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ABSTRACT8

Background:
The rise of antimicrobial resistance (AMR) is a growing concern globally and a deeper understanding of
AMR gene carriage vs usage is vital for future responses to reduce the spread of AMR. Identification of
AMR phenotype by laboratory-based assays are often hindered by difficulties in establishing cultures.
This issue could be resolved by rapid computational assessment of an organism’s genome, however,
AMR gene finder tools are not intended to infer AMR phenotype which is likely to be a product of multiple
gene interactions.
Methods:
To understand the importance of multi-gene interactions to the relationship between AMR genotype and
AMR phenotype, we applied machine learning approaches to 16,950 genomes from microbial isolates
representing 28 different genera with 1.2 million corresponding laboratory-determined MICs for 23
different antibiotics. We then elucidated the genomic paths to phenotypic antimicrobial resistance with
the aim of allowing for the development of rapid determination of AMR phenotype from genomes or even
whole microbiomes.
Results:
The application of machine learning models resulted in a >1.5-fold increase in average prediction
accuracy of AMR phenotype across the 23 antibiotic models. Interpretation of these models revealed
528 distinct genomic pathways to phenotypic resistance, many of which were species-specific and
involved genes which have not previously been associated with AMR phenotype. This is the first study to
demonstrate the utility of machine learning models in the prediction of AMR phenotype for a wide range
of clinically relevant organisms and antibiotics. This could be applied as a rapid and affordable alternative
to culture-based techniques, estimating taxonomy in addition to AMR phenotype, and providing real-time
monitoring of multi-drug resistant pathogens.

Availability and implementation:
Contact: ldillon05@qub.ac.uk
View supplementary information at this link:
https://osf.io/cj4bq/?view_only=c0ee87b7609543b688953089be4c376f
See Code Availability for scripts used.
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INTRODUCTION9

The overuse and misuse of antibiotics has escalated the rate at which many bacteria have evolved resistance10

to multiple antibiotics [9, 37], including last-resort treatments [2]. This has led to a growing prevalence11

of antimicrobial-resistant infections worldwide [27], which can be challenging to treat [7]. This has12

caused antimicrobial resistance (AMR) to become an increasing burden on society from a global health,13

agricultural and financial perspective [1, 20, 42]. If the rate of AMR continues as projected, it is estimated14

that by the year 2050, there will be > 10 million deaths annually as a result of AMR-related infections15

[26].16
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AMR phenotype is typically distinguished through laboratory-based approaches such as broth microdilu-17

tion, E-tests or disk diffusion assays [4]. However, it typically takes 2-4 days to allow time to culture the18

bacteria and then complete the test [5]. More rapid testing is available through automated instruments for19

antibiotic susceptibility testing, such as commercial automated antimicrobial susceptibility tests (i.e. Vitek20

2 system and Microscan WalkAway) [4, 24] or isothermal microcalorimetry accurately determine MIC21

values (i.e. Symcel) [41], which is often used in hospital environments. However, while these assays are22

usually a good estimate of AMR phenotype in culture, this does not always translate to clinical settings.23

This is further complicated by the difficulty in culturing many organisms, especially when assessing24

species directly from microbiome samples [36]. Besides the importance of understanding the role of AMR25

phenotype in microbiomes from an AMR reservoir perspective [37], it also has the potential to reveal the26

mechanisms underpinning AMR-driven dysbiosis [31] within humans and animals and potentially aid us27

to prevent disease whilst concomitantly slowing the spread of AMR.28

Recently, computational methods to identify AMR-causing genes in genomic data have become widely29

available [6, 30, 19] and are often used to assess the potential antibiotic resistance phenotype of an30

organism [37] or even entire microbiomes [46]. These AMR gene finder tools run relatively quickly,31

especially compared to laboratory-based assays. Still, different tools can provide varying results [16],32

likely driven by differences in the databases that they use to detect AMR genes and the varying methods33

to extract the AMR genes [14]. AMR gene finder tools are also prone to error, for example, when closely34

related genes may be predicted as resistance genes incorrectly [5]. Very often microbiomes harbour AMR35

genes even when antibiotic usage is absent [28, 48, 18]. Why these bacteria harbour AMR genes within36

the microbiome is unclear. Several AMR genes have been reported to have alternative functions, such as37

transporters [11], yet this is not the case for all.38

Most importantly, AMR gene finder tools predictions represent what is likely in many cases to be39

a simplified concept of the mechanisms underpinning the presentation of AMR phenotype. There is40

the assumption that a single gene or mutation is responsible for the phenotypic expression of AMR and41

gene finder tools do not take into account other genes which may be required to confer resistance to an42

organism [25]. We refer to these non-classical AMR genes that are important to the presentation of AMR43

phenotype as “accessory” genes.44

Some previous studies have attempted to use machine learning as a way of predicting the AMR phenotype45

from genotype [33, 34]. These studies have had several limitations such as only studying a specific46

species, and/or using a single antibiotic [32, 29, 45, 44] or using non-interpretable methods such as a47

neural network [3], thereby limiting our ability to understand the biological processes involved. Using48

a more interpretable method such as decision trees, applied to a wide range of taxa across multiple49

antibiotics has the potential to provide a unique biological understanding of antibiotic resistance and allow50

the identification of accessory genes associated with alternative “paths” to phenotypic resistance.51

To address this, we determined the role of “accessory” genes in the presentation of an AMR phenotype.52

Our hypothesis is that focusing solely on classic AMR genes misses vital information needed to evaluate53

AMR phenotypes accurately. We address this through the application of multiple Machine Learning (ML)54

models to a dataset of 16,950 genomes from microbial isolates representing 28 different genera with 1.955

million corresponding laboratory-determined MICs for 79 different antibiotics. This data was filtered by56

matching to EUCAST breakpoints and to ensure more balanced datasets according to AMR phenotype57

(see Methods and Materials: Data for Analysis for further details). We then elucidate the genomic paths58

(combinations of genes presence and absence to reach a phenotype) to phenotypic antimicrobial resistance59

that are shared or unique to species or antibiotics with the aim of allowing for the development of rapid60

determination of AMR phenotype from genomes or even whole microbiomes.61

METHODS AND MATERIALS62

All scripts and files mentioned in the text can be found at https://github.com/LucyDillon/63

AMR_ML_paper/tree/main. This includes all bash scripts to analyse data using tools and details of64

how gene counts for RGI and Eggnog gene families were calculated.65

Supplementary files and additional data can be found at: https://osf.io/cj4bq/?view_only=66

c0ee87b7609543b688953089be4c376f.67
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Data for Analysis68

Using the PATRIC command line interface (version 1.034 - now known as BV-BRC) [13, 35], 16,95069

bacterial genomes from isolates of known taxonomy with 1,249,188 corresponding laboratory-determined70

MIC values were sourced. The genomes used in this study can be found using a wget command called:71

PATRIC genomes.sh using the input: genome ids.txt. For each genome, the AMR genotype was deter-72

mined using the Resistance Gene Identifier (RGI) tool v5.1.1 [23] with the CARD database v3.1.1 [30]73

using the default parameters and the whole genome sequence from the genome as input. The CARD74

database includes acquired resistance and resistance due to mutations.75

Each predicted AMR gene in each genome was then associated with the specific antibiotic(s) to which76

it was listed as conferring resistance to using the information in the CARD database. The MIC values77

were categorised into ‘Susceptible’ or ‘Resistant’ using EUCAST breakpoints (Jan 2021 release) [15]78

which are taxonomic-specific MIC values that can differ between species. The MICs were categorised79

into the respective EUCAST breakpoints using custom Python scripts (OG RGI analysis.py, Logis-80

tic regression RGI.py, RGI specific analysis.py, RGI all analysis.py, and Eggnog analysis.py). Any MIC81

values that fell outside the EUCAST definition of “susceptible” or “resistant” for any specific species82

were removed from the analysis. In the case that a genome had >1 MIC values for the same antibiotic, the83

average was calculated and then compared to the EUCAST breakpoints. This resulted in 5,990 genomes,84

