
OR I G I N A L A RT I C L E

Connectome spectrum electromagnetictomography: a method to reconstruct electricalbrain source-networks at high-spatial resolution
Joan Rué-Queralt1,2* | Hugo Fluhr1 | Sebastien
Tourbier1 | Yasser Aleman-Gómez1,3 | David Pascucci4
| Jérôme Yerly5, 6 | Katharina Glomb7 | Gijs Plomp2
| Patric Hagmann1*
1Department of Radiology, Lausanne
University Hospital and University of
Lausanne (CHUV-UNIL) , Lausanne,
Switzerland
2Deptartment of Psychology, University of
Fribourg, Fribourg, Switzerland
3Department of Psychiatry, Lausanne
University Hospital, Lausanne, Switzerland
4Signal Processing Lab 2, EPFL, Lausanne,
Switzerland
5Department of Diagnostic and
Interventional Radiology, Lausanne
University Hospital, Lausanne, Switzerland
6Center for Biomedical Imaging, Lausanne,
Switzerland
7Department of Neurology, Charité
University Medicine Berlin and Berlin
Institute of Health, Germany
Correspondence
Email: joan.rue.q@gmail.com,
patric.hagmann@chuv.ch
Funding information

Connectome SpectrumElectromagnetic Tomography (CSET)
combines diffusionMRI-derived structural connectivity data
with well-established graph signal processing tools to solve
the M/EEG inverse problem. Using simulated EEG signals
from fMRI responses, and twoEEGdatasets on visual-evoked
potentials, we provide evidence supporting that (i) CSET
captures realistic neurophysiological patterns with better
accuracy than state-of-the-art methods, (ii) CSET can re-
construct brain responses more accurately and with more
robustness to intrinsic noise in the EEG signal. These re-
sults demonstrate that CSET offers high spatio-temporal
accuracy, enabling neuroscientists to extend their research
beyond the current limitations of low sampling frequency in
functional MRI and the poor spatial resolution of M/EEG.
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1 | INTRODUCTION
The human brain is a network of deeply interconnected
neurons and complex architecture. Understanding its
dynamic functioning at a sub-second level is of critical
importance for several fields inmedicine and technology
[1, 2, 3, 4]. Neuroimaging techniques have advanced to
a point where functional mapping of whole-brain activ-
ity in small animal models is now possible at sub-second
level, thanks to techniques like calcium imaging [5, 6, 7].
However, human neuroimaging poses other challenges,
as no modality offers both high spatial and tempo-
ral resolution [8]. Modalities with high spatial resolu-
tion, such as functional Magnetic Resonance Imaging
(fMRI) or Positron Emission Tomography (PET), have
lower temporal resolution compared to techniques such
as magneto/electro-encephalography (M/EEG), which
have higher temporal resolution but suffer from low or
very poor spatial accuracy.
To address this limitation, Electromagnetic Tomography
(ET), also known as electrical or M/EEG source imaging
(ESI), has been proposed as a computational approach to
estimate electrical neuronal activity at the whole-brain
scale. By combining M/EEG recordings and structural
MR images, ET aims to achieve better spatial resolu-
tion while maintaining fast sampling of neural signals [9]
(Fig. 1a). ET has allowed significant advances in several
fields of brain functional mapping, including epilepsy
[10], sleep [11], cognition [12], and brain-computer in-
terfaces [13].

Electromagnetic tomography focuses on solving
two different processes or problems: the forward prob-
lem and the inverse problem. The forward problem in-
volves determining the relationship between the effec-
tive electric sources in the brain and the measurements
recorded by scalp electrodes or magnetometers. Specif-
ically, it describes the propagation of electric fields in
the head (as seen in Fig. 1a), from the electrical depo-
larization of pyramidal cells in the cortex to the M/EEG
sensors. This problem is solved using Maxwell’s equa-
tions, which take into account the different conductivity
properties of the brain tissue [14].
Solving the forward problem accurately requires dis-

cretizing the head volume and mapping realistic tissue
conductivity values in it, which can be challenging. How-
ever, there are solid implementations available in the
literature that rely on finite element modeling and per-
sonalized mappings based on individual brain MRI scans
[14]. These solutions have been shown to be effective
in addressing this challenge.
The inverse problem, on the other hand, is the mathe-
matical formulation of the tomography itself. It involves
modeling the neuronal activity as a function of the mea-
surements recorded by scalp electrodes or magnetome-
ters. By combining the forward and inverse problems,
ET attempts to estimate the electrical neuronal activity
across the entire brain with high spatial and temporal
resolution.

Each sensor in M/EEG recordings captures activity
frommultiple sources within the brain’s graymatter, and
the source electric fields propagate through the tissues
non-uniformly, depending on local conductivities and
morphology. The inverse problem of discerning which
sources, or combination of sources, are responsible for
a givenM/EEGmeasurement is ill-posed, meaning there
is no unique solution for the problem [14]. There are in-
finitely many solutions that can be consistent with the
measured M/EEG data. Thus, regularization is needed
to solve the inverse problem, which involves making
strong assumptions about the spatial distribution of the
sources [9].
However, the current models used to solve the M/EEG
inverse problem are known to produce low-resolution
reconstructions [15, 16, 17, 18, 19] or make unrealis-
tic assumptions [20]. These limitations pose significant
challenges for accurately mapping electrical brain activ-
ity, and there is a pressing need for biologically plausible
and realistic models to overcome these hurdles. Such
modelswould be able to encompass awide range of neu-
ral activation patterns, making it possible to accurately
solve the inverse problem and improve our understand-
ing of brain function.

