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The human gut microbiota comprises various microorganisms
engaged in intricate interactions among themselves and with the
host, affecting its health. While advancements in omics tech-
nologies have led to the inference of clear associations between
microbiome composition and health conditions, we usually lack
a causal and mechanistic understanding of these associations.
For modeling mechanisms driving the interactions, we simu-
lated the organism’s metabolism using in silico Genome-Scale
Metabolic Models (GEMs). We used multi-objective optimiza-
tion to predict and explain metabolic interactions among gut mi-
crobes and an intestinal epithelial cell. We developed a score
integrating model simulation results to predict the type (compe-
tition, neutralism, mutualism) and quantify the interaction be-
tween several organisms. This framework uncovered a poten-
tial cross-feeding for choline, explaining the predicted mutual-
ism between Lactobacillus rhamnosus GG and the epithelial cell.
Finally, we analyzed a five-organism ecosystem, revealing that a
minimal microbiota can favor the epithelial cell’s maintenance.
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Introduction

The human gut microbiota is a complex ecosystem that sig-
nificantly impacts host health and disease across the life
course (1). Therefore, clarifying its role and associated
mechanisms in shaping health is an essential fundamental
research goal. Environmental omics enable a better under-
standing of this ecosystem by studying its composition and
variation associated with host phenotypes (2). This has led to
identifying bacteria promoting health (e.g., Faecalibacterium
Prausnitzii is depleted in patients with Inflammatory Bowel
disease (3)) or disease (e.g., Class Betaproteobacteria is en-
riched in diabetic individuals (4)). However, correlation does
not imply causality, and each strain’s mode of action is yet to
be understood. Disentangling the impact of bacteria within a
diverse ecosystem structured by heterogeneous environmen-
tal and host factors is challenging.

Gut microbiota metabolism is central to host physiology as
its participation in digestion modulates nutrient availability
to the host (5, 6). Moreover, the cross-talk among bacteria
shapes the ecosystem (7), consequently modulating its func-
tion (8). To investigate mechanistic metabolic interactions
between organisms, computational models are useful tools

(9, 10). Researchers can reconstruct metabolic networks
based on an organism’s complete genome, biochemical
databases, and literature knowledge. Leveraging stoichiom-
etry and thermodynamics information, this network can be
formalized into a Genome-Scale Metabolic Model (GEM),
facilitating the simulation and examination of its metabolic
phenotype (11). Indeed, GEMs predict the metabolic
phenotype in a given condition and explain this prediction
by revealing important nutrients and activated metabolic
pathways (12). Many GEMs are now available (13, 14),
and automated reconstruction processes for microorganisms
have emerged (15-17), paving the way to analyze various
potentially unexplored bacterial metabolic mechanisms.
Simulating the metabolism of individual organisms is a
well-established and extensively employed approach for
expanding fundamental knowledge. For instance, it aids
in closing gaps in metabolic knowledge by identifying
differences between predictions and experimentations (11).
Additionally, this approach contributes to enhancing indus-
trial capacity. An example of this is genetic manipulation,
which boosts the production of molecules of interest (18).
To orient the model toward biologically relevant metabolic
behavior, its biomass production, representing its growth,
is maximized (19), emphasizing phenotypes where the or-
ganism undergoes replication. For a community, this means
maximizing the overall biomass produced by all organisms
in the ecosystem. While interesting, this method favors the
organism with the better yield, possibly outcompeting the
others. We expect a more nuanced compromise in biolog-
ical systems, driven by metabolic trade-offs and resource
competition (20). To avoid this bias, the ecosystem biomass
is generally weighted based on the relative abundance of
each species in a specific condition (e.g., the Microbiome
Modeling Toolbox (21)), aligning their growth rate to their
effective presence in the ecosystem. To go further, Diener
et al. introduced MICOM (22), a framework inferring
the growth rate from relative abundance data, refining the
weights of the ecosystem biomass. This method calibrates
the model to fit observed species proportions inferred from
omics data. Parametrizing the model to better simulate a
known condition allows for satisfactory predictions with
simpler models, but the dependence on environmental data
is troublesome. Here, we aimed to achieve non-parametric
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modeling, striving for accurate predictions through refined
model analysis rather than from model fitting.

We used multi-objective linear programming to predict
and explore potential interactions between several organisms
without restricting ourselves to a unique configuration.
This approach allows for the optimization of independent
objectives, revealing trade-offs between each organism’s
biomass as a Pareto front. This is usually applied in bi-
objective modeling of microbial ecosystems to infer the type
of interaction between bacteria of interest, which is made
accessible through the Metabolic Modeling Toolbox (21).
Here, we deployed a multi-objective modeling framework
to gain further insights into the interaction between gut mi-
crobes and small intestinal epithelial cells. We inferred an
interaction score predicting the type and level of interaction
among organisms within an ecosystem based on the anal-
ysis of the Pareto front. This analysis highlighted known
probiotics when applied to 331 bacterium-enterocyte ecosys-
tems. Furthermore, we delved into the mechanisms under-
lying the mutual interaction between Lactobacillus rhamno-
sus GG (LGG) and the enterocyte, uncovering a potential
cross-feeding relationship involving choline. Finally, we in-
tegrated four bacterial models with the enterocyte model to
explore the intricate metabolic interplays within a more com-
plex ecosystem. In this context, our findings reveal that the
presence of gut bacteria significantly influences and supports
the enterocyte’s objective (i.e., maintenance of the cell with-
out replication).

