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Abstract: The organizational principles that distinguish the human brain from those of
other species have been a long-standing enigma in neuroscience. Here, we leverage advances
in algebraic topology to uncover the structural properties of the human brain at subcellu-
lar resolution. First, we reveal a much higher perisomatic branching density in pyramidal
neurons when comparing homologous cortical regions in humans and mice. Traditional scal-
ing methods consistently fail to interpret this difference, suggesting a distinctive feature of
human pyramidal neurons. We next show that topological complexity leads to highly inter-
connected pyramidal-to-pyramidal and higher-order networks, which is unexpected in view
of reduced neuronal density in humans compared to mouse neocortex. We thus present ro-
bust evidence that reduced neuronal density but increased topological complexity in human
neurons ultimately leads to highly interconnected cortical networks. The dendritic complex-
ity, which is a defining attribute of human brain networks, may serve as the foundation of
enhanced computational capacity and cognitive flexibility.

Keywords: Human; Rodent; Neuron morphology; Topological analysis; Morphological com-
parison; Pyramidal cell
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Graphical abstract. A. Human neural networks are different from mice due to their lower
neuron density, resulting in increased distances between neurons, particularly among pyramidal
cells. B. The topological analysis of layer 2/3 pyramidal cells in the cortex reveals an intriguing
difference: human neurons exhibit a significantly larger number of dendritic branches, especially
near the cell body compared to mice. This phenomenon is termed ”higher topological complexity”
in dendrites. C. The combination of reduced neuron density and enhanced dendritic complexity
results in greater network complexity within the human brain. Network complexity is defined by
larger groups of neurons forming complex interconnections throughout the network. Our findings
suggest that dendritic complexity wields a more substantial influence on network complexity than
neuron density does, hinting at a potential strategy for enhancing cognitive abilities.
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Introduction

The question of how the brain contributes to human cognition has been a topic of debate and
discussion since ancient times. The shift from Aristotle’s belief that intellect resided in the
heart to Gallen’s assertion of the brain’s significance in ancient Rome marked a pivotal mo-
ment in this ongoing discourse. Humans have long been intrigued by the reasons behind their
own relative sophistication compared to other animals (Cairo, 2011), sparking deep curiosity
about the unique capabilities of the human brain. Initially, it was postulated that human
cognitive prowess was linked to the sheer magnitude of our brains (Cairo, 2011), stemming
from the notion that intelligence is directly correlated with brain size. However, research
has failed to identify similar abilities in other large-brained animals, such as elephants (Hart
et al., 2001) and cetaceans (Waugh and Thewissen, 2021). Furthermore, subsequent stud-
ies (Hofman, 1988) systematically analyzing the ratio of brain to body mass refuted these
theories, demonstrating that human brain size is not distinctive compared to other animals.
Nevertheless, the conviction that the human brain is exceptional among mammalian brains
persists, as indicated by the numerous studies that investigate possible correlations of hu-
man intelligence with larger cell counts (Herculano-Houzel, 2009), cortical thickness (Menary
et al., 2013; Hopkins et al., 2019), increased cortical folding (Gregory et al., 2016) or den-
dritic size (Galakhova et al., 2022). However, despite extensive endeavors to unravel its
mysteries, numerous aspects of our unique characteristics remain elusive. While there may
well be other factors at play in defining human intelligence, in this study we demonstrate
that the shapes of dendrites are an important indicator of network complexity that cannot
be disregarded in our quest to identify what makes us human.

Ramon y Cajal sparked the intriguing question of the possible presence of distinctive
structural characteristics in human neurons that contribute to their optimal functioning
when compared to neurons in other species. Numerous studies have examined the unique
functional, molecular, and structural features of human neurons (DeFelipe et al., 2002). How-
ever, it’s only recently that significant progress has been made in addressing the knowledge
gap concerning distinctive features of human neurons by integrating multimodal datasets
that encompass single neuron morphologies, neurochemistry, electrophysiology, and tran-
scriptomics (Beaulieu-Laroche et al., 2021; Berg et al., 2021; Bakken et al., 2021; Kalmbach
et al., 2021). Several laboratories (Mohan et al., 2015; Deitcher et al., 2017; Benavides-
Piccione et al., 2019; Berg et al., 2021) have contributed valuable insights into the structural
properties of human neurons by generating morphological reconstructions. In parallel, de-
tailed electron microscopy (EM) reconstructions of human brain tissue (Rollenhagen et al.,
2020; Cano-Astorga et al., 2021; Loomba et al., 2022; Cano-Astorga et al., 2023) have pro-
vided important information regarding the composition and connectivity properties of human
neurons. These recent advancements in data generation are enabling a more comprehensive
exploration of the intricate structural properties of human neurons and their potential im-
plications for neural function.
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In this study, we leveraged these invaluable resources to create a large collection of neu-
rons, normalized with respect to orthogonal factors, such as age, brain region and cortical
thickness. Our primary focus was the comparative analysis of human and mouse pyrami-
dal cells, specifically within layer 2/3 of the human association temporal cortex (which is
homologous to the temporal association cortex in mice). Through a meticulous morphologi-
cal investigation, we corroborated previous findings (Mohan et al., 2015; Benavides-Piccione
et al., 2019) indicating that human neurons exhibit greater total length and extend further
from the soma. Additionally, our topological analysis (Kanari et al., 2018) unveiled a dis-
tinctive pattern of high branching density surrounding the soma in human neurons, a trait
absent in the mouse cortical dendrites. These results were found to be consistent across
other cortical layers (e.g., layer 5) and brain regions (e.g., hippocampus), implying that this
topological difference may be a universal feature distinguishing human neuron morphologies
from those of rodents.