Over the past two decades, a growing body of ev-
idence has demonstrated that the patterns of human
brain activity are tightly constrained by the underlying
structural connectivity [21, 22, 23, 24, 25, 26]. It is
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widely recognized that taking into consideration brain
structural connectivity when analysing brain activity sig-
nal is of crucial importance for proper interpretation
[27, 28, 29, 30]. It seems that similar to any other phys-
ical object, such as a metal plate or a vibrating rope,
the resonant frequencies of the brain are largely deter-
mined by its underlying structure [31]. Recent data sug-
gest that brain activity can be efficiently represented
as a combination of its normal modes [32], which are
known as connectome harmonics and form the build-
ing blocks of well-known brain functional networks as-
sociated with both rest and different tasks (Fig. 1c,d).
The representation of brain activity in the basis defined
by connectome harmonics, also known as connectome
spectral representation, is the result of a graph Fourier
transform [33] on the connectome, which involves the
eigen-decomposition of the graph Laplacian. Studies
have found that brain activity during visual perception
[34, 35] is characterized by a sparse connectome har-
monic representation, indicating that the connectome
harmonics provide a powerful framework for under-
standing the functional organization of the brain. Sim-
ilarly, other studies have found similar properties while
investigating different states of consciousness [36].

In this work, we introduce a new approach, called
Connectome Spectrum Electromagnetic Tomography
(CSET), which aims to solve the M/EEG inverse prob-
lem by taking advantage of the sparsity of brain activ-
ity in its connectome spectral representation. Specifi-
cally, we model this property as a prior probability of
the sources (Fig. 1c-f), within a Bayesian optimization
framework (very similar in essence to the compressed
sensing framework [37, 38]. While prior methods have
used sparsity priors at the source domain [39, 40, 41],
these are limited to highly localized neural activity and
do not capture distributed neural networks. The under-
lying assumptions of CSET make it better suited for re-
constructing distributed brain activity.

To evaluate the effectiveness of CSET, we applied it
to both simulated EEG data from brain activity patterns
corresponding to fMRI task activation (Fig. 2) and real
EEG data from two experiments on visual evoked poten-
tials (Fig. 3). Our results demonstrate that incorporating
the high-resolution connectivity structure of the brain
(Fig. 1b) improves the signal-to-noise ratio (SNR) and
the accuracy of the reconstructed brain activity com-
pared to state-of-the-art approaches that do not use
this information.

2 | MATERIALS AND METHODS
2.1 | The high-resolution structuralconnectome
The structural connectome defines how the axonal fiber
bundles in the brain’s white matter support the connec-
tivity between different gray matter regions. For the
VEPCON dataset, we estimated the tractograms from
the diffusion weighted imaging (DWI) data of each par-
ticipant, using Connectome Mapper 3 [42]. The trac-
tography algorithm was performed after denoising the
diffusion data with MRTRIX MP-PCA, bias field correc-
tion with ANTS-N4, eddy current andmotion correction
from FSL. For each subject we launched 10 million de-
terministic streamlines (with ACT) in the white matter,
which were posteriorly filtered with SIFT. After that, we
followed the approach presented by Mansour and col-

leagues [43] to obtain high-resolution individual connec-
tomes at the resolution of approximately 8000 nodes on
the brain’s gray matter surface. To allow other scientists
to use our source imaging framework on data sets with
no available diffusion MRI data, we constructed a group
consensus connectome from the high-resolution indi-
vidual connectomes of the VEPCON dataset. The con-
sensus connectome was created based on the distance-
dependent thresholding method [44].

2.2 | Connectome harmonics
The structural connectome defines a graph object
G(N, E) , in which the nodes N of the graph represent
different regions in the brain cortical surface, and the
edges E of this graph describe the connectivity strength
between each pair of nodes as estimated from the high-



4 Rué-Queralt et al.

F IGURE 1 Connectome Spectrum Electromagnetic Tomography (CSET) pipeline. a) Illustration of the EEG
inverse problem. The EEG inverse problem is the process of estimating of the electrical sources in the brain that
generated the measured electrode signal at the scalp. This problem is ill-posed because the number of sources (N) is
much larger than the number of electrodes (M). There exist an infinite number of source combinations that could
generate a single electrode signal. For this reason, mathematical regularization based on mechanistic or empirical
assumptions of brain activity are needed. b) The high-resolution individualized connectomes are constructed by
combining the long-range white-matter connectivity (based on MR tractography) and the short-range cortical
connectivity (based on Euclidean distance). c) The harmonic modes of a physical object refer to the different ways an
object can resonate when a force is applied. In the case of a violin, the harmonic modes or natural frequencies, are
typically determined by the length of the string and its tension. d) The harmonic modes of the high-resolution
connectome are determined by the connectivity pattern, they also have a notion of frequency, or smoothness.
Connectome harmonics are identified as the eigenvectors of the high-resolution connectome graph Laplacian. Here
only the smoothest five eigenvectors are shown. e) The connectome spectrum, i.e., the eigenvalues corresponding
to the connectome harmonics, which indicate how smooth each harmonic is.

resolution connectome. Analogous to conventional sig-
nal processing spectral analysis, graph signal processing
allows us to study the signal in terms of its graph (i.e. spa-
tial) frequency content (for an in depth review of graph-
signal processing, see [33]).