Results

Scoring metabolic interaction of bacterium-enterocyte
ecosystem models using bi-objective optimization. To
explore metabolic interactions between the human gut and
the microbiota, and quantify them as a score, we built ecosys-
tem models defined as the integration of GEMs of small
intestinal epithelial cells (i.e., enterocyte) and one or sev-
eral bacteria through a pool compartment (Figure 1A). Clas-
sically, metabolic modeling allows the maximization of a
single objective: the growth of the bacteria or the mainte-
nance of the enterocyte (Figure 1B). The plurality of objec-
tives must be addressed when joining several organisms in
an ecosystem. To simulate ecosystem behaviors, we con-
sider that each organism independently maximizes its objec-
tive, shaping the competition and cooperation for available
nutrients (23). It results in a problem one can solve using
multi-objective linear programming. The set of all optimal
solutions for the ecosystem is a Pareto front. It reflects the
trade-offs between all involved biological objectives. Herein,
we advocate that the shape of the Pareto front describes the
nature and level of metabolic interaction between the organ-
isms and can be summarized as a score. As a first approx-
imation, we worked with simple ecosystems consisting of
a single bacterium and the enterocyte. In this context, the
Pareto front comprises two dimensions: one for each objec-
tive. Maximal growths of each organism alone are used to
normalize each axis as they standardize growths under inter-
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action regimes (i.e., studying the interaction between organ-
isms without an influence of the original growth). This trans-
formation is essential to make our interaction score compara-
ble and interpretable between ecosystems built using differ-
ent bacteria. When both objectives negatively or positively
impact the other, both organisms are in competition or mutu-
alism, respectively. When neither objective value is affected
by the other, it is considered neutralism (see Figure 1C to il-
lustrate three representative Pareto front shapes). We propose
an Ecosystem Interaction Score (S) based on the normalized
Pareto front’s Area Under the Curve (AUC). The AUC of the
"non-interaction front," defined by the neutral interaction, is
subtracted from the AUC of the normalized Pareto front. It
results in a positive score for mutualism, a null score for neu-
trality, and a negative score for competition (see Methods for
details).

Interaction score for 331 gut bacterium-enterocyte
ecosystems under three different dietary conditions.
331 strain-level gut bacteria models from the EMBL GEMs
(16) were selected as they were described as gut microbes
based on the Virtual Metabolic Human (VMH) Database
(14). Their pairwise interaction score with the enterocyte
was computed under three nutritional conditions (Figure 1A,
Table S1 for complete results). The first condition, an un-
constrained diet, represents a synthetic environment where
all modeled nutrients are unlimited in the lumen. The other
two conditions, the Western Diet (WD) and the protein diet
(PD), are biologically representative diets. The WD is high
in fat and simple sugars but low in fibers, while the PD is rich
in protein but poorer in fats and simple sugars than the WD
(24) (see Methods). An increased number of non-dominated
points on the Pareto front reveals more factors affecting the
interaction, characterizing its complexity.

Overall, ecosystems had an interaction score close to zero
under the unconstrained diet but exhibited negative and pos-
itive scores under the WD and PD (Figure 2A). This greater
predicted interaction observed in constrained media was ex-
pected, illustrating either the mutual reliance on a common
metabolite leading to competition or the adaptation through
cross-feeding, usually favored in nutrient-limited environ-
ments (25).

The sensitivity of the interaction score to diets is demon-
strated by observed differences in scores between PD and
WD for a given ecosystem. Furthermore, ecosystems with
positive scores generally had an increased score under PD
compared to WD, while those with negative scores showed
a decrease in score under WD compared to PD (Figure 2B).
In other words, the PD appeared to enhance positive interac-
tions between bacteria and the enterocyte, while the WD is
predicted to favor negative interactions.

Further characterization of the Pareto front into “in-
teraction types”. The shapes of the Pareto fronts are more
diverse than depicted in Figure 1C. They can inform us about
the nature of biotic interactions. To leverage this informa-
tion and enrich the metabolic interaction score, we defined
discrete categories as "interaction type" (Figure 2D and see
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Fig. 1. Schematic rationale of the Genome-Scale modeling and its application in the metabolic interaction between two systems within an ecosystem. (A)
Representation of an ecosystem model built from a bacterium (blue) and the enterocyte’s (red) GEMs joined together through a lumen compartment (grey). Arrows represent
metabolic reactions. Black arrows are transport reactions, enabling the transit of metabolites between compartments. Three different diets (unconstrained, western diet (WD)
and protein diet (PD)) were imposed on the ecosystem by defining corresponding dietary constraints (see Methods). (B) Solving a GEM implies identifying its solution space
and optimal solutions when maximizing its objective function, often resumed by its growth rate. The solution space of a bacterium (left) described here in three dimensions
illustrates how the optimal solutions for the bacterium were identified by maximizing its growth. Similarly, the optimal solutions for the enterocyte are identified by maximizing
its cell maintenance (cellular membrane maintenance, proteins and energy production, no replication). Both objectives must be accounted for in an ecosystem model, which
is possible using multi-objective optimization. (C) Schematic representation of three different Pareto fronts and how it can be used to define the ecosystem interaction score
(S). The shape and area of the bi-objective solution space can be used to define competition (left panel), neutralism (center panel, defining the non-interaction front), and

mutualism (right panel). Dotted lines link the added "original growth points" and the strict Pareto front.

