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Abstract 1

Since 1976 various species of Ebolavirus have caused a series of zoonotic outbreaks and public health crises
in Africa. Bats have long been hypothesised to function as important hosts for ebolavirusmaintenance, how-
ever the transmission ecology for these viruses remains poorly understood. Several studies have demon-
strated rapid seroconversion for ebolavirus antibodies in young bats, yet paradoxically few PCR studies have
confirmed the identity of the circulating viral species causing these seroconversions. The current study
presents an age-structured epidemiological model that characterises the effects of seasonal birth pulses
on ebolavirus transmission within a colony of African straw-coloured fruit bats (Eidolon helvum). Bayesian
calibration is performed using previously published serological data collected from Cameroon, and age-
structure data from Ghana. The model predicts that annual birth pulses most likely give rise to annual
outbreaks, although more complex dynamic patterns – including multi-annual cycles and skip years – may
be possible. Weeks 30 to 31 of each year were estimated to be themost likely period for isolating the circulat-
ing virus in Cameroon. The probability that a previous PCR campaign failed to detect Ebola virus, assuming
that it was circulating, was estimated to be one in two thousand. This raises questions such as (1) what can
we actually learn from ebolavirus serology tests performed without positive controls? (2) are current PCR
tests sufficiently sensitive? (3) are swab samples really appropriate for ebolavirus extraction? The current
results provide important insights for the design of future field studies aiming to extract Ebola viruses from
sylvatic hosts, and can contribute to risk assessments concerning the timing of zoonotic outbreaks.
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Introduction 21

Bats have been implicated as reservoir hosts to numerous viruses of zoonotic or animal health impor- 22

tance, including: Hendra virus, Marburg virus, Middle East respiratory coronavirus (MERS-CoV), Nipah virus, 23

severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 and Swine acute diarrhoea syndrome 24

corona-virus (Letko et al., 2020). This list of bat-borne emerging viruses is thought to also include filoviruses 25

of the Ebolavirus genus (Caron et al., 2018; Feldmann et al., 2020; Leroy et al., 2005). Indeed, the filovirus-like 26

VP35 gene is estimated to have been maintained in bat genomes for 13.4 million years (Taylor et al., 2011), 27

which provides evolutionary support for the long-term exposure of bats to filoviruses. However, despite nu- 28

merous outbreaks of Ebola in equatorial Africa since 1976 – where fatality rates typically fall in the range of 29

40-70% (Jacob et al., 2020; Munster et al., 2018) – the hypotheses that (i) bats provide sylvatic reservoirs for 30

Ebola viruses, and (ii) that these reservoirs contribute to spillover events, remain unconfirmed. Moreover, the 31

eco-epidemiology of Ebola virus remains poorly understood, and empirical evidence for bats functioning as 32

primary maintenance reservoirs for Ebola viruses remains non-conclusive (Olival and Hayman, 2014). 33

Serological data shows that some bat species express high seroprevalence for Ebola virus (De Nys et al., 34

2018; Hayman, Yu, et al., 2012). But serology is hard to interpret in bats without positive controls, and there 35

is a paradoxal discrepancy between serological data and viral detection (Caron et al., 2018). Indeed, no Ebola 36

virus has ever been isolated from bats, and only a few individuals of three bat species have tested positive 37

by polymerase chain reaction (PCR) for Ebola virus (Leroy et al., 2005) – a result that remains to be replicated 38

despite extensive sampling. Recent longitudinal monitoring of a straw-colored fruit bat (Eidolon helvum) popu- 39

lation in Cameroon has shown extensive seroconversion of young (juvenile and sexually immature adult) bats 40

over a period of a few months, suggesting active Ebola virus circulation - however, no bat tested positive for 41

Ebola virus by PCR during that study (Djomsi et al., 2022). Another E. helvum study in Guinea provided similar 42

results, with seroprevalence decreasing over the first months of life and increasing again in the first years of 43

adult life, but again, no bats were found to be PCR positive (Champagne et al., Submitted). 44

Modelling is being increasingly used to help understand the interplay between ecological and epidemio- 45

logical dynamics in bats (Glennon et al., 2019; Hayman, 2015; Peel, KS Baker, Hayman, Broder, et al., 2018). 46

Considerable attention has been paid to the effects of seasonal birth pulses on the pool of susceptible indi- 47

viduals and subsequent epidemiological consequences (Hranac et al., 2019; Peel, Pulliam, et al., 2014). For 48

example, strong seasonal patterns in the prevalence of rabies in bats have been attributed to epidemiological 49

consequences of birth pulses (George et al., 2011), and the biannual birth pulses of some Egyptian fruit bat 50

populations are thought to increase the probability of pathogen maintenance (Hayman, 2015). Modelling has 51

also indicated that maternally-derived antibodies can contribute to viral maintenance (Hayman, Luis, et al., 52

2018). 53

In order to explore the enigmatic discrepancy between Ebola serology and virology data, we developed an 54

age-structured epidemiological model that included seasonal birth pulses and waning immunity, and used 55

Bayesian techniques to fit the model to longitudinal E. helvum serology data from Cameroon (Djomsi et al., 56

2022). Our three main objectives were as follows. First, to quantify uncertainty in the parameters and dynam- 57

ics of the model given the seroprevalence data of Djomsi et al. (2022). Second, to quantify the probability of 58

not detecting any PCR positive bats given the sampling scheme of the Djomsi et al. (2022) study. Third, to iden- 59

tify whether seasonal birthing patterns can help identify optimal time-windows for Ebola virus detection. This 60

modelling work has identified potentially important biological parameters that can help explain the observed 61

serology dynamics, and provides insights that can help improve the efficiency of surveillance strategies for 62

detecting Ebola virus in bats. In particular, these analyses provide insights into practical questions concern- 63

ing the establishment of adequate sampling efforts for virus isolation, and raise questions concerning the 64

meaning of positive serological samples from bats. 65
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Material and methods 66

Study site and eco-epidemiological data 67

Our analyses were based primarily on data from a longitudinal serology survey at an E. helvum colony in 68

Yaounde, Cameroon (Djomsi et al., 2022). Although various antigens were used for serological testing in that 69

study, we exclusively used data from the Res1GP.ZEBVkiss antigenic test – a test based on the glycoprotein 70

of Zaire Ebola virus. We selected this data-set because, among all antigenic test used, the Res1GP.ZEBVkiss 71

test generated the highest seropositive rate and the strongest seasonal signal. This data provided information 72

concerning seasonal variation in the presence of four different age classes: pups (P ) - young non-weaned bats 73

that remain attached to their mothers; juveniles (J ) - weaned young, that do not yet display wrist ossification; 74

immature adults (I) - large bats with ossified wrists but without any sign of sexual maturity; and adult bats (A). 75

Pups were not sampled directly, however, lactating females provided a proxy for their presence. A summary 76

of this data is provided in table 1.