To obtain the connectome spectrum of the brain ac-
tivity signal we first need to perform an eigendecompo-

sition of the normalized connectome graph Laplacian:
L = I − D− 1

2WD− 1
2 = UΛU⊤, (1)

where I is the identity matrix, W is the connectome
graph’s weight matrix (here defined as the number of
streamlines connecting each pair of brain reagions) and
D is the degree matrix (i.e., a diagonal matrix with the
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degree value of each node as the diagonal elements). U
is a matrix that contains the eigenvectors of the graph
Laplacian in its columns, defining the connectome graph
Fourier basis, and Λ is a diagonal matrix contains its
eigenvalues λi , which are associated to the notion of fre-
quency in traditional signal processing. The connectome
spectrum x̃ of the brain activity signal x is thus obtained
by means of the graph Fourier transform

x̃l =
N −1∑
n=0

u l [n ]x [n ] = ul x, (2)

where l indexes the connectome harmonics (i.e. eigen-
vectors) and n the nodes. The reader is referred to our
previous publications for further details on this repre-
sentation of the brain activity signal [34, 35].

2.3 | The forward model
The forward model of the M/EEG imaging system de-
scribes how the magnetic/electrical currents are prop-
agated from their origin in the active neurons residing
in the gray-matter towards the recording sensors in the
scalp. When a pyramidal neuron in the gray-matter re-
ceives an excitatory postsynaptic potential (EPSP), its
voltage dependent sodium channels open, the positively
charged sodium ions enter in the neuron and due to
the electrical neutrality conservation principle, an ac-
tive source of current is produced in the apical region
of that neuron. This creates an electrical dipole. When
many neighbouring pyramidal neurons activate simulta-
neously, they generate an electrical dipole that is strong
enough to traverse the different tissues of the head, and
to be measured byM/EEG electrodes [14]. The forward
model characterizes the probability of the M/EEG mea-
surements on the scalp p (bt |xt ) for bt ∈ ÒM , condi-
tioned xt ∈ ÒN being the true cortical source activity
(M being the number of measuring sensors and N the
number of neuronal activity sources). The M/EEG sys-
tem deals with noise that is due to independent random
perturbations at the sensor level, following a zero-mean
Gaussian distribution [14]:

bt ∼ N(Axt , Σ), (3)
where A ∈ ÒM ×N is known as the lead-field matrix,
and its components Ai ,j define the contribution of the
j -th cortical source to the i -th M/EEG scalp sensor,
which are estimated by solvingMaxwell’s equations [14].
To model independent and identically distributed noise
across sensors we use Σ = Iσ . Given our primary focus
on the inverse problem, we rely on the default forward
computation pipeline implemented inMNE-Python [45],
as it is a well-documented method in an openly avail-
able software toolbox. In particular, we used the default
MNE-Python surface-based boundary element method
(BEM) approach [46], where the boundary surfaces are
tessellated into a mesh of triangles with different con-
ductivity values [inner-skull = 0.3, outer-skull = 0.006,
outer-skin-skull = 0.3].
In this work, we constrain the sources to be normally
oriented to the cortical surface of the brain. There exist
twomain reasons behind this choice. First, the complex-
ity of the algorithm is reduced by reconstructing a single
value per source rather than a value per each coordinate
axis (x , y and z ). Second, the dipoles originated due to
the excitation of pyramidal neurons are mostly oriented
normally to the cortical surface [14].

2.4 | The inverse problem
From a Bayesian perspective, the inverse problem can
formulated as trying to find the most likely electrical
source configuration x̂ in the gray-matter given the scalp
measurements b, the forward model A and a prior prob-
ability over the distribution of x. This is known as the
maximum a posterior (MAP) estimate:

x̂MAP = argmaxx p (x |b) = argmaxx p (b |x)p (x)
p (b) , (4)

where p (x |b) is the posterior probability, p (b |x) is the
likelihood function, and p (x) defines the prior. p (b)
does not affect the maximizer argument and can be ig-
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nored. In practice, we simplify the optimization problem
by taking the negative log-transform of the posterior dis-
tribution, so thatweminimize over a sum instead ofmax-
imize over a product:

x̂MAP = argminx {− log p (x |b) } (5)
= argminx {− log p (b |x) − log p (x) } . (6)

Given our assumption of normally distributed EEG data
(Eq. 3), the likelihood function of the data can be defined
by a Gaussian distribution:

p (b |x) = M −1∏
i=0

1

σ
√
2π

exp
{
− 1

2σ2

(
bi − a⊤i x)2} (7)

,
and its negative log-transform results in:

− log p (b |x) = M log (
σ
√
2π

)
+ 1

2σ2
(b − Ax)⊤ (b − Ax) .