Methods). Indeed, a score can be positive but only favoring
one organism, as represented by the interaction types "Fa-
vors bacteria" and "Favors enterocyte.” In some cases, the
presence of the other can favor both organisms, but this ad-
vantage disappears as the other organism gets to maximize
its objective, as observed in "Limited mutualism.” "Compe-
tition," "Neutralism," and "Mutualism" interaction types cor-
respond to the shapes described in Figure 1C.
To determine how S varied based on diet in each interaction
type, we distributed the ratio calculated previously ( 5‘14'%
by interaction types (Figure 2E). Most positive interactions,
specifically those favoring the enterocyte (favors enterocyte,
limited mutualism), were increased in PD. However, mutual-
istic interactions were more important in WD. Interestingly,
the increase of S in WD for the mutualistic ecosystem is not
explained by reaching a higher objective value but because
the interaction partially compensates for the lower objective
value of each organism in WD compared to PD (Table S2).
More than a beneficial effect of WD, this illustrates how lim-
ited resources can increase interactions (25). While WD en-
hanced some interactions favoring bacteria, it mostly favored

competitive interactions.

Integration of metabolic interaction score and type to
predict “Host-beneficial” microbes. The VMH database
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(14) provided the ecological type of the 331 bacterial GEMs.
Microorganisms were categorized into three ecological types:
probiotic, pathogen, commensal, and uncharacterized. Probi-
otics had a significantly higher score compared to pathogens
in PD (Mann-Whitney, p = 0.033) and commensals in WD
(Mann-Whitney, p = 0.040) (Figure 2C). Overall, we ob-
served a tendency for higher scores in known probiotics (Fig-
ure 2C). This result raises interest in some uncharacterized
bacteria displaying a high interaction score with the ente-
rocyte as Cetobacterium somerae ATCC BAA-474 (Spp =
23.64, Swp = 12.10), Klebsiella aerogenes KCTC 2190
Spp =16.92, Sywp = 8.70) or Morganella morganii subsp
morganii KT (Spp = 11.42, Sy p =5.80).
Next, we explored the ecological type distribution among in-
teraction types (Figure 2F). A third of the simulated bacteria
(33%), encompassing all ecological types, were predicted to
have a neutral interaction with the enterocyte. Many bacteria
favored the enterocyte (22%), largely dominated by commen-
sals and uncharacterized bacteria. Ecosystems where the bac-
teria’s growth was favored (20%) contained more pathogens
and probiotics than the ones favoring the enterocyte. 17%
of the bacteria were engaged in a competitive interaction
with the host. Limited and high mutualisms were identified
as the least common interaction types, accounting for only
5% and 2% of the analyzed bacteria, respectively. Probi-
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otics corresponded to half of the mutualistic bacteria (N=6)
with two lactic acid bacteria and a short-chain fatty acid pro-
ducer (Lactobacillus rhamnosus GG, Lactobacillus paraca-
sei ATCC 334, and Bifidobacterium scardovii JCM 12489).
Additionally, unexpected mutualistic interactions were ob-
served for Corynobacterium kroppenstedtii DSM 44385 (cat-
egorized as a pathogen), Barnesiella intestinihominis YIT
11860 (classified as a commensal), and Peptoniphilus in-
dolicus ATCC 29427 (tagged as uncharacterized) with the
enterocyte.

Metabolic exchanges driving mutualism between the
enterocyte and Lactobacillus rhamnosus GG reveal a
potential cross-feeding of choline. Lactobacillus rham-
nosus GG (LGG) is a very well-studied probiotic bacteria.
Among other properties, it shows good adherence to the in-
testinal epithelial layer and supports the survival of intesti-
nal epithelial cells (26). Our computational analysis predicts
LGG to engage in a mutualistic relationship with the host, as
reflected by its interaction scores of 8.68 in WD and 6.60 in
PD. Their Pareto front formed a spike from which the peak
allowed the highest biomass production for both organisms
and, consequently, for the ecosystem (See Table S2). To un-
ravel the underlying mechanisms driving this mutualistic in-
teraction by identifying essential reactions to reach this op-
timum, we sampled 100,000 solutions on the Pareto front
in WD. We focused on exchange reactions that exhibited a
strong correlation (corr > 0.95, Spearman) with the overall
biomass production of the ecosystem (i.e., summed objective
values, here, the peak of the Pareto front), as depicted in Fig-
ure 3A.

