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1 Additional methods

1.1 Original GWAS of neuroticism items

The original item-level GWAS were conducted by Nagel et al. (2018b), whose description
of their methods is largely reproduced here.

The UK Biobank (UKB) is a major data resource, containing phenotypic measures from
503,325 participants and genetic data from 489,212 participants. The data were released
in two phases (May 2015 and July 2017). Sample 1 consists of individuals for whom the
data was released in May 2015 (N = 110, 328), whereas sample 2 consists of all individuals
that were added in July 2017 (N = 270, 178). Written informed consent was obtained from
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all participants, and the UK Biobank received ethical approval from the National Research
Ethics Service Committee North West—Haydock.

All individuals of non-European ancestry were excluded. In detail, UKB participants
with genetic data were projected onto the principal components (PCs) from the 1000
Genomes reference populations. Those participants whose projected PC scores were clos-
est to the average score of the Europeans in 1000 Genomes (based on the Mahalanobis
distance) were identified as European. European subjects with a distance > 6 standard
deviations were then excluded. Additionally, subjects were filtered out based on related-
ness, discordant sex, sex aneuploidy, and withdrawn consent. Finally, individuals were
excluded from analyses if they did not respond to 3 or more of the 12 items making up
the neuroticism component of the Eysenck Personality Questionnaire–Revised Short Form
(EPQ). The final sample size of the item-level GWAS was 380,506 individuals (205,556
females and 174,950 males). At the time of assessment, participants ranged in age between
40 and 73 (M = 56.91; SD = 7.93).

For both samples specified above, newly imputed data from the second release on ∼ 96
million genetic variants was used. Imputation was performed by the UKB, using a reference
panel that included the UK10K haplotype panel as well as the Haplotype Reference Con-
sortium reference panel. Based on recommendations by the UKB, the authors excluded all
variants imputed from the UK10K reference panel, as technical errors may have occurred
during the imputation process. The imputed data were converted to hard-called genotypes
using a certainty threshold of .9.

GWAS were conducted separately on samples 1 and 2 with logistic regression as im-
plemented in PLINK 1.9 (Chang et al., 2015; Purcell et al., 2007). The dichotomous item
responses were regressed on the imputed hard-called SNPs. Sex, age, and the Townsend
Deprivation Index (measure based on postal code indicating material deprivation) were
included in the analyses as covariates. Because of the genetic correlation between the
sexes of .91 in the neuroticism sum score (Wendt et al., 2023), it was justified to analyze
both sexes together. Genotype array was only included as covariate in the analyses of
sample 1, as the same array was used for all subjects in sample 2. Additionally, the first
10 genetic PCs were used as covariates to control for potential population stratification.
Genetic PCs were computed separately for both samples using FlashPCA 2 on individu-
als of European ancestry, after LD pruning and filtering out SNPs with MAF < .01, and
genotype missingness > .05.

Final data analysis was restricted to autosomal, bi-allelic SNPs with MAF > .0001,
high imputation quality (INFO score ≥ .9) and low missingness (< .05).

1.2 GWAS with Genomic SEM in the present study

The GWAS summary statistics produced by Nagel et al. (2018b) in the manner described
above were given as input to LD Score regression (LDSC), as called by Genomic SEM,
to calculate the genetic correlations between items. Standard procedures were followed
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(e.g., including only HapMap3 SNPs with a minor allele frequency greater than .01). The
item prevalences were taken from Nagel et al. (2018b). The genetic covariance matrix thus
obtained was used in a GWAS of the common factors depicted in Fig. 1. All defaults of
Genomic SEM were employed, including diagonal weighted least squares as the estimation
method, adjustment of the univariate GWAS standard errors by their univariate LDSC
intercepts, and unit-loading identification. We used the reference file supplied by Genomic
SEM to retain only SNPs with a minor allele frequency (MAF) exceeding .005 in the 1000
Genomes European populations. This left more than 7 million SNPs in the GWAS.