Juvenile Immature Adult Female Adults
Date Neg Pos Neg Pos Neg Pos Lactating Not Lactating

2018-12-07 0 0 2 0 10 8 0 8
2019-01-26 0 0 0 0 45 53 0 42
2019-03-03 0 0 0 0 10 7 1 7
2019-04-02 12 1 0 0 50 24 46 9
2019-05-07 116 1 0 0 21 10 20 6
2019-06-16 71 1 0 0 4 6 0 3
2019-07-17 13 4 67 10 27 11 0 16
2019-09-17 1 0 11 26 3 11 0 3
2019-10-15 0 0 16 22 15 16 0 11
2019-11-15 0 0 13 51 31 20 0 24

Table 1. Summary of E. helvum serology and lactation data from Yaounde, Cameroon. Negative and positive
results for the Res1GP.ZEBVkiss antigenic test are shown for captured bats of three age classes. The number
of captured adult female bats either lactating or not lactating are also shown. Lactation was used as a proxy
for inferring seasonality in the presence of pups. A full description of this data is available in Djomsi et al.
(2022).

77

To help estimate adult mortality rates we used tooth cementum annuli data from 294 adult bats sampled in 78

Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016). Thus, we assume that the age structures at the sampled 79

colonies in Ghana and Cameroon are equivalent. 80

Mechanistic model 81

A system of ordinary differential equations was developed to characterise Ebola transmission in an age- 82

structured E. helvum population – this system is depicted graphically in figure 1 and algebraically in equations 83

1-19. A list of model parameters is presented in table 2. Age structure in the model was defined using the 84

same four age classes recorded in the field (see above), namely: pups (P ); juveniles (J ); immature adults (I); 85

and adult bats (A). Five epidemiological classes were used: protected bymaternal antibodies (M ); susceptible 86

(S); infected (I); recovered (R); long-term immunity (L). For simplicity, it was assumed that each year is exactly 87

52 weeks long, and weeks are used as our time unit throughout (unless stated otherwise). 88

The epidemiological model assumes that recovered individuals can transition to one of two classes – either 89

they loose their immunity and return to being susceptible, or they enter a state of long-term immunity inwhich 90

anti-bodies are not expressed unless they become re-exposed to the virus. Such a long-term immunity class 91
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has proved useful in modelling other bat-virus systems (Brook et al., 2019), and was included to avoid incom- 92

patibility between (i) rapid seroconversion among immature adults (and some juveniles), with seroprevalence 93

reaching 60-80% in immatures, and (ii) a global seroprevalence of just 43% among all tested adults (figure 3). It 94

was assumed that bats in the recovered and maternal antibody classes would express sufficient quantities of 95

antibodies to test seropositive, whereas bats in all other epidemiological classes would test seronegative. We 96

associated two parameters with the long-term immunity class: pR2L, the proportion of all individuals leaving 97

the recovered class (i.e. loosing antibodies) that acquire long-term immunity, as opposed to loosing immunity 98

and becoming susceptible again; and pL2R, the proportion of exposures to the virus that reinitialise anti-body 99

production in bats with long-term immunity. Given a lack of evidence for vertical transmission for the related 100

Marburg virus in Egyptian fruit bats (Towner et al., 2009), we assumed infectious females could only produce 101

susceptible pups. We also assumed that the number of adult bats still expressing maternal antibodies was 102

negligible, and thus omitted that category to reduce computation time. 103

Figure 1. Schematic diagram of an age-structured MSIRL model used to analyse Ebola serology dynamics in
Eidolon helvum from Yaounde, Cameroon. The total populationN is divided into four age classes – pups (P ),
juveniles (J ), immature adults (I) and adults (A) – and five epidemiological classes – maternal anti-bodies
(M ), susceptible (S), infected (I), recovered (R) and long-term immunity (L). Maturation through the age
classes is controlled by a series of pulse functions (see supplementary materials), which lag behind a

seasonal birth pulse. Density dependant mortality rates, µ̃J and µ̃A, are specified for first-year and older
individuals respectively. Anti-bodies are assumed detectable in individuals of theM and R compartments
and undetectable for all other compartments. It is assumed that all pups from recovered mothers (p♀RA)

start life with maternal antibodies (MP ), and all other pups start life susceptible (SP ).
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Seasonal demographic dynamicswere controlled via four pulse functions, which restrainwhen certain birth 104

or maturation processes can or cannot occur. These functions are essentially smoothed (i.e. continuous) step 105

functions that toggle whether or not a given step in the life cycle can bemade at a given time. Each pulse func- 106

tion has three parameters: 1) the pulse start time; 2) the pulse end time; 3) and the rate at which individuals 107

mature, or give birth, during the pulse. Nine of the twelve pulse function parameters were estimated as free 108

parameters, whereas the three maturation pulses were constrained to end two weeks prior to the start date 109

of the preceding pulse function of the following year (see table 2). This two week buffer ensured that individ- 110

uals joining a given age class could not immediately mature to the following age class. A two week buffer size 111

was chosen so that: 1) the buffer was large enough for overlap between the continuous pulse functions to be 112

negligible; 2) each pulse function was wide enough so that only a negligible number of individuals remained in 113
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the age class when the maturation rate returned to zero. Further details of the pulse functions are provided 114

in the supplementary information. 115

Parameter Description Prior or function
b(t) Birth rate Pulse function

mP (t) Maturation rate, pups Pulse function
mJ(t) Maturation rate, juveniles Pulse function
mI(t) Maturation rate, immature adults Pulse function
bStart Start of birth pulse Gamma(shape=5, scale=2)
dBirth Duration of birth pulse Gamma(shape=5, scale=1)
bStop End of birth pulse bStart + dBirth

pBirth Prop. females contributing to birth pulse Beta(171.5, 8.1)
p♀ Prop. females in population 0.5
m̂P Maximum pup maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂J Maximum juvenile maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂I Maximum immature maturation rate Gamma(shape=1, scale=-log(0.01)/8)
mStart

P Start of pup maturation pulse Uniform(0, 104)
mStart

J Start of juvenile maturation pulse Uniform(0, 104)
mStart

I Start of immature maturation pulse Uniform(0, 104)
mStop

P End of pup maturation pulse bStart + 50

mStop
J End of juvenile maturation pulse mStart

P + 50

mStop
I End of immature maturation pulse mStart

J + 50

µ−1
A Baseline adult life expectancy Gamma(mean=10× 52, sd=4× 52)
RS Survival ratio (young/adult) Beta(4.7, 1.6)
µY Additional mortality in young bats − log(RS)/52

K Density dependence parameter 100000
N0 Population size at t0 Gamma(shape=500, scale=1000)
pAge0 Prop. of each age class at t0 Dirichlet(0, 0, 1.0, 3.78)
ϕI0 Prop. of immatures inM,S, I,R, L at t0 Dirichlet(0, 1, 1, 1, 1)
ϕA0 Prop. of adults in S, I,R, L Dirichlet(1, 1, 1, 1)
β Transmission rate Gamma(shape=1, scale=10−5)
ρ Antibody acquisition (recovery) rate Gamma(shape=1, scale=1)

α−1
M Duration of maternal antibodies Uniform(0, 20×52)

α−1 Duration of antibody protection Gamma(shape=1, scale=1011)
p

R2L
Prob. long-term immunity after antibody loss Beta(1,1)

p
R2S

Prob. loosing immunity after antibody loss 1 - p
R2L

p
L2R

Prob. antibodies re-acquired on re-exposure Beta(1,1)
Table 2. Parameters, priors and functions used for modelling the dynamics of Ebola virus circulation in the
Eidolon helvum population of Yaounde, Cameroon (see Fig.1). These are presented in groups corresponding to:
the four pulse functions; birth pulse parameters; maturation pulse parameters; mortality parameters; initial
populations; and epidemiological parameters. Parameter estimation for the priors of pBirth, RS and pAge0 is
described in Annex 2 of the supplementary information.