The exchange reactions identified through this analysis en-
abled both organisms to reach higher objective values when
interacting, helping to predict valuable nutrients and cross-
feeding pathways. The intricate metabolic interplay within
the ecosystem involves the shared utilization of various
metabolites, contributing to the overall ecosystem function-
ing. For the ecosystem to reach optimal biomass, we pre-
dicted the uptake of many amino acids and dipeptides to be
essential, mainly for the enterocyte. However, the digestion
of leucine-leucine and glycine-phenylalanine dipeptides by
the enterocyte’s enzymes provided the bacteria with leucine
and phenylalanine. Oligoelements and vitamins were more
important for LGG, but the enterocyte uptaked biotin and ri-
boflavin (7) and released them in the blood. The secretion
of choline by LGG was found to be strongly correlated with
its uptake by the enterocyte (corr = 0.96, Figure S2), and
both these transports are associated with a higher biomass
for the ecosystem. Specifically, as illustrated in Figure 3B,
our model predicted that LGG uptakes choline sulfate (1), a
compound found in human food such as plants, algae, and
numerous fungi such as Aspergillus oryzae, a ferment used
for sake, miso, and soy sauce (27, 28). LGG hydrolyzes
choline sulfate (2) in sulfate ions (SO?[), which are useful
for LGG’s growth, and choline, secreted in the intestinal lu-
men. LGG reduces the excess sulfate to HoS (3) and excretes
it in the lumen. The choline, now available in the lumen,
is uptaken by the enterocyte (4). In the enterocyte, the ab-
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sorbed choline transforms into CDP-choline (5) which, along
with diacylglycerol, further converts to phosphatidylcholine.
Phosphatidylcholine is the principal component of cell mem-
branes and participates in lipid metabolism (29), therefore
regarded as an essential brick for cell maintenance.

Choline is an essential nutrient and source of methyl. How-
ever, less than half of the tested populations (adult men and
women) reached the recommended intake (30). Therefore,
it is consistent with the literature to expect its supplementa-
tion, through cross-feeding with LGG, to favor the entero-
cyte’s maintenance. Phosphatidylethanolamine (PE), another
abundant phospholipid (29), was available in excess in the
environment when the enterocyte was simulated on its own.
However, since phosphatidylcholine was limited in availabil-
ity, the enterocyte’s maintenance and PE intake were con-
strained. In the community with LGG, as the choline avail-
ability increased, the enterocyte also exhibited an elevated
absorption of PE (6), conjointly leading to improved mainte-
nance for the enterocyte.

Modeled minimal gut microbiome metabolism’s
greatly favors the enterocyte. An ecosystem is formed
of more than two organisms, and to move toward modeling
realistic gut-microbiota interactions, more organisms must
be included in the modeled community. The bacterial strains
from Shetty et al.’s minimal microbiome (31) were modeled
using CarveMe (16), and four were selected because of
their distinct metabolic potential and predicted phenotypes:
Akkermansia muciniphila ATCC BAA-835, Bacteroides
xylanisolvens HMP 2_1_22, Faecalibacterium prausnitzii
A2-165 and Ruminococcus bromii ATCC 27255. It should be
noted that while four bacteria were chosen for this analysis,
it is computationally applicable to up to 10 bacteria and
the enterocyte (Figure S3). They were integrated with the
enterocyte in an ecosystem model, which was analyzed
using Multi-objective linear programming. Here, as the
Pareto front is in five-dimensional space, its description
was reduced to its extreme points for analytical purposes,
constituting the extreme solutions of the ecosystem.

Solutions from the Pareto front represent extreme commu-
nity phenotypes where all available nutrient usage is opti-
mized. To envision a more realistic (i.e., suboptimal) set of
community phenotypes, three thousands additional solutions
were randomly sampled within the entire solution space (i.e.,
solutions within the volume embedded by the Pareto front,
such as the grey surface in Figure 1 when applied in 2 di-
mensions). Combining optimal and random solutions results
in an inclusive set of potential phenotypes for the ecosys-
tem. Here, solutions are described by a 5-dimensional vector,
each value being an organism’s objective. To visualize how
each organism’s objective impacts the rest of the ecosystem,
we performed a Principal Component Analysis (PCA) on the
objective values (Figure 4A). The PCA revealed that PCl1,
which explains 30% of the variance, strongly aligns with an
increase in ecosystem biomass and is coherently bordered
by extreme solutions. Notably, all organisms contributed to
the increase in ecosystem biomass. PC2 (21% of explained
variance) refined this interpretation and distinguished distinct
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groups within the ecosystem: Bacteroides xylanisolvens, and
the enterocyte exhibited a similar trend, while Akkermansia
muciniphila showed an opposing direction. Ruminococcus
bromii and Faecalibacterium prausnitzii fell between these
groups.

Inferring the interaction score for the ecosystem (See Meth-
ods) is informative of its overall interaction. Here, an ecosys-
tem interaction score of 1.70 implies that the modeled or-
ganisms are dominated by mutualist interaction compared to
competition. However, this lacks precisions about the role
of each actor in the interaction. As a strategy to highlight
the impact of a given organism on the ecosystem’s interac-
tion potential, we calculated the score of smaller ecosystems
after the removal of each organism. Therefore, we measured
the score for five reduced ecosystems (removing a different
organism each time) to better understand the role of each or-
ganism in the community’s interplay (Figure 4B). Removing
the enterocyte or B. xylanisolvens from the ecosystem yielded
negative scores (-0.44 and -0.18). This suggests that they are
involved in a beneficial relationship, raising the overall score
of the ecosystem. The score remained positive when remov-
ing F. prausnitzii or R. bromii (1.17 or 1.26). The highest in-
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teraction score was observed when A. muciniphila was absent
from the ecosystem (2.16). Since one cannot mathematically
compare these four-dimensional scores to a five-dimensional
score when all organisms are present in the ecosystem, we
cannot conclude whether Akkermansia muciniphila exhibits
a weaker but still beneficial interaction or if it decreases the
overall score of the ecosystem. Still, it is the bacteria with the
least favorable effect on the score. The impact of each organ-
ism on the ecosystem score is coherent with their disposition
on the PCA (Figure 4A), concluding that PC2 is correlated
with the interaction score.

