal for which the simulated Rc,b
2  (Rbrp,b

2) had a value 1366 

+/- 20% of the linear models’ R2 (dashed lines). For the examples depicted here, the median 1367 

⍴signal for ORN calcium PC1 was 0.30 (90% CI as estimated by the 5th-95th percentiles of the 1368 

marginal distribution: 0.02-0.74), for ORN Brp-Short PC 2: 0.50 (0.11-0.85), for PN PC 2: 0.75 1369 

(0.44-0.96).  1370 
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1371 
Figure 4 – figure supplement 2. Time-dependent preference- and odor-decoding. 1372 

(A) R2 of odor-vs-air preference predicted by PC 1 of PN activity as a function of time across 1373 

trials (n=53 flies). (B) R2 of odor-vs-air preference predicted by PC 1 of ORN activity as a 1374 

function of time across trials (n=30 flies). (C) R2 of odor-vs-odor preference predicted by PC 2 of 1375 

PN activity (solid plum, n=69 flies) or PC 1 of ORN activity (dashed peach, n=35 flies) as a 1376 

function of time across trials. (D) Logistic regression classifier accuracy of decoding odor 1377 

identity from 5 glomerular responses as a function of time. Dashed curves indicate performance 1378 

on shuffled data.  1379 
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1380 
Figure 5. Simulation of developmentally stochastic olfactory circuits 1381 

(A) AL modeling analysis outline. (B) Leaky-integrator dynamics of each simulated neuron.  1382 

When a neuron’s voltage reaches its firing threshold, a templated action potential is inserted, and 1383 

downstream neurons receive a postsynaptic current. See Antennal Lobe modeling in Materials 1384 

and Methods. (C) Synaptic weight connectivity matrix, derived from the hemibrain connectome 1385 

(Scheffer et al., 2020). (D) Spike raster for randomly selected example neurons from each AL 1386 

cell type. Colors indicate ORN/PN glomerular identity and LN polarity (i=inhibitory, 1387 

e=excitatory). (E) Schematic illustrating sources of developmental stochasticity as implemented 1388 

in the simulated AL framework. See Supplementary Video 4 for the effects of these resampling 1389 

methods on the synaptic weight connectivity matrix. (F) PN glomerulus-odor response vectors 1390 

for 8 idiosyncratic ALs subject to Input spike Poisson timing variation, PN input synapse density 1391 

resampling, and ORN and LN population bootstrapping. (G) Loadings of the principal 1392 

components of PN glomerulus-odor responses as observed across experimental flies (top). 1393 

Dotted outlines highlight loadings selective for the DC2 and DM2 glomerular responses, which 1394 

underlie predictions of individual behavioral preference. (H-K) As in (G) for simulated PN 1395 

glomerulus-odor responses subject to Input spike Poisson timing variation, PN input synapse 1396 

density resampling, and ORN and LN population bootstrapping. See Figure 5 – figure 1397 

supplement 5 for additional combinations of idiosyncrasy methods. In (F-K) the sequence of 1398 

odors within each glomerular block is: OCT, 1-hexanol, ethyl-lactate, 2-heptanone, 1-pentanol, 1399 

ethanol, geranyl acetate, hexyl acetate, MCH, pentyl acetate and butanol.   1400 
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1401 
Figure 5 – figure supplement 1. AL model raster plot.  1402 

(A) Action potential raster plot of ORNs in the baseline simulated AL. Rows are individual 1403 

ORNs, black ticks indicate action potentials. Random shades of orange at left indicate blocks of 1404 

ORN rows projecting to the same glomerulus. (B) The remaining neurons in the model. Shades 1405 

of green indicate excitatory vs inhibitory LNs and shades of purple indicate PNs with dendrites 1406 

in the same glomeruli.  1407 
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1408 
Figure 5 – figure supplement 2. AL model baseline outputs compared to experimental data. 1409 

(A) Distributions of model neuron firing rates by cell type across odors (transparent black points 1410 

are individual neuron-odor combinations). Black lozenge symbols indicate the mean firing rate 1411 

of the points to the right. Yellow stars indicate the comparable experimental values reported in 1412 

(Chou et al., 2010; de Bruyne et al., 2001; Nagel et al., 2015; Wilson, 2004). (B) Scatter plots of 1413 

average PN firing rate vs ORN firing rate during odor stimuli in the model vs experimental 1414 

values (Bhandawat et al., 2007). Points are odors, colors are glomeruli. (C) Histograms of ON 1415 

odor minus OFF odor glomerulus-average PN and ORN firing rates in the model vs experimental 1416 

values (Bhandawat et al., 2007), showing flatter distributions in PNs. (D) Odor representations in 1417 

the first 2 PCs of glomerulus-average ORN responses and PN responses in the model and 1418 

experimental results (Bhandawat et al., 2007). Points are odors. Pairwise distances between PN 1419 

representations are more uniform than in ORNs in both the model and experimental data. Panels 1420 