Mood was chosen as the item with a fixed loading of unity on the factor of depressed
affect, nervous as the item with a fixed loading of unity on the factor of worry, and guilt
as the item with a fixed loading of unity on the factor of vulnerability. Depressed af-
fect was the first-order factor chosen as the indicator with a fixed loading of unity on the
second-order neuroticism general factor. This identification strategy is important for un-
derstanding the scaling of SNP regression coefficients in Table 1, Supplementary Table S5,
and Supplementary Table S9. For example, the two path coefficients each equaling unity
from neuroticism to mood mean that any SNP with an effect of β on neuroticism has the
same effect β on mood. At the same time, there are residual genetic effects on depressed
affect and then on mood. Since the standardized loading of mood on depressed effect was
estimated to be .966 (Supplementary Table S3), about 93 percent of the genetic variance
in mood was attributed to depressed affect. In turn, since the standardized loading of
depressed affect on neuroticism was estimated to be .796, about 63 percent of that .93 (i.e.,
59 percent) was attributed to neuroticism. The liability of mood was estimated by LDSC
to have a common-SNP heritability of .084 (Supplementary Table S3), meaning that the
heritability of mood contributed by neuroticism must be .084 × .59 ≈ .049. Therefore, all
common SNPs across the genome affecting the neuroticism general factor are constrained
to satisfy the relation

.049 ≈
∑

2×MAF× (1−MAF)× β2.

This summed additive genetic variance over SNPs will equal the naive common-SNP her-
itability in a typical non-latent GWAS, meaning roughly .10 if the phenotype is years of
education or .20 if it is IQ (Lee et al., 2018). This explanation of the scaling should dis-
pel any impression that the regression coefficients given in our study (e.g., Table 1) are
unusually small.

PLINK 1.9, as called by DEPICT, was used to identify roughly independent lead SNPs.
The SNP with the lowest p value in a given GWAS was chosen as the first lead SNP. All
other SNPs less than 500 kb from this lead SNP and correlated with it to the extent
r2 > .1 was assigned to the SNP’s “clump.” The next clump was greedily formed around
the SNP with the next lowest p value not already assigned to the first clump. This process
was iteratively continued until there were no more SNPs in the GWAS satisfying the
recommended p < 10−5. To construct a locus around a given lead SNP, the farthest SNP
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on a given side whose correlation with the lead SNP satisfied r2 > .5 was designated the
endpoint on that side. Overlapping loci according to this definition were merged.

1.3 Genetic correlations with the residual group factors

The group factors in the hierarchical model have such high loadings on the general factor
that any genetic correlations with the group factors are bound to resemble those with the
general factor (Supplementary Table S3). We therefore attempted to use a bifactor model
in order to approximate genetic correlations with the residuals of the group factors within
the hierarchical model. Note that the bifactor is nested within the hierarchical model, the
former being obtained from the latter by freeing implicit proportionality constraints on the
factor loadings. At least in intelligence research, the fit of the bifactor model is often only
somewhat better than the fit of the hierarchical model (e.g., Gignac, 2006).

We first tried a model including all three group factors: depressed affect, worry, and
vulnerability. We encountered a number of difficulties, as often happens in attempting
to fit the bifactor model. Fitting the model took about 15 times as long as fitting the
corresponding hierarchical model, rendering it impractical for a GWAS over millions of
SNPs. There were also a number of Heywood cases—indicators with estimated non-positive
residual variances. We tried to alleviate the difficulties by dropping the group factor of
vulnerability. Since in the corresponding hierarchical model this factor was found to have
little residual genetic variance, we anticipated that dropping the factor would degrade
the fit negligibly while greatly speeding up convergence. This proved to be the case; the
SRMR increased from .044 to .048, while the convergence time improved to the point of
being competitive with that of the hierarchical model. Supplementary Fig. S3 displays
our bifactor model in its final form. The item nervous was estimated to have a negative
residual variance, a difficulty that we patched up by fixing this variance to zero.

