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Abstract 12 

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. 13 

However, even in well-controlled culture systems, metabolism is dynamic, with shifting 14 

objectives and resources, thus limiting the predictive capability of mechanistic models for 15 

process design and optimization. Here, we present Cellular Objectives and State Modulation In 16 

bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts 17 

cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-18 

learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in 19 

a bioreactor into weighted