The transmission of Ebola virus within the E. helvum population of Yaounde, Cameroon, wasmodelled using
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the following system of ordinary differential equations (ODE):

ṀP = b(t)RAp♀ −MP (µ̃Y +mP (t) + α
M
) (1)

ṠP = b(t)(SA + IA + LA)p♀ + α
M
MP + αp

R2S
RP − SP (µ̃Y +mP (t) + βIΣ) (2)

˙IP = βSP IΣ − IP (µ̃Y +mP (t) + ρ) (3)

ṘP = ρIP + βp
L2R

IΣLP −RP (µ̃Y +mP (t) + α) (4)

L̇P = αp
R2L

RP − LP (µ̃Y +mP (t) + βp
L2R

IΣ) (5)

ṀJ = mP (t)MP −MJ(µ̃Y +mJ(t) + α
M
) (6)

ṠJ = mP (t)SP + α
M
MJ + αp

R2S
RJ − SJ(µ̃Y +mJ(t) + βIΣ) (7)

İJ = mP (t)IP + βSJIΣ − IJ(µ̃Y +mJ(t) + ρ) (8)

ṘJ = mP (t)RP + ρIJ + βp
L2R

IΣLJ −RJ(µ̃Y +mJ(t) + α) (9)

L̇J = mP (t)LP + αp
R2L

RJ − LJ(µ̃Y +mJ(t) + βp
L2R

IΣ) (10)

ṀI = mJ(t)MJ −MI(µ̃Y +mI(t) + α
M
) (11)

ṠI = mJ(t)SJ + α
M
MI + αp

R2S
RI − SI(µ̃Y +mI(t) + βIΣ) (12)

İI = mJ(t)IJ + βSIIΣ − II(µ̃Y +mI(t) + ρ) (13)

ṘI = mJ(t)RJ + ρII + βp
L2R

IΣLI −RI(µ̃Y +mI(t) + α) (14)

L̇I = mJ(t)LJ + αp
R2L

RI − LI(µ̃Y +mI(t) + βp
L2R

IΣ) (15)

ṠA = mI(t)(SI +MI) + αp
R2S

RA − SA(µ̃A + βIΣ) (16)
˙IA = mI(t)II + βSAIΣ − IA(µ̃A + ρ) (17)

ṘA = mI(t)RI + ρIA + βp
L2R

IΣLA −RA(µ̃A + α) (18)

L̇A = mI(t)LI + αp
R2L

RA − LA(µ̃A + βp
L2R

IΣ). (19)

Table 2 provides a summary of model parameters and notation. Note, µ̃A and µ̃Y are density dependant
mortality rates for adult and young bats respectively. Adult mortality was modelled as

µ̃A = µA

(
1 +

J + I +A

K

)
(20)

where µA is the mortality rate in the absence of competition, K is a density dependant parameter that con-
tributes to determining the carrying capacity, and J , I and A provide the total population densities for juve-
niles, immatures and adults respectively. We assumed that, since pups and juveniles depend on theirmothers,
and that immature adults probably make mistakes that mature adults have learned to avoid, then the mor-
tality rates of non-adults should be equivalent to or higher than that of adults. Therefore, density dependant
mortality among young bats was modelled as

µ̃Y = µ̃A + µY , (21)

where µY is the rate of additional mortality among young bats. 116

To quantify survival over one year, letSA andSY denote the annual survival probability for adult and young
(<1 year) bats respectively. For adult bats, consider the following differential equation

ṠA = −µ̃ASA (22)

where SA(t) tracks how the survival probability changes over time t. Let SA(0) = 1, we can obtain SA by
integrating equation 22 over a single 52 week year, i.e.

SA = exp
(∫ 52

t=0

−µ̃A(t)dt
)

6
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where µ̃A(t) is the time-varying density dependant adult mortality. Similar arguments for young bats give

SY = exp
(∫ 52

t=0

−µ̃Y (t)dt
)

= SA exp(−µY × 52)

Thus, the additive nature of equation 21 permits us to parameterise µY in terms of the ratio of the annual
survival probabilities SY and SA, as follows:

RS =
SY

SA
= exp(−µY × 52).

Bayesian inference 117

A Bayesian approach was used to quantify uncertainty in model parameters, trajectories and derived met- 118

rics. For each simulation of the ODE system performed during model fitting: state variables were initialized 119

at the start of the year 2017; dynamics were simulated for three years; the ODE solver returned the state 120

variables after each of 520 evenly spaced time steps per year; and the simulated trajectories were confronted 121

with observed field data over the period December 2018 to November 2019. Priors are detailed in table 2 122

and in the supplementary materials. The following subsections describe the various likelihood functions and 123

penalties used for Bayesian inference, and outline how the model was used to address questions relating to 124

(1) the mismatch between serology and PCR data, and (2) to the optimal timing of virology studies. 125

Likelihood of age class data 126

The age distribution data (table 1) provides information as to when in the year we can expect to capture
juveniles, immatures and lactating females – where the latter was used as a proxy for pups. It was suspected
that between-class heterogeneity in capture rates could bias the absolute numbers of captures – therefore,
the data were not used for calibrating between-class differences in density. Instead, we used this data to infer
how the probability to capture a bat of a given class changes throughout the duration of the sampling period.
Thus, for a given class j ∈ {P, J, I}, the likelihood that the total number of captures were distributed across
the various sampling dates as observed in the data was quantified assuming

yj1, yj2, . . . , yjndates ∼ Multinomial
(
pj1, pj2, . . . , pjndates ,

ndates∑
i=1

yji

)
(23)

where ndates is the number of observation dates, yji is the total number of bats of class j captured at the
ith observation date and pji is the associated set of probabilities. The probabilities to sample a given pup
(i.e. lactating female), immature or juvenile on the ith sampling date were assumed to be proportional to the
population density predicted by the system of ODEs at sampling time ti, thus,

pPi ∝P (ti)

pIi ∝I(ti)

pJi ∝J(ti)

where
∑ndates

i=1 pji = 1 for any given class j. 127

Likelihood of tooth data 128

Tooth cementum annuli data (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016) were used to inform estimates
of adult mortality rates. Let yi ∈ {1, 2, . . . } represent the age of bat i in years. A likelihood for a given bat’s
age was obtained assuming

yi ∼ Geometric(1− SA)

7
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where SA is the probability for an adult to survive one year. To calculate this annual survival probability, we
added one more differential equation to the system, to track how survival probability fluctuates throughout
each simulation. Thus, survival was modeled via

Ṡ = −µ̃AS

and we set S(t = 0) = 1. Following each simulation of three years, the annual adult survival probability was
obtained as the ratio of the survival probabilities at the end and beginning of the final year

SA =
S(t = 3× 52)

S(t = 2× 52)
.

