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1 Vocalizations are highly specialized motor gestures that regulate social interactions.
2 The reliable detection of vocalizations from raw streams of microphone data remains
3 an open problem even in research on widely studied animals such as the zebra finch.
4 A promising method for finding vocal samples from potentially few labelled examples
5 (templates) is nearest neighbor retrieval, but this method has never been extensively
6 tested on vocal segmentation tasks. We retrieve zebra finch vocalizations as neighbors
7 of each other in the sound spectrogram space. Based on merely 50 templates, we
8 find excellent retrieval performance in adults (F1 score of 0.93 + 0.07) but not in
9 juveniles (F1 score of 0.64 £+ 0.18), presumably due to the larger vocal variability of
10 the latter. The performance in juveniles improves when retrieval is based on fixed-
1 size template slices (F1 score of 0.72 £ 0.10) instead of entire templates. Among
12 the several distance metrics we tested such as the cosine and the Euclidean distance,
13 we find that the Spearman distance largely outperforms all others. We release our
1 expert-curated dataset of more than 50’000 zebra finch vocal segments, which will
15 enable training of data-hungry machine-learning approaches.
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1 I. INTRODUCTION

17 In many species including humans, vocalizations play important roles during social be-
18 haviors such as aggressions, mating, breeding, and feeding. Inferring the functions of the
1o vocalizations is a challenging task where machine learning could be promising'. The lon-
2 gitudinal study of vocalizations involves the challenging task of segmenting vocalizations
a1 from background noise. In vocal learners such as the zebra finch, the vocal segmentation
» task is particularly difficult, because the zebra finch vocal repertoire dramatically changes
» over the course of development®®. Songs in young zebra finches start out as unstructured
2 subsongs that lack categorical structure and that gradually differentiate into distinct classes
= of stereotyped syllables®. Zebra finches also produce less stereotyped calls’ with acoustic
% features that vary depending on behavioral context™".

a7 To segment vocalizations in large vocal data sets, there is a growing literature on machine-
» learning based systems’ '’. However, these systems have only recently been emerging and
2 their potential is far from being fully explored. Foremost, for segmentation systems to
s perform well, they must be trained and tested on datasets of precisely segmented vocaliza-

%1 and it contains

a1 tions. But to our knowledge, only one such dataset is publicly available
» merely 473 song syllables produced by a single adult male zebra finch and fails to include
;3 all vocalization types, so represents a biased sample of vocal output. Entirely lacking are
s public datasets of precisely segmented subsongs; a recent massive-data study on this impor-

5 tant developmental phase'? simply ignores the segmentation problem and takes as proxy of

3 vocalizations all amplitude-thresholded sound segments, semi-automatically excluding false
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w positives in such a way to introduce false negatives (see Appendix). Unfortunately, ampli-
s tude thresholding can create severe problems if the recording quality is low'?, which only
3 emphasizes that this severe lack of training and test data forms a bottleneck for progress
w0 in large-scale research on vocal development, and it calls for the creation of gold-standard
s data sets.

2 One method for bootstrapping large vocal data sets from few precisely labelled samples is
113

s nearest neighbor (NN) retrieval'”. NN retrieval is a highly successful information retrieval

a method': it is used in tasks such as tagging images'®, web mining'®, recommendation

17,18 19,20

s systems''°, and for inference in language models'”<". Although the computational cost of
s NN retrieval grows linearly with the number of templates and the size of the test recordings,
s NN search scalability has improved massively since the popularization of graphics processing
s units (GPUs) for parallel computing®’ and with the advent of powerful approximate nearest

22-25

s neighbor methods . One of the advantages of NN retrieval over neural networks is that

so NN retrieval uses few parameters and is interpretable®® 2%,

s NN retrieval has been applied previously to the problem of birdsong analysis*’*. Brooker
s2 and colleagues used Pearson-correlation-based NN retrieval to benchmark commercially
3 available song detection software such as MonitoR***'. Anderson and colleagues even ap-
s« plied a dynamic time-warping algorithm to find data frames in the search space based on
s their minimal path-traversing distance to template frames®’. However, the sample sizes and
ss scopes of these works are very restrictive: they are based on single birds and unique distance

s» measures”’ and they excluded certain vocalization types from the analysis®’.