(8)
This results in a likelihood function with a quadratic

term plus some constant term. The constant term does
not affect the argument of the minimization problem
and can be ignored, thus leaving with the well-known
least-squares form:

− log p (b |x) = 1

2σ2
∥b − Ax∥22 . (9)

For the prior distribution, we assume that brain activ-
ity follows a sparse connectome spectral representation,
which is well modeled by the Laplacian probability dis-
tribution on the graph-Fourier transformed coefficients:

p (x) = N −1∏
i=0

1

2β
exp

{
−
|u⊤

i
x |

β

}
, (10)

where β is a scale parameter related to the variance of
the distribution. Its negative log-transform results in:

− log p (x) = N log(2β ) + N −1∑
i=0

|u⊤
i
x |

β
, (11)

which, ignoring the constant term, results in the L1-
norm:

− log p (x) = 1

β
∥Ux∥1 . (12)

Combining Eqs. 9 and 12, we can rewrite Eq. 5 as:

x̂MAP = argminx 1

2σ2
∥b − Ax∥22 + 1

β
∥U⊤x∥1 (13)

= argminx ∥b − Ax∥22 + 2σ2

β
∥U⊤x∥1 (14)

= argminx ∥b − Ax∥22 + λ ∥U⊤x∥1, (15)

where we have used the regularization parameter λ =
2σ2

β defines the uncertainty trade-off between the likeli-
hood and the prior. The L1-norm acts as a regularization
function that imposes structure (sparsity on some trans-
form F). Another common way to look at this problem
is the following. Given that the number of gray-matter
sources N is much larger than the number of M/EEG
sensors M , the inverse problem is under-determined or
ill-posed. This means that there exist an infinite number
of source activity configurations (x) that can produce the
measured EEG scalp potential (b) at a given time-point.
The inclusion of a regularization function constraints the
number of solutions to a single one.

2.5 | Connectome Spectrum ElectricalTomography (CSET)
We have shown in previous publications that the
neuronal activity is sparsely represented by the
connectome-based graph Fourier transform (see Con-
nectome Spectral Analysis), which decomposes brain
activity into a small number of active brain networks
[35, 34]. In addition to our research, other studies have
established a theoretical basis for the structural con-
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straint on functional connectivity [32, 36, 47, 48, 49].
These works have revealed that neural mechanisms re-
lying on delayed excitatory-inhibitory interactions facili-
tate the self-organization towards exciting a relevant set
of eigenmodes [32, 48]. Moreover, previous investiga-
tions have successfully applied structural eigenmodes to
explain brain activity during rest at very short timescale
[49] and evoked activity [47]. These findings suggest
that these eigenmodes play a crucial role in dynamically
integrating and segregating information across the cor-
tex, thus serving important cognitive functions.
In this study, we present Connectome Spectrum Elec-
tromagnetic Tomography (CSET), a novel approach that
addresses the optimization problem outlined in Eq. 13.
We achieve this by representing brain activity as a con-
strained combination of active eigenmodes, emphasiz-
ing sparsity within the connectome spectrum basis:

x̂CSET
t = argminx ∥bt − Ax∥22 + λ ∥U⊤x∥1, (16)

where x̂CSET
t is the CSET source reconstruction at

time t , bt is the EEG data vector at time t , U is the
connectome-based graph Fourier transform matrix con-
taining the approximately 8000 eigenvectors of the
structural connectivity normalized graph Laplacian. The
following steps are performed by CSET to reconstruct
sources:

1. Depth normalization: The least squares term in Eq.
16 term is known to bias the optimized solution
towards sources that are closer to the electrodes
[50]. This can be alleviated by incorporating adding
penalty function with a weighting factor composed
by an L2-norm term [51]. Here, in order to avoid the
increased computational effort of this approach, we
adopt a strategy that is also implemented in MNE-
Python, namely weighting the rows of the leadfield
matrix prior to reconstruction:

Ãi =
Ai

∥Ai ∥2
. (17)

.
2. M/EEG data normalization: The statistics of the

measured signal will affect the optimal parameter
λ in Eq. 16. To make the choice of λ not rely on the
measurements, we normalize the measured signal
as follows:

b̃t = bt /∥bt ∥2 . (18)
3. Minimization via accelerated proximal gradient de-

scent of:
x̂t = argminx ∥b̃t − Ãx∥22 + λ ∥U⊤x∥1, (19)

Eq. 19 contains a non-differentiable functional (L1-
norm) and iterative optimization methods based
solely on the gradient, such as gradient descent,
cannot be used. Instead, we relied on the accel-
erated proximal gradient descent method (APGD)
[52], a well-known primal-dual splitting optimiza-
tion algorithm. The steps to reconstruct the sources
from a single EEG time point using this algorithm are
explained in Algorithm 1.

Algorithm 1 CSET
Require: τ ← 1/ρ

k ← 0

xk −1, xk ← x0

while True do
k ← k + 1
a ← k −1

k+2
y ← (1 + a )xk − axk −1

z ← y − τ2A⊤ (Ay − b )
if ∥xk − xk −1 ∥2/∥xk −1 ∥2 ≤ 10−4 then

break;
end if
xk −1 ← xk

xk ← proxλ∥U⊤ ·∥,τ (z )end while

The optimization is solved with Pycsou [53], a
Python package for solving linear inverse problems.
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The step τ = 1/ρ is selected with ρ being the gradi-
ent Lipschitz constant of the least squares term in
Eq. 19, to fulfill the convergence rates guarantees.
As a stopping criterion we selected an absolute rel-
ative error of ϵ = 10−4. The proximity operator is
a mathematical tool that executes a step analogous
to gradient descent but is specifically designed for
non-smooth functions, such as those involving the
L1-norm:

proxλ∥U⊤ ·∥,τ (z) = z +U (
Sτ (U⊤z) − U⊤z) ,

where, given an input vector z and a threshold τ , the
soft thresholding operator is defined as:

Sτ (z) = sign(z)max( |z | − τ, 0) .
The soft thresholding operator has the effect of set-
ting values of xwithmagnitude less than or equal to
λ to zero, and otherwise shifting values of x toward
zero by λ.