Four extreme solutions were selected where no organism had
a null objective value (Figure 4C). The maintenance of the
enterocyte was highly favored by the presence of bacteria,
with an improved objective value in all selected solutions.
However, it is noteworthy that the growth of the bacteria
within the ecosystem is reduced compared to their maximum
growth potential when in isolation. The objective values of
the enterocyte and the B. xylanisolvens are correlated across
solutions. Besides, R. bromii, F. prausnitzii, and particularly
A. muciniphila seemed to follow an opposite trend. In this
situation, B. xylanisolvens seems involved in a mechanism
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Fig. 3. Exploring the Pareto front of the LGG-enterocyte interaction reveals a possible cross-feeding involving choline. (A) We Sampled the Pareto front of the
interaction between LGG (blue) and the enterocyte (red). We inferred the correlations between transport reaction and ecosystem biomass to identify metabolic cross-feedings
driving the interaction. Metabolites for which the exchanges are correlated with the ecosystem biomass, therefore driving the interaction, are described in boxplots by the
distribution of their possible fluxes among the sampling. A metabolite is categorized as uptaken (or secreted) when its absorption (or excretion) by the relevant organism is
associated with ecosystem biomass (see Methods). The color of the boxplot refers to the relevant organism (blue for LGG, red for the enterocyte). White boxplots refer to
metabolites transported into the blood from the enterocyte. Metabolites involved in the metabolism depicted in (B) are in bold. (B) Schematic representation of the predicted
cross-feeding of choline. The arrows represent metabolic reactions. Dashed arrows represent the exchange reactions (i.e., the consumption of metabolites from the diet).
Blue and red arrows illustrate the use of a metabolite for the objective of the LGG and the host, respectively. The metabolic pathway colored in green is the predicted
cross-feeding of choline. All reactions pictured in this figure are obligatory (See Methods) in the most mutualistic solution of the Pareto front.

essential to the enterocyte’s improved maintenance. B. xy-
lanisolvens is a complex polysaccharide degrader (32, 33),
making carbohydrates and folate available to the enterocyte,
which may explain this positive interaction. However, when
reaching optimum, objectives of the enterocyte and B. xylani-
solvens were antagonists to the growth of A. muciniphila. A.
muciniphila is a next-generation probiotic associated with in-
testinal and systemic health, thought to preserve gut barrier
function in the intestinal tract (34). The known metabolic ac-
tion of A. muciniphila on the gut epithelium is through short-
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chain fatty acids (SCFAs) production (35). However, short-
chain fatty acids’s impact is prevalent in the colon (36), and
is not modeled in the enterocyte used in this study.

Discussion

Deciphering the interactions between epithelial cells and gut
microbes is a crucial step toward a better understanding of
human health. This motivates their exploration through the
use of GEMs to uncover potential metabolic interplays. This
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Fig. 4. Multi-objective community metabolic modeling of five organisms in an ecosystem (enterocyte, Akkermansia muciniphila, Bacteroides xylanisolvens,
Faecalibacterium prausnitzii, and Ruminococcus bromii). (A) Principal component analysis of solutions defined by the objective value of each organism. The point’s
size is proportional to the sum of this solution’s objective values. Grey points result from a random sampling in the solution space of the ecosystem. Black and colored points
are extreme solutions defining the Pareto front. Colored points are a selection of extreme solutions from the Pareto front where every organism (objective) has a non-null
objective value, representing cohabiting metabolic phenotypes for the ecosystem where each organism can grow or maintain itself. (B) Upset diagram plot of the impact of
the absence of each organism on the ecosystem interaction score. Scaling the interaction score from bi-objective to four-dimensional ecosystems is required to calculate
hypervolumes instead of the area under the curve (compared to Figure 1) but follows the same principle (see Methods). (C) Visualization of the four cohabiting metabolic
phenotypes for the ecosystem (solutions where every organism had a non-null objective value). The axes are objective values for the corresponding organism, normalized by
its highest observed objective value (in the ecosystem or alone).
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study uses multi-objective modeling to capture the trade-offs
between the host’s and gut bacteria’s objectives, and predict
putative metabolic interaction mechanisms. We summarized
this complex information by a generic score that indicates
overall collaborative, competitive, or neutral interactions be-
tween organisms, as well as the quantification of this poten-
tial interaction. Known probiotics (15) were associated with
a higher interaction score with the enterocyte, raising inter-
est in the score’s potential as a screening tool to assess in-
teractions between organisms. Interaction types were com-
puted from the Pareto front’s shape, further characterizing
the interaction. The interaction score varied depending on
the diet imposed on the ecosystem. Notably, the protein diet
favored a more mutualist interaction, while the Western diet
raised competition. However, the nutritional constraints ap-
plied to model the diets were under-constrained. Specifi-
cally, nutrients with known concentrations were adequately
restricted, while unspecified nutrients were freely available
in the lumen. Well-defined nutritional constraints are time-
consuming to calibrate and are based on elaborated knowl-
edge of the modeled medium (37). Designing a diet allowing
all 331 bacteria models to grow with the enterocyte without
biological reference is time-consuming and imprecise. Given
that under-constrained ecosystems still highlight the influ-
ence of the diet on metabolic interactions, we anticipate that
further research, with more targeted subjects and strictly de-
fined diets, will yield predictions of higher accuracy. Overall,
the present predictions are dependent on the models’ quality.
We, therefore, expect that, as scientific effort lessens classic
modeling limitations (See S4), the exactitude of the predic-
tions will improve.