We ran the GWAS based on the path model in Supplementary Fig. S3 to produce
the summary statistics needed to calculate genetic correlations with the two remaining
group factors. We observed that the mean χ2 declined considerably in moving from the
hierarchical to the bifactor model; in the latter, the mean χ2 of the general-factor GWAS
was only 1.50, no better than shown by some of the items (Supplementary Table S4). The
genetic correlation between the general factors in these models was .93.

Despite the difficulties in fitting the bifactor model, we judged the results adequate for
calculating genetic correlations of other traits with depressed affect and worry.

1.4 Polygenic prediction

To convert our GWAS summary statistics into weights for polygenic scores (PGS), we used
the software tool PRS-CS (Ge et al., 2019). This tool converts the univariate regression
coefficients obtained in the GWAS into partial regression coefficients by plugging in a
SNP covariance matrix taken from a reference panel and applying Bayesian continuous
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shrinkage rather specifying a discrete number of prior distributions. We used the 1000
Genomes Project phase 3 participants of European descent as the reference panel.

Our validation sample consisted of the Minnesota Twin Family Study and the Sibling
Interaction and Behavior Study, both of which are being conducted by the Minnesota
Center for Twin and Family Research (MCTFR) (Wilson et al., 2019). Each complete unit
in the validation sample was made up of two siblings (usually twins) and their parents.
The sample consisted of 9,067 total individuals belonging to 2,497 family units. Miller
et al. (2012) provided details about genotyping and quality control.

The validation sample was not given a standard measure of Big Five neuroticism.
The closest such measure that was in fact administered to the sample was the “negative
emotionality” component (excluding the Aggression primary scale) of the Multidimensional
Personality Questionnaire (MPQ) (Church, 1994; Tellegen & Waller, 2008). Item response
theory was employed to estimate a factor score for each participant (van den Berg et al.,
2014).

To benchmark the predictive power of our PGS, we compared it to a distinct PGS
previously computed by Becker et al. (2021) for use in the same validation sample. These
authors drew upon a GWAS of the neuroticism sum score performed by Nagel et al. (2018a)
for their summary statistics and used the software tool LDpred (Vilhjálmsson et al., 2015)
to calculate the PGS weights. PRS-CS and LDpred are based on similar principles and
should perform about equally well in our application.

Ten genetic PCs, sex, age, and the square of age were used as covariates when regressing
negative emotionality on the PGS. To deal with dependence between siblings in the same
family, we performed bootstrap resampling over families to calculate standard errors. A
thousand bootstrap replicates were used.

We repeated all of our PGS predictions except restricting observations to individuals
with genotyped parents and adding the parental PGS as covariates. For a fixed value of the
parental PGS, the PGS of the offspring vary randomly as a result of Mendelian segregation
and thus provide a strong degree of causal inference (Laird & Lange, 2006; Lee, 2012;
Lee & Chow, 2013; Okbay et al., 2022). There were only 2,056 members of the offspring
generation in our sample with two genotyped parents.

2 Departures from the analysis of Grotzinger et al. (2019)

Our work extends Grotzinger et al. (2019), in a manner that we now explain.
Supplementary Figure 4 of Grotzinger et al. shows what was done in that paper. The

authors performed a GWAS specifying a single neuroticism factor measured by all items.
They also performed an independent-pathways GWAS and identified 69 SNPs fitting the
independent-pathways model better than one where the SNP acts through the single factor,
at the significance threshold p < 5 × 10−8. They then examined whether these 69 SNPs
would continue to fit the independent-pathways model better if the more parsimonious
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model was one where the SNP acts through two or three factors.
The authors found that for each additional factor posited in the model, there was a

reduction in the number of SNPs showing a significantly better fit to the independent-
pathways model. This pattern by itself strongly suggests that a model of a SNP acting
through common factors rather than independent pathways will tend to fit better as the fit
of the factor model itself improves. Note that the SRMR dropped from .109 to .057 as the
number of factors in the model went from one to three. In our view an SRMR exceeding
.10 is indicative of a poor fit, which we confirmed by finding several large elements in the
residual correlation matrix resulting from a one-factor model.