4. Re-scale reconstruction: As a final step, the nor-
malization factors obtained in steps 1 and 2 are re-
scaled back to the solution to the optimization prob-
lem, resulting in the final electrical source recon-
struction: (x̂CSET

t

)
i
= (x̂t ) i ∥Ai ∥2 ∥bt ∥2 (20)

2.6 | Datasets
Recently, two multimodal neuroimaging datasets have
been released that have great potential to help develop
source imaging tools as well as validate their perfor-
mance and clinical relevance (VEPCON datasets from
now on) [54]. In these datasets, visual evoked poten-
tials were recorded for 20 participants while they dis-
criminated between either briefly presented faces and
scrambled faces on one hand, or coherently moving
stimuli and incoherent ones on the other hand. This
dataset is openly accessible (https://openneuro.org/
git/0/ds003505). Apart from high-density EEG of vi-
sual evoked potentials, the datasets also include struc-

tural MRI, diffusion weighted images (DWI) and single-
trial behavior. This allowed us to study the reconstruc-
tion of brain activity maps that activate in response to
very well studied paradigms.

Apart from the data released along the original pub-
lication, here we also include fMRI spatial maps of the
same participants, under a similar experimental task.
These spatial maps are used in this work for two differ-
ent purposes. In a first instance, for each subject of the
VEPCON datasets, we used the fMRI activation pattern
corresponding to the subjects’ response to a face stim-
ulation paradigm as ground truth. This ground truth sig-
nal was used as simulated electrical brain activity, and
then used to compare against the reconstruction from
the simulated measurements.
Although neurovascular coupling—the complex mech-
anism that connects neural activity to the blood flow
changes captured by fMRI—is not fully elucidated [55,
56], a significant body of evidence supports the no-
tion that both fMRI and EEG signals are predominantly
indicative of synaptic activity within the gray matter
[57, 58]. Several studies have revealed a meaningful
correlation between the fMRI signals (specifically, the
BOLD response) and local field potentials (LFP), across
an extensive frequency spectrum [59]. These findings
intimate a shared origin of cortical synaptic activity be-
tween EEG and fMRI [60, 61], thereby highlighting their
intertwined nature. Consequently, although EEG and
fMRI signalsmanifest differences in spatial and temporal
dimensions and are characterized by individual sensitiv-
ity, resolution, and specificity scales [62], a meticulous
approach allows for a comparative analysis between the
sources of fMRI and the estimates of EEG source recon-
struction [63].

2.6.1 | MRI pre-processing
The acquisition of functional MRI data (fMRI) was per-
formed at theHFRFribourg –Hôpital cantonal (Fribourg,
CH), using a Discovery MR750 3.0T (GE Healthcare,
Chicago, USA). fMRI data were acquired while each sub-
ject performed two different visual tasks, one on faces,
and another on moving dots.
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Across subjects, the order of the two tasks was
counterbalanced. For each task, we used a block struc-
ture similar to the one adopted for the EEG session (see
Methods), but with 48 trials for each task condition (in-
stead of 200). At the end of each block, the instruction
to “REST” was presented, followed by a fixed break of
12s (Rest period). Exceptionally, the last Rest period that
had a duration of 60s. In each trial, subjects had a limited
time of 1,500ms to respond, after which their response
was considered incorrect.

An MRI-compatible fiber optic response pad (Cur-
rent Designs Inc., Philadelphia, USA) was used to
collect the participant responses. The visual stimuli
were presented on a NordicNeuroLab (Bergen, NO)
MRI-compatible LCD monitor (32 inches diagonal size,
1920x1080 resolution, 405 c/m2 surface luminance,
4000:1 contrast, 60 Hz refresh rate, 6.5 ms response
time), placed above the scanner-bed at 244 cm from the
subject’s eyes and made visible to the subject through
a mirror placed on the head coil. Those subjects who
suffered from some eye disorder (e.g., myopia) wore
MRI-compatible glasses with appropriate lenses for op-
tical correction. The fMRI data were acquired using a
T2*-weighted EPI sequence with 40 slices each, with
slice-thickness of 3 mm, between-slices spacing of 0.3
mm, interleaved bottom-up slice acquisition, anterior-
to-posterior phase encoding direction, repetition time
(TR) of 2,500 ms, echo time (TE) of 30 ms, and flip-angle
of 85°. The first 4 volumes of each run were discarded.

The Statistical Parametric Mapping (SPM) toolbox
was used for preprocessing the fMRI data (toolbox ver-
sion SPM12; University College London, UK; https:
//www.fil.ion.ucl.ac.uk/spm/). First, the functional
images were aligned to the mean of each session, us-
ing a two-pass realignment procedure for motion cor-
rection, and then a slice-timing correction was applied
35. After realignment, the mean functional image was
co-registered to the anatomical image using the nor-
malized mutual information as the cost function. The
SPM12 standard segmentation procedure was adopted
to obtain the masks for cerebrospinal fluid (CSF) and
white matter (WM), which were used to extract the time
courses of CSF and WM signals for each subject. All im-

ages were then normalized to the Montreal Neurologi-
cal Institute and Hospital (MNI) stereotaxic space with a
fourth-order B-spline interpolation, and smoothed with
a Gaussian filter with 8 mm FWHM kernel.