Lactobacillus rhamnosus GG (LGG), a known probiotic (26),
has been identified in silico as such through a high interaction
score and a mutualistic interaction type. This predicted in-
teraction was explored to identify the metabolic mechanisms
behind it. This study identified nutrients driving the ben-
eficial interaction between LGG and the host, highlighting
the importance of vitamins, amino acids, and oligo-elements,
already recognized as central cross-feeding metabolites (7).
Moreover, cross-feeding was predicted, implying the de-
sulfatase of choline sulfate by LGG, making choline avail-
able for the enterocyte while using sulfate ions to grow. As
shown before, choline metabolism into phosphatidylcholine
participates in cell membrane synthesis and lipid metabolism
(29). Choline can be converted to trimethylamine (TMA) by
the colonic microflora, which, once absorbed by the colono-
cytes and transported to the liver, can be oxidized in trimethy-
lamine N-oxide (TMAO) (38). TMAO is associated with var-
ious diseases, such as cardiovascular disease, when found in
high concentrations (39). However, due to the use of overap-
proximations for nutritional constraints, the predicted mech-
anisms are also prone to be over- or under-estimated. In this
context, as choline sulfate availability is modeled in excess,
we anticipate that the exchange of choline would occur in
smaller quantities than initially predicted, thereby prevent-
ing the accumulation of high concentrations of TMAO in the
liver. Presently, in vitro experiments are essential to confirm
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this cross-feeding.

The score and analysis developed in this study are tools to
explore ecosystems’ metabolic interplays. Their application
to communities of interest, such as a consortium of gut bac-
teria associated with a health condition, could participate in
identifying pathogenic or therapeutic pathways. Similarly,
the health impact of dietary products with known bacterial
composition, like cheese or yogurt (40), could be further ex-
plored. Moreover, assessing which type of epithelial cell in-
teracts the most with a species could enrich our knowledge
of how different gut locations build different communities
(41). As an illustration, we expect Akkermansia muciniphila
to reach a higher interaction score with a colonocyte than
the small intestine epithelial cell used in this work. While
this framework was demonstrated here on metabolic interac-
tions between the human gut epithelium and the microbiota,
its application is generic enough to be relevant for various
ecosystems and contexts. Tumors are accompanied by bacte-
ria, which promote or suppress cancer based on the situation
(42). Applied in this tumor-microenvironment ecosystem, a
positive score would highlight pathogenic interaction, open-
ing the way for adapted treatments, like targeted antibiotics.
Finally, this can be applied to non-health-related fields, such
as the study of ocean and soil ecosystems. Specifically, it can
allow the study of uncultured strains through the modeling of
Metagenome-Assembled Genomes (MAGs).

In this work, we converge with previous results of Heinken
and Thiele (24), using multi-objective optimization to pro-
vide a mathematical proof of symbiosis. Indeed, we demon-
strate here that two organisms in nutritional co-limitation can
attain better fitness than alone. This observation justifies
the development of tight multi-species communities in var-
ious ecological contexts, as their cohabitation leads to bet-
ter survival. Additionally, we show that the diet modulates
the importance of this mutualism. Compared to an open en-
vironment such as the ocean, the gut is an enclosed habitat
where diet is the principal nutritional input. On the other
hand, the microbiota regulates food intake (in terms of quan-
tity and quality) through the gut-brain axis (43). Therefore,
our nutrition forges our microbiota’s interactions and fitness,
shaping its composition (44), while the microbiota influences
our nutrition (43). Controlling the microbiota’s early assem-
bly and ecology through an adapted diet is key to favoring a
self-maintaining healthy composition (45). This encourages
pursuing research on the gut ecosystem metabolism and how
microbiota and nutrition interact and impact human health.

Methods

Genome-Scale Metabolic Models. The 331 bacteria mod-
els used in this study are CarveMe reconstructions extracted
from the publicly available EMBL GEMs database (16).
These bacteria were selected based on their description as
gut bacteria in the Virtual Metabolic Human (VMH) database
(14). The bacteria described in the VMH database’s meta-
data as "Pathogen,” "Opportunistic pathogen," or "Putative
Pathogen" were joined in the "Pathogen" ecological type (n
=46). The ones described as "Probiotic" or "Probiotic poten-
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tial" were joined in the "Probiotic" ecological type (n = 18).
The "Commensal" (n = 123) and "uncharacterized" (n = 144)
ecological types were conserved as is.

The small intestine epithelial cell (SIEC) model relies on
previously published results (46) and includes 1282 reactions
and 844 metabolites. The namespace of the exchange re-
actions (i.e., the nomenclature of the model elements) was
adapted to the EMBL models (i.e., BiGG’s namespace) for
model compatibility. The sSIEC model includes two external
compartments: the blood and the lumen. In constructing the
ecosystem model, the reactions controlling the apparition and
disappearance of metabolites in the blood were not consid-
ered exchange reactions, in contrast with those in the lumen.