All that said, the Grotzinger et al. strategy of beginning with a one-factor model and
then testing SNPs deviating from that model within more accurate factor models may
not be an unreasonable way to deal with the bias-variance tradeoff that penalizes greater
model accuracy with a loss of GWAS signal (Supplementary Table S4). One might worry,
however, that a simple model with poor fit might lead to an excess of independent-pathway
SNPs with growing GWAS sample size. Whatever the strategy adopted, it is clear that any
attempt to pit common- and independent-pathway models against each other must take
into account the multidimensional basis of the factor space at some point in the procedure.

The construct validity of a general factor seems not to have been a main concern of
Grotzinger et al. They did not specify a general factor in addition to the group factors
in their two- and three-factor models. The authors mentioned performing a GWAS over
HapMap3 SNPs of the two correlated factors and of the three correlated factors, but to our
knowledge have not detailed or deposited these results anywhere. They did not perform
biological annotation of their multiple-factor results. Even their biological annotation of
their one-factor results was somewhat limited because they only provided p < 5 × 10−8

lead SNPs as input to DEPICT, whereas the developers of this tool recommend a more
liberal threshold of p < 10−5. As a result Grotzinger et al. found only one gene set to be
significantly enriched.

In summary, we extended a model of three correlated factors by converting it to a
hierarchical model with a second-order general factor and followed up a GWAS based on
this model with the bioinformatic tool DEPICT. The latter tool was set to the developer-
recommended parameter values. We also followed up the DEPICT results with additional
bioinformatic analyses yielding effect sizes in terms of fold enrichment.

3 Differences between exploratory and confirmatory factor
models

A reviewer expressed concern over differences between the results of the exploratory factor
analysis reported in Supplementary Table S2 of Grotzinger et al. (2019) and those of the
confirmatory model reported in their Supplementary Figure 3. The reviewer pointed, as
an example, to the large cross-loading of the item guilt on an additional factor only in the
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exploratory analysis. Note that our confirmatory hierarchical model is equivalent to the
confirmatory Grotzinger et al. (2019) model of three correlated factors.

Any such differences need not be an indication of serious problems, because what often
occurs if one fits a confirmatory factor model that has been inspired by an exploratory
analysis is that the correlations between factors increase as a way of compensating for the
loss of fit induced by fixing many loadings to zero in order to form an independent-clusters
solution (sometimes called “simple structure”) (McDonald, 1999). This is exactly what
happened in the application of Grotzinger et al. (2019). In the exploratory solution the
correlations between factors were .42, .57, and .62, whereas in the confirmatory solution
they were .73, .67, and .84. The fit of the confirmatory model was good (see the fit indices
reported in the main text), testifying to the “success” of the tradeoff in fit.

We calculated the correlation matrix implied by the estimated parameters of the ex-
ploratory factor analysis in Supplementary Table S2 of Grotzinger et al. (2019) and com-
pared it to the observed genetic correlation matrix. The SRMR was .044, which was only
somewhat smaller than the .054 attained by our confirmatory hierarchical model. We went
on to inspect the residual covariance matrix associated with our confirmatory model and
did not observe any pattern of large residuals between guilt and other items. In short, we
found no sign of any important features revealed by the exploratory analysis but left out
of the confirmatory analysis.