2.6.2 | fMRI statistical maps
A two-stage approach based on a general linear model
(GLM) was employed to analyze the functional im-
ages. In this approach, the first-level analysis was im-
plemented using a block design with two regressors
of interest, each modeled with a boxcar function con-
volved with the canonical hemodynamic response func-
tion (HRF). Two regressors of interest were defined to
model the two stimuli conditions (Faces vs. Scrambled,
on vs. off motion of the disk). The GLM included also a
set of nuisance regressors that modeled the six motion
realignment parameters, the mean signals in CSF and
WM, and a constant term. Finally, a high-pass filter (200
s cutoff) was applied to the functional images time se-
ries, which allowed removing noise at very low frequen-
cies. The second-level group analysis was implemented
on the previously obtained statistical maps and involved
voxel-wise t-test comparison across participants. The
obtained volumetric statistical maps were mapped to
the same surface used for source reconstruction in the
native space, using the Freesurfer’s mri_vol2surf function.
A group estimate of the response pattern to the stim-
uli was estimated by morphing each surface map to the
same space (subject “sub-01” native space). The average
map was finally morphed back to the individual´s native
space and used to assess the performance of source re-
construction.

2.7 | Simulation of EEG data from fMRIData
To simulate the EEG signal, we used the entire fMRI
map, incorporating both positive and negative BOLD re-
sponses. The fMRI pattern was first standardized by di-
viding each voxel value by the standard deviation of the
entire fMRI map. Subsequently, the pattern was shifted
by its minimum value to exclude any negative values.
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We then applied the forwardmodel with amatrix-vector
multiplication with the lead-field matrix. To mimic re-
alistic conditions, the generated EEG signals were cor-
rupted with Gaussian noise. The noise power was calcu-
lated based on a predefined Signal-to-Noise Ratio (SNR)
of 3 decibels (dB) as follows. While the spatio-temporal
evolution of the neural sources is an important consid-
eration, it was not explicitly modeled in this study for
the sake of simplification and we limited our analysis to
a single time point. Future studies are planned to incor-
porate the temporal dynamics in the simulation.

3 | RESULTS
3.1 | Increased sensitivity towardsphysiological patterns
In-silico simulations are a versatile tool for testing source
reconstruction algorithms under various conditions, in-
cluding different parameter configurations, data sam-
pling strategies, and assumptions underlying the gen-
erative model of the signal. To minimize bias associ-
ated with selecting the generative model and to gener-
ate brain activity signals that are physiologically plau-
sible, we used fMRI data as ground truth signals (Fig.
2a). Specifically, we utilized task fMRI to obtain a de-
tailed spatial response to faces and moving dots for
each participant. Fig. 2a shows the activation pat-
tern in response to faces: the Fusiform Gyrus (FFA) is
activated with some slight right dominance while the
default-mode network is suppressed, as it is expected
during the performance of a global visual discrimination
task [64].

We evaluated the performance of our proposed
method, Connectome Spectrum Electromagnetic To-

mography (CSET), and four state-of-the-art methods
available in MNE-Python, Minimum Norm Estimate
(MNE), dynamic Statistical Parametric Mapping (dSPM
[18]), and exact and standardized LOw Resolution Elec-
tric TomogrAphy (sLORETA [17], eLORETA [19]), by
computing the r-squared metric, i.e., the square of the
Pearson correlation coefficient, between the ground
truth and reconstructed signals. These tools use the
EEG signal covariance in their optimization algorithm,
whichwe computed for pre-stimulus time (-200ms, 0ms)
with theMNE-Python function compute_covariance [65],
with the methods "shrunk" and "empirical". In the de-
termination of the regularization parameter λ, we em-
ployed a logarithmic scale spanning 20 distinct values,
ranging from 10−5 to 0.3. Our analysis showed that
CSET, which utilizes the subject specific brain connec-
tivity map to reconstruct brain activity, outperformed
the other methods in terms of reconstruction accuracy
under different electrode montages (Fig. 2c-d). In fact,
CSET recovered the ground truth signal with over twice
the accuracy of the second-best method (r = 0.46 versus
r = 0.23 with MNE). Furthermore, CSET approximated
the distribution of Fourier coefficients from the fMRI
graph better than the other methods (Fig. 2e), indicat-
ing that state-of-the-art methods significantly underes-
timate the sparsity of brain activity in this space (KS-
distance = 0.42 versus [0.59, 0.59, 0.62 0.62, 0.61]).

Qualitative assessment of the reconstructions also
revealed thatwhile the state-of-the-artmethods tended
to concentrate all the signal energy in frontal and pari-
etal regions (i.e., regions close to the electrodes), CSET
was able to capture ventral activation (Fig. 2f), which
are notoriously difficult to capture given their distance
to the electrodes.