Having established that size scaling, whether uniform or not, fails to adequately account
for the observed topological differences, we embarked on a thorough investigation to unravel
the underlying factors and discern the potential functional significance of these fundamental
distinctions between species in these cortical areas. An assiduous analysis of the anatomical
properties of the cortex, based on dense tissue reconstructions (Loomba et al., 2022) and
detailed anatomical studies (DeFelipe et al., 2002; Benavides-Piccione et al., 2002) indicated a
significantly lower cell density in the human cortex, leading to greater inter-neuron distances,
with the average closest neighbor distance between human neurons being almost twice that
in the mouse. This distinctive property proved pivotal in elucidating the observed topological
disparities.

In order to maintain dendritic density within the cortical tissue, despite the greater inter-
neuronal distances, individual neurons must possess greater dendritic length. This hypothesis
was initially proposed based on old histological studies (by Franz Nissl and Constantin Von
Economo), suggesting that the wider separation of neurons in humans, compared to other
species, could indicate a higher level of refinement in the connections between neurons (DeFe-
lipe, 2011). However, a direct correlation between neuronal density and dendritic complexity
was not established at that time. In our current study, we demonstrate this direct relation
between neuron density and dendritic length. Moreover, the distribution of additional den-
dritic branches in close proximity to the soma confers the advantageous ability to fill the
inter-neuronal space, while preserving the connection probability between neurons. Further-
more, our investigation revealed that the combination of lower neuronal density and greater
dendritic complexity resulted in a considerable increase in the number of simplices (Size-
more et al., 2016; Reimann et al., 2017) within human networks, suggesting the presence of
abundant, strongly connected sub-networks within the human cerebral cortex.

The findings of our study suggest that a fundamental geometric principle underlies the
observed variations in neuronal characteristics, which in turn has significant implications
for the structural organization of human networks. Specifically, human networks exhibit a
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preference for greater complexity of individual cells, as opposed to the greater neuron density
observed in mouse networks. This seemingly straightforward yet powerful distinction raises
an intriguing question: does the augmentation of complexity within network nodes (i.e.
dendrites) confer a cognitive advantage compared to increasing the number of nodes (i.e.
neurons)? While the necessary data to fully answer this question are not readily available,
it is reasonable to speculate that the combination of highly complex dendrites and strongly
connected networks contributes to the high capacity for information processing of the human
brain. These findings shed light on mechanisms possibly underlying the exceptional cognitive
abilities exhibited by humans and highlight the significance of considering the interplay
between neuronal complexity and network organization in understanding brain function.

Results

Human cortex has lower neuronal density and larger inter-neuron
distances

Contrary to previous assumptions, the size of the brain is not a proxy for the number of neu-
rons it contains (Herculano-Houzel, 2009). In particular, despite the increase in cell counts
observed in the human brain (DeFelipe et al., 2002), the lower neuron density in the hu-
man cortex (=~ 25700/mm?) compared to the mouse cortex (=~ 137600/mm?) challenges this
notion. Another important difference is the significantly higher proportion of interneurons,
comprising 30% of human neurons compared to a mere 12% in the mouse (DeFelipe, 2011;
Loomba et al., 2022).

In order to investigate the effect of lower neuron density on the spatial distribution of
neurons, we computed the distance between the cells, assuming a uniform distribution of
neurons within a cortical layer. The closest neighbor distance between human neurons is
~ 19um, which is nearly twice that of mice at &~ 11um (see Methods: Computation of inter-
neuron distances, Fig 1B). This difference is more striking when restricted to pyramidal
cells (closest neighbor pyramidal cell distance is ~ 21.3um in human versus ~ 11.5um in
mouse), as opposed to the distance between interneurons, which is ~ 28.5um in human
versus ~ 22um in mouse, due to the higher proportion of interneurons in the human cortex
(Fig 1E).

We then computed the expected densities of dendritic branches within the tissue of the
two species. For this experiment, we used the number of synapses (11.8 x 10® /mm? in human
versus 26.56 x 108 /mm? in mouse) within a volume of 1mm? of the cortex (DeFelipe et al.,
2002) and the reported synaptic densities (Loomba et al., 2022), 0.88/um in human versus
2.15/pm in mouse). This analysis revealed that the anticipated total length of dendrites per
cubic millimeter is comparable between the two species, with human dendrites measuring
~ 1340m/mm? compared to ~ 1240m/mm? in mice (Fig 1C), despite their significant dif-
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Figure 1: Comparative analysis of network architecture. A. Lower neuron density in human
cortex leads to increased inter-neuron distances. B. The minimum distance between a pair of
neurons is two times greater in humans. C. The density of dendritic branches within the cortical
column is preserved between species. D. Due to the higher percentage of interneurons and lower
neuron density, pyramidal cells are sparser in humans. E. The average closest neighbor distances
between human and mouse neurons are much more striking in pyramidal cells (top) compared to
interneurons (bottom), due to the higher proportion of interneurons in the human cortex.

ferences in cell density (25.7K neurons /mm? in humans versus 137.6K neurons /mm? in
mouse).

Layer 2 and 3 human pyramidal cells have larger dendrites and
higher dendritic density around the soma

A comprehensive comparative analysis of morphological characteristics between the pyrami-
dal cells of cortical layers 2 and 3 of the two species revealed profound differences between
human and mouse neurons and confirmed findings reported in previous studies (Deitcher
et al., 2017; Benavides-Piccione et al., 2019). We collected morphologies from diverse sources
(Mohan et al., 2015; Deitcher et al., 2017; Benavides-Piccione et al., 2019; Berg et al., 2021).
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To ensure the coherence of the datasets, we conducted rigorous assessments to determine if
the variation between datasets from different sources was comparable to the variation ob-
served within each individual group. Neurons were selected exclusively from analogous brain
regions and within comparable age ranges. The datasets employed for our analysis consisted
of mouse and human pyramidal cells (see Fig 2 from the temporal cortex (layers 2, 3 and
5) and hippocampus and interneurons from the layers 2 and 3 cortex (see SI: Datasets).
Initially, we focused on pyramidal cells from layers 2 and 3.