4 Genetic correlations

We calculated genetic correlations between the factors present in the EPQ neuroticism
questionnaire and the following traits:

• subjective well-being (Okbay et al., 2016)

• household income (Hill et al., 2019)

• risk tolerance (Linnér et al., 2019)

• morning person (Hu et al., 2016)

• years of education (Lee et al., 2018)

• IQ (i.e., cognitive performance) (Lee et al., 2018)

• brain volume (Jansen et al., 2020)

• autism spectrum disorder (ASD) (Grove et al., 2019)

• schizophrenia (Pardiñas et al., 2018)

• bipolar disorder (Mullins et al., 2021)
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• attention deficit/hyperactivity disorder (ADHD) (Demontis et al., 2019)

• obsessive compulsive disorder (OCD) (International Obsessive Compulsive Disorder
Foundation Genetics Collaborative & OCD Collaborative Genetics Association Stud-
ies, 2018)

• major depressive disorder (Howard et al., 2019)

• number of children (Barban et al., 2016)

• number of sex partners (Linnér et al., 2019)

• drinks per week (Linnér et al., 2019)

• cannabis use disorder (CUD) (Johnson et al., 2020)

The pattern of results for the neuroticism general factor displayed in Supplementary
Fig. S4—most notably the genetic correlations of large magnitude with subjective well-
being and major depression—was indeed very similar to what has been obtained with
observed measures of neuroticism (Baselmans et al., 2019; Luciano et al., 2018; Nagel et
al., 2018a; Okbay et al., 2016; Turley et al., 2018).

Also of interest are the genetic correlations with the residuals of depressed affect and
worry. The latter trait corresponds roughly to a factor called anxiety/tension by Hill et al.
(2020). These authors found an intriguing tendency of neuroticism and anxiety/tension
(i.e., what we are calling worry) to show genetic correlations of opposite sign with vari-
ous traits in the domains of abilities, socioeconomic status, and health. We checked on
whether this pattern was replicated in our study and found this to be roughly the case
(Supplementary Fig. S4). For example, ADHD showed a positive genetic correlation with
the neuroticism general factor (rg = .26, p < 10−8) but a negative genetic correlation
with the worry residual factor (rg = −.19, p < .005). Sometimes one genetic correlation
was attenuated in magnitude without reversing sign. Note that the similarity between re-
sults cannot be considered a replication in the fullest sense because they are based on the
same neuroticism data (i.e., the UKB), but it is notable that substantial methodological
differences between studies did not obscure the basic pattern.

5 Polygenic prediction

Supplementary Table S2 presents the results. The PGS of Becker et al. (2021) based on
the observed sum score was a highly significant predictor of negative emotionality (p <
.001), but the incremental prediction R2 was only .006, substantially smaller than what
others have observed in similar exercises (e.g., Luciano et al., 2018). We do not have
an explanation for this disparity, although one contributor might be an imperfect genetic
correlation between the EPQ neuroticism questionnaire and MPQ negative emotionality.
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Our PGS based on the neuroticism general factor outperformed the Becker et al. (2021)
PGS, reaching an incremental prediction R2 of .009 (p < .001). Despite the GWAS at the
latent level showing a lower mean χ2 over HapMap3 SNPs (Supplementary Table S4), a
PGS based on this GWAS might better capture the heritable influences on MPQ negative
emotionality.

We added the PGS based on the group factors of depressed affect and worry to the
regression model. We obtained little, if any, increment to the prediction R2.

Because of the drop in statistical power, we could not draw many firm conclusions from
the within-family prediction of MPQ emotionality. The regression coefficients of the PGS
were plausibly the same at the individual level and within families. The PGS based on the
neuroticism general factor reached marginal significance (p < .05).

6 Remarks on cross-ancestry replicability

The GWAS were conducted in European-ancestry individuals exclusively, as explained in
a previous section. We expect that the results have roughly the same applicability to other
ancestries as has been observed in other GWAS: strong concordance of the lead SNPs,
especially those with higher minor allele frequencies, but a decline in the correlation of
the polygenic score with the phenotype that is linear with the FST of the two populations
(Marigorta & Navarro, 2013; Scutari et al., 2016). Note that this decline can be very plau-
sibly attributed in most cases to differences in allele frequencies and correlations between
SNPs, without invoking a true moderation of the causal effects (Hou et al., 2023).