3.2 | Improved EEG sourcereconstruction accuracy
Visual evoked potentials of well-known neurophysiolog-
ical paradigms (such as face or motion perception) pro-
vide data with high signal-to-noise ratio (in comparison
to other types of EEG experimental paradigms) and their

activation response is well documented in other imaging
modalities or animal models. We reconstructed brain ac-
tivity maps from the VEPCON EEG dataset [54] (Fig. 3a).
This dataset contains two sets of recordings of visual
evoked potentials: the face-stimuli dataset (response to
faces vs. response to scrambled faces), and the motion-
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F IGURE 2 Results of simulation experiment. a) The ground truth signal used for simulating the EEG data
corresponded to the fMRI response of each subject to a face perception task. b) The simulated EEG is obtained by
applying the forward model to the ground truth signal, i.e., propagating the source activation to the electrodes
through the lead-field matrix. c) The performances (r 2 between ground truth and reconstructed signal) of the
different reconstructions when using the full montage of 128 electrodes. d) The performances of the different
reconstructions when using the full and sub-sampled montages. e) Distributions of the connectome Fourier
transform weights, i.e., the resulting coefficients of applying the Fourier transform on the source reconstructed
signal,
for the ground truth data and the different reconstructions. f) Source reconstructions for each method for the same

subject.

stimuli (response to coherent motion vs. response to in-
coherent motion) (see Methods). We focus our analysis
of the spatial distribution of the reconstruction on each
participant’s main activation peak, i.e., the time point at
which the difference in the measured EEG response be-
tween the experimental and contrast stimuli is maximal
in absolute terms. As a ground truth, we compared the
EEG reconstructions with the previously used fMRI re-
sponse.

Figure 3 shows two improvements in reconstruct-
ing brain response during face andmotion perception by
the proposed CSET method over state-of-the-art meth-
ods: first, their reconstructions more accurately capture
the expected activation pattern (retrieved from fMRI),
as shown by higher r-squared values (Fig. 3b). Second,
the reconstruction is more precise for the CSETmethod,
as shown by the boosted signal-to-noise ratio (SNR, Fig.

3c), and the enhanced dynamics of each task’s region of
interest (Fig. 3d, right fusiform gyrus (FFA) in the face
task and bilateral posterior middle-temporal area (MT)
in the motion task). The reconstructions are shown in
Fig. 3e. The contrast between the activation levels for
coherent and random motion is generally smaller than
that for faces versus scrambled faces, resulting in less
significant findings and a higher apparent noise level in
the data for the motion stimuli.

Recognizing the potential for variability, it’s note-
worthy that the optimal λ value might differ across in-
dividual subjects. To assess the sensitivity of our results
to changes in λ, we conducted an analysis wherein we
perturbed the optimal λ value by a margin of 5%. The
outcomes of this sensitivity analysis, specifically focus-
ing on the performance metrics under near-optimal λ
ranges, are detailed in Table 1.
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CSET MNE dSPM sLORETA eLORETA
5th Percentile 0.19 0.01 0.01 0.02 0.01

Median 0.84 0.04 0.05 0.05 0.04
95th Percentile 3.28 0.26 0.53 0.68 0.57

TABLE 1 Performance drop for near-optimal λ ranges metrics across subjects. This table summarises the
distributions of percentage of performance drop (with respect to optimal performance) when varying the λ

parameter 10% around the optimal value λ∗ ([0.95 × λ∗, 1.05 × λ∗]). All methods show a decline in performance with
a median central tendency falling below 1%.

4 | DISCUSSION
When planing an experiment requiring non-invasive
neuroimaging, choosing between high temporal and
high spatial resolution is a classic dilemma as usually
these characteristics are mutually exclusive. Electro-
magnetic tomography (ET) is in theory a promising an-
swer to this dilemma, as it combines M/EEG recordings
with structural MRI to maximize resolution in both do-
mains. However, existing ET methods still lack accurate
regularizers, resulting in limited spatial resolution and
unreliable outcomes [20].
To address this issue, we propose in this article a novel
ET method, Connectome Spectrum Electromagnetic To-
mography (CSET), which promotes sparsity in the con-
nectome spectrum of brain activity.

A sparse connectome spectrum implies that, at a
given time point, only a limited number of eigenmodes
are actively contributing to brain activity while others
may have negligible contributions. The connectome
Laplacian eigenmodes represent specific spatial distri-
butions of brain connectivity that can be associated
with different functional processes or cognitive func-
tions [32]. By utilizing the eigenvectors of the Laplacian,
the CSET approach leverages the brain’s intrinsic orga-
nization to identify the most relevant spatial modes that
contribute to brain activity, thus helping in efficiently
characterizing and understanding brain dynamics.

Based on well-established signal processing tools
for solving inverse problems with signal sparsity, we in-
corporate diffusion MRI-derived structural connectivity
data into the solution, exploiting the close relationship

between brain function and brain structural connectiv-
ity [34, 35].
Previous research has explored the use of structural
connectivity priors to solve the M/EEG inverse prob-
lem. While these studies have shown positive effects
on reconstruction performance by enforcing smooth-
ness among connected sources [66, 67], sparsity [68],
or temporal continuity among connected sources [69],
we demonstrate that our method significantly increases
the accuracy and precision of reconstructed brain activ-
ity signals. Using simulated EEG signals from fMRI re-
sponses, we show that Bayesian optimization methods
with brain connectivity derived regularizers capture re-
alistic neurophysiological patterns with better accuracy
than uni-modal state-of-the-art methods based on the
temporal statistics of the data.

We also show that our method can reconstruct
brain responses with higher spatial localization and
more robustness to intrinsic noise in the EEG signal
during two different perceptual processes using mea-
sured EEG signals. The signal-to-noise ratio of the recon-
structed signal and the signal energy in the brain regions
most involved in the task are increased. Our method
takes advantage of the latest advances in graph signal
processing, compressive sensing and connectomics, ad-
dressing the problems of reliability and spatial resolution
simultaneously.