Human pyramidal cells are larger, evidenced by their increased total lengths both in api-
cal (5975 £ 2697um in human apical dendrites, versus 2647 £ 1047um in mice) and basal
dendrites (5616+4000um in human basal dendrites, versus 3127+1047um in mice). The sim-
ilar dendritic density of the two species, in combination with the significantly lower neuron
densities (see Human cortex has lower neuronal density and larger inter-neuron distances),
explains the observed greater total length of human dendrites (11600um in human versus
5700pm in mouse). In addition, human neurons extend to larger distances (698 + 276um)
compared to mouse (349 £ 96um). These differences can be attributed to the increased
thickness of the human cortex (2.2 times larger) and the considerably greater thickness of
layer 2/3 (4.5 times larger than that of mice) in comparison to the mouse cortex. Addition-
ally, human apical dendrites possess more branches (53 4 19 in humans, versus 35 4+ 11 in
mice) and exhibit greater maximum diameters (8.5um in humans, versus 5.9um in mice) but
smaller overall average diameters (0.68m in human, versus 0.76m in mice). The detailed
morphological analysis is summarized in Tables S1-S3. The comprehensive morphological
analysis uncovered a correlation between neuronal size and cortical depth.

To address this depth effect, cells from different cortical depths were paired with their
closest counterparts, ensuring the normalization of cortical depth for subsequent analyses
(see Fig 2D). The topological morphology descriptor (TMD, (Kanari et al., 2018)), which
encodes the topology of branches at different path distances from the soma, was used to
study how branches are distributed in the two species. The extracted topological barcodes
of the human (see Fig 6) and mouse (see Fig 7) pyramidal cells unveiled a fundamental
difference in their branching patterns (Fig 2G). In the vicinity of the soma, human dendrites
exhibit a higher density of branches (Fig 2E), which were also found to be longer than their
mouse counterparts. Specifically, dendritic branches of human pyramidal cells start closer
to the soma (200 — 400um, Fig 2F) but extend to larger radial distances, thus conferring a
distinct topological profile of longer branches close to the soma to human neurons.

Scaling laws cannot sufficiently explain species-specific phenotypes

We then investigated whether a scaling law might determine the relationship between the
dendrites of the two species. Based on the observed variations in neuron size (Beaulieu-
Laroche et al., 2021) and the conserved transcriptomic features (Hodge et al., 2019) across
different species, the existence of a scaling law governing these differences has been hypoth-
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Figure 2: Comparative topological analysis of layer 2 and 3 cortical pyramidal cells re-
veals higher branching density around the soma in humans than in mice. A. Schematic
representation of the population comparison approach. B. To ensure accurate comparisons, a
process to match cortical depths between the two species was implemented. C. Exemplary recon-
structions of layer 2 and 3 cortical pyramidal cells in humans. D. Exemplary reconstructions of
layer 2 and 3 cortical pyramidal cells in mice. E. The topological analysis revealed significant differ-
ences in branching density between human and mouse pyramidal cells, particularly in the vicinity
of the soma, where human pyramidal cells exhibited more (left) and longer (right) branches. F.
Example morphologies of human (top) and mouse (bottom). Circles of the same diameter around
the soma highlight the difference in branching within this region. G. Zoom-in of the difference in
persistence images around the soma indicating that the area of maximum difference is localized at
200 — 500pm.

esized. Single-nucleus RNA-sequencing analysis conducted in both species (Hodge et al.,
2019; Berg et al., 2021; Bakken et al., 2021) demonstrated a conserved identity of molecular
cell types, with expected varied characteristics within each type, suggesting a similar trend
may be anticipated in terms of morphological types.

In an attempt to identify a potential scaling law, we discovered that the distinct topolog-
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Figure 3: Scaling laws cannot sufficiently explain species-specific phenotypes. A.
Schematic representation of the scaling hypothesis to explore the feasibility of a suitable scal-
ing law. B. Schematic of the scaled cortical thickness between the two species. C. The UMAP
embedding of the topological representations (normalized to total extents) of human (teal) and
mouse (red) neurons shows a distinction between the two species. D. Comparison of computed
optimized scaling. Neither uniform (red curve, left) nor non-uniform (contour, right) scaling can
explain experimental data. E. Persistence diagrams represent the start and end radial distances
of branches from the soma. Gaussian kernels (3 centers) are used to approximate the density of
topological branching within the persistence diagrams (in gray) of the two species. F. The optimal
transformations of the three Gaussian kernels to convert the normalized persistence diagrams from
mouse to human are not aligned, indicating the absence of a consistence transformation between
the species.

ical characteristics of human cells prevent the formulation of a simplistic description of the
interspecies differences. The high density of dendritic branches near the somata of human
neurons, combined with relatively comparable branch numbers at greater distances from the
soma, necessitates a more complex description to elucidate the observed disparities. Human
and mouse dendrites exhibit significant differences that cannot be reconciled by a simple
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scaling law. A UMAP embedding (Mclnnes et al., 2018) of the human and mouse topologi-
cal barcodes, appropriately scaled to compensate for the observed differences in the cortical
thickness between the two species,(Fig 3C) demonstrates that the two species are clearly
distinct. Therefore, characteristics beyond relative sizing should be taken into account in a
comprehensive description of the species differences.

By employing an optimization algorithm to minimize the distances between mouse and
human persistence barcodes, we showed that neither uniform nor non-uniform scaling (see
Fig 3D, Methods: Scaling optimization) could adequately fit the experimental data. By
approximating the persistence diagrams by a Gaussian kernel (three centers, Fig 3E), we
demonstrated that the distinct density patterns observed at different distances from the
soma are specific to each species, a property that explains why a simple scaling law cannot
sufficiently approximate the data (Fig 3F).