Likelihood of serology data 129

The serology data (table 1) provides information about the number of seropositive individuals (yj(t)) of
class j ∈ {J, I, A} found in a sample of nj(t) individuals at time t. Thus, we assumed the following likelihood

yj(t) ∼ Binomial
(
pj(t), nj(t)

)
where

pj(t) =
Mj(t) +Rj(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

is the expected seroprevalence for class j at time t. 130

Penalties against demographic growth or decline 131

Due to an absence of longitudinal population census data, there were large uncertainties concerning the
total population size at the beginning and end of the simulation period. We made the simplifying assump-
tion that the E. helvum population was close to it’s carrying capacity and was approximately stable. Thus, we
added penalty terms to the Bayesian model, to limit population growth or decline over the short simulation
period and therefore constrain the potential distribution of starting population densities. These penalties
were implemented as follows,

0 ∼Laplace
(
location = log(IEnd/IEarly), scale = log(1001/1000)

)
0 ∼Laplace

(
location = log(AEnd/AEarly), scale = log(1001/1000)

)
where IEarly and IEnd are the total densities of immatures early on, and at the end of, a simulation, and AEarly 132

and AEnd are the total densities of adults early on, and at the end of, a simulation – where "Early" and "End" 133

indicate the first model output for January following one year and three years of simulation respectively. The 134

likelihood imposed by these penalties is greatest when there is zero population growth or decline over the 135

last two years of the three year simulation period. The scale parameter controls the strength of the penalty. 136

These penalties were only applied to the sizes of the adult and immature bat populations, because the other 137

age classes were absent at the beginning of each year. Whilst it could arguably be reasonable to make the 138

simplifying assumption that the total population size was roughly stable over the simulation period, a similar 139

stability assumption for the epidemiological dynamicswas considered to be too strong, since too little is known 140

about the dynamics of Ebola in natural reservoirs – thus we did not use equivalent penalty terms to constrain 141

the starting values of the various epidemiological compartments of the model. 142

Markov chain Monte Carlo 143

Bayesian inference was based on Markov chain Monte Carlo sampling. An adaptive Metropolis Hastings 144

block sampler was used to explore the posterior distribution of themodel. Starting values for each parameter 145

were based on the final values obtained from a previous short run of the algorithm. The sampler was run for 146

40 million iterations, with thinning set to 2000, and the first half of the samples were removed as a burn-in 147

period. Thus, we obtained 10000 samples in total. 148
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Multi-annual cyclicity and skip years 149

An analysis of the long-termbehaviour of themodel was performed, with the aimof determining if seasonal
patterns in prevalence were likely to be consistent (or not) from one year to the next. For each of the 10000
MCMC samples the ODE system was projected for 1100 years, with the first 1000 years removed as a burn-in
period. The time vector sent to the ODE solver provided a temporal resolution of 10 steps per week. Each
trajectory of infectious adults (IA) over the final 100 years was used to construct a recurrence plot (Marwan
et al., 2007), using a threshold neighbourhood of 1 bat. In other words, each trajectory was used to construct
a matrix with entries

Ri,j = 1(|IA(ti)− IA(tj)| < 1) (24)

where1 is the indicator function, i and j are indices providing location along the time vector, and |·| represents 150

the absolute value. Clearly, the main diagonal of any recurrence plot contains only ones (because i = j 151

for each entry of the diagonal) and is uninteresting. However, any other diagonal containing only ones is 152

interesting, because it informs about periodic (i.e. repeating) dynamics. Thus, we searched for the closest 153

diagonal (to the principal diagonal) containing just ones, in order to identify k, the periodicity in years of any 154

multi-annual pattern in IA. Thus 10000 values of k were tabulated in order to quantify uncertainty in the 155

periodicity of the epidemiological dynamics. For this tabulation, we pooled all observations of k > 50 years, 156

to avoid potential false positives near the corners of the recurrence plots. 157

For any simulation where we identified that k > 1 we searched for skip years, which we defined as any 52 158

week period within which the density of infectious adults (IA) consistently remains below one. Thus, when 159

tabulating the various observed values of k we also tabulated the frequency of observing skip years as a 160

function of k. 161

Probability of not sampling an infectious bat 162

A key aim of this work was to quantify whether or not we should expect to see PCR positive bats in a typical
sample given the fitted model of Ebola transmission in E. helvum. Let Nj(t) represent the sample size for
bats of age class j obtained during a sampling campaign performed in week t – the probability to have zero
infectious bats in this sample is:

p(Ij(t) = 0|Nj(t)) =
(
1− Ij(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

)Nj(t)

(25)

where Ij(t) is the number of infectious bats in the sample. We considered that Nj(t) = 25 is a fairly typical 163

scenario in a given sampling campaign, and thus plotted the evolution of p(Ij(t) = 0|Nj(t) = 25) in time for 164

adult and immature bats, to provide an indication of when in the year would be an optimal time for sampling 165

if viral extraction was the aim. 166

Similarly, we also calculated the probability of having not captured a single infectious bat given all the bats
tested by PCR throughout the entire study,

p(I = 0|NJ , NI , NA) =
∏

t∈TObs

∏
j∈{J,I,A}

(
1− Ij(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

)Nj(t)

(26)

where I is the total number of infectious bats sampled during the study, Nj is the vector indicating how 167

many bats of age class j were sampled in each sampling campaign, and TObs is the set of times for all of the 168

observation campaigns. 169

Implementation 170

All calculations were performed in R (R Core Team, 2022) version 4.2.1. Numerical integration of the ODE 171

system was performed using the lsoda function in the deSolve package (Soetaert et al., 2010). Functions for 172
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the derivatives and Jacobian of the ODE systemwere coded in C. Bayesian inference was performed in NIMBLE 173

(de Valpine, Paciorek, et al., 2022; de Valpine, Turek, et al., 2017), and the function nimbleRcall was used to 174

call lsoda from inside NIMBLE. The package nimbleNoBounds (Pleydell, 2023) was used for improving the 175

efficiency of adaptive Metropolis-Hastings sampling near the bounds of the parameter space. The R package 176

CODA was used to perform convergence diagnostics on the MCMC output, and to provide the mean, median, 177

95% credibility interval and effective sample size (ESS) for each parameter. The effective sample size, which 178

estimates the number of independent samples per parameter while accounting for auto-correlation, was cal- 179

culated using the function effectiveSize. Whilst the system of ODEs was defined in continuous time, it 180

is common for ODE solvers to discretise time – for each simulation lsoda was provided a time vector with 181

intervals of 0.1 weeks to define when estimates for the state of the system were required. To economise on 182

memory allocation we configured NIMBLE to store and use the state of the dynamic system at weekly time 183

intervals. 184

Results 185

Inference from parameters 186

The posterior mean, median and 95% credibility intervals (shown in parentheses below) of each parameter, 187

alongwith the annual survival and effective sample sizes (ESS) estimates obtained from 10000MCMC samples, 188

are presented in table 3. Twelve of the parameters were associated with ESS scores of 10000 or higher. The 189

lowest ESS estimates were associatedwith the inverse of antibody loss rate (ESS(α−1) = 2289), the proportion 190

of recovered individuals obtaining long-term immunity (ESS(pR2L) = 6024), and the proportion of adults with 191

long-term immunity at the start of each simulation (ESS(p0(L|Ad)) = 7133). 192

The birth pulse is expected to start in the eighth week of the year and last nine (95% CI: 6.6− 10.7) weeks. 193

The three consequentmaturation pulses are expected to start in weeks 12, 24 and 45 respectively. The ranges 194

of the 95% credibility intervals for the four pulse function start times were (in chronological order) 0.76, 0.3, 195

1.5 and 1.9 weeks respectively. Annual survival probabilities were estimated as 39% (33% − 46%) and 76% 196