ss We set out to scale up NN retrieval methods for annotating and proofreading vocal segments.
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so The segmentation task we consider is to determine for each time point in a sound spectro-
oo gram (i.e., 16-ms sound interval) whether it contains a vocalization or not. We benchmark
s the performance of our approaches on two data subsets of adult (Subset 1) and juvenile
2 (Subset 2) male zebra finch vocalizations. In our WHOLE approach, we use entire tem-
3 plates for NN retrieval, whereas, in the PART approach, we use fixed windows cut from the
& templates. The PART approach allows the detection of vocalizations from conserved parts
s and offers the practical benefit of yielding samples of fixed dimensionality. Among the many
6 spectrogram-based distance metrics we apply during retrieval, we find that the Spearman
o distance outperforms all other metrics. We release our gold standard (GS) data set of more
¢ than 50’000 annotations, taking care of eliminating false negatives, i.e. vocalizations buried

s in noise that are easily missed by inattentive annotators.

o II. METHODS

7 A. Sound recordings and spectrograms

72 We used data sets from four adult and four juvenile male zebra finches (each of the latter
73 was recorded at three different ages, see Table I for details). Recording was triggered by
7+ vocalizations (or other sounds); thus, recordings are unevenly spaced in time depending on
75 the activity of the bird. Each recording/file contains vocalizations with some silence before
7 and after the vocalizations.

77 All adult birds (Subset 1) were raised in the animal facility of the University of Zurich.

7z During recording, birds were housed in single cages in custom made soundproof recording
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79 chambers equipped with a wall microphone (Audio-Technica Pro42), and a loudspeaker.
so The day/night cycle was 14/10 h. Vocalizations were saved using custom song-recording
s software (Labview, National Instruments Inc.). Sounds were recorded with a wall-attached
&2 microphone and were digitized at 32 kHz. We analyzed data from birds that had already
&3 spent at least three days in their cage.

s« Data from juvenile birds (Subset 2) were randomly sampled from a publication®: We ran-
s domly selected 4 birds and from each bird we selected 3 days. Sounds in®? were recorded at
s a sampling rate of 44.1 kHz.

&z We computed sound spectrograms by Fourier transforming sound segments X; € R of b=
s 512 samples. Accordingly, a spectrogram column Y; € Nat time ¢ is given by Eq. (1), where
g (2 is a hamming window of length b= 512, and § = 6.54 for Subset 1 and g = 4.93 for

o Subset 2 is a parameter that controls the dynamic range of the int8 down conversion.

Y, = int8(In ([FFT(X,Q)]) - 128/5) (1)

o The hop size At between adjacent Fourier segments is 128 samples corresponding to 4 ms
» in adults. For distance computations, we removed low frequencies (0-688 Hz in adults and

i3 0-947 Hz in juveniles) due to the large background noise in these ranges.

94 B. Generation of gold-standard annotations

o From each day-long recording, we annotated a subset of data by randomly selecting a
o set of files. We annotated vocal segments (not further classified into vocalization types)
ov with high temporal accuracy. To generate these gold-standard (GS) annotations, we used

6
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s a semi-supervised segmentation method!, correcting poor segments and eliminating false
o positives by visual inspection of spectrograms. To eliminate false negatives, the present NN
wo method was used with the cosine distance as metric. The GS dataset contains a label for
1 each spectrogram column (“1” for vocal, and “0” for non-vocal). A detailed annotation

12 protocol is provided in the “Supplementary information”.

103 C. Nearest neighbor vocalization retrieval using gold-standard templates

104 A simple approach to retrieving sounds segments corresponding to vocalizations is to
s take a single template vocalization of (whole) duration 7 and to compute spectrogram-
s based distances to all candidate segments from the search space. Candidates are contained
w7 in spectrogram windows of the same duration 7. The best candidate segment is the one
108 with minimal spectrogram-distance to the template and that does not temporally overlap
e with the template, Fig. 1. To reduce computational cost, we restricted the search space to
1o non-silent periods (defined by thresholding the root-mean-squared audio signal) of duration
m > T.

12 When many templates are given, we generalize this single-template procedure to many tem-

us  plates by iteratively retrieving the top segments one-by-one, as described in the following.

114
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FIG. 1. Template-based nearest-neighbor (NIN) retrieval of vocal segments (WHOLE
approach). For an exemplary template (leftmost spectrogram) drawn from our gold-standard
(GS) dataset, we plot the (here Spearman) distance (top, dots aligned to candidate onsets) to
all candidate segments of the same duration within the search space (other spectrograms). The
best candidate (delimited by red dashed lines) is the one with minimal spectrogram-based distance
(red dot, top). With this procedure, segmentation errors can arise from mismatching segment
durations. Here, the best candidate starts one spectrogram column too late relative to the GS
segmentation, giving rise to a false negative (FN) spectrogram column (purple 0). Since this error
is within a reasonable tolerance (< 5 columns), we regard this vocal segment (red horizontal bar)

as containing a true positive (TP) vocalization.
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126 D. Vocalization retrieval using WHOLE approach