Topological profiles of pyramidal cells show species-specific mor-
phological traits that are universal in multiple brain regions

The topological analysis was generalized to other cortical layers (layer 5) and brain regions
(hippocampus) for which data were available. The topological examination of pyramidal cells
from the layer 5 temporal cortex revealed the persistence of observed topological differences
in deeper cortical layers. The dendritic branches of layer 5 human pyramidal (Fig 8) cells
exhibited a higher density in proximity to the soma, with branches commencing earlier
and extending further away from the soma than in mouse, confirming that the observed
topological profiles of human cells extend to neurons beyond layers 2 and 3.

Remarkably, these results generalize to other brain regions. Data obtained from Bena-
vides et al (Benavides-Piccione et al., 2019) in the mouse and human hippocampus (Fig 8)
demonstrated a similar pattern. This finding is particularly intriguing as it highlights a
distinct single-cell characteristic that serves as a signature feature of human cells, with high
branch densities localized at 200 — 500um around neuronal somata.

A topological analysis was also performed on the basal dendrites of interneurons in layers
2 and 3 for human and mouse (Fig 9). The results of this analysis demonstrated that the
observed topological differences between the two species persist in the dendrites of interneu-
rons (Fig 9). Specifically, we observed a higher density of dendritic branches surrounding
the soma of human interneurons, similar to the pyramidal cells. However, these differences
were not as significant as in the pyramidal cells, with fewer branches that extend to smaller
distances from the soma than in pyramidal cells.

This distinct topological pattern highlights a clear differentiation between pyramidal cells
and interneurons within the cortical circuitry. These findings further emphasize the com-
plexity and diversity of neuronal architecture in the human brain and suggest that different
cell types contribute to the overall network organization in distinctive ways.
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Increased memory capacity stems from increased dendritic com-
plexity

The natural question that follows is whether the observed structural differences confer a
computational advantage to the human brain. Numerous studies have supported the im-
portance of dendritic complexity for computational capacity (Segev, 1998; Koch and Segev,
2000; Hausser and Mel, 2003; Larkum, 2022). To address this question, we build upon the
work by Poirazi and Mel (Poirazi and Mel, 2001) by calculating the anticipated memory
capacity for a non-linear branching dendrite and comparing it with its topological complex-
ity (Fig 10). Memory capacity is defined as the number of possible combinations between
the inputs of the dendrite and its non-linear components (see Methods Memory capacity).
Topological complexity, in this context, refers to the entropy of bar lengths within the per-
sistence barcode of a neuron (see Methods: Topological analysis). We observed that memory
capacity is correlated with topological complexity (Fig 10), as anticipated by the increased
number of branches, enabling the sampling of a larger combination space for the synaptic
inputs. The topological complexity of human pyramidal cells is greater than that in mice
by a factor of 1.8, resulting in a corresponding enhancement in memory capacity by a factor
of 1.7. These findings suggest that dendritic complexity serves as a suitable indicator for
predicting the expected memory capacity of individual neurons.

Human pyramidal cells generate strongly connected subnetworks

Our study also delved into the influence of dendritic topology and neuron density on the net-
works in human and mouse brains, exhibiting significant differences between the two species.
Based on neuron densities, we computed the number of neurons at varying distances from a
central neuron (Fig 4A-B). This analysis revealed a significantly lower number of neighboring
neurons surrounding human somata than in mice. This difference in the predicted number
of neighbors is especially remarkable within the range of 200 — 500um, a property that is
expected to highly influence the connection probability between neurons.

A computation of pairwise connectivity at varying distances between pre-synaptic and
post-synaptic cells (Fig 4C) disclosed a higher number of appositions, i.e., touches that can
potentially become synapses, in human cells than in mouse cells. Interestingly, when a
similar analysis was conducted on mouse cells scaled to twice their original extents, fewer
appositions were observed, an effect that can be attributed to the increased empty space
between branches. Hence, the spatial arrangement of branches and their topological organi-
zation around the soma are crucial factors in neuronal connectivity. The higher perisomatic
branch density seems to be an essential feature to ensure sufficient connectivity between
pairs of human neurons, as computed in (Hunt et al., 2022), compensating for the smaller
number of neighbors around a neuron than in mice.

In order to investigate the combined effect of neuronal density and morphology on the
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Figure 4: Human pyramidal cells generate strongly connected subnetworks. A. Grid
illustrating differences in neuron density in human (teal) and mouse (red). Concentric spheres
surrounding a central neuron portray the cell counts presented in (B). B. Predicted number of
neighbors. A cortical layer 2/3 of dimensions 1mmaz1mm was simulated for the respective cortical
thickness of mouse (235um) and human (1070um) and the respective neuron counts for mouse
(28K) and human (18K). The number of neurons at different distances (0 — 1000pum) from a
central neuron is computed. Insert reports total cell counts. C. Number of pairwise appositions
between human (teal), mouse (red) and scaled mouse (deep red) pyramidal cells. Insert illustrates
apposition between a human pre-synaptic axon and the post-synaptic dendrite. D. Example of a
five-simplex in undirected and directed graphs. E. Distribution of simplices of different dimensions
for pyramidal cells (top) and interneurons (bottom). Insert reports cell counts. Note that cell
counts do not reflect cell density due to the differences in the cortical volumes. Log-scale is used
for the number of simplices to depict the 3 orders of magnitude higher simplex counts in human.
F. Density of connectivity matrices for all connections and excitatory, inhibitory sub-graphs. G.
Normalized distributions of simplices, to exhibit the higher dimension of human pyramidal cell
networks, in particular the existence of fully connected sub-graphs with up to 15 nodes.
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connectivity of a network, we generated sample cortical layers 2/3 for both human and mouse.
Using available data on neuronal densities (DeFelipe et al., 2002) and the ratio of excitatory
to inhibitory neurons (Loomba et al., 2022), along with morphological reconstructions for
four different cell types (human pyramidal cells, mouse pyramidal cells, human interneurons,
and mouse interneurons, see SI: Datasets), we calculated the connectivity of the simulated
human and mouse circuits. It is important to note that the connectivity was determined
through a random selection of 50% of the appositions, and thus, no direct comparison can be
made to the connectivity measurements observed in actual biological circuits. We observed
a higher connectivity density, i.e. the ratio between the actual connections in the network
over the maximum number of possible connections, within the human pyramidal cells sub-
graph (Fig 4F) than in the comparable graph for mice. On the other hand, the respective
connectivity density of human interneurons is lower, despite the higher interneuron density in
the human cortex (4.4K/mm? in humans versus 3K /mm?® in mice) and the lower pyramidal
cell density (10K /mm? in human versus 16K /mm? in mouse).