19 Genera, with 47,711 EUCAST classified MICs for subsequent analysis (28,480 resistant and 19,23185

susceptible MICs). Details of the number of each Genus for each antibiotic model can be found in86

Supplementary Table 1.87

Analysis of AMR genotype to phenotype relationship88

In this study, we used several techniques to further understand the relationship between AMR genotype89

and AMR phenotype. The models used are binary classifiers (either classifying as susceptible or resistant)90

which although makes for a simpler model, excludes the use of intermediate resistance or more complex91

conditions such as persistence or tolerance. To predict the AMR genes present within each genome, we92

used RGI, a commonly used AMR gene finder tool. We evaluated four phenotype prediction approaches93

using linked laboratory-determined resistance/susceptibility profiles against a range of antibiotics. We94

first tested a naive prediction of AMR phenotype using the presence/absence of AMR genes and the95

antibiotics to which the genes were listed as conferring resistance in the RGI database. Secondly, we96

tested the application of a basic logistic regression model to the AMR gene presence-absence data. Finally,97

we tested the application of four machine-learning approaches to predict AMR phenotype using gene98

counts of known AMR genes with and without gene counts of all other functionally annotated genes in the99

genomes (eggNOG gene families). Each of these approaches (further outlined below) was independently100

applied to the prediction of resistance to 23 different antibiotics for which relevant MICs were available.101

Naive prediction of AMR phenotype102

Although RGI and other AMR gene finder tools do not claim to be able to infer AMR phenotype, the103

presence of an AMR gene is often used to designate whether a genome is susceptible or resistant [40,104

6]. Therefore, the presence of an RGI-annotated AMR gene was used as an indicator of resistance to105

the antibiotic(s) to which the gene was labelled as resistant in the CARD database. Precision, recall106

and accuracy for both susceptible and resistant phenotypes were calculated for this naive model using a107

custom Python script (OG RGI analysis.py) as a baseline to compare the subsequent models.108

Logistic regression prediction of AMR phenotype109

To evaluate the relationship between the AMR genotype and AMR phenotype, a logistic regression model110

was used for each antibiotic (Fig.1) with a split of 3:1 between training and test datasets respectively,111

using a custom python script (Logistic regression RGI.py). This model evaluated how the presence or112

absence of specific AMR genes was related to the AMR phenotype. Model precision, recall and accuracy113

for both susceptible and resistant phenotypes were calculated to evaluate the model efficacy and potential114

bias. The ratio of susceptible organisms to resistant organisms can help determine the likelihood of bias115

in the training data (Fig.S1).116

Decision tree prediction of AMR phenotype using only AMR genes117

To understand how specific AMR genes may drive the relationship between the AMR phenotype and118

AMR genotype, 4 machine-learning approaches were used. A custom Python script was used to convert119
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the RGI gene counts into an Attribute-Relation File Format (ARFF) file (RGI specific analysis.py) and120

using the csv2arff tool found at https://github.com/LucyDillon/CSV_2_arff. The J48121

decision tree models were built as implemented in the WEKA machine learning platform (version 3.8.5)122

[12]. The J48 model is written in Java and is an adaptation of the landmark C4.5 algorithm. In this123

analysis, the model takes into account the number of copies or absence of an AMR gene in relation to the124

AMR phenotype. J48 decision trees are used to classify each ‘instance’, or genome, based on the provided125

labels (AMR gene count). The model evaluates the data overall and then splits the genomes based on their126

labels (one label-based decision for each split). Next, it repeats this process on the subsets of genomes127

until the model has reached a preset limit based on either model parameters, such as the minimum number128

of genomes per split, or a consensus split of the correct categorical variable, in this case, AMR phenotype129

(further details below).130

This analysis was then repeated using the Random Forest, Support Vector Machine (SVM - WEKA131

package: libsvm 3.25) and Logistic Model Trees (LMT) models in WEKA to compare the efficacy of132

each machine learning approach (Supplementary Table 2).133

Models for 23 different antibiotics were selected with respect to various data constraints. Each model is134

trained specific to a single antibiotic and the genomes present in the model must have corresponding MIC135

values. For a model to be able to learn from the data and thus predict the correct AMR phenotype, the136

models had to have both susceptible and resistant organisms (Supplementary Table 3). The proportion of137

organisms with a susceptible to resistant MIC value can be seen in Fig.S1.138

The J48 model was chosen for further analysis due to the interpretability of its decisions. Hence, providing139

the biological reasoning behind the predictions it made. The output of the J48 model is a human-readable140

tree of the decisions to partition the genomes (as resistant or susceptible) (Fig.S3-S5). The default141

parameters were used for the WEKA J48 model, however, the parameters were first evaluated by a matrix142

comparing M (Minimum number of instances per leaf) and C values (Confidence value: the lower value143

indicates more pruning) (Supplementary Table 4). There was no difference in eight of the antibiotic144

models using the different parameters and the rest of the models had minor differences. The most accurate145

C value could be found by using 0.25 or 0.5 for 15 out of 23 antibiotic models. The C value of 0.25 was146

selected as this level of tree pruning is recommended to not overfit the model or prune the tree too much147

and miss important information. The M value of 0.2 was selected as this is the default of the model and the148

other M values had very similar accuracy. The model accuracy was evaluated by 10-fold cross-validation.149

The individual fold results allowed the standard error of the models to be calculated (Supplementary Table150

3).151

To evaluate what factors may impact the models or improve model accuracy, the composition of AMR152

genes used to train the models was analysed. The models were originally trained using specific AMR153

genes for the antibiotic the model represented. For example, Ampicillin-specific AMR genes to train the154

Ampicillin model. The antibiotic target is defined in the CARD database in which the genes are annotated155

to correspond to specific antibiotics. The models were then trained with all AMR genes present in the156

genomes regardless of which antibiotic model they were training (Supplementary Table 3, Supplementary157

Table 5, Fig.S2). A custom Python script used to make the .arff files for this analysis (RGI all analysis.py).158

Investigating the role of taxonomy on decision tree model accuracy159

To investigate the role of taxonomy on model accuracy, for each antibiotic model, one genus was excluded160

from the training data. The excluded genus was then used to test the model. This included each genus161

available for each antibiotic model (see Supplementary Table 6 for details). This way we can evaluate162

how the models may perform on a species that was not in the training set. We used a custom python script163

to develop the .arff files (taxa test train files.py).164

To process CSV files into the format required for weka (.arff) we created a simple tool to translate a .csv165

file into a .arff file. This code is freely available at https://github.com/LucyDillon/CSV_2_166

arff.167

Analysis of accessory gene involvement in AMR phenotype168

To investigate the role of accessory genes in AMR phenotype, the genomes from BV-BRC were analysed169

using Prodigal v2.6.3 [21], Diamond v0.9.24.125 [8], and eggNOG-mapper version 2.1.6 to predict gene170

families [10]. All tools were used with default parameters. The least specific level of the eggNOG gene171

family (i.e. COG or NOG) was taken to get the most general result so that the gene families could be172

compared across different taxa. The number of genes present in a gene family, including their absence,173
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was compared with the genome AMR phenotype using the same J48 model and parameters in Weka,174

using a custom python script to make the .arff files (Eggnog analysis.py). A 10-fold cross-validation was175

used to evaluate the model’s accuracy in predicting AMR phenotype, from which the standard error was176

calculated.177

We mapped the RGI AMR genes onto the eggNOG decision tree models by analysing the CARD database178

with or eggNOG-mapper. The eggNOG gene families reported were matched to the AMR genes and were179

then labelled as having a known AMR gene function in the models. Finally, “pathways to resistance”180

were identified in all of the resulting decision tree models by identifying all possible paths through181

the resulting trees that lead to a “resistance” outcome, using Apply Decision Tree available at https:182