It is important to note that while high-density EEG
systems are generally expected to offer more accurate
source localization, the relationship between the num-
ber of channels and source localization accuracy isn’t
necessarily straightforward (see for example [70]. Var-
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F IGURE 3 Results of visual evoked potentials. a-a’) Residual visual evoked potentials (a): The EEG response to
faces minus the response to scrambled faces; (a’): The EEG response to coherent motion minus the response to
random motion. The temporal traces correspond to the difference in EEG measured potential evoked by the
experimental condition and the control. The topographic maps corresponding to the measured data at the
peak-times of the traces are plotted on top. b, b’) The performances of the different reconstruction methods for
ventral (b), and dorsal (b’) visual systems (performance: r 2 between reconstructed signal and fMRI signal from an
equivalent task). c-c’) Signal-to-noise ratio (SNR) dynamics for different reconstructions for pre- and post-stimulus
presentation time (SNR defined as power of post stimulus vs power pre-stimulus). d-d’) Region of interest dynamics:
right fusiform gyrus (FFA) for the face perception task; and the bilateral posterior middle-temporal area (MT area) for
the motion perception task. e-e’) Group average (mean) reconstructions for the different source reconstruction
methods.

ious factors, including the signal-to-noise ratio and the
quality of the forwardmodel, can influence the outcome,
potentially introducing variability.

While the type of regularization is an important as-

pect in reconstructing electromagnetic activity, other
parts of the pipeline, such as the data preprocessing,
the optimization scheme, and the forward model can be
equally important in influencing the reconstruction. In
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this work, we have not studied these other parts of the
pipeline in order to focus on the inverse problem. Future
studies should assess whether the performance of the
proposed inverse problems is systematically affected by
any steps of the pre-processing and forward modelling.
In this work we have only tackled regularization in the
spatial domain of the reconstruction. State-of-the-art
approaches leverage the temporal smoothness of the
data to enforce continuity in the reconstruction. In fu-
ture approaches, we recommend tackling the combina-
tion of regularization in the spatial and temporal do-
mains.
While using the full rank matrix U in our analysis has
its advantages in preserving all available information, it
is worth acknowledging that the adoption of a smaller
number of eigenmodes could present a viable alterna-
tive, particularly in contexts where computational effi-
ciency is a priority. By selecting a subset of the most
significant eigenmodes, it might be possible to substan-
tially reduce the computational cost of the algorithm
without markedly compromising the integrity of the re-
sults. This approach could strike a balance between
complexity and performance, allowing for quicker analy-
ses or application to larger datasets. Future studies may
explore the optimal selection criteria for eigenmodes,
considering both computational efficiency and the fi-
delity of the underlying neurophysiological interpreta-
tion.
While the regularization parameter λ was tuned using a
grid search, we observed that the results demonstrated
relatively low sensitivity within the near-optimal range
(see Table 1). Nevertheless, meticulous tuning remains
essential for our problem. Future work should explore
sophisticatedmethods that leverage the statistics of the
data and/or incorporate physiological measurements.
Recently, others have shown that cortical geometrical
modes, derived from the cortical geometrywithout long-
range connectivity derived, better explains the fMRI
data than the connectome eigenmodes [71]. On a sim-
ilar note, others have also demonstrated that is the lo-
cal cortical geometry connections which plays a crucial
role for the emergence of well-known functionally rell-
evant network harmonics [72]. These results suggest

that connectome harmonics are robust to differences in
long-range connectivity. This robustness indicates that
our method is likely to be resilient to potential anatomi-
cal connection errors stemming from the intrinsic limita-
tions associated with diffusionMRI data, such as missed
or spurious connections.
The main limitations of assessing the performance of
EEG source localization with fMRI measurements stem
from the differences in their physiological sources. The
distance between the EEG-generating neuronal popula-
tion and the vascular supply can lead to misalignment of
EEG and fMRI sources due to BOLD signal being haemo-
dynamic. Additionally, various physiological processes
requiring energetic support, such as neurotransmitter
synthesis and glial cell metabolism, can cause haemo-
dynamic BOLD changes without corresponding EEG ac-
tivity. In some cases, unsynchronized electrophysiolog-
ical activity or closed-source configurations may result
in differential sensitivity or invisibility to EEG. Further-
more, transient electrophysiological activity may not in-
duce significant detectable metabolic changes [73]. For
the specific case of spatially localized neural activity pat-
terns, we foresee that solving Electromagnetic Tomogra-
phy by imposing sparsity the spectral graph wavelet do-
main using Spectral Graph Wavelet Transform (SGWT)
[74] will be advantageous. Wavelets can be understood
as band-pass filters on the graph spectral domain (see
Fig. 1d), allowing to parameterize the signal of interest
according to spatial localization and spectral scale.

In conclusion, CSET is a unique non-invasive func-
tional neuroimagingmethod that offers at the same time
high spatial and temporal resolution and accuracy of
brain electrical activity. This is achieved by a principled
combination of readily available MRI and EEG measure-
ments. This method acknowledges the potential mis-
match between fMRI and EEG sources but also lever-
ages the statistical properties of the Bayesian approach
to mitigate the risks of overfitting or artificial bias. The
strategy may not resolve all discrepancies or uncertain-
ties between fMRI and EEG, but it provides a reasoned,
mathematically groundedmethodology that builds upon
the known function-structure connectivity relationship.
It’s an evolving field, and continuous investigation and
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methodological refinement will be key to fully elucidate
these complex interconnections. This method will en-
able neuroscientists to extend their current research by
revisiting the already collected MRI/EEG data or plan
new projects that were up to now out of reach.
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