(B)-(D) use glomerulus-average PN and ORN firing rates from six of the seven glomeruli in 1421 

Bhandawat et al., 2007, as VM2 is significantly truncated in the hemibrain (Scheffer et al., 1422 

2020). Literature features in panels (B)-(D) were extracted from Bhandawat et al., 2007 using 1423 

WebPlotDigitizer (Rohatgi, 2021).  1424 
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1425 
Figure 5 – figure supplement 3. Sensitivity analysis of aORN, aeLN, aiLN, aPN parameters. 1426 

(Left, blue to red colormap): magnitude of parameter manipulation. (Center, dark blue to yellow 1427 

colormap):  mean glomerular firing rate (Hz) responses of PNs (DL1, DM1, DM2, DM3, DM4, 1428 

VA2) to 11 odors (order within each glomerulus (colored bands at top): 3-octanol, 1-hexanol, 1429 

ethyl lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, 4-1430 

methylcyclohexanol, pentyl acetate, 1-butanol, 3-octanol). (Right, pink to green colormap): 1431 

manipulation effect size on mean PN-odor responses (Cohen’s d). (Top): baseline parameter set. 1432 

(Middle): single-parameter manipulations from 1/4x to 4x. (Bottom): multiple-parameter 1433 

manipulations. For further detail see AL model tuning in Materials and Methods. No 1434 

manipulations yielded effect sizes larger than 0.9; aPN is the most sensitive parameter.  1435 
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 1436 

 1437 
Figure 5 – figure supplement 4. Synapse counts vs glomerular volume in the hemibrain and 1438 

AL model.  1439 

(A) Left) Scatter plot of total PN input synapses within a glomerulus vs that glomerulus’ volume 1440 

from the hemibrain data set. Solid line represents the maximum likelihood-fit mean synapse 1441 

count vs glomerular volume, and dashed lines the fit +/-1 standard deviation. Middle) As (left) 1442 

but for a single sample from the parameterized distribution of PN input synapses vs glomerular 1443 

volume. Right) As in previous for a single bootstrap resample of PNs. Color-highlighted 1444 

glomeruli illustrate that when PNs within a glomerulus have highly asymmetrical synapse 1445 

counts, bootstrapping them alone can result in apparent synapse densities that lie outside the 1446 

empirical distribution (left). (B) As in (A) but on log-log axes, showing the linear relationship 1447 

between synapse density and glomerular volume after this transformation, and bootstrapped 1448 

densities falling outside this distribution at right.   1449 
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1450 
Figure 5 – figure supplement 5. PN response PCA loadings under various sources of circuit 1451 

idiosyncrasy.  1452 

(A) Loadings of the principal components of PN glomerulus-odor responses as simulated across 1453 

AL models where Gaussian noise with a standard deviation equal to 0, 20, 50, and 100% of each 1454 

synapse weight was added to each synaptic weight in the hemibrain data set. (B) circuit variation 1455 

coming from bootstrapping of each major AL cell type or all three simultaneously. (C) circuit 1456 

variation coming from bootstrap resampling of different cell-type combinations in addition to PN 1457 

input synapse density resampling as illustrated in Figure 5 – figure supplement 4.   1458 
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 1459 

 1460 
Figure 5 – figure supplement 6. Classifiability of simulated idiosyncratic behavior under 1461 

different sources of circuit idiosyncrasy.  1462 

Simulated PN odor-glomerulus firing rates projected into their first 3 principal components. 1463 

Individual points represent single runs of resampled AL models, under four different sources of 1464 

idiosyncratic variation. PN responses in all odor-glomerulus dimensions were used to calculate 1465 

simulated behavior scores for each resampled AL, by applying the PN calcium-odor-vs-odor 1466 

linear model (Figure 2G). Magenta points represent flies with simulated preference for MCH in 1467 

the top 50%, and green OCT preference. % Misclassification refers to 100% – the accuracy of a 1468 

linear classifier trained on MCH-vs-OCT preference in the space of the first three PCs. This 1469 

measures how much of the variance along the PN calcium-odor-vs-odor linear model lies outside 1470 

the first three PCs of simulated PN variation.  1471 
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Tables 1472 

 1473 

Table 1: Calcium & Brp-Short – behavior model statistics 1474 

Behavior 
Measured 

Neural 
Predictor 

Figure 
Panel 

n β0 β1 R2 p-value 

OCT vs. 
AIR 

PN Calcium PC 
1 (Figure 2A) 