The complexity of the respective networks was assessed by computing the distribution of
directed simplices (Reimann et al., 2017). Simplices provide a comprehensive representation
of fully connected subgraphs within the networks (Fig 4D), combining information about the
density and the degree distribution of the graphs and represent network hubs that are related
to modulation of cortical dynamics (Gal et al., 2021). Furthermore, it is worth noting that
higher-dimensional simplices are associated with increased robustness in networks (Nolte
et al., 2019), since information can be efficiently transmitted in a specific direction, as all
edges within the simplices are aligned to transmit information in the same direction.

In particular, we compared the distributions of directed simplices in the human and
mouse networks of pyramidal cells and interneurons. Surprisingly, despite the lower neuronal
density observed in the human layer 2/3 cortex, the sub-network of pyramidal cells exhibited
a complex connectivity pattern, leading to the formation of higher-dimensional simplices.
Specifically, in the human network, we observed simplices of dimension 15, whereas, in the
mouse network, the dimension was limited to 9 (Fig 4E,G). The number of simplices in the
human network was approximately three orders of magnitude larger compared to the mouse
network. These findings suggest that the human cortical network displays a greater degree
of complexity than its mouse counterpart, despite the lower neuronal density. These results
do not generalize to the network of interneurons. The I/E ratio is larger in human (30% in
human versus 12% in mouse), however the density of interneurons (cell counts per volume)
is still lower in human (7.7K/mm? in human versus 16.5K/mm?® in mouse). In addition,
because the topological complexity of human interneurons is only marginally higher than
mouse (Fig 9D-F), interneuron networks exhibit lower dimensional simplices (9 in humans
versus 11 in mice) and smaller simplex counts, further demonstrating the substantial impact
of cell morphology on the overall network organization.
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Figure 5: Single-cell complexity influences networks complexity. A. The complex dendrites
of human pyramidal cells compensate for the lower neuronal density and the increased inter-neuron
distances to generate networks with numerous highly connected sub-graphs. Network complex-
ity depends on dendritic complexity more strongly than on neuronal density. B. Summary of
differences between human and mouse, for excitatory (pyramidal cells) and inhibitory cells (in-
terneurons). While lower neuronal density in humans leads to greater distances between neurons,
the over-representation of interneurons in humans mitigates this difference. Human pyramidal cells
exhibit significantly higher dendritic complexity than in mice, whereas interneurons display only a
modest increase in complexity. Consequently, the sub-network of human pyramidal cells comprises
substantially more all-to-all connected subgraphs, composed of significantly more nodes, as evi-
denced by the notably higher simplex counts than in mice (5K). On the contrary, the sub-network
of interneurons exhibits somewhat lower simplex counts than in mice.

Cognitive enhancement hypothesis

Despite the greater inter-neuron distances resulting from lower neuron density in human
pyramidal cells, the distinct topology of their dendritic arbors emerges as a mechanism to
establish higher-order interactions, as evidenced by the larger number of higher-dimensional

14


https://doi.org/10.1101/2023.09.11.557170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557170; this version posted September 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

simplices in the network. In contrast, while interneurons exhibit higher densities in human,
their simpler structural characteristics limit their capacity to enhance network complexity
to the same extent. These observations are supported by a balance in inhibition and ex-
citation (Loomba et al., 2022) in the innervation of pyramidal cells in the human cortex.
These findings suggest that the intricate morphology of individual neurons can significantly
influence the properties and characteristics of the networks they contribute to, providing
strong evidence of a direct link between dendritic complexity and the overall structure of
neuronal networks.

Two primary approaches to achieve higher-order complexity in neuronal networks are
commonly proposed: increasing the number of nodes (Jang et al., 2020) or enhancing the
complexity of individual nodes (Zhang and fei Qiao, 2010; Pagkalos et al., 2022). Interest-
ingly, instead of simply adding more nodes, the human brain has evolved to prioritize the
complexity of individual neurons, as observed in the morphological characteristics of human
pyramidal cells. This suggests that the human brain has harnessed the potential of single-
neuron complexity as a mechanism to create and support complex network connectivity,
potentially conferring unique cognitive advantages.

Discussion

Topological analysis of human and mouse neurons revealed significant morphological differ-
ences between the two species. In particular, dendrites of human pyramidal cells exhibit
a higher density of branches around the soma (200 — 500m) than mouse dendrites. The
observed topological differences persist across cortical layers (layers 2, 3 and 5) and brain
regions (hippocampus), suggesting they are a defining feature of human cells. We found
that the distinctive perisomatic branching pattern exhibited by human dendrites serves as
an effective compensatory mechanism for the increased inter-neuron distance, in order to
preserve the density of dendritic processes and the connectivity between neurons.