//github.com/ChrisCreevey/apply_decision_tree. All gene families traversed to reach183

each resistance outcome on the decision trees were considered important to that resistance path (regardless184

if it needed to be present or absent) and included in subsequent analyses of different paths to resistance.185

Investigating protein-protein interactions186

Protein-protein interactions of the gene families within individual decision trees were investigated using187

the STRING protein-protein interaction database (version 11.5) [39]. One protein sequence from each188

gene family was selected (the first sequence in the fasta file downloaded from eggNOG for each gene189

family) to represent that gene family (723 unique gene families in total) using the “Protein families190

“COGs” ” and “multiple sequences” options for each individual antibiotic model in STRING. This analysis191

was used to highlight if gene families within the same model or pathway to resistance were predicted to192

interact and therefore, may have a role together in AMR phenotype.193

To find associations with the gene families across multiple models, STRING and Cytoscape (version 3.9.1)194

[38] were used to analyse the data using the same options as above, but including all gene families from195

all antibiotic models. To reduce the network to directly link to the decision trees, edges in the network196

were only retained if both gene families were present in the STRING protein-protein interactions (and197

therefore predicted to interact) and the pair was also present in at least one decision tree model. Details of198

this analysis can be found in the Cytoscape analysis.md file.199

The predicted protein-protein interaction network of each path to resistance was also produced using200

STRING, but including only those gene families predicted for each individual path (allowing connections201

based on low confidence to provide further evidence that these putative connections which may not be202

well documented in the database may have a role in AMR phenotype). To investigate if pathways to AMR203

phenotype within the decision trees are taxonomically related, we traversed the decision trees to investigate204

which route each genome took for each model. This was performed using Apply Decision Tree using the205

same input genome .arff and dot files. DOT is a graph description language to visualise information, such206

as decision trees.207

For all models, accuracy is defined by the sum of the true positives and true negatives divided by the sum208

of the total number of genomes (instances). Precision and recall of the models are calculated for both209

susceptible organisms and resistant organisms separately. This highlights whether a model is better at210

predicting one phenotype over another.211

RESULTS212

Machine Learning approaches accurately predict AMR Phenotype from AMR Genotype213

Within this study, we analysed several techniques for predicting AMR phenotype from genomic data,214

including logistic regression of AMR genes, J48 decision tree models, Random Forest, Support Vector215

Machine (SVM), and Logistic Model Trees (LMT).216

Even though AMR gene finder tools are designed to identify the presence of AMR genes in genomic217

data, their results are frequently used to directly infer AMR phenotype in literature [40, 6, 17, 43]. We218

examined the accuracy of predicting AMR phenotype solely based on the presence/absence of AMR219

genes for 23 antibiotics and 16,950 genomes, from organisms with laboratory-derived MIC data. This220

naive model assumed an antibiotic-resistant phenotype when an AMR gene which targeted a particular221

antibiotic as defined in the CARD database was found in a genome.222

The average prediction accuracy of this model (as defined by the number of genomes correctly predicted to223

be susceptible or resistant to an antibiotic divided by the total number of genomes tested) was 57.6% and224

ranged from 3.5% (Clindamycin) to 100% (Moxifloxacin) (Fig.1). Clindamycin had quite a poor ratio of225

susceptible to resistant genomes (273:10) in comparison to moxifloxacin which was better proportioned to226
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make a more accurate model (4:10). The precision and recall were calculated using the confusion matrix227

(Supplementary Table 5, Supplementary Table 8). The average prediction precision was 56.2% and ranged228

from 46.3% (Fosfomycin) to 100.0% (Moxifloxacin) (Supplementary Table 8, Supplementary Table229

6). The average prediction recall for all 23 antibiotics was 61.2% and ranged from 24.6% (Ertapenem)230

to 100.0% (Moxifloxacin). Logistic regression models of the RGI genes had an average accuracy was231

73.9% and ranged from 50.96% (Erythromycin) to 97.44% (Amoxicillin) (Fig.S2), however, >50% of232

the models only predicted one phenotype, resulting in an average recall of 52.3% (ranging from 48.5%233

(Doripenem) to 75.0% (Amoxicillin)) and the average precision of 53.6% (ranging 31.5% (Doripenem) to234

74.5% (Erythromycin)) (Supplementary Table 3, Supplementary Table 8).235

As logistic regression did not result in good precision or recall for most models, we applied a decision236

tree approach (using the WEKA J48 model). The resulting decision tree models were highly accurate237

in predicting the correct AMR phenotype, when using 10-fold cross-validation the average accuracy238

was 91.1% and ranged from 74.85% (Tigecycline) to 100% (Moxifloxacin)(Fig.1, Supplementary Table239

3, Supplementary Table 10). The average recall of the RGI-specific decision tree models was 76.8%240

(ranging from 50.0% for Amoxicillin, Aztreonam, Clindamycin, Colistin, Fosfomycin, and Nitrofurantoin241

to 100.0% for Moxifloxacin). The average precision was 86.2% (ranging from 43.0% Colistin to 100.0%242

Moxifloxacin). Furthermore, traversal of the resulting decision trees indicated different genomic routes to243

resistance and susceptibility (see (Fig.2), highlighting the importance of both the presence and absence of244

multiple genes to predicting AMR phenotype from genomic data).245

The J48 model’s average accuracy of 91.0% was comparable to Random Forests 92.0%, SVMs 86.3% and246

LMT 92.2% (Supplementary Table 2, Fig.S7) and had the advantage over the other models of allowing247

biological interpretation of the genes driving the AMR phenotype/genotype relationship. For this reason,248

we focussed further analysis on the decision tree models.249

Model accuracy is not reliant on specific taxonomy.250

To investigate the ability of the decision-tree models to predict AMR phenotype for groups of organisms251

that were not included in the training data, for each antibiotic, we generated multiple sub-datasets where252

for each we excluded all genomes (and MIC data) from a selected genus from the training data and253

re-generated the model. The excluded genus and associated MIC data were then used to test the accuracy254

of the regenerated model for predicting AMR phenotype across taxonomic groups. The AMR phenotypes255

were predicted accurately given that both phenotypes were distributed evenly in the training data. Despite256

that the genomes are dominated by the Pseudomonadota phylum, the models were able to predict 100% of257

Streptococcus phenotype (Bacillota phylum). However, in the Ampicillin model, Salmonella phenotypes258

were not predicted well (34%). This may be due to a severe imbalance in phenotypes in the training259

data, meaning it incorrectly predicted Salmonella made from a biased model. Nevertheless, the average260

accuracy was 80.3% (ranging from 0% to 100 %) when trained on a different genus (Supplementary261

Table 6). Klebsiella had the most genomes for each antibiotic model and had relatively good accuracy262

(average accuracy 84.4%). However, in some cases, the genus with the second-largest number of genomes263

occasionally performed poorly for example, for Ampicillin Salmonella scored 34.3% but for Ciprofloxacin264

scored 97.7%. This may be due to some genera being more genetically similar than others, such as265

Kelbsiella and Escherichia compared to Nessieria. To further investigate Salmonella, the results of266

the taxonomic analysis were compared to the tree traversals showing which different routes to AMR267

phenotype, this shed light on why Salmonella had high accuracy for Ceftriaxone, Ciprofloxacin, and268