(74%−79%) in young and adult bats respectively. The estimated recovery rate, ρ = 0.67 (0.37−1.5), indicates 197

that the expected duration of infections was 1.5 weeks (5 days – 19 days). Recovered bats are expected to 198

produce antibodies for 75 (48 − 135) weeks, and maternal antibodies are expected to last 1.1 (0.36 − 2.3) 199

weeks. The estimates of pR2L indicate that roughly two thirds of recovered individuals pass to the long-term 200

immunity class, although uncertainty was high (0.24−0.92). Only 17% of infectious attacks on individuals with 201

long-term immunity re-initiate anti-body production, although uncertainty is large (0.7%− 47%). 202

A comparison of age-structure seasonality in the data and the model is presented in Fig. 2. The modelled 203

trajectory of pup presence (red) closely follows the observed seasonal patterns in the number of lactating 204

females (black). The model slightly underestimates the proportion of juveniles in May, but otherwise matches 205

the juvenile data well - i.e. with overlap between the credibility intervals generated from the data and from 206

the model. Seasonality in the presence/absence of immature adults is characterised well, although some 207

considerable fluctuations in densities remain unexplained by the model. Similarly, there was considerable 208

overlap between the credibility intervals calculated from the model and from the tooth-age data, albeit with 209

some notable outliers among young adult bats. 210

Seroprevalence dynamics 211

Comparisons of modelled and observed seroprevalence, in juvenile, immature adult and adult bats, are 212

presented in Fig 3. The credibility intervals of observed and modelled seroprevalence overlap at all sampling 213

dates. In juveniles and immature adults there is a large drop in seroprevalence when the maturation pulse 214

functions permit the re-population of those age classes – by contrast, in adults there is a small increase in 215

seroprevalence at the time when immatures start becoming adults. Seroprevalence increases in juveniles and 216
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Figure 2. Comparison of model trajectories to age-structure data for Eidolon helvum in Yaounde, Cameroon
(top row and bottom left), and of modelled adult survival to age estimates of adults based on tooth annuli
data from Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016).
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Parameter Mean 2.5% Median 97.5% ESS
bStart 8.04E+00 7.67E+00 8.04E+00 8.43E+00 10000
dBirth 9.12E+00 6.62E+00 9.31E+00 1.07E+01 7372
pBirth 9.54E-01 9.19E-01 9.56E-01 9.80E-01 10000
m̂P 6.41E-01 3.31E-01 6.10E-01 1.11E+00 10000
m̂J 4.58E-01 3.22E-01 4.37E-01 7.04E-01 10375
m̂I 1.44E+00 7.71E-01 1.33E+00 2.75E+00 10000
mStart

P 1.25E+01 1.19E+01 1.25E+01 1.28E+01 10000
mStart

J 2.40E+01 2.30E+01 2.39E+01 2.55E+01 9381
mStart

I 4.58E+01 4.50E+01 4.57E+01 4.69E+01 11342
µ−1
A 1.24E+03 1.09E+03 1.24E+03 1.41E+03 9532
RS 5.12E-01 4.16E-01 5.10E-01 6.19E-01 9199
N0 4.92E+05 4.51E+05 4.92E+05 5.36E+05 9711

p0(Im) 2.09E-01 6.65E-03 1.67E-01 6.22E-01 10341
p0(S|Im) 2.43E-01 8.60E-03 1.99E-01 7.02E-01 10000
p0(I|Im) 2.60E-01 8.90E-03 2.17E-01 7.15E-01 9662
p0(R|Im) 2.45E-01 7.48E-03 2.00E-01 7.01E-01 10000
p0(L|Im) 2.52E-01 8.89E-03 2.07E-01 7.05E-01 10000
p0(S|Ad) 2.38E-01 6.09E-03 1.81E-01 7.18E-01 10000
p0(I|Ad) 2.76E-01 1.24E-02 2.41E-01 7.24E-01 9037
p0(R|Ad) 2.35E-01 7.17E-03 1.89E-01 6.91E-01 10000
p0(L|Ad) 2.51E-01 8.53E-03 2.07E-01 7.22E-01 7133

β 5.57E-06 3.08E-06 4.96E-06 1.21E-05 7574
ρ 6.77E-01 3.71E-01 6.06E-01 1.49E+00 7540

α−1 7.51E+01 4.81E+01 6.96E+01 1.35E+02 2289
α−1
M 1.11E+00 3.60E-01 1.04E+00 2.28E+00 9575

pR2L 6.33E-01 2.47E-01 6.54E-01 9.20E-01 6024
pL2R 1.70E-01 7.67E-03 1.47E-01 4.71E-01 9426
SY 3.91E-01 3.27E-01 3.90E-01 4.60E-01 9198
SA 7.65E-01 7.42E-01 7.65E-01 7.87E-01 9474

Table 3. Summary of marginal posterior distributions for each parameter in the Ebola-E.helvum model. The
mean, median and 95% credibility intervals for each parameter are presented, along with the effective sample
size (ESS) estimated using the effectiveSize function of R package CODA.

immature adults during midsummer, with median seroprevalence rates being just 0.4% (0.05% - 1.8%) and 217

0.9% (0.007% - 3.8%) inweeks 22 and 24 (of 2019) respectively, and reaching 68% (60% - 74%) inweek 40. Whilst 218

this peak in seroprevalence is synchronised for the two classes, the density of juveniles is already reaching 219

zero by that time, whereas the density of immature adults is reaching its maximum. A summertime upward 220

trend is also observed in the seroprevalence of adults, with a median seroprevalence of 35% (29%-41%) in 221

week 25 rising to 51% (43% - 62%) in week 38. The trajectories of both observed andmodelled seroprevalence 222

from early April to early May suggest that seroprevalence in juveniles drops considerably during this period – 223

a continuation of the drop initiated one month earlier by the initiation of weaning in week 12. 224

Period and predictability of long-term dynamics 225

The periods of multi-annual cyclicity in the dynamics of infectious adults (IA), identified using recurrence 226

plots from10000 simulations, are presented in table 4. Eighty nine percent of simulations resulted in dynamics 227

with a period of one year – in these cases, the timing of the annual peak remained identical from one year to 228
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Figure 3. Seroprevalence data and estimates for 2018-2019. The mean and 95% credibility intervals for the
seroprevalence data are shown as black dots and whiskers respectively. The median and 95% credibility inter-
vals for the modelled seroprevalence are shown as dotted lines and red bands respectively. 95% credibility
intervals for the density of individuals in each class are shown in beige.

the next. Among the 11% of simulations which exhibiting more complex dynamics, 31% exhibited skip years. 229

Nearly nine percent of simulations resulted in biennial (k = 2) cycles, 24% of which exhibited skip years. Sixty 230

seven simulations resulted in four-year cycles, with 94% exhibiting skip years. Nineteen simulations exhibited 231

k > 4 and k < 50. Seventy three simulations exhibited k > 50, with 48% exhibiting skip years. Examples of

Period k Frequency Frequency
(years) with skips

1 8938 0
2 899 219
4 67 63
5 1 0
6 5 4
7 1 0
8 7 7
10 1 1
14 1 0
25 1 0
28 1 0
48 1 1

51-99 25 8
≥100 48 27
Extinct 4 N.A.
Total 10000 330

Table 4. Recurrence plot analysis results, providing the frequency distribution for various values of k, the pe-
riod (in years) of dynamics in the density of infectious adults (IA), and the frequency of observing skip years
in those patterns. Since recurrence plots were constructed from 100 year simulations, the maximum period-
icity permitting at least one whole replication of a dynamic cycle was 50 years. Thus, we pool all simulations
providing just partial evidence for periodicity in the 50-99 range. Similarly, we pool all simulations indicating
k ≥ 100, many of which are likely to have been chaotic. Four simulations resulted in extinction of the virus.