Furthermore, the higher dendritic complexity in humans contributes to substantially
higher numbers and dimensions of simplices in networks of human pyramidal cells, suggesting
that dendritic morphology has considerable influence on how individual cells interconnect to
form a network. The increased structural complexity generated by the sophisticated shapes
of dendrites suggests that a network is not merely a simple sum of its individual compo-
nents. The intricate branching patterns of human pyramidal cells potentially enable more
robust and coordinated neural computations through the formation of highly coordinated
sub-networks, represented by higher dimensional simplices. This result reinforces the view
that dendritic complexity plays a crucial role in biological networks (Héausser and Mel, 2003;
Larkum, 2022).

Our analysis substantiates a compelling hypothesis that challenges the conventional no-
tion of increasing node density as a means of optimizing the computational capacity of
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networks. Instead, we propose that enhancing node complexity, as observed in the distinct
morphological features of human neurons, may be an alternative mechanism for optimiz-
ing network performance. The biological mechanism by which increased node complexity
enhances the computational capabilities of a network remains an intriguing open question.
However, it is not difficult to imagine that the simultaneous greater memory capacity within
individual neurons and the substantially higher simplex counts should result in networks
with higher computational power. As our understanding of the human neocortex continues
to evolve, we anticipate that future models of the human cortex will integrate comprehen-
sive information about cell types, transcriptomic and morpho-electrical relationships (Bakken
et al., 2021; Berg et al., 2021), and preferential connectivity rules (Kalmbach et al., 2021;
Loomba et al., 2022) to create a more accurate understanding of the human brain.

The interplay between interneurons and pyramidal cells, as well as the functional role
of each component within the network, is an important aspect that warrants further in-
vestigation. With the discovery of a larger proportion of interneurons in the human brain
than in mouse, there has been speculation that they may have unforeseen functional sig-
nificance (Loomba et al., 2022). Our findings suggest that the simpler dendritic shapes of
interneurons may necessitate a higher abundance of these cells in order to maintain the
balance between excitation and inhibition within the network. Moreover, the sparsity of
connections within the interneuron subnetwork implies that their role might primarily in-
volve regulating the highly connected network of pyramidal cells. However, due to the great
diversity in interneuron shapes (Chartrand et al., 2022; Lee et al., 2022) and the specific
roles of different types in the functionality of human networks (Yao et al., 2021) a more de-
tailed analysis is required. Therefore, exploring the connectivity patterns within the overall
network of both excitatory and inhibitory cells, rather than focusing solely on their respec-
tive subnetworks, would provide valuable insights into the necessity for a greater number of
interneurons and their specific contributions to network dynamics (Yao et al., 2021).

Methods

Topological analysis

Algebraic topology provides mathematical tools to characterize geometric shapes by encoding
features that persist across length scales. The Topological Morphology Descriptor (TMD,
(Kanari et al., 2018)) represents the branching structure of trees as a persistence barcode,
encoding the start and end distances from the soma of each branch in the underlying structure
as an interval in the real line.

Given a rooted tree T with a set of N branches that consist of terminations or leaves [
and intermediate branching points or bifurcations b, and given a real-valued function f on
the nodes of the tree, such as the Euclidean (or path) distance from the root R, the TMD
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algorithm generates a persistence barcode PB:

PB = {(b,t;) | i < N} (1)

Each bar (b;,t;) in the persistence barcode associates a branch in the tree 7" with a pair
of real numbers: if the i**®*" branch has bifurcation b and leaf [, then b; = f(b) and t; = f(I).

In brief, the persistence barcode is a set of intervals that encode the values of the function
f at the start b and the end [ of each branch. An equivalent representation of the persistence
barcode is the corresponding persistence diagram P D, in which each interval of the barcode
is encoded by the pair of its endpoints, seen as a point in the real plane.

There are many well known methods to generate vectorizations of persistence barcodes,
from which one can then compute various statistics. For example, the persistence dia-
gram can be converted to a finite-dimensional vector representation, the persistence image
PI (Adams et al., 2015), which is essentially a sum of Gaussian kernels centered around the
points in the persistence diagram.

Another useful vectorization of a persistence diagram or barcode is its topological en-
tropy (Chintakunta et al., 2015), which is computed from the lengths of the bars:

N
l; l;
B(PB) = =37 -loa(y) )
where [; = |t; — b;| is the length of each bar and L = Zf [; is the total length of all bars.

Topological scaling

The TMD associates a persistence diagram to any tree and thus to any reconstructed neuron
morphology. Re-scaling a tree transforms the associated persistence diagram as follows. If
T is a tree with a corresponding persistence barcode PB = {(b;,¢;) | i < N'} given by the
affine function f, the tree 7" is obtained from 7' by linear, or uniform, scaling by a factor
a > 0 of all the branches, then its associated persistence barcode PB’ is

Note that the persistence entropy is scale-invariant as shown:

E(a-PB):—ZZ:lLi-log(z:l[i)z—Z%'ZOQ(%):E(PB) (3)

7 7

If T is a tree with a corresponding persistence barcode PB as above, and the tree 7"
is obtained from T by scaling by a pair of factors a, 5 > 0 of all the branches, so that
the bifurcations of the branches are scaled by a and the leaves by (3, then its associated
persistence barcode PB” is
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PB"={(a-b;,f-t;) |i < N}.

Scaling optimization

In order to evaluate the scaling hypothesis, we have designed two experiments: the first one
assumes uniform scaling through the morphology, and the second one non-uniform scaling
as described above.

As a measure of the distance between two populations of cells, we computed the sum of
the differences between the persistence images of the two populations, where the persistence
image of a population is the sum of the persistence images of each cell in the population.