Gentamicin but not Ampicillin. The tree traversal showed that in the models for Ceftriaxone, Ciprofloxacin,269

and Gentamicin the genera were very diverse and are not dominated by a singular genus. Yet, in the270

model for Ampicillin the tree traversal showed that the majority of the genomes were from Salmonella271

and every pathway contained Salmonella genomes. Therefore, when excluded from the training data the272

pathways for Salmonella will have also been excluded when building the model, hence when testing the273

accuracy is low.274

ML models identify putative additional antibiotic targets of AMR genes.275

To investigate the role of AMR genes in antibiotic resistance to which they are not indicated in the CARD276

database, we generated decision trees which included all AMR genes regardless of the antibiotic target277

listed in the CARD database. This resulted in 17 antibiotic models improving in accuracy and overall278

significantly better compared to the models using only the AMR genes specific to the antibiotic which279

is listed in CARD (Wilcoxon signed rank test (q = 8.27E-04) (Supplementary Table 11)). The average280
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accuracy was 92.5% (ranging from 79.7% (Tigecycline) to 100.0% (Moxifloxacin)) and the average recall281

and precision were 83.5% (ranging from 50.0% (Fosfomycin) to 100.0% (Moxifloxacin)) and 87.5%282

(ranging from 65.0% (Nitrofurantoin) to 100.0% (Moxifloxacin)), respectively (Supplementary Table 8).283

A significant increase in average recall and precision was also observed (recall q = 4.39E-04 and precision284

q = 0.04) (Supplementary Table 11). This suggests that AMR genes may have additional antibiotic targets285

not annotated in the databases. One example of this can be seen in the Gentamicin RGI-all model, which286

shows the presence of > 1 TEM-185 genes confer resistance to Gentamicin (Fig.S4). This particular gene287

is not labelled to confer resistance to aminoglycoside antibiotics in the CARD database. We investigated if288

the models were better at predicting one phenotype than the other, this can be inferred from Supplementary289

Tables 5, 10, and 12 confusion matrices.290

Figure 1. Model average accuracy (A), average precision (B) and average recall (C). The boxplots
represent the following methods used in this study to predict AMR phenotype in the following order:
Naive RGI analyses (orange), logistic regressions using the RGI data (blue), J48 decision trees using RGI
genes specific to the antibiotic (green), J48 decision trees using all RGI genes regardless of the antibiotic
model (yellow), J48 decision trees using Eggnog gene families (pink). The statistical significances are the
result of a pairwise Wilcoxon signed-rank test adjusted for multiple testing using the
Benjamini-Hochberg method (q<0.05). No significant difference between distributions is indicated by a
shared letter above their respective boxplot (see Supplementary Table 11 for more details). Outliers are
represented with a triangle-shaped point.

Accessory genes have a key role in AMR phenotype.291

To see if this observation extended to non-classic AMR genes, decision trees were generated for the 23292

antibiotics using eggNOG gene family functional profiles generated for all 16,950 genomes. The average293
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accuracy for these models was 92.2% (ranging from 74.0% (Tigecycline) - 100.0% (Moxifloxacin)). In294

the comparison of the eggNOG models to the RGI models, the mean value was the highest for RGI all295

analysis (92.5%) (Supplementary Table 3, Supplementary Table 12). The difference between the RGI296

decision tree models and eggNOG gene families was not significant overall (RGI specific genes vs Eggnog297

q = 3.66E-01, RGI all genes models vs Eggnog q = 2.49E-01) (Supplementary Table 11). Overall, the298

eggNOG models were not significantly worse than the AMR gene-based decision trees, this highlights299

that the decision trees are able to extract key genes involved in AMR phenotype.300

The average precision of the eggNOG-based decision tree was 84.3% (ranging from 50.0% (Fosfomycin)301

to 100.0% (Moxifloxacin)) (Supplementary Table 8). This was significantly better than the logistic302

regression of RGI genes. This suggests that the models based on the eggNOG genes are less biased than303

the logistic regression and the RGI-specific analysis.304

The average recall of the eggNOG-based decision trees was 86.6% (ranging from 66.0% (Colistin)-100.0%305

(Moxifloxacin)) (Supplementary Table 8). This was significantly better than the naive RGI, the logistic306

regression and RGI-specific decision tree models.307

We can gain further biological insight by using these accessory genes which may be involved in resistance308

pathways. This could provide novel information about pathways to resistance to particular antibiotics.309

Using the eggNOG decision trees we found an additional 675 gene families across all 23 models which310

are not in the RGI database but are linked to the AMR phenotype.311

Figure 2. An example of a decision tree with two routes to resistance, indicated by the red and blue
lines. For example, in the red pathway, if more than one copy of Gene A, D and E are present the genome
will be resistant but if one of those genes is not present (i.e. Gene E) the organism will be susceptible.

Decision trees show biological pathways to resistance.312

The use of decision trees allowed biological interpretation of (428 susceptible routes and 528 resistant313

routes in eggNOG models) paths to resistance and susceptibility (Fig.3 and Fig.S3-S5, Supplementary314

Table 13). The models showed the importance of the absence or number of copies of genes which could315

influence the AMR phenotype of an organism. The co-occurrence of genes was another important factor316

when determining the AMR phenotype. This highlights key genes involved in AMR phenotype that may317

not be classic AMR genes (Fig.S7). RGI genes were matched to the gene families in the decision tree318

models, we can see that the majority of models contained RGI gene families. In the eggNOG-based319

Amikacin model, COG0050 is matched to a multidrug-resistant gene (Escherichia coli acrA) but this is not320
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involving aminoglycoside suggesting that this gene may have additional targets. The Tetracycline decision321

tree model using eggNOG gene families shows there are 6 routes to resistance. The decision trees have322

values for each phenotype in the tree so the number of genomes reaching that route can be distinguished,323

this way the main routes to resistance are revealed (in the case in which there are two numbers, the first is324

the total number of genomes and the second is the number of incorrectly classified genomes). The most325

common route to resistance involves COG0480 and COG0765. The gene family COG0480 is a key gene326

family involved in Tetracycline resistance (tet(44)), Figure 3A shows that COG0765 does not have to be327

present for an organism to be resistant .328

The analysis to link eggNOG gene families and RGI AMR genes revealed that most decision tree models329

had several gene families linked to RGI genes. However, the RGI gene families did not dominate the330

trees suggesting that accessory genes have an important role in AMR phenotype. The eggNOG-based331

decision tree using the Tetracycline phenotypic data had three gene families (tet(44), tetU, and adeS)332

associated with known AMR genes, yet their presence did not always guarantee resistance to tetracycline333

(Fig.3A). Therefore, the presence or absence of certain accessory genes was relied on to confer the334

resistant phenotype.335

STRING was used to identify putative protein-protein interactions between genes within each decision336

tree model. Of the 23 models, 18 models contained COGs which were predicted to have protein-protein337

interactions, for example, co-occurrence and co-expression. The Tetracycline decision tree using eggNOG338

gene families showed that 63.6% of the gene families had protein connections in STRING (Fig.S9).339

Each pathway to resistance was analysed in STRING to calculate a network of the protein-protein340

interactions of how likely they are to interact based on confidence values. Across all models, each path341

to resistance had an average of 1.2 connections ranging from 0 to 7.6 (Supplementary Table 13). After342

investigating the pathways to AMR phenotypes within the decision trees, we found that many of the343

routes are taxonomically dependent. This is shown in all versions of the decision tree models (using344

AMR and accessory genes). In Figure 3A we can see 12 distinct routes to AMR phenotype, pathways345

4-6 are all classified as the Neisseria genus. Pathway 9 is classified as Campylobacter (99.4%) (Fig.3B).346

While this is not the case for every pathway in the trees (i.e. pathway 1 is very mixed) many of the347

branches in the trees could predict the taxonomy as precise as the species as well as the AMR phenotype.348

Additional antibiotic model pathways for species - phylum can be found in Fig.S8. Each pathway to349

resistance was investigated using the confidence values in STRING (including texmining, Neighborhood,350