Ecosystem model: pool compartment, diet. bacterial model,
and the sIEC’s model were joined to exchange metabolites
through a pool compartment to build an ecosystem model.
Mathematically, all models’ stoichiometric matrices were di-
agonally assembled into a new one, in which a pool compart-
ment was added. The original exchange reactions of the mod-
els became transport reactions (TR) from the organism’s ex-
ternal compartments to the pool compartment. All exchange
reactions in at least one of the models were duplicated to form
the pool’s exchange reactions (ER) group. TR were uncon-
strained to enable free transit of the metabolites between the
pool and the organism’s external compartment, and the media
constraint was applied by restricting the bounds of ER.

This metabolic model of the ecosystem was built using a
Python version of mocba (23) (i.e. mocbapy), and further
constrained to fit the nutritional conditions described above
on the pool compartment.

In this study, the unconstrained diet consists of the absence of
constraint on the exchange reactions of the pool. The Western
diet (WD) and Protein diet (PD) were extracted from Heinken
et al. (24). WD is high in simple sugar (47%) and fat (35%)
and is low in fiber (3%) and proteins (15%). PD is high in
protein (30%) and balanced in fat (20%), simple sugar (25%),
and fiber (25%). For WD and PD conditions, exchange reac-
tions between the sIEC and the blood were constrained based
on the Average American Diet (AAD) (46).

When constraining the pool’s content strictly to the diet infor-
mation, with every other reaction blocked, the bacteria could
not grow. Therefore, the exchange reactions not described in
the diet were left unconstrained.

Multi-objective linear programming: Pareto front. Multi-
objective linear programming is a mathematical optimiza-
tion technique that optimizes multiple conflicting objectives
by finding optimal solutions representing the trade-offs be-
tween the different objectives. This trade-off is formally a
Pareto front describing the optimal behaviors of the resulting
metabolic ecosystem, in the sense that no increase in an ob-
jective can be done without affecting (i.e., decreasing) others.
For identifying the Pareto front for an ecosystem composed
of multiple metabolic models, we used the mocbapy python
package. It translates the metabolic model of the ecosystem
into a multi-objective linear problem and solves it using a
Python adaptation of Bensolve (47, 48) to identify the Pareto

Lambert etal. | Community metabolic modeling of host-microbiota interactions through multi-objective optimization

front. This Pareto front is a set of extreme points in the objec-
tive space. This case study’s objectives are the bacteria and
the sIEC biomasses.

Linear problem formalisms. A metabolic model comprises
a stoichiometric matrix (S) representing metabolite-reaction
relationships, fluxes (v) representing reaction rates, and
bounds (I; and u;) defining flux constraints. A solution for
a usual mono-objective FBA 1is obtained by solving the fol-
lowing linear problem:

maximize z=c'v
veR™
subject to
Sv=0
;i <v;<u; i=1,...,n,
T

where c¢' v is a linear combination of fluxes representing the
objective function.

In a multi-objective linear problem, the stoichiometric ma-
trix is organized in several compartments, being able to ex-
change metabolites through a pool compartment. There are
as many optimized objective functions as organisms modeled
in the ecosystem. As described in Budinich et al. (23), the
multi-objective linear problem solved in this instance can be
defined as

h CIV
maximize =
veR™
fk CkV
subject to
Sv=0
i <vi<wu; i=1,...,7n

where (f1, ..., fi)' are the objective functions of the k or-
ganisms and 7 is the total number of reactions (i.e., the sum
of reactions of each organism and exchange reactions from
the pool compartment).

Interaction score. The Pareto front of bi-objective problems
is described in a two-dimensional space, each axis describing
the possible values for one objective. To calculate an inter-
action score, the values of each dimension are normalized by
the maximal value of their respective objective when the or-
ganism is alone. The maximal growth of the bacterium and
the enterocyte alone are added to the Pareto front as (0, 1) and
(1, 0), respectively. The interaction score is inferred from
the area under the normalized Pareto front (AUCp) curve,
from which we subtract the area under the curve of the non-
interaction front (AU C'n 7).

S=AUCp—-AUCN7
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In a problem of more than two objectives, the same normal-
ization is applied to the extreme points defining the Pareto
front. The points of maximal growth when alone of each
organism are added accordingly, as well as the origin point
(a vector with zero values for all dimensions). The convex
envelope of this set of points and its hypervolume are calcu-
lated using Scipy’s ConvexHull function (49). The interac-
tion score is the hypervolume, thus calculated from which is
subtracted the non-interaction hypervolume.

When alone, all models were solved with CPLEX. Multi-
objective problems were solved with benpy, a Python adap-
tation of bensolve.

Interaction types. In two dimensions, the various forms taken
by the Pareto front were discriminated into categories based
on four conditions. Sign: Sign of the score. E+: A solu-
tion exists on the Pareto front where the biomass value of the
enterocyte in the ecosystem is higher than that of the entero-
cyte alone. B+: A solution exists on the Pareto front where
the biomass value of the bacterium in the ecosystem is higher
than the biomass value alone. E+B+: A solution on the Pareto
exists where the biomass values of both organisms are at their
highest. They were not studied in problems of higher dimen-
sions.

The various forms taken by the Pareto front were discrimi-
nated into categories based on four conditions.