Figure 2 – 
figure 
supplement 
1A 

18 -0.26 -0.079 0.16 0.099 

OCT vs. 
AIR 

PN Calcium 
Average all 
dimensions 

2C 53 -0.051 -0.38 0.098 0.022 

OCT vs. 
AIR 

ORN Calcium 
PC 1 (Figure 2D) 

1L 30 -0.29 -0.053 0.23 0.007 

OCT vs. 
AIR 

ORN Calcium 
Average all 
dimensions 

2F 30 -0.032 -0.71 0.25 0.005 

OCT vs. 
MCH 

PN Calcium PC 
2 (Figure 2G) 

Figure 2 – 
figure 
supplement 
1C 

47 -0.058 -0.081  0.15 0.006 

OCT vs. 
MCH 

PN Calcium 
DM2 - DC2 (% 
difference) 

2I 69 -0.032 -0.0018 0.12 0.004 

OCT vs. 
MCH 

ORN Calcium 
PC 1  

1O 35 -0.14 -0.027 0.031 0.32 

OCT vs. 
MCH 

ORN Brp-Short 
PC 2 (train data 
only) (Figure 3E)  

Figure 3 – 
figure 
supplement 
1I 

22 -0.087 0.017 0.22 0.028 

OCT vs. 
MCH 

ORN Brp-Short 
PC 2 (all data)  

3F 53 -0.019 0.012 0.088 0.031 

OCT vs. 
MCH 

ORN Brp-Short 
DM2 - DC2 

3G 53 -0.051 -0.007 0.053 0.096 

  1475 
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Table 2: Typical electrophysiology features of AL cell types, used as model parameters 1476 

Parameter ORNs LNs PNs 

Membrane resting 
potential 

-70 mV (Dubin and 
Harris, 1997) 

-50 mV (Seki et al., 
2010) 

-55 mV (Jeanne and 
Wilson, 2015) 

Action potential 
threshold 

-50 mV (Dubin and 
Harris, 1997) 

-40 mV (Seki et al., 
2010) 

-40 mV (Jeanne and 
Wilson, 2015) 

Action potential 
minimum 

-70 mV (Cao et al., 2016) -60 mV (Seki et al., 
2010) 

-55 mV (Jeanne and 
Wilson, 2015) 

Action potential 
maximum 

0 mV (Dubin and Harris, 
1997) 

0 mV (Seki et al., 2010) -30 mV (Wilson and 
Laurent, 2005) 

Action potential 
duration 

2 ms (Jeanne and 
Wilson, 2015) 

4 ms (Seki et al., 2010) 2 ms (Jeanne and 
Wilson, 2015) 

Membrane 
capacitance 

73 pF (assumed = PNs) 64 pF (Huang et al., 
2018) 

73 pF (Huang et al., 
2018) 

Membrane 
resistance 

1.8 GOhm (Dubin and 
Harris, 1997) 

1 GOhm (Seki et al., 
2010) 

0.3 GOhm (Jeanne and 
Wilson, 2015) 
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Supplementary Videos 1478 

 1479 

Supplementary Video 1. Example recording with automated tracking of an odor-vs-air 1480 

behavioral assay. 1481 

The recent positions of each fly (green line) are shown in different colors. Red bar indicates 1482 

when the odor stream is turned on. 1483 

 1484 

Supplementary Video 2. Example recording with automated tracking of an odor-vs-odor 1485 

behavioral assay. 1486 

The recent positions of each fly (green line) are shown in different colors. Magenta and green 1487 

bars at right indicate when MCH and OCT are respectively flowing into the top and bottom 1488 

halves of each arena. 1489 

 1490 

Supplementary Video 3. Confocal image stack of expanded DC2>Brp-Short.  1491 

Magenta is nc82 stain, Green is Or13a>Brp-Short. Frames are z-slices spaced at 0.54 µm. Image 1492 

height corresponds to a post-expansion field of view of 107 x 90 µm (a ~2.5 x linear expansion 1493 

factor).  1494 

 1495 

Supplementary Video 4. Simulated AL connectivity matrices. 1496 

Left: Glomerular density resampling. Each frame corresponds to the hemibrain connectome 1497 

synaptic weights, rescaled according to a sample from the relationship between synapse count 1498 

and volume parameterized in Figure 5 – figure supplement 4. Middle: ORN bootstrapping. Each 1499 

frame corresponds to the hemibrain connectome synaptic weights, but with the population of 1500 

ORNs projecting to each glomerulus resampled with replacement. Right: LN bootstrapping. 1501 

Each frame corresponds to the hemibrain connectome synaptic weights, but with the population 1502 

of LNs resampled with replacement. 1503 
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