127 In the WHOLE approach (Fig. 2),we computed the spectrogram-based distances D;; of
s all template-candidate pairs. The distance D;; represents the distance between the 7 — th
1o template (i = 1,..., M) and the j — th candidate in the search space. For a given template
130 1, the search space is given by the set of candidates of the same duration 7; as the template.
m  After we computed all distance pairs, we identified the best candidate segment to any tem-
122 plate as the one with minimal distance, argmin D;;. After choosing the best segment, we
2¥)

133 removed it from the search space, thereby also removing candidates that overlapped with
134 the best segment. Then we selected the next-best segment in an iterative procedure. By
135 iteratively selecting the segment with minimal distance to any template, we chose a very
s greedy strategy of retrieving segments from the set of templates. In practice, we first com-
137 puted all pairwise distances and maintained an index of valid candidate-template pairs to
s avoid re-computing any distances during the iterative procedure.

130 Because templates are of different durations 7;, they might bias this retrieval process to short
1w templates. To address this possibility, we tested four different normalizations of distances:

11 no normalization, dividing distances D;; by 7;, by 1/7;, or min-max normalizing them for

12 each template separately as in Eq.(2).

k

promn —
K max D;;, — min Dy,
k 2
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143 E. Vocalization retrieval using PART approach

144 In the PART approach, we circumvent any duration-induced distance bias by slicing
s each template into overlapping slices of w spectrogram columns (Fig. 2), where the integer
us parameter w is shorter than a typical template. To any template i with duration 7; < w,
1wz we appended a trailing zero-pad so that all templates had a duration of at least w. From
us M templates, we obtained in total n,, = Ef\/[ floor(Z) template slices. We then computed
1o all distance pairs D;; between template slices and candidate slices. We then chose the best
1o candidate slice as the one with minimal distance to any of the n,, template slices. Based on
151 the best candidate slice, we selected the associated best segment as the sound interval with
152 the same relative timing as the template the slice was taken from (the onset and offset of the
153 best segment formed the same time lags to the slice as did the onset and offset of the sliced
15« template), Fig. 2. Thus, the best candidate segment was selected to be of equal duration
155 as the sliced template. There was one exception to this procedure: when the selected best

156 segment extended into a silent period, it was cropped.

10
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FIG. 2. Template-based NN retrieval of vocal segments (PART approach). Shown is an
example template (delimited by green dashed lines, left) that we chopped into overlapping slices
(gray bars, below) of width w. For each of these slices, we computed the Spearman distances
(dots, top) to candidate slices. The winning template slice (thin blue bar, bottom) and the best
candidate slice (red dot, top; thick blue bar, bottom) are the ones with minimal distance to each
other. From this best candidate slice, we retrieved the best segment (delimited by dashed red
lines) as the sound interval that protrudes in the same way as the template relative to its winning
slice. Here, this candidate is a true positive, because its relative onset (+5 columns) and offset (+1

column) are both within the accepted tolerance (<5 columns) of a GS segment.

11
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F. Spectrogram-based distance measures

As metrics for distances D;;, we tested the Euclidean, cosine, Jaccard, and Spearman met-
rics using the built-in MATLAB function pdist2. Additionally, for the WHOLE approach,
we evaluated earth mover’s distance (EMD) that measures the transport of sound-intensity
along a single spectrogram axis: either summing EMD distances row-wise (EMDr, transport

along the temporal axis) or summing column-wise (EMDe, transport along spectral axis).

G. Performance evaluation

We evaluated the retrieval performance of our NN approaches using scores based on time

bins and on sound segments:

e The time-bin based (or column-wise) score corresponds to the F1 score (the harmonic
mean of precision and recall) of the inferred labels of all spectrogram column relative

to the GS labels. Fig. 1 shows examples of true-positive and false-negative labels.

e The segment-wise or vocalization score (VocScore) is the F1 score of detected vo-
cal segments. A segment is considered a true-positive (TP) vocalization if both its
predicted onset and offset are within a temporal tolerance € of the gold-standard val-
ues. This tolerance reflects the fact that even experts disagree on precise segment
boundaries. Here, we have chosen a generous tolerance of € = 5 spectrogram columns,

corresponding to a generous tolerance of 20 ms on Subset 1.