Gene Fusion, Experiments, Co-occurrence, Databases, and Co-expression), we can see in Figure3C the351

majority of pathways have multiple connections. Details on all other pathways to resistance can be found352

in Supplementary Table 13.353

Resistance pathways to different antibiotics are distinct from each other354

Using the decision trees we can work out which combinations of genes are involved in resistance (see355

example decision tree (Fig.2) for reference). Understanding which genes are key to resistance in particular356

antibiotics or shared across different antibiotics could help provide insight into novel approaches to357

combat AMR in the future. To investigate these key genes, we analysed every gene family present in358

every decision tree. The COG distribution across the different models was analysed and there were 723359

unique COGs in total for all the models. Of these unique COGs, 48 were linked to RGI AMR genes360

(Supplementary Table 14). The distribution of different COG functional categories was varied across all361

models, suggesting that resistance to different antibiotics has distinct mechanisms (Fig.S6).362

To find connections between all the antibiotic models we found protein-protein interactions in STRING363

for all gene families from all decision tree models. The initial STRING network had 450 nodes and364

10,786 edges. This included all evidence types in STRING at a medium level of confidence (0.4). This365

was reduced to relate directly to the decision tree models by only including node pairs that had predicted366

protein-protein interactions in STRING and the same pair was also present in at least one decision tree.367
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Figure 3. Predicting Tetracycline resistance using Eggnog gene families copy number or absence.
A. A J48 decision tree model to predict Tetracycline AMR phenotype. RGI-associated gene families have
been highlighted with a thick black outline. COG0480 relates to gene tet(44), COG0642 relates to gene
adeS, and COG2946 relates to gene tetU. The decision trees have numbers in the phenotype boxes to
represent the number of genomes. This may include two numbers in some cases, the first number
indicates the total number of genomes and the second number are incorrectly classified genomes.*
B. Stacked bar chart showing the routes to susceptibility and resistance for Tetracycline. This is a genus
level analysis, the species, family, order, class, and phylum analysis can be found in Fig.S8. The pathway
numbers relate to the numbers on the decision tree (Part A). Note: pathway 9 is not 100% Campylobacter,
0.4% are Nesseria.
C. Protein-protein interactions between gene families for each pathway to resistance. The lines (edges)
represent the protein-protein interactions from STRING and the thicker the line, the higher the confidence
(see Supplementary Table 13 for details). See part A for details of each pathway (the pathway numbers
correspond to the numbers on the phenotype boxes in part A).* Note*: COG 28JVV and 2EFWV are
recognised as NOG03658 and NOG52501 in the STRING database, respectively.
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The reduced network had 247 nodes and 1,300 edges, which showed clear clusters linking gene368

families to the specific antibiotic models (Fig.4). The network showed several gene families which369

connected to many different antibiotic gene clusters. This suggests these genes have an important role370

in AMR phenotype across multiple antibiotics. The most common gene family, COG2367 appeared371

in seven models. This is within the defence mechanisms group of eggNOG gene families, labelled as372

beta-lactamase. Interestingly, six of the models were built using the MICs of the beta-lactam antibiotics373

but COG2367 was also part of the Nitrofurantoin model which is distinct from the beta-lactam drug374

class. Within the Nitrofurantoin model, the COG2367 can have 4 copies of the gene family and still375

be susceptible (which according to the labels accounts for the majority of genomes on this pathway),376

if over 4 copies were present then there is a chance that the organism can be resistance. In the gene377

network, we can also see how different antibiotics have distinct genes which are only associated with that378

particular antibiotic (Fig.4, Fig.S10). This suggests that antibiotics have unique pathways to resistance.379

The network was clustered by antibiotic drug class, this showed that several drug classes were highly380

connected, including carbapenems and aminoglycosides (Fig.S11).381

Figure 4. Gene network of all unique COGs across all antibiotic Eggnog models. Nodes are the
different COGs, edges are protein-protein interactions between COGs. The edges are coloured regarding
the antibiotic model that the COG pair is present in. Node size is proportional to the number of models
the COG is present in.

DISCUSSION382

Within this study, we have shown that machine learning can vastly improve the prediction of AMR383

phenotype from genomic data. The consideration of accessory genes with AMR genes in these analyses384

provides valuable biological insights into the paths to AMR resistance and susceptibility.385

The naive RGI model analysis shows that the presence of an AMR gene does not necessarily indicate the386

correct AMR phenotype. The average accuracy of RGI to predict AMR phenotype was 57.58%, which is387

comparable to a game of chance. The average precision was 56.2% and the average recall was 61.2%,388

which highlights key flaws in using the tool to predict AMR phenotype. While RGI is not designed389

to identify AMR phenotype but rather the AMR genotype, its results are often inferred as phenotypic390

resistance for genomes [40, 6, 17, 43] and metagenomes [22, 47].391

Overall, while results from the logistic regression analysis was significantly better than those using392

RGI-only (Fig.1), it still underperformed which could suggest there is not enough data to make an accurate393

model, or there is not a strong enough link between the phenotype and the genes to be able to classify394

accurately using this approach. However, decision trees, show over 17% increase (statistically significant395

q= 6.03E-05, Supplementary Table 11) in accuracy compared to logistic regression suggesting that the396
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poor performance of logistic regression may be due to the use of presence/absence information rather397

than the number of copies of genes, which the decision trees are capable of utilising.398

The decision trees have shown that it is both the presence (including the number of copies) and absence399

of different gene families that are key in the accurate prediction of AMR phenotype. Biologically this400

makes sense as we know that genes perform their function most often as an ensemble with other genes.401

The decision trees show that even when a known AMR gene is present, it does not necessarily mean that402

the organism is resistant (Fig.S3-S5). Interestingly the decision tree models which included AMR genes403

not thought to be involved in resistance to the antibiotics (RGI all models) being examined showed an404

increase in accuracy compared to the models which were generated using only those AMR genes known405

to provide resistance to the specific antibiotic. This suggests that many of the AMR genes within the406

CARD database may be involved in providing resistance to a broader range of antibiotics than what is407

annotated in the database. However, AMR genes may need additional genes present to confer resistance408

to particular antibiotics which is not identified in any commonly used AMR gene finder tool.409

The use of eggNOG gene families has shown the importance of accessory genes in the role of AMR410

phenotype. Accessory genes are generally ignored when determining the AMR phenotype of an organism411

when using computational techniques to predict AMR phenotype. Therefore, studies that rely on AMR412

gene finder tools to determine resistance could be misleading as the full picture is not described. All413

the eggNOG decision tree models are dominated by non-AMR genes (Fig.S5). The eggNOG models414

alongside the RGI models show that the presence of an AMR gene does not guarantee resistance to a415

particular antibiotic. Almost 30,000 gene families were used to train the eggNOG-based J48 models, in416

comparison, while 1,424 RGI AMR genes were used to train the RGI all-gene J48 models. The accuracy,417

precision and recall did not differ significantly between these models, this suggests that the J48 model418

is sufficient at extracting the most important factors involved in AMR phenotype. This is especially419

interesting as the eggNOG gene families are mostly not associated with AMR, unlike the RGI AMR genes420

which are defined in the CARD database to target particular antibiotic(s). Therefore, a lack of difference421

between the two datasets’ accuracy, precision and recall indicates the importance of accessory genes.422

The precision and recall scores can be used to evaluate the model bias, using the values specific to the423

AMR phenotype. Therefore, we can evaluate if a model only predicts one phenotype well. The data shows424

that the average precision and recall for the logistic regression of the RGI genes were significantly worse425

than the majority of the decision tree models. The recall of the eggNOG models was not significantly426

different to the RGI all-gene analysis. The precision of the eggNOG models was not significantly different427

to both RGI decision trees. This suggests that the eggNOG models and the RGI models have a similar428

level of model bias despite the varying data input of the models (Supplementary Table 8).429

Analysing the gene family networks demonstrates that different antibiotics have clusters of genes relating430

to that specific antibiotic, suggesting that different antibiotics have distinct genes involved in pathways to431

resistance. Yet, the models are still connected to various gene families from other clusters, suggesting432

there are key non-AMR annotated genes involved across many antibiotic resistance mechanisms (Fig.4).433