232

the types of trajectories possible under each value of k are presented in Fig. 4. 233

The timing of the annual peak in infectious adults, and the relation ship between that timing and the size 234

of the peak, is presented in Fig. 5. An annual peak in the density of infectious adults is most likely in weeks 235

30 - 31 (p=0.63), in weeks 17 - 27 (p=0.05), or in weeks 48 - 52 (p=0.045). Weeks 21, 25 and 27 are associated 236
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Figure 4. Example long-term trajectories of infectious adults under various values of period k. From top to
bottom, k equals 1, 2, 4, 6, 8, 48 and k > 100 respectively. Vertical grey, and blue, lines depict the start of
each year, and the period k, respectively. Skip years (any 52 week period without an outbreak) are evident
in several examples. A higher (than one bat) threshold in the recurrence plot definition (Eq. 24) could clearly
result in k = 8 and not k = 48 in the sixth example. The dynamics in the final example appear to be chaotic.
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with the greatest expected outbreak sizes (24610, 24411 and 24528 infectious adults respectively), despite 237

bi-modality in outbreak size during that period of the year. The expected outbreak size in weeks 30 and 50 238

are 8128 and 9618 respectively. 239
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Figure 5. Seasonal trend in the probability that the annual peak in infectious adults falls within a given week
(left), and the relationship between the timing and size of outbreak peaks (right). These results are based on
the final 100 years of 10000 simulations, each 1100 years in length. The probability of the peak given the
week of the year was derived as the expected value derived from these one million years of simulated output
(black line, left plot). The frequency distribution for the timing and size of peak IA density for each of these
one million years of simulated output is represented via a white-green-red colour scale (right plot), with the
weekly mean and 95% credibility intervals represented as solid and dashed lines respectively.

Probability of not sampling an infectious bat 240

Seasonality across 2019 in the probabilities to not have an infectious individual in a sample of 25 adults 241

and 25 young bats are represented graphically in figure 6. The expected values of these probabilities were 242

minimised in week 31 in both young and adult bats, and were 0.02 (95% CI: 0.0039 – 0.069) and 0.48 (0.29 – 243

0.70) respectively. 244

The probability to not have an infectious bat in the samples tested by PCR in the (Djomsi et al., 2022) study 245

was 0.00052 (6.6× 10−9 – 4.2× 10−3). These probabilities are greatest during the first four to five months of 246

the year. Uncertainty in these probabilities is greatest in late summer and early autumn. 247

Discussion 248

Model overview and fit 249

The current work presents a Bayesian analysis of an age-structured epidemiological model of Ebolavirus 250

transmission in Eidolon helvum. The model simulates both demographic and epidemiological dynamics, and 251

was calibrated to ecological and serological data collected previously in Cameroon (Djomsi et al., 2022) and age 252

structure data from Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016). A key component of the model is a 253

series of four seasonally dependant pulse functions, which control when females can produce pups, andwhen 254

maturation between successive age classes can occur. Uncertainty in the estimated starting times of those 255

pulse functions was low, with the 95% credibility interval being less than two weeks wide in all four cases. 256
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Figure 6. Probability of not capturing an infectious bat in a sample of 25 pre-adult (left) or adult (right) bats,
across 2019. Grey vertical lines indicate weeks at which bats were captured for PCR analysis, with a mean
sample size of 25.

Some outliers in the age-structure data were observed (Fig. 2) and are likely linked to neglected ecological 257

mechanisms, such as heterogeneity in dispersion patterns, food availability and survival. Nevertheless, the 258

model trajectories provide a succinct summary of trends observed in both the age-structure and serology 259

data – the most notable trend being the sharp increase in seroprevalence in late summer (Fig. 3). 260

Inference from parameter estimates 261

Our analyses indicate that, on average, 76% of adults and 39% of young bats survive each year. Infections 262

are expected to last one and a half weeks. Maternal antibodies are expected to provide protection for just 1.1 263

weeks on average, thus the annual birthing pulse leads rapidly to growth in the pool of susceptible individuals, 264

which in turn typically leads to increased transmission and seasonal outbreaks. Somewhat similar patterns of 265

maternal antibody loss, followed by acquisition as young adults, and with seroprevalence in adults stabilising 266

at roughly 60%, have also been reported for Lagos bat virus and henipavirus in E. helvum (Peel, KS Baker, 267

Hayman, Broder, et al., 2018) – however, the mean duration of protection from maternal antibodies in that 268

study was estimated to be half a year. Following experimental infections with canine distemper virus in adult 269

female Pteropus hypomelanus and natural infections of Hendra virus in adult female Pteropus alecto serological 270

tests could still detect maternal antibodies in pups of up to 7.5 and 8.5months of age (Epstein, ML Baker, et al., 271

2013). The duration of protection frommaternal antibodies estimated in the current study does appear to be 272

low compared to estimates from other studies for other viruses, however, uncertainty was low (despite a very 273

uninformative prior) which suggests that the result was really driven by the observed data. Further studies 274

could be useful to verify why maternal antibodies play an apparently less important role here, compared to 275

other host-virus systems. 276

Here, the expected duration of antibodies in recovered bats was estimated to be 75 weeks, or possibly 277

as much as 135 weeks – although again, this duration of projection from antibodies is shorter than the four 278

years and twelve years estimated for henipavirus and Lagos bat virus respectively in Peel, KS Baker, Hay- 279

man, Broder, et al. (2018). Given the shorter half-life of detectable antibodies in the adult bats of the current 280

study, it is perhaps less surprising that maternal immunity appears to be shorter here than in other studies. 281

The posterior distribution of pR2L indicated that the majority of individuals loosing antibodies are expected 282

to enter a form of long-term immunity – and 97.5% of samples indicated pR2L > 0.24, thus some form of 283
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long-term immunity appears to be likely. This result replicates modelling results of Brook et al. (2019), who 284

described a similar phenomenon in henipavirus transmission in Eidolon dupreanum, Pteropus rufus and Rouset- 285

tus madagascariensis fruit bats in Madagascar. Moreover, experimental infections suggest that Egyptian Fruit 286

Bats (Rousettus aegyptiacus) continue to exhibit long-term protection to Marburg virus 17-24 months after an 287

original infection despite waning expression of virus-specific IgG antibodies (Schuh, Amman, TK Sealy, et al., 288

2017). 289

Probability of serology-PCR mismatch 290

A key aim of the current work was to explore an apparent mismatch between seroprevalence data – which 291

suggest Ebola-related virus circulation in juvenile and sexually immature bats – and the results of PCR tests – 292

which have failed to detect a positive sample among the 456 oral and rectal swabs tested from 366 bats (152 293

juveniles and 214 immature adults)(Djomsi et al., 2022). Here the probability to not have an infectious bat 294

among all the samples tested by PCR was estimated to be 0.00052 (95% CI: 6.6 × 10−9 - 4.2 × 10−3), which 295

confirms a paradoxical mismatch between the results of the serology and PCR tests. 296