12


https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.555475; this version posted September 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1ss III. RESULTS

186 A. A gold-standard (GS) dataset of juvenile and adult vocal segments

187 From a small set of template vocalizations, we performed NN retrieval of vocal segments
s (see Section II). We manually corrected the obtained segments to assemble a GS dataset of
189 53’326 vocalizations extracted from a total of 370 mins of data from zebra finches recorded
o at different developmental stages (Table I). We share our guidelines for manual correction
11 that specify two decision boundaries we used to correct the segments: the decision whether
12 there is a short silent period (gap) between two vocalizations (Fig. 5), and the distinction
103 between vocal and non-vocal sounds (Fig. 6-7). In short, we advocate the definition of vocal

e segments as tight intervals of contiguous vocal activity (no gaps) (see Appendix).

13
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TABLE I: Dataset of zebra finch vocal segments across 4 developmental stages. The birds’ ages are
specified in days-post-hatch (dph). The last four columns specify the duration of the annotated
recording (including silence and noise), the number of annotated vocalizations, the fraction of time
with vocal activity (“label imbalance”, vocal/total columns; perfect balance corresponds to 0.5),
and the duration range of vocalizations, respectively. The Group column refers to the recording

date, i.e., the number of days (20, 10, or 0) before birds learned their baseline (BL) song (Fig. 3c).
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o) &) i 'QU ~ % o = = 3 Tﬁ -45 I}
: F| E| o3 c w| 2| £ B E| 2| 5 E %
n = M o o < & < s 8 q > 5 E
gl7y2 | male | 14.4.2015 | 197 84.34 | 10050  [0.4714 20-656
Adult g4p5 | male |28.12.2012| 115 104.18| 26045 [0.5155 16-300
(subset 1) g1903 | male |13.11.2015| 154 7.72 2045  ]0.4238 20-240
g19010| male [08.11.2015| 198 7.68 1998 0.548 28-400
35 |-20BL| 1.27 139 0.22 20-357
R3406 | male |29.11.2011| 45 |-10BL| 8.28 243 0.0486 9-377
Juvenile
55 | BL |39.42 2281  |0.1077 12-372
(subset 2)
39 |[-20BL| 7.30 1316 |0.2931 15-514
R3428 | male [16.12.2011| 49 |-10BL| 6.86 780 0.2496 12-418

Continued on next page
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TABLE I — Continued from previous page
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R3428 | male [16.12.2011| 59 BL | 52.19 4026 0.1862 23-435
43 |-20BL| 7.33 781 0.2411 15-581
Juvenile
R3549 | male |17.02.2012| 53 |-10BL| 9.02 929 0.2209 15-438
(subset 2)
63 BL | 10.52 1068 0.2372 12-343
45 |-20BL]| 11.67 728 0.1216 26-372
R3625 | male [13.04.2012| 55 |-10BL| 7.23 534 0.1363 12-418
65 BL | 4.71 362 0.1575 15-293
All 370 53326 9-656
105 To assess the annotation consistency, we asked a second expert to perform the same man-

s ual correction of NN-retrieved segments on a subset of data (two adults and two juveniles).
17 We quantified expert disagreement by assessing the performance of Expert 2 relative to the
s GS data (Expert 1) as a reference: While the F1 score was generally high across both subsets
1w (0.981 + 0.014), the VocScore fluctuated more substantially (0.923 £ 0.046). A closer in-
200 spection revealed that the adult bird g1903 produced pairs of rapidly following vocalizations
a1 that Expert 2 interpreted as a single vocalization, resulting in a low VocScore (F1-Score:

15
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200 0.975, VocScore: 0.883), while bird g19010 displayed no such confounding vocalization pair

203 (F1 score: 0.992, VocScore: 0.998).

204 B. Performance of nearest neighbor retrieval

205 We tested the two template-based vocal retrieval approaches (WHOLE and PART) on
206 our GS dataset. The NN distance of retrieved vocalizations increased monotonically with
207 increasing number of retrieved segments, as per definition (Fig. 3a, shown for three replicates
208 of 50 randomly selected templates). Less trivially, the precision of retrieved vocalizations
200 decreased with the number of retrieved vocalizations (Fig. 3a-9-10). We varied the used dis-
210 tance metric and the normalization strategy. We found that the Spearman distance metric
o performed best, particularly in juveniles, while the Euclidean metric performed worst. In
22 juveniles also, the Jaccard metric performed better than the Cosine metric. In both adults
23 and juveniles, both EMDs performed poorly (Fig. 3b-e). In the following, we report the per-
aa formance of the Spearman metric in more detail. Using WHOLE, the Spearman distance
25 achieved an average F1 score of 0.93 £+ 0.07 (range 0.86 to 0.98) for adults (Fig. 3b and
26 Fig. 3d, no normalization) and an F1 score of 0.63 + 0.18 (range 0.23 to 0.86) for juveniles
a7 (Fig. 3b and Fig. 3e, no normalization). Using PART, the performance increased for ju-
zs veniles (F1 score of 0.72 £+ 0.10, range 0.51 to 0.82) but decreasedfor adults (0.92 £ 0.04,
20 range 0.88 to 0.96), see Fig. 3c for each bird individually. This significant performance gap
20 between adults and juveniles that we observed for the Spearman metric was also true for
21 other metrics. The Cosine distance performed well on adults (F1-score range 0.97 to 0.81),