Creating gene networks based on specific antibiotic models in addition to the overall network, highlighted434

the links between specific gene families in mechanisms to resistance for particular antibiotics. The network435

analysis for each path to resistance showed that many pathways to resistance have multiple connections.436

This shows that genes could be dependent on other genes to help confer a resistance phenotype.437

Identifying taxonomically dependent pathways to resistance within the decision trees highlights key genes438

to target for particular pathogens. Conversely, pathways to resistance with multiple taxa involved could439

suggest that the route is more transmissible resistance, which may provide opportunities for an easier440

target of resistance. These pathways also provide further biological insight into AMR mechanisms, many441

of which are understudied. Pathways dominated by one particular species but with other species present442

in small numbers could be indicators of horizontal gene transfer between species to confer resistance.443

Predicting the taxonomy in addition to the AMR phenotype will provide an additional function of the tool444

that these models are helping to create. More data and improvements would be needed to provide accurate445

predictions for greater taxonomic diversity. AMR phenotype cannot be clearly explained by the use of446

AMR gene finder tools alone. AMR gene finder tools may still provide a reasonable estimate for the AMR447

genotype of samples, yet to define specific AMR phenotypes a more detailed approach is required.448

The J48 models provide more biological insight than other machine learning techniques tested such as449

random forest, SVM, and LMT. For example, the Tetracycline model generated from eggNOG gene450

families identified 6 genotypic routes to phenotypic resistance. The main pathway to resistance involves451
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the presence and absence of two gene families, COG0480 and COG0765 (Fig.3). COG0480 is linked to452

an RGI gene (tet(44)), and COG0765 is in COG category P and involved in amino acid transport. Further453

work needs to be done in this area to investigate the role of the presence and absence of accessory genes454

and AMR phenotype.455

Summary456

We have shown that AMR phenotype can be accurately predicted using interpretable machine learning457

models such as decision trees that utilise both known AMR and accessory genes (eggNOG gene families)458

for multiple taxonomies, across multiple antibiotics. The use of AMR gene finder tools has repeatedly459

been shown to have limitations in their ability to predict AMR phenotype based solely on the presence of460

AMR genes. The use of machine learning techniques in this study has shown the benefit of analysing dif-461

ferent factors, such as gene counts and absence, as key factors together when predicting AMR phenotype.462

Equally, we have also highlighted that the role of accessory genes in AMR phenotype is understudied463

in relation to AMR. Building models with the near-complete functional capacity of a genome showed464

accessory genes are fundamental to resistance. Finally, this study demonstrates the complexity of the465

AMR phenotype in relation to its genome but it has also highlighted that there are routes to resistance that466

are taxonomically dependent.467

These machine learning approaches have the potential to transform laboratory-based diagnostics, provid-468

ing a rapid and affordable alternative to culture-based techniques, estimating taxonomy in addition to469

AMR phenotype, and providing real-time monitoring of multi-drug resistant pathogens.470

471

A call for data: If you would like to be involved in improving these models by contributing genomes472

with corresponding MIC (micro broth dilution) data please contact us at: ldillon05@qub.ac.uk.473

ACKNOWLEDGMENTS474

We acknowledge funding from the Department for Economy Northern Ireland for PhD funding for475

L.D. C.J.C. wishes to acknowledge funding from the European Commission via Horizon 2020 (818368,476

MASTER and 101000213 HoloRuminant). N.J.D. wishes to acknowledge the Farncombe Digestive477

Health Disease Institute (McMaster University) and a grant from the Weston Family Microbiome Initiative.478

This work was undertaken on Kelvin2, an EPSRC-funded tier-2 High-Performance Computing facility at479

Queen’s University Belfast, UK.480

AUTHOR CONTRIBUTIONS481

LD Carried out the data analysis, writing of the code on the AMR ML paper and CSV 2 arff GitHub.482

NJD Advised on using ML and review of manuscript and methods.483

CJC Tree traversal code and direction of scientific discovery and reporting.484

All authors contributed to the scientific direction and writing of the manuscript.485

DATA AVAILABILITY486

All supplementary data and additional files can be found here: https://osf.io/cj4bq/?view_487

only=c0ee87b7609543b688953089be4c376f. For specific files please email ldillon05@qub.ac.uk.488

CODE AVAILABILITY489

All code used in this study can be found at the following links:490

https://github.com/LucyDillon/AMR_ML_paper/tree/main491

https://github.com/LucyDillon/CSV_2_arff492

https://github.com/ChrisCreevey/apply_decision_tree/tree/master493

REFERENCES494

[1] 10 global health issues to track in 2021. en. URL: https : / / www . who . int / news -495

room/spotlight/10-global-health-issues-to-track-in-2021 (visited496

on 12/13/2022).497

13/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.09.552647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552647
http://creativecommons.org/licenses/by/4.0/


[2] Bruno G. N. Andrade et al. “Putative mobilized colistin resistance genes in the human gut mi-498

crobiome”. In: BMC Microbiology 21.1 (July 2021), p. 220. ISSN: 1471-2180. DOI: 10.1186/499

s12866-021-02281-4. URL: https://doi.org/10.1186/s12866-021-02281-500

4 (visited on 10/13/2022).501

[3] Ekaterina Avershina et al. “AMR-Diag: Neural network based genotype-to-phenotype prediction of502

resistance towards β -lactams in Escherichia coli and Klebsiella pneumoniae”. en. In: Computational503

and Structural Biotechnology Journal 19 (Jan. 2021), pp. 1896–1906. ISSN: 2001-0370. DOI:504

10.1016/j.csbj.2021.03.027. URL: https://www.sciencedirect.com/505

science/article/pii/S2001037021000994 (visited on 01/04/2023).506

[4] Alex van Belkum et al. “Innovative and rapid antimicrobial susceptibility testing systems”. en.507

In: Nature Reviews Microbiology 18.5 (May 2020). Number: 5 Publisher: Nature Publishing508

Group, pp. 299–311. ISSN: 1740-1534. DOI: 10.1038/s41579-020-0327-x. URL: https:509

//www.nature.com/articles/s41579-020-0327-x (visited on 10/13/2022).510

[5] Fanny Berglund et al. “Identification and reconstruction of novel antibiotic resistance genes511

from metagenomes”. In: Microbiome 7.1 (Apr. 2019), p. 52. ISSN: 2049-2618. DOI: 10.1186/512

s40168-019-0670-1. URL: https://doi.org/10.1186/s40168-019-0670-1513

(visited on 10/13/2022).514

[6] Valeria Bortolaia et al. “ResFinder 4.0 for predictions of phenotypes from genotypes”. In: Journal515

of Antimicrobial Chemotherapy 75.12 (Dec. 2020), pp. 3491–3500. ISSN: 0305-7453. DOI: 10.516

1093/jac/dkaa345. URL: https://doi.org/10.1093/jac/dkaa345 (visited on517

10/13/2022).518

[7] Asher Brauner et al. “Distinguishing between resistance, tolerance and persistence to antibiotic519

treatment”. en. In: Nature Reviews Microbiology 14.5 (May 2016). Number: 5 Publisher: Nature520

Publishing Group, pp. 320–330. ISSN: 1740-1534. DOI: 10.1038/nrmicro.2016.34. URL:521

https://www.nature.com/articles/nrmicro.2016.34 (visited on 10/13/2022).522

[8] Benjamin Buchfink, Chao Xie, and Daniel H. Huson. “Fast and sensitive protein alignment using523

DIAMOND”. en. In: Nature Methods 12.1 (Jan. 2015). Number: 1 Publisher: Nature Publishing524

Group, pp. 59–60. ISSN: 1548-7105. DOI: 10.1038/nmeth.3176. URL: https://www.525

nature.com/articles/nmeth.3176 (visited on 10/14/2022).526

[9] Mitchell K. Byrne et al. “The drivers of antibiotic use and misuse: the development and investigation527

of a theory driven community measure”. In: BMC Public Health 19.1 (Oct. 2019), p. 1425. ISSN:528