The circulation pattern observed in the serology data, and replicated in our model, is apparently driven 297

by seasonal pulses of young susceptible bats entering the population, fueling an annual resurgence of viral 298

circulation, and playing a key role in viral persistence. That birthing patterns play an important role for con- 299

tributing to the timing of outbreaks has been reported for various other host-pathogen systems (Cappelle 300

et al., 2021; Jolles et al., 2021; Mariën et al., 2020; Peel, Pulliam, et al., 2014), which supports the argument 301

that the seasonal patterns observed in the serology data really are linked to viral circulation. However, in the 302

absence of confirmed positive control samples for ebolaviruses in bats the calibration of a serological test is 303

challenging, therefore there is a risk that a low cut-off value could have inflated the frequency of false positive 304

results. Indeed, Djomsi et al. (2022) tried several methods to identify a cut-off value – however, even the most 305

stringent of those cut-offs suggested the presence of bats that were seropositive to ebolaviruses and sea- 306

sonality in transmission. Cross-reactivity between different ebolaviruses has been documented in humans 307

(Diallo et al., 2021) and in experimentally infected Rousettus aegyptiacus, where limited cross reactivity with 308

other filoviruses was also documented (Schuh, Amman, TS Sealy, et al., 2019). Such results suggest that the 309

serological signal observed in that study did come from the circulation of Ebola-related viruses and not other 310

filoviruses. Nevertheless, false positive reactivity with other pathogens cannot be excluded for the serological 311

assay used in our study, which may explain why all PCR tests remained negative – i.e. the viruses actually 312

circulating and causing positive serology in E. helvummight not be in the detection range of the pan-filovirus 313

PCR of Djomsi et al. (2022). However, other factors could also explain the lack of positive PCR test results, even 314

if Ebola-related viruses actually are circulating within the bat population. 315

One alternative possibility is that low sensitivity of the PCR assay may have lead to many false negative test 316

results and may therefore explain the mismatch between the serological and PCR data. PCR assays designed 317

to detect viral families may have lower sensitivity than PCR targeting specific viruses. For example a Bomabali- 318

virus-specific real-time PCR assay detected an addiational postivie sample than the filovirus ‘family level’ cPCR 319

assay used by Goldstein et al. (2018). 320

Furthermore, samples taken from infectious sylvatic bats are likely to have very low viral loads compared to 321

experimentally infected bats or sick naturally infected humans for whom the PCR assays have been designed. 322

If PCR sensitivity is an issue, then developing a more sensitive PCR should help, so long as it is not associated 323

with a decrease in specificity. Indeed, if unknown Ebola-related viruses are actually circulating in the popu- 324

lation, designing a specific PCR assay would prove challenging. Moreover, future studies that succeeded to 325

identify or isolate those viruses would greatly clarify the epidemiological picture. 326

Finally, another potential explanation for the negative PCR results, despite the apparent circulation of Ebola- 327

related viruses, may be the absence of viral excretion in the rectal and oral swab samples collected. During 328

an experimental inoculation of Rousettus aegyptiacus with Ebola virus, none of 36 swab samples taken 3-10 329

days post infection tested positive by PCR, although Ebola RNA was detected in the blood of one bat and the 330
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lungs and liver of another (Paweska et al., 2016). Transmission routes other than the fecal-oral or oral-oral 331

routes may be involved in the transmission of Ebola-related viruses in E. helvum. In rare cases Ebola virus has 332

been detected in various samples from humans, and a sexual route of transmission has been demonstrated 333

(Christie et al., 2015; Mate et al., 2015; Thorson et al., 2016). The large majority of samples taken from bats so 334

far have been oral and rectal swabs. Taking multiple samples from bats, including organs may help to clarify 335

this point. Ethical questions would arise from such a protocol involving bat euthanasia, and the balance be- 336

tween improving our understanding of the ecology of ebolaviruses and animal well-being should be discussed 337

by ethics experts. 338

Complex dynamics and optimal timing for sampling 339

A key aim of the current study was to predict the optimal timing for identifying or isolating the virus(es) 340

responsible for the sero-conversions observed in E. helvum. Clearly, when planning field sampling schemes, 341

it can be highly beneficial to have as complete an understanding as possible concerning the complexity of 342

viral dynamics in a sylvatic host population. Some bat-borne zoonotic viruses are known to exhibit complex 343

multi-year inter-epizootic periods, which have been attributed to interactions between population density 344

changes, waning immunity, and viral recrudescence (Epstein, Anthony, et al., 2020). Results from our long- 345

term simulations indicate a degree of uncertainty regarding whether or not complex multi-annual dynamics 346

in the number of infectious bats are to be expected. Ten percent of our simulations suggest that the period 347

of cyclicity could be greater or equal to two years, and 31% of that subset of simulations suggest that there 348

may be periods of twelve months or more where prevalence rates remain close to zero. Such "skip years" are 349

a well known phenomenon in mathematical epidemiology (Stone et al., 2007; Subramanian et al., 2020; Zhao 350

et al., 2018) and arise when the size of the susceptible population remains below a threshold required for an 351

outbreak for prolonged periods of time. Clearly, whether or not skip years occur is an important question for 352

field-virologists interested in sampling sylvatic hosts for virus isolation. Here the probability that the system 353

exhibits skip years was estimated as 0.033, which is low but not completely negligible either. 354

Actually, almost 90% of our long-term simulations suggested that the dynamics of ebolavirus in E. helvum in 355

Cameroonmay be relatively simple. Themost likely scenario appears to be: one outbreak occurs per year; the 356

size of those outbreaks is somewhat consistent; and the peak of each outbreak likely occurs during weeks 30 357

and 31 of the year (p=0.63). Thus, a sampling campaign centered at these dates would most likely be optimal. 358

However, our uncertainty analysis does not eliminate the possibility ofmore complex patterns where the peak 359

in the number of infectious bats could occur at any time after the first three months of the year, and where 360

the size and timing of outbreaks are related. Given this uncertainty in the timing and size of outbreaks, it could 361

also be worth sampling in weeks 17-27, because although the probability to have an outbreak in this period 362

is lower, the size of outbreaks predicted in this period can be greater. Any outbreaks occurring after week 35 363

would only generate low prevalence rates, thus it could be challenging to isolate the virus during this period. 364

These results can be used to target periods when ebolavirus circulation can be expected to be greatest, and 365

to help optimise the sample sizes required to have a high probability of sampling at least one infectious bat – 366

which can help limit the number of bats euthanized for the purpose of viral isolation. 367

Limitations and future research 368

Various limitations should be kept in mind when interpreting the results presented in the current work. 369

For example, our modelling neglects: stochasticity in population dynamics, transmission and recrudescence 370

(Muñoz et al., 2022; Peel, Pulliam, et al., 2014); spatial dynamics and migration (Richter and Cumming, 2006); 371

between-year variation in the timing and success of birth pulses (Adole et al., 2016); potential long-term car- 372

riers (Forrester, 2018); temporal changes in environmental stress that may affect susceptibility (Lafferty and 373

Holt, 2003); and age-dependant heterogeneity in contact rates (Rohani et al., 2010). Future modelling stud- 374

ies should consider using sensitivity analysis to assess whether or not neglecting such mechanisms can have 375
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important consequences on the long-term trajectories of disease transmission and on the optimal timing of 376

sampling. Moreover, the current work has focused on one host, one serological test and is based on just over 377

one year of field data. We cannot eliminate the possibility that multiple Ebola-related viruses contributed to 378

the observed trends in serology, because of a lack of specificity of the serological tests. The limitations of 379

this study highlight the importance of conducting long-term field monitoring, for the calibration of models, 380

assessing their predictions and for fully elucidating the complex dynamics of Ebola-related viruses in sylvatic 381

host communities. 382

Conclusions 383

The current paper presents modelling work that addresses a paradoxical observation in straw coloured 384

fruit bats, where young bats exhibit rapid seroconversion for ebolavirus antibodies whilst confirmation by 385