22 while on juveniles it yielded low scores. Distances such as the Euclidean distance and the two

16
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23 Earth Mover distances performed significantly worse than the correlation-based distances
24 even in adults, while their respective F1 scores were close to zero in juveniles. In general,
»s  distance metrices performed significantly better in adults than in juveniles. We normalized
26 distances in the WHOLE approach with four different strategies based on either duration
27 or sound amplitude (see Section IT). For adults, not normalizing was among the best strate-
»s gles for the Spearman distance (though neither in adults nor juveniles, normalization had
20 a large impact) and it was the worst for Earth mover’s, Jaccard, and Euclidean distances
20 (Fig. 3d). As expected, these latter distances benefit from division by the template dura-
231 tion to counteract the unequal dimensions of the competing candidates. The template-wise
22 min-max normalization worked well across distance metrics and GS data subsets (Fig. 3d,e).
213 Taken together, NN search performed best using the PART approach on juveniles and the
2 unnormalized WHOLE approach on adults. Across development, zebra finches can change
235 their songs to join or to separate adjacent vocalizations (Fig. 6). To quantify errors result-
236 ing from falsely joining or separating adjacent vocalizations, we used the VocScore. The
237 VocScore is very sensitive to segmentation errors occurring in between two vocalizations,
23 e.g., when a syllable gap is missed, the VocScore reports a long false-positive (FP) and
20 two short false negative (FN) vocalizations. Across both adults and juveniles, the VocScore
20 correlated with the F1 score (Fig. 3f) and the VocScore performance was quite variable
a1 across datasets, which was due to some birds persistently producing hard-to-segment vocal-
22 ization pairs. The simpler F1 score of misclassified spectrogram columns was sensitive to
23 the number n of templates used, but surprisingly the F1 score barely improved from using

2 more than 50 templates (Fig. 3g). The F1 score also improved with increasing slice width
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25w (Fig. 3g), especially from the minimal width w=1 to w = 8. However, in juveniles, there

25 was no additional improvement from increasing the slice width to w = 16 (Fig. 3g).
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23 FIG. 3. Performance of vocal segment retrieval for various distance metrics and normal-
29 ization strategies. (a) The column-wise precision (green) of vocal segments gradually declined
250 (after initial fluctuation) with increasing number of retrieved segments. We retrieved a total of
51 N-n segments (n = 50 templates, N = 26045 GS segments, bird g4p5), corresponding to theo-
252 retical optimum of 100% of retrieved columns (x-axis). Three overlapping curves are shown for 3

253 replicates of 50 randomly selected templates. (b,c) Mean F1 scores (from 3 replicates of 50 random
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254 templates) across the dataset for different distance metrics, using the unnormalized WHOLE (b)
25 or PART (c) approach (slice w=8 columns). The tables are sorted along the rows and columns to
26 display the best performance on the top left. Abbreviations: SPR="Spearman”, JAC="Jaccard”,
257 COS="Cosine”, EMDc="column-wise Earth mover’s distance”, EMDr="row-wise Earth mover’s
s distance”, EUC="Euclidean”. (d,e) Sorted tables of mean F1 scores (from b) of adults (d) and
250 of juveniles (e) for the WHOLE approach, shown for different normalization strategies. (f) The
20 relationship between F1 score and VocScore in adults (blue crosses) and juveniles (black circles),
21 computed for the Spearman distance and using the WHOLE approach (3 replicates per sample).
22 (g) Sensitivity analysis for the number of templates n and the slice width w, using the Spearman

2%3 distance.