1471-2458. DOI: 10.1186/s12889-019-7796-8. URL: https://doi.org/10.1186/529

s12889-019-7796-8 (visited on 10/13/2022).530

[10] Carlos P. Cantalapiedra et al. “eggNOG-mapper v2: Functional Annotation, Orthology Assignments,531

and Domain Prediction at the Metagenomic Scale”. eng. In: Molecular Biology and Evolution532

38.12 (Dec. 2021), pp. 5825–5829. ISSN: 1537-1719. DOI: 10.1093/molbev/msab293.533

[11] Noémie Alon Cudkowicz and Shimon Schuldiner. “Deletion of the major Escherichia coli multidrug534

transporter AcrB reveals transporter plasticity and redundancy in bacterial cells”. en. In: PLOS535

ONE 14.6 (June 2019). Publisher: Public Library of Science, e0218828. ISSN: 1932-6203. DOI: 10.536

1371/journal.pone.0218828. URL: https://journals.plos.org/plosone/537

article?id=10.1371/journal.pone.0218828 (visited on 01/26/2023).538

[12] Data Mining: Practical Machine Learning Tools and Techniques. en. Elsevier, 2011. ISBN: 978-539

0-12-374856-0. DOI: 10.1016/C2009-0-19715-5. URL: https://linkinghub.540

elsevier.com/retrieve/pii/C20090197155 (visited on 10/13/2022).541

[13] James J Davis et al. “The PATRIC Bioinformatics Resource Center: expanding data and analysis542

capabilities”. In: Nucleic Acids Research 48.D1 (Jan. 2020), pp. D606–D612. ISSN: 0305-1048.543

DOI: 10.1093/nar/gkz943. URL: https://doi.org/10.1093/nar/gkz943544

(visited on 10/13/2022).545

[14] Enrique Doster et al. “MEGARes 2.0: a database for classification of antimicrobial drug, biocide546

and metal resistance determinants in metagenomic sequence data”. eng. In: Nucleic Acids Research547

48.D1 (Jan. 2020), pp. D561–D569. ISSN: 1362-4962. DOI: 10.1093/nar/gkz1010.548

14/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.09.552647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552647
http://creativecommons.org/licenses/by/4.0/


[15] eucast: Clinical breakpoints and dosing of antibiotics. URL: https://www.eucast.org/549

clinical_breakpoints (visited on 10/16/2022).550

[16] Michael Feldgarden et al. “Validating the AMRFinder Tool and Resistance Gene Database by551

Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates”. eng.552

In: Antimicrobial Agents and Chemotherapy 63.11 (Nov. 2019), e00483–19. ISSN: 1098-6596. DOI:553

10.1128/AAC.00483-19.554

[17] Alfred Ferrer Florensa et al. “ResFinder – an open online resource for identification of antimicrobial555

resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes”.556

In: Microbial Genomics 8.1 (Jan. 2022), p. 000748. ISSN: 2057-5858. DOI: 10.1099/mgen.0.557

000748. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914360/558

(visited on 02/17/2023).559

[18] Chhedi Lal Gupta et al. “Longitudinal study on the effects of growth-promoting and therapeutic560

antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes”. In: Micro-561

biome 9.1 (Aug. 2021), p. 178. ISSN: 2049-2618. DOI: 10.1186/s40168-021-01136-4.562

URL: https://doi.org/10.1186/s40168-021-01136-4 (visited on 10/14/2022).563

[19] Martin Hunt et al. “ARIBA: rapid antimicrobial resistance genotyping directly from sequencing564

reads”. In: Microbial Genomics 3.10 (Sept. 2017), e000131. ISSN: 2057-5858. DOI: 10.1099/565

mgen.0.000131. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/566

PMC5695208/ (visited on 10/13/2022).567

[20] Sharon A. Huws et al. “Addressing Global Ruminant Agricultural Challenges Through Understand-568

ing the Rumen Microbiome: Past, Present, and Future”. In: Frontiers in Microbiology 9 (2018).569

ISSN: 1664-302X. URL: https://www.frontiersin.org/articles/10.3389/570

fmicb.2018.02161 (visited on 10/13/2022).571

[21] Doug Hyatt et al. “Prodigal: prokaryotic gene recognition and translation initiation site identifica-572

tion”. In: BMC Bioinformatics 11.1 (Mar. 2010), p. 119. ISSN: 1471-2105. DOI: 10.1186/1471-573

2105-11-119. URL: https://doi.org/10.1186/1471-2105-11-119 (visited on574

10/14/2022).575

[22] Paul Jankowski et al. “Metagenomic community composition and resistome analysis in a full-scale576

cold climate wastewater treatment plant”. In: Environmental Microbiome 17 (Jan. 2022), p. 3. ISSN:577

2524-6372. DOI: 10.1186/s40793-022-00398-1. URL: https://www.ncbi.nlm.578

nih.gov/pmc/articles/PMC8760730/ (visited on 01/20/2023).579

[23] Baofeng Jia et al. “CARD 2017: expansion and model-centric curation of the comprehensive580

antibiotic resistance database”. In: Nucleic Acids Research 45.D1 (Jan. 2017), pp. D566–D573.581

ISSN: 0305-1048. DOI: 10.1093/nar/gkw1004. URL: https://doi.org/10.1093/582

nar/gkw1004 (visited on 10/13/2022).583

[24] Ayesha Khan et al. “Evaluation of the Vitek 2, Phoenix, and MicroScan for Antimicrobial Sus-584

ceptibility Testing of Stenotrophomonas maltophilia”. en. In: Journal of Clinical Microbiology585

59.9 (Aug. 2021). Ed. by Patricia J. Simner, e00654–21. ISSN: 0095-1137, 1098-660X. DOI:586

10.1128/JCM.00654-21. URL: https://journals.asm.org/doi/10.1128/587

JCM.00654-21 (visited on 07/18/2023).588

[25] Jolinda de Korne-Elenbaas et al. “The Neisseria gonorrhoeae Accessory Genome and Its Associa-589

tion with the Core Genome and Antimicrobial Resistance”. In: Microbiology Spectrum 10.3 (May590

2022). Publisher: American Society for Microbiology, e02654–21. DOI: 10.1128/spectrum.591

02654-21. URL: https://journals.asm.org/doi/10.1128/spectrum.02654-592

21 (visited on 01/04/2023).593

[26] Manoj Kumar et al. “Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A594

Review”. In: Frontiers in Microbiology 12 (2021). ISSN: 1664-302X. URL: https://www.595

frontiersin.org/articles/10.3389/fmicb.2021.609459 (visited on 10/13/2022).596

[27] Jennie H. Kwon and William G. Powderly. “The post-antibiotic era is here”. In: Science 373.6554597

(July 2021). Publisher: American Association for the Advancement of Science, pp. 471–471. DOI:598

10.1126/science.abl5997. URL: https://www.science.org/doi/10.1126/599

science.abl5997 (visited on 12/13/2022).600

15/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.09.552647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552647
http://creativecommons.org/licenses/by/4.0/


[28] Tao Ma et al. “Expressions of resistome is linked to the key functions and stability of active601

rumen microbiome”. In: Animal Microbiome 4.1 (June 2022), p. 38. ISSN: 2524-4671. DOI:602

10.1186/s42523-022-00189-6. URL: https://doi.org/10.1186/s42523-603

022-00189-6 (visited on 10/13/2022).604

[29] Nenad Macesic et al. “Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae605

through Machine Learning Analysis of Genomic Data”. In: mSystems 5.3 (May 2020). Publisher:606

American Society for Microbiology, 10.1128/msystems.00656–19. DOI: 10.1128/msystems.607