PCR remains elusive. The probability of this contradictory observation is estimated to be one in two thousand. 386

The potential causes of this mismatch have been discussed and remain the focus of future research. This 387

work provides novel insights in to the nature of the seasonality of ebolavirus transmission in fruit bats and 388

provides predictions which can help with the design of future field programs for isolating circulating Ebola 389

viruses. 390
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arithmetic was used so that this pulse could be applied to an unlimited number of years. Thus, the rate of a
given life-cycle process (i.e. birth, or maturation) was modelled as a function of time t as follows:

r(t) = rMax
1

1 + exp(γX1(t))

1

1 + exp(γX2(t))
(27)

with
X1(t) = ((tStart − t+ δ) mod 52)− δ, (28)

X2(t) = ((t− tStop + δ) mod 52)− δ (29)

and
δ =

52 + tStop − tStart − 10−2

2
, (30)

where tStart gives the start of the pulse (i.e. the centrality parameter for the first logistic curve), tStop gives the 406

end of the pulse (i.e. the centrality parameter for the second logistic curve), modulo arithmetic permits the 407

recycling of the pulse function over multiple years, δ provides a shift that eliminates artefacts arising from 408

edge effects under most biologically reasonable combinations of parameters, and γ is a shape parameter 409

controlling how rapidly the rate r(t) passes from zero to rMax, and back again. In practice we fix γ at ten. Note, 410

tStop > tStart. 411

For the birth pulse function, rMax represents the within-season birth rate, which we note as bMax, which we
define as

bMax =
pBirth
dBirth

(31)

where dBirth is the duration of the birth pulse, and pBirth is the proportion of females expected to give birth (to 412

a single pup) during the birth pulse. 413

Annex 2: parameterisation for three priors 414

In the follwoing subsections we outline how we parameterised priors for the parameters pBirth, RS and 415

pAge0 . 416

Prior for pBirth 417

The proportion of females giving birth each year, pBirth, wasmodelled using a beta-binomial model and data
from Hayman, McCrea, et al. (2012). According to that paper, the expected value and 95% confidence interval
of pBirth are 0.96 and (0.92,0.98) respectively. We sought to identify the parameters of a beta distribution that
would minimise the L2 norm of errors between fitted values and these three data points. Using the optim
function in R, we identified that

pBirth ∼ Beta(171.49, 8.13).

For further details, see our script hayman.R. 418

Prior forRS 419

According to Hayman, McCrea, et al. (2012) the expected annual survival probability and 95% confidence
intervals is 0.63 and (0.27, 0.88) for adult bats. Using arguments similar to the previous section on pBirth, we
used optim to minimise the L2 norm of the errors between these three data points and fitted values, giving
the following model of adult survival

SA ∼ Beta(4.95, 3.35). (32)

Similarly, Hayman, McCrea, et al. (2012) reported the expected annual survival probability and 95% confi- 420

dence intervals for young bats are 0.43 and (0.16, 0.77) respectively. To ensure that SY < SA, we assumed 421

SY = RSSA and thatRS could bemodelled using a beta distribution. Thus, we sought to identify parameters 422
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for RS that could minimise an L2 norm between the three data points and their equivalent "fitted values". 423

We used Monte Carlo approximation to obtain these "fitted values" as follows. 424

Assume the following model forRS ,
RS ∼ Beta(αR, βR). (33)

For a given set of parameters (αR, βR), we simulate 10001 values from equations 32 and 33. Those vectors 425

are multiplied to obtain 10001 samples of SY , and kernel density estimation is applied to these samples to 426

obtain an empirical distribution for SY . This empirical distribution is used to identify the fitted expected value 427

and 95% credibility interval, which are then used to calculate the L2 norm. For further details, see our script 428

hayman.R. 429

Prior for pAge0 430

Before simulating dynamics with an epidemiological model, it is necessary to set the initial conditions of the 431

system, i.e. the state of each compartment at time zero. For an age structuredmodel, this includes setting the 432

initial population sizes for each age class. We do that by parameterising in terms of the total population size 433

at time zero,N0, and the proportion of that population associated with each age class, pAge0 = (pP0, p
J
0, p

I
0, p

A
0). 434

Since pups and juveniles are absent at the start of the year we set their initial proportions to zero. The prior 435

onN0 was set to reflect the approximate population size in Yaounde. Thus, we simply need to set a prior for 436

the proportion of immatures, pI0, and it’s compliment, pA0 = 1− pI0. We outline how we did that here. 437

Since pI0 is a probability, it was natural to assign a beta distribution and to seek data on which to base the
hyperparameters. Assuming that the annual adult survival is constant with age, the population age structure
follows a geometric series, and the proportion of individuals of a given age relative to all individuals of the
same age or greater is constant. Thus, we used tooth cementum annuli data (Peel, KS Baker, Hayman, Suu-
Ire, et al., 2016) to estimate that proportion, and thereby obtain an estimate for the proportion of immature
adults in the population at the start of the year, just prior to the spring birth pulse. For each age t, in years,
we modelled the proportion of bats of age t among all bats of age t or more as a beta-binomial model with
uniform prior, i.e.

p(Age = t|Age ≥ t, t ∈ [1, 14]) ∼ Beta(1 + nt, 1 + n>t)

where nt is the number of sampled bats of age t, n>t is the number of sampled bats older than t and t is any
integer in the interval [1, 14] – since the oldest bat in the data set was 15 years old. A weighted average of
these 14 priors was calculated to obtain a general prior

p(Age = t|Age ≥ τ) ∼ Beta
(
1 +

14∑
t=1

ntωt, 1 +
14∑
t=1

n>tωt

)
where the weights ωt ∝

∑14
t=1 n≥t account for the diminishing sample size as bats die each year. Since

p(Age = t|Age ≥ τ) is constant under the constant mortality assumption, it might therefore be reasonable
to use it as a prior for pI0. This procedure resulted in the prior

pI0 ∼ Beta(38.74, 146.57).

However, in practice, this prior lead tomismatches with data that suggested that very few bats were still being
classified as immature at the start of the year (fig. 2). Thus, we maintained the expected value of this prior,
but relaxed the variance so to not exclude zero as the proportion of immatures at the start of January. This
relaxation resulted in the following prior

pI0 ∼ Beta(1, 3.8).

The density functions of these priors, and the 14 distributions used to build them, are shown graphically in 438

figure 7. 439
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Figure 7. Posterior distributions for beta-binomial models of the proportion of a given age of adult in years (t)
in the sub-population of bats the same age or more. Tooth cementum annuli data (Peel, KS Baker, Hayman,
Suu-Ire, et al., 2016) were used to calculate these distributions, fixing t at integer values in the interval [1, 14].
The weighted average of those 14 distributions (dotted line) proved to be overly restrictive as a prior. So
the variance of the prior was relaxed to not exclude zero (black line), providing a prior for the proportion of
immature adults in the E.helvum population at the start of the year.
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