One exception to the general trend of GWAS replicability across populations might
be major depression. We know of one GWAS of depression including both European and
African Americans (Levey et al., 2021). This showed reasonable-seeming concordance be-
tween the two groups (see this paper’s Figure 5b), but the sample size of the African
Americans was too small to draw a strong conclusion. Giannakopoulou et al. (2021) con-
ducted a GWAS of depression in East Asians and compared the results to those of a
European GWAS. These authors did find a low genetic correlation between Europeans and
East Asians of .41, albeit with a large standard error. In this case the difference in ancestry
was confounded with a difference in region and possibly diagnostic practices.

The depression results tentatively suggest that the genetically correlated trait of neu-
roticism might possibly break from the general trend for GWAS results to transfer well
across populations and provide a motivation to conduct GWAS of personality traits in
different settings.
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GWAS of Neuroticism general 
factor over ~7 million SNPs

(Fig. 1, top panel)

Is a SNP significant (p < 10−5) and 
selected as a lead SNP? If yes …

Fitting of models where the SNP 
sends directed edges to either the 

3 group factors or the 12 items

Classification of SNP
as a “group-factor SNP”

Does the SNP have an Akaike 
weight, for paths to the 3 factors, 

greater than 2/3? If yes …

Classification of SNP
as a “general-factor SNP”

Does the SNP have an Akaike 
weight, for a path to the general 
factor, greater than 2/3? If yes …

Classification of SNP
as a “independent-pathway SNP”

Does the SNP have an Akaike 
weight, for paths to the 12 items, 

greater than 2/3? If yes …

Figure S1: Flowchart of pipeline for our genome-wide association study (GWAS) of the
Neuroticism general factor and subsequent classification of lead SNPs. Each gray box
corresponds to an analysis step. Later steps use the output of earlier steps as input; such
a relationship is represented by a gold arrow. The label of an arrow describes how the
output of the prior step was filtered. Path modeling in the context of genetic association
testing was conducted with Genomic SEM. Fig. 1 of the main text depicts the general-
factor and independent-pathway model. Note that a SNP may not qualify for any of the
three classifications in the final step.
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GWAS of effects on 3 group 
factors over ~7 million SNPs

Is a SNP significant (p < 10−5) and 
selected as a lead SNP for the 

group factor of interest? If yes …

Fitting of models where the SNP 
sends either one directed edge to 

the group factor or 12 directed 
edges to the items

Classification of SNP
as a “group-factor SNP”

Does the SNP have an Akaike 
weight, for paths to the 3 factors, 

greater than 2/3? If yes …

Classification of SNP
as a “Depressed Affect SNP”

(for example)

Does the SNP have an Akaike 
weight, for a path to the group 

factor, greater than 2/3? If yes …

Classification of SNP
as a “independent-pathway SNP”

Does the SNP have an Akaike 
weight, for paths to the 12 items, 

greater than 2/3? If yes …

Figure S2: Flowchart of pipeline for our genome-wide association study (GWAS) of the
group factors indicated by the Neuroticism items in the Eysenck Personality Questionnaire–
Revised Short Form and our subsequent classification of lead SNPs. Each gray box cor-
responds to an analysis step. Later steps use the output of earlier steps as input; such a
relationship is represented by a gold arrow. The label of an arrow describes how the output
of the prior step was filtered. Path modeling in the context of genetic association testing
was conducted with Genomic SEM. Fig. 1B of the main text depicts the independent-
pathway model. Note that a SNP may not qualify for any of the three classifications in
the final step.
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Figure S3: The bifactor model used to estimate genetic correlations with the group factors
depressed affect and worry.
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Figure S4: Genetic correlations with the neuroticism general factor and the residual group
factors of depressed affect and worry. The estimates and accompanying ±1.96-SE intervals
were calculated with LD Score regression, as called by Genomic SEM. Supplementary
Table S1 gives the results in numerical form.
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