264 To investigate whether the retrieval process is hampered by some detrimental templates
x5 that excessively often retrieve false positives, we examined one retrieval replicate each in
26 three exemplary birds, an adult and two juveniles (Fig. 4). In both birds, we found that
27 the retrieval fractions were very non-uniform across the 50 templates (Fig. 4a-c, Figure
268 56, ST7). In the juveniles, there were a few templates that yielded excessively low retrieval
20 precision (large fraction of FPs). These detrimental templates had either background noises
a0 (e.g., Fig. 4b, templates “1” and “2”) or very faint harmonic extensions (e.g., Fig. 4b,
o1 template “37). To illustrate their shortcoming, we plotted the segments retrieved by the
o three templates with the lowest retrieval precision in each bird (Fig. 4a-b, bottom row of
z3 spectrograms). Removing the worst three templates (searching with 47 templates only) did

22 not increase performance in the adult (Fig. 4c), but slightly increased the performance in
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25 the juvenile (Fig. 4d). This indicates that NN search can only marginally be improved by

26 selecting representative and clean (noise-free) templates.
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277

s FIG. 4. Retrieval performance is non-uniform across templates. (a,b) For an example
279 adult (a) and two juveniles (b,c), we sorted the 50 templates (from one replicate) by the fraction of
2% segments they retrieved (summed TP and FP retrievals). (d,e,f) For each bird, example templates
251 are shown including the worst three (numbered 1-3). (g,h,i) Example segments retrieved by the
282 worst three templates in each bird. (j,k,1) Performance scores (6 replicates per bird) for the initial
283 set of random 50 templates (purple box) and for the reduced set (green box) constructed by
234  removing the worst 3 templates. A small but significant increase in both F1 score and VocScore
285 is observed for the juveniles (p < 0.05, one-sided paired-sample Wilcoxon signed rank test). The
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286 performance changes for the replicates in (a-i) are highlighted by black dotted lines (grey lines

27 indicate changes for the remaining 5 replicates).

28 IV. DISCUSSION

289 We have presented a simple and viable method for creating and proofreading of GS
200 datasets of animal vocalizations. Nearest neighbor retrieval is straightforward in its applica-
201 tion and is suitable both for extending manual annotations based on a few examples and for
22 proofreading existing datasets. We have used NN retrieval in a 2-step process of 1) detect-
203 ing vocalizations in raw sound recordings based on few labelled examples, and 2) systematic
24 Screening the remaining data for false negative samples. We evaluated NN retrieval on vo-
25 calizations from individual birds including the notoriously challenging subsongs produced
26 during an early developmental phase. We benchmarked two NN variants and found that
27 adult vocalizations were better retrieved using whole templates (WHOLE approach, Fig. 1)
208 whereas juvenile vocalizations were better retrieved using template slices (PART approach,
20 Fig. 2). We found that as few as 50 templates were sufficient for reaching plateau perfor-
s0 mance, which imposes a minimal requirement on the human effort for adopting this method.
s In theory, NN retrieval can be performed with as little as one single positive example. In
;2 practice, we recommend selecting clean templates and disregarding templates that contain
203 background noises or outlier features (Fig. 4), because otherwise the noise itself becomes a
s0 target of NN retrieval. A good strategy might be to perform a two-stage search: first with
w05 stereotyped templates, then with apparent outliers. The Spearman distance outperformed

21
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w5 the other tested metrics (Fig. 3) — especially on juvenile data. Surprisingly, the Euclidean
w7 metric, often the first choice when comparing songbird vocalizations®?’****  exhibited the
w08 overall worst performance. That the Spearman distance outperformed the Euclidean dis-
30 tance on both juveniles and adults suggests that commonly used analysis methods based on
a0 the Euclidean distance®*® could be improved simply by the use of Spearman distance. The
su  finding that correlation-based metrics (including Spearman and cosine distances) outper-
sz form the Euclidean and EMD distances emphasizes the importance of discounting for vocal
si3 variability: Under the Euclidean and EMD metrics, a loud candidate vocalization will have
s a large distance to its softer template. Variability of sound intensity can arise from varying
a5 distances and directions of a bird to the microphone and so they should not affect retrieval.
s6  In contrast, correlation-based metrics are invariant to global changes in signal intensity (or
a7 loudness). Furthermore, correlation-based metrics work well with templates of different du-
sis rations since the correlation between two vectors does not scale with the vector dimension.
si9 These results are in line with a general trend away from the Euclidean distance towards
»0 correlation-based metrics: The advantage of Spearman distance over the cosine distance
21 is that the former captures non-linear monotonic relations®>*%. This property is generally
12 believed to contribute to the good performance of the Spearman distance in applications
»s  as diverse as spam email detection®” and indoor localization based on received Wi-Fi signal
24 strength®®. We see the strength of NN retrieval in proofreading the predictions generated by
w5 other systems, in particular when labelled data are scarce. By contrast, when labelled data

16 are abundant, NN retrieval is unlikely going to be competitive with state-of-art approaches