In the case of uniform scaling, we sought an optimal scaling factor a > 0 that transforms
the population of mouse cells to human cells, minimizing the distance between the two
populations.

For the non-uniform scaling, we sought for two independent scaling factors o > 0 and
B > 0 to transform the population of mouse cells to human cells, minimizing the distance
between the two populations.

In both cases, a gradient descent approach was implemented to identify the optimal
factors. The results are presented in Fig 3D, along with the respective experimental data for
comparison. Even though the identified optimal factors minimize the topological distances
(difference between persistence images) between the two populations, they cannot capture
the individual data points.

Computation of inter-neuron distances

The inter-neuron distances were computed in two ways: by a mathematical formula and by
a simulation of points generated according to the selected density and the respective spatial
dimension. For the mathematical formula, we used equation (4) from (Bansal and Ardell,
1971).

< R, >=0.554 x N; /3 (4)

where N, = % is defined as the number of particles N per unit volume V.

The result was confirmed by the computational generation of 100 instances of uniform
point processes and computing the average minimum distance within each set of points. The
reported results correspond to the distance computed by the simulation, but the computation
using the mathematical formula (4) yielded the same values.

18


https://doi.org/10.1101/2023.09.11.557170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557170; this version posted September 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Density of dendritic branches

Based on the total number of synapses within a cortical volume S, and the density of
synapses dsy, on the dendrites, the density dgenq of dendritic branches within a cortical
volume is computed as:

Sy

dsyn

(5)

ddend =
Similarly, the density of axons can be computed by the bouton density dpouson:

daa:on - Sv (6)

dbouton * Nsynyouton

However, due to inconclusive experimental data about the number 74y, outon 0f synapses
that correspond to each bouton, we were unable to provide an accurate measurement for the
respective axon density.

In addition, the measurements of axonal lengths and bouton densities for individual
neurons are difficult to assess experimentally, due to the inability of staining techniques to
accurately stain the axonal processes that are further away from the soma. Therefore, the
analysis of axonal data should be re-assessed once more accurate experimental data become
available.

Memory capacity

In (Poirazi and Mel, 2001) the memory capacity is computed based on two different models:
the linear model, which assumes dendritic inputs are summed linearly at the neuronal soma,
and the non-linear model, which assumes the dendritic branches integrate the signal non-
linearly. Independent of the choice of non-linearity introduced on the dendrites, memory
capacity increases significantly if non-linearities are taken into account.

Given a dendrite with m branches, each branch contains k excitatory inputs, thus s = mk
synaptic contacts and a set of d dendritic inputs, the memory capacity can be computed as
follows.

For the linear model, the computed memory capacity is:

-1
€, = 2log, ( + ) ™)

Note that in this case, the number of branches m and their synaptic length £ are not
relevant for the computation of the memory capacity.
For the non-linear model, the computed memory capacity is:

k+d—1 _
CN:2l092(< k )+m 1)

m
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On the contrary, for the non-linear model, the distribution of synaptic lengths k& on the
m branches plays a crucial role in the memory capacity of the dendrite. As shown in Fig 10B
the memory capacity increases with the number of branches, due to the increased number
of ways to combine the dendritic inputs. The number of branches here corresponds to the
number of computational subunits in the dendritic tree (Polsky et al., 2004), rather than the
physical branches of the tree.

Computation of appositions

The appositions between a pair of neurons were quantified as the number of ” contact points”
where the pre-synaptic axons approach the post-synaptic dendrites within a distance of
2pum. It is important to note that these contact points do not directly represent synaptic
connections, but rather indicate potential sites for synapse formation. Therefore the results
presented on appositions should be interpreted as a measure of the likelihood of synaptic
connections between neurons.

The detailed methodology for the computation of the appositions is described in (Reimann
et al., 2017).

Computation of simplex distribution

Recent advances in algebraic topology (Sizemore et al., 2016; Reimann et al., 2017) have in-
troduced a powerful tool for comprehending network complexity - the computation of cliques
and cavities formed by the underlying graph. This approach allows for a deeper understand-
ing of the intricate connections and structures within networks, enabling researchers to unveil
hidden patterns and gain insights into their organizational principles.

The dimension of a clique in a network is one less than the number of neurons of which
it is composed; higher dimensions indicate higher complexity. In directed graphs, directed
cliques are of particular significance as they comprise a single source neuron and a single
sink neuron, representing a distinct pattern of connectivity, with the potential to influence
the flow of activity within the network, making it an important consideration in network
analysis (Perin et al., 2011; Nolte et al., 2019).

To bring the connection probability within a reasonable range, we applied a random re-
duction of 50% to the connectivity matrix formed by the appositions between neurons. This
adjustment aimed to ensure a more realistic representation of the network by reducing exces-
sive connections. The mouse and human networks were partitioned into distinct excitatory
and inhibitory subnetworks. For each subnetwork, we computed the connection probability
and analyzed the distribution of simplices, allowing us to assess the network characteristics
and topological complexity specific to each subpopulation.
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Data availability

The data and the code used in this study will become available upon request after publication.
The topological analysis was performed using https://github.com/BlueBrain/TMD. The
morphological analysis was performed using https://github.com/BlueBrain/NeuroM.
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Supplementary

Dataset

Table S1: Average morphometrics for basal reconstructions of layers 2 and 3 for mouse (M) and

Mouse layer 2/3 Pyramidal cells from temporal association cortex: De Kock
Mouse layer 2/3 Interneurons from cortex: LNMC, neuromorpho.org

Mouse layer Pyramidal cells from temporal association cortex: De Kock, LNMC
Mouse hippocampus Pyramidal cells from temporal association cortex: Behavides

Human layer 2/3 Pyramidal cells from temporal association cortex: De Kock, Allen
Institute