1. Sign: Sign of the score.

2. E+: A solution exists on the Pareto front where the
biomass value of the enterocyte in the ecosystem is
higher than that of the enterocyte alone.

3. B+: A solution exists on the Pareto front where the
biomass value of the bacterium in the ecosystem is
higher than the biomass value alone.

4. E+B+: A solution on the Pareto exists where the
biomass values of both organisms are at their highest.

Table 1. Interaction types inferred from Pareto appearance)

Sign | E+ B+ | E+B+ | Interaction type
+ False | False | False Neutralism
- False | False | False Competition
+ True | False | False | Favors enterocyte
+ False | True | False Favors bacteria
+ True | True | False | Limited mutualism
+ True | True | True Mutualism

Sampling of the Pareto front. A homogeneous sampling of
100,000 solutions was performed along the Pareto front, de-
scribing the interaction between LGG and the enterocyte.
Each sample was obtained by conducting a Flux Balance
Analysis (FBA) with fixed biomasses of both organisms at
the chosen Pareto point. The ecosystem biomass (sum of
each biomass) was added to the resulting sampling, and a
Spearman correlation matrix was generated. The exchange
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reactions with a correlation higher than 0.95 (secreted) or
lower than -0.95 (uptaken) with the ecosystem biomass were
considered drivers of the mutualistic interaction between
LGG and the enterocyte (Fig 3B).

Exchanged metabolites and obligatory reaction. Exchanged
metabolites are metabolites for which the secretion by an or-
ganism is correlated (Spearman, corr > (.5) to their absorp-
tion by the other organism. Obligatory reactions cannot be
inactive based on a Flux Variability Analysis (FVA), which
determines the upper and lower possible value for flux in a
given condition.

Building a five-dimension ecosystem. Based on Shetty et al.
(31), 16 bacteria strains were selected to represent a mini-
mal human gut microbiome. First, the sequenced genome of
the strains were annotated with prokka (50). Then, CarveMe
(16) was used to generate metabolic models for each organ-
ism (See genome references in Table S3). For computational
reasons, a Multi-objective problem could be solved with up
to 10 bacteria models in addition to the enterocyte (Figure
S3). We observed that some bacteria were in total compe-
tition, meaning that if one bacteria was growing, the others
had null growth. This led to the selection of four cohab-
iting bacteria: Akkermansia muciniphila ATCC BAA-835,
Bacteroides xylanisolvens HMP 2_1_22, Faecalibacterium
prausnitzii A2-165 and Ruminococcus bromii ATCC 27255.
They were joined with the enterocyte in an ecosystem con-
strained with a WD, and the extreme solution points in the
inferred Pareto were retrieved.

Five-dimensional principal component analysis (PCA).In
the five-dimensional ecosystem, 34 extreme points were
identified on the Pareto front using mocbapy. To integrate
solutions embedded in the solution space, the model was con-
verted from mocbapy format to cobrapy. Then, the sampling
function from cobrapy was applied to retrieve 3000 random
solutions. In each solution, only the objective values for
each organism were kept for the PCA. The data was pro-
cessed and the model was built using sckitlearn (51) tools
(preprocessing.StandardScaler() and decomposition.PCAJ()).
The explained variance of the five principal components were
30%, 21%, 18%, 17% and 14%, respectively. As the prin-
cipal components three and four had non-negligeable vari-
ance explanations, the knee point was found using the kneed
python package (52). The knee point is the point of max-
imum curvature in a function. Only the first two principal
components were explored as the knee-point was equal to
two.

Quantification and Statistical Analysis. All statistical
tests were realized using Python 3.7.13 (53). Significance
was determined from a p-value inferior to 0.05. The compar-
ison of interaction score values for ecological types (Figure
2C) was assessed by pairs of ecological types with a Mann-
Whitney U test using numpy.stats.mannwhitneyu(). The eco-
logical types comprised n = 46 pathogens, n = 18 probiotics,
n = 123 commensals and n = 144 uncharacterized. Every

Community metabolic modeling of host-microbiota interactions through multi-objective optimization
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correlation was calculated with pandas.corr(method = “spear-
man”’). A correlation was considered of interest if its absolute
value was equal or over 0.95. To calculate the score, the AUC
(in two-dimensional Pareto fronts) was calculated with scikit
learn 1.0.2 (51) (sklearn.metrics.auc) and the hypervolume
(Pareto fronts of three or more dimensions) was calculated
with scipy 1.7.3 (49) (scipy.spatial. ConvexHull.volume). The
figures were built using matplotlib 3.5.2 (54), seaborn 0.11.2
(55) and plotly 5.10.0 (56).

Resource availability.

Lead contact. Further information and requests for resources
should be directed to and will be fulfilled by the Lead
Contacts, Anna Lambert (anna.lambert@univ-nantes.fr) or
Damien Eveillard (damien.eveillard @univ-nantes.fr).

Materials availability. This study did not generate new mate-
rials.

Data and Code Availability. The 331 gut bacteria models were
CarveMe reconstruction from the EMBL GEMs database
available at: EMBL_GEMs

The small intestine intestinal cell model is available at: In
silico reconstructions - Thiele lab

The minimal microbiome models built for this paper are
available at: github - MO_GEMSs_Score

All original code has been deposited at github -
MO_GEMs_Score and is publicly available as of the
publication date.
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