27 for birdsong segmentation such as deep neural networks”®. The main disadvantage of NN
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»s retrieval (e.g. compared to neural networks), is that the computational cost scales with the
19 number of labelled examples, although workarounds could be to sub-sample or summarize
;0 the templates using for example k-means clustering. Very large datasets are amenable to
s NN retrieval by virtue of powerful methods for approximative NN retrieval?’2°. Therefore,
sz there is no fundamental barrier for scaling up this method. We benchmarked NN retrieval
;3 on vocal segmentation, which is a task that is feasible in both adults and juveniles and allows
s for comparison of performance across age. In adults with their stereotyped repertoire, it is
135 possible to target retrieval to renditions of specific syllable types rather than any vocalization
16 from the repertoire. Coincidentally, we used such type-specific retrieval to generate the GS
;37 annotations for adults. In practice, we found that best performance is achieved when first
s searching for renditions of long vocalization types and then successively for shorter types.
;39 Such a hierarchical retrieval strategy avoids confounds from repeated notes among syllables
s in adult zebra finch song®’, which may also be the reason for the lower performance of PART
s in adults compared to WHOLE. By contrast, the reason why for juveniles, PART seems to
sz work better than WHOLE could be that on a larger time scale juveniles have no repeating
.3 vocal units — thus, if we model their vocalizations as random vectors then these are all far
sa  from each other since in large spaces, random pairs of vectors tend to be orthogonal to each
us other. Our retrieval approach (in particular the WHOLE approach) suffers from inflexibility
us  of segment durations, namely that the retrieved segments must exhibit the same durations
sr  as the templates. Therefore, WHOLE will struggle to find the overall shortest vocalization
us  performed by an animal. One possible approach to overcome this limitation is to use dy-

uo namic time warping®’ as a means to create artificially short templates, thereby increasing
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0 the number and diversity of templates. NN retrieval is attractive because it controls for
31 out-of-distribution detection with a well-defined and interpretable distance measure. NN
32 retrieval shifts the challenge of modeling vocalizations to the challenges of identifying a
i3 good metric. We tested only a set of well-known metrics here, but in follow-up work it
¢ may be worthwhile train custom metrics on the same retrieval task to learn to optimally
5 account for natural variability. Metrics can be learned from embeddings and the approach of
16 computing embeddings in a self-supervised manner?’ is getting more popular also in sound

h***3_ The role of NN search we foresee in future work is to

w7 processing®!, in particular speec
18 assist in creation of vocal annotations and in proofreading automated annotations produced
0 by trained systems. One promising idea is to develop human-in-the loop iterative proce-
w0 dures of labelling, training, searching, and fine-tuning of machine-learning systems. Our
w1 expert-curated dataset of annotated individual vocal repertoires counts more than 50’000
2 vocalizations from 8 zebra finches. We release this dataset so that data-hungry deep learn-
13 ing systems for large scale vocal analysis can be trained and evaluated. To make our work
s reproducible, we also share our segmentation guidelines as illustrations of the manual an-
s notation challenges and of our chosen decision boundaries (see Appendix). We hope that

6 our annotation guidelines will help to standardize vocal annotation tasks and so promote

7 comparative work across species.

;s DATA AVAILABILITY

369 We will release our dataset (Table I) upon publication of our work in a peer-reviewed

s0  journal.
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s« sound amplitude and to define as vocalizations all sounds that are above a given threshold.
ss However, this procedure will misclassify certain noises as vocalizations, which is why more
ses Tefined approaches are needed that potentially make use of the statistics of the individual®®.
so7 In the extreme case, we need to inspect every single potential vocalization and decide based
se¢ on expert knowledge where to cut the dividing line between vocalization and noise.

599 To standardize the segmentation task, we have created this set of guidelines based on two

s0 decisions boundaries for a vocalization:

601 e The decision whether there is a silent period between two sounds, which we take by
602 inspecting spectrograms (Fig. 5, left).
603 e The decision whether a sound is vocal or non-vocal (Fig. 5, right; Fig. 6-7).

s0a Birds, especially when young, tend to vary the gaps between vocalizations. An example is
s0s shown in Fig. 5 (yellow dotted box): This sequence of three vocal elements looks like a pre-
s0s cursor of syllable C that the juvenile tries to imitate, but they appear with sufficiently large
sor  gaps, which is why we sometimes classify them as 3 distinct syllables. Thus for (a) we infer
8 a gap where we can visually detect one, irrespective of other singing attempts in the animal.
o0 The second decision boundary (b) is harder to define universally from single-microphone
10 recordings, ideally we would like to have simultaneous recordings from the trachea to mea-
s sure sounds and air flow there. In practice, it is a human expert, who judges whether
si2 a sound is vocal or non-vocal by listening to examples and inspecting the corresponding
13 spectrograms. Again, this task is relatively simple for highly stereotyped vocalizations, but
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more difficult for faint, short and variable vocalizations in juveniles (Fig. 5, right; Fig. 6,
left, Fig. 7). A special case consists of faint sounds (usually at around 6kHz) that frequently

occur after (or, less frequently, before) vocalizations (Fig. 2, left). We consider them to be

33,57

inhalation sounds and exclude them from the vocal dataset (default setting).