Human layer 2/3 Interneurons from temporal association cortex: LNMC, Allen Insti-
tute

Human layer Pyramidal cells from temporal association cortex: De Kock

Human hippocampus Pyramidal cells from temporal association cortex: Behavides

HL23PC | HL23IN | ML23PC | ML23IN
Num sections 58.92 37.77 47.29 41.35
Num bif 26.30 16.36 19.34 18.52
Num leaves 32.12 21.36 26.89 23.47
Total length 5616.85 | 3418.25 | 3127.66 | 2376.06
Section length 93.13 94.02 65.86 63.46
Mean radii 0.32 0.32 0.34 0.37
Section term length | 146.60 142.65 93.99 79.94
Section bif length 25.57 28.32 26.78 36.32
Branch orders 5.05 4.85 4.61 4.78
Path distances 144.89 139.99 107.98 120.63
Radial distances 109.79 106.38 79.26 85.11
Section volume 35.88 43.60 25.19 38.01
Section area 186.18 197.52 140.04 153.98

human (H) pyramidal cells (PC) and interneurons (IN).
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HL23PC | HL23IN | ML23PC | ML23IN
Num sections 52.60 0.00 36.71 0.00
Num bif 25.32 0.00 16.76 0.00
Num leaves 26.93 0.00 18.92 0.00
Total length 5975.23 | 0.00 2647.04 | 0.00
Section length 112.98 0.00 73.04 0.00
Mean radii 0.34 0.00 0.38 0.00
Section term length | 165.57 0.00 98.19 0.00
Section bif length 57.68 0.00 47.77 0.00
Branch orders 11.66 0.00 8.39 0.00
Path distances 299.20 0.00 235.09 0.00
Radial distances 242.67 0.00 184.45 0.00
Section volume 52.41 0.00 36.17 0.00
Section area 242.42 0.00 172.63 0.00

Table S2: Average morphometrics for apical reconstructions of layers 2 and 3 for mouse (M) and
human (H) pyramidal cells (PC) and interneurons (IN).

HL23PC | HL23IN | ML23PC | ML23IN
Num sections 29.07 181.31 1.48 292.31
Num bif 37.80 99.14 1.17 141.20
Num leaves 15.06 91.16 1.24 148.21
Total length 3894.02 | 11923.42 | 337.63 14061.91
Section length 115.98 73.17 279.72 51.42
Mean radii 0.21 0.10 0.26 0.07
Section term length | 134.96 85.68 280.25 62.11
Section bif length 80.63 57.54 128.20 40.33
Branch orders 11.02 16.60 1.17 20.42
Path distances 226.07 406.96 297.93 355.17
Radial distances 150.25 167.54 272.67 128.09
Section volume 58.03 3.51 68.38 1.06
Section area 208.35 47.31 464.91 21.16

Table S3: Average morphometrics for axonal reconstructions of layers 2 and 3 for mouse (M) and
human (H) pyramidal cells (PC) and interneurons (IN).
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HL23PC | HL23IN | ML23PC | ML23IN

Soma volume 2384.02 | 2567.37 | 1522.12 220.68
Soma surface area | 800.26 757.74 630.33 224.12
Soma radius 7.66 7.60 7.03 3.93

Max radial dist 837.61 518.19 401.93 383.39
Mean width 681.17 616.41 503.53 467.25
Mean height 1057.46 | 751.70 | 474.60 517.88
Mean depth 254.79 171.96 123.71 208.20

Table S3: Average morphometrics for neuronal reconstructions of layers 2 and 3 for mouse (M)
and human (H) pyramidal cells (PC) and interneurons (IN).
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Figure 6: Topological morphology descriptor of an exemplar human layer 2 - 3 pyramidal
cell. A. Apical dendrite, color-coded according to persistence components as illustrated in B.
B. Persistence barcode, colormap from largest (red) to smallest branches (blue). C. Persistence
diagram with the same color-code. D. Persistence image indicating areas of high density of branches
(red) at different path distances from the soma (0,0).
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Figure 7: Topological morphology descriptor of an exemplar mouse layer 2 - 3 pyramidal
cell. A. Apical dendrite, color-coded according to persistence components as illustrated in B.
B. Persistence barcode, colormap from largest (red) to smallest branches (blue). C. Persistence
diagram with the same color code. D. Persistence image indicating areas of high density of branches
(red) at different path distances from the soma (0,0).
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Figure 8: Topological analysis of mouse and human pyramidal cells from cortical layers
2, 3, and 5 and hippocampus. Column 1 shows the average persistence images for populations
of human cells from different brain regions in blue. Column 2 shows the average persistence images
for populations of mouse cells from different brain regions in red. Column 3 shows the average
difference between the persistence images of human (blue) and mouse (red) cells from different
brain regions. The topological differences that were observed between human and mouse pyramidal
cells of layers 2 and 3 generalize to different layers and brain regions.
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Figure 9: Topological analysis of mouse and human interneurons from cortical layers
2 and 3. A. Average persistence images for populations of human cells. B. Average persistence
images for populations of mouse cells. C. shows the average difference between the persistence
images of human (blue) and mouse (red) cells. The comparison of topological properties between
pyramidal cells (D-E) and interneurons (F-G) of human (teal) and mouse (red) morphologies show
that branching density is only marginally larger in interneurons (F'), but branch lengths are signif-
icantly larger in human interneurons (G).
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A. Increased dendritic complexity B. Increased memory capacity
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Figure 10: Memory capacity is enhanced by cell complexity. A. Cell complexity is measured
by the topological entropy of the dendrites. Topological entropy is higher (almost twice) in human
cells. B. Memory capacity is computed by the non-linear model in (Poirazi and Mel, 2001) and
depends on the number of branches and their lengths. Memory capacity is higher (almost twice)
in humans.
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