00656-19. URL: https://journals.asm.org/doi/10.1128/mSystems.00656-608

19 (visited on 06/06/2023).609

[30] Andrew G. McArthur et al. “The comprehensive antibiotic resistance database”. eng. In: An-610

timicrobial Agents and Chemotherapy 57.7 (July 2013), pp. 3348–3357. ISSN: 1098-6596. DOI:611

10.1128/AAC.00419-13.612

[31] Jun Miyoshi et al. “Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance,613

and Inflammatory Bowel Disease in Genetically Prone Offspring”. eng. In: Cell Reports 20.2 (July614

2017), pp. 491–504. ISSN: 2211-1247. DOI: 10.1016/j.celrep.2017.06.060.615

[32] Marcus Nguyen et al. “Developing an in silico minimum inhibitory concentration panel test616

for Klebsiella pneumoniae”. en. In: Scientific Reports 8.1 (Jan. 2018). Number: 1 Publisher:617

Nature Publishing Group, p. 421. ISSN: 2045-2322. DOI: 10.1038/s41598-017-18972-w.618

URL: https://www.nature.com/articles/s41598-017-18972-w (visited on619

01/04/2023).620

[33] Marcus Nguyen et al. “Predicting antimicrobial resistance using conserved genes”. en. In: PLOS621

Computational Biology 16.10 (Oct. 2020). Publisher: Public Library of Science, e1008319. ISSN:622

1553-7358. DOI: 10.1371/journal.pcbi.1008319. URL: https://journals.plos.623

org/ploscompbiol/article?id=10.1371/journal.pcbi.1008319 (visited on624

01/04/2023).625

[34] Marcus Nguyen et al. “Using Machine Learning To Predict Antimicrobial MICs and Associated626

Genomic Features for Nontyphoidal Salmonella”. eng. In: Journal of Clinical Microbiology 57.2627

(Feb. 2019), e01260–18. ISSN: 1098-660X. DOI: 10.1128/JCM.01260-18.628

[35] Robert D. Olson et al. “Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-629

BRC): a resource combining PATRIC, IRD and ViPR”. eng. In: Nucleic Acids Research (Nov.630

2022), gkac1003. ISSN: 1362-4962. DOI: 10.1093/nar/gkac1003.631

[36] Frédéric Raymond et al. “Culture-enriched human gut microbiomes reveal core and accessory632

resistance genes”. In: Microbiome 7.1 (Apr. 2019), p. 56. ISSN: 2049-2618. DOI: 10.1186/633

s40168-019-0669-7. URL: https://doi.org/10.1186/s40168-019-0669-7634

(visited on 10/13/2022).635

[37] Yasmin Neves Vieira Sabino et al. “Characterization of antibiotic resistance genes in the species of636

the rumen microbiota”. en. In: Nature Communications 10.1 (Nov. 2019). Number: 1 Publisher:637

Nature Publishing Group, p. 5252. ISSN: 2041-1723. DOI: 10.1038/s41467-019-13118-0.638

URL: https://www.nature.com/articles/s41467-019-13118-0 (visited on639

10/14/2022).640

[38] Paul Shannon et al. “Cytoscape: A Software Environment for Integrated Models of Biomolecular641

Interaction Networks”. In: Genome Research 13.11 (Nov. 2003), pp. 2498–2504. ISSN: 1088-642

9051. DOI: 10.1101/gr.1239303. URL: https://www.ncbi.nlm.nih.gov/pmc/643

articles/PMC403769/ (visited on 10/14/2022).644

[39] B. Snel et al. “STRING: a web-server to retrieve and display the repeatedly occurring neighbour-645

hood of a gene”. In: Nucleic Acids Research 28.18 (Sept. 2000), pp. 3442–3444. ISSN: 0305-1048.646

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC110752/ (visited on647

10/14/2022).648

16/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.09.552647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552647
http://creativecommons.org/licenses/by/4.0/


[40] Shaoyuan Tan et al. “MinION sequencing of Streptococcus suis allows for functional charac-649

terization of bacteria by multilocus sequence typing and antimicrobial resistance profiling”. en.650

In: Journal of Microbiological Methods 169 (Feb. 2020), p. 105817. ISSN: 0167-7012. DOI:651

10.1016/j.mimet.2019.105817. URL: https://www.sciencedirect.com/652

science/article/pii/S0167701219310152 (visited on 01/26/2023).653

[41] C. Tellapragada et al. “Isothermal microcalorimetry minimal inhibitory concentration testing in654

extensively drug resistant Gram-negative bacilli: a multicentre study”. en. In: Clinical Microbiology655

and Infection 26.10 (Oct. 2020), 1413.e1–1413.e7. ISSN: 1198-743X. DOI: 10.1016/j.cmi.656

2020.01.026. URL: https://www.sciencedirect.com/science/article/657

pii/S1198743X20300513 (visited on 07/18/2023).658

[42] Margo VanOeffelen et al. “A genomic data resource for predicting antimicrobial resistance from659

laboratory-derived antimicrobial susceptibility phenotypes”. eng. In: Briefings in Bioinformatics660

22.6 (Nov. 2021), bbab313. ISSN: 1477-4054. DOI: 10.1093/bib/bbab313.661

[43] Tess Verschuuren et al. “External validation of WGS-based antimicrobial susceptibility prediction662

tools, KOVER-AMR and ResFinder 4.1, for Escherichia coli clinical isolates”. en. In: Clinical663

Microbiology and Infection 28.11 (Nov. 2022), pp. 1465–1470. ISSN: 1198-743X. DOI: 10.1016/664

j.cmi.2022.05.024. URL: https://www.sciencedirect.com/science/665

article/pii/S1198743X2200283X (visited on 02/17/2023).666

[44] Shuyi Wang et al. “A Practical Approach for Predicting Antimicrobial Phenotype Resistance667

in Staphylococcus aureus Through Machine Learning Analysis of Genome Data”. In: Frontiers668

in Microbiology 13 (2022). ISSN: 1664-302X. URL: https://www.frontiersin.org/669

articles/10.3389/fmicb.2022.841289 (visited on 06/06/2023).670

[45] Muhammad Yasir et al. “Application of Decision-Tree-Based Machine Learning Algorithms671

for Prediction of Antimicrobial Resistance”. en. In: Antibiotics 11.11 (Nov. 2022). Number: 11672

Publisher: Multidisciplinary Digital Publishing Institute, p. 1593. ISSN: 2079-6382. DOI: 10.673

3390/antibiotics11111593. URL: https://www.mdpi.com/2079-6382/11/674

11/1593 (visited on 06/06/2023).675

[46] Rahat Zaheer et al. “Comparative diversity of microbiomes and Resistomes in beef feedlots,676

downstream environments and urban sewage influent”. In: BMC Microbiology 19.1 (Aug. 2019),677

p. 197. ISSN: 1471-2180. DOI: 10.1186/s12866-019-1548-x. URL: https://doi.678

org/10.1186/s12866-019-1548-x (visited on 10/13/2022).679

[47] Rahat Zaheer et al. “Impact of sequencing depth on the characterization of the microbiome and680

resistome”. en. In: Scientific Reports 8.1 (Apr. 2018). Number: 1 Publisher: Nature Publishing681

Group, p. 5890. ISSN: 2045-2322. DOI: 10.1038/s41598-018-24280-8. URL: https:682

//www.nature.com/articles/s41598-018-24280-8 (visited on 01/20/2023).683

[48] Yang Zhou et al. “Antibiotic Administration Routes and Oral Exposure to Antibiotic Resistant684

Bacteria as Key Drivers for Gut Microbiota Disruption and Resistome in Poultry”. eng. In: Frontiers685

in Microbiology 11 (2020), p. 1319. ISSN: 1664-302X. DOI: 10.3389/fmicb.2020.01319.686

17/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.09.552647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552647
http://creativecommons.org/licenses/by/4.0/