SyllableB SyllableC

FIG. 5. Definition of vocal segments as continuous intervals of vocal activity. (left)
Zebra finch song examples at 59 day-post-hatch, aligned to notes that resemble the beginning of
syllable C. At this stage, syllable C is surrounded by clear gaps most of the time (top 6 examples).
However, in a minority of cases, no silent gap is visible between the preceding syllable B and

the first note of syllable C (bottom 6 examples, boundary case indicated with magenta arrow).
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2« Gold-standard segmentation labels of syllable-C-notes (yellow) and of other vocalizations (orange,
s purple) are indicated by bars below the spectrograms. (right) Vocalizations recorded at 49 day-
26 post-hatch (red bars), aligned to examples that resemble syllable C. Short noisy sounds within
s27  syllable precursors (green arrow) have not been classified as vocal activity based on isolated visual
628 inspection, but likely would be, if the context would be taken into account. The yellow dotted box
620 marks three vocal elements that could potentially be interpreted as a unitary precursor of syllable

630 O, if the developmental endpoint were to be taken into account. Bars as on the left.

631
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sz FIG. 6. Decision-boundary between vocal and non-vocal sounds. (left) Spectrogram ex-

33 amples of putative inhalation sounds (indicated with purple bars) observed in a zebra finch at 59

63 day-post-hatch (excluded in the gold standard by default). (right) Examples of non-vocal noises

635 which may include prominent tones (green arrows), wide-band noise (blue arrows), or very faint

636 signals (magenta arrows).

637

633 FIG. 7. Detailed decision-boundary between vocal sounds and wing flaps. Spectrogram
639 examples short noises. Wing flaps are easy to detect on spectrograms when occurring in serial
ss0 repetition (i.e., when the bird is flying; magenta arrows). For short sounds, indicators of vocal
a1 activity can be harmonics (green arrow) or a strong skew in the spectral density towards certain

2 frequencies (low frequency sounds indicated with blue arrows).
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643 2. Analysis of an open dataset

644 A recent publication'? includes a large dataset of vocal segments from 5 zebra finches.
ss  According to the data documentation, the segmentation was performed using a sound-
sas amplitude based method that included some hand tuning. Although we found the published
s7  segmentation results to be valuable, they were insufficient to qualify as gold standard, due

sas 10O the existence of false negatives and inaccurate segment boundaries Fig. 8.

Gold Standard

== Brudner et al

el
e
i

\:

l_
R

l‘ -

e T e e e R

ss0 FIG. 8. Example segmentation inaccuracies of the'? dataset. The published segments (red
51 horizontal bars) deviate from the (gold-standard) manual annotations (gold horizontal bars) in
2 terms of a false negative sample (Syllables A and C) and in terms of inaccurate segment boundaries

653 (white arrows).

40


https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.555475; this version posted September 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

654 3. Discussion

655 The examples we provided illustrate our decision boundaries and the difficulties with
6 segmentation approaches. In summary, we advocate the definition of vocal segments as
7 tightly restricted intervals of continuous vocal activity. These segments should be defined
s independently from functional considerations. How to extract functional units from vocal
0 segments is an open question, the answer may depend on whether the vocal units are assessed
0 in the domain of perception (receiver) or production (sender). Still, it is regarded as ideal
1 to validate chosen segmentations based on the functional roles of the vocal signals®*°%:°%,
sz However, recent work in songbirds suggests that “syllables may not be perceptual units for
»59

3 songbirds as opposed to common assumption
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e6s FIG. 9. Extended set of precision and distance curves as a function of retrieval pro-
s gression, using the WHOLE approach (replicated for all birds). The top row shows adult
667 birds, while the subsequent rows show juveniles at different ages relative to baseline. See Figure

668 3a for a detailed description.
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673 3a for a detailed description.
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different ages relative to baseline. See Fig. 4a-c for a detailed description.
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FIG. 12. Extended set of histograms of retrieval rates across templates, using the PART

680

1 approach (3 retrieval replicates for each bird). The top row (consisting of 3 panels for each

while the subsequent rows show juveniles at different ages

I

shows adult birds

)

retrieval replicate

682

relative to baseline. See Fig. 4a-c for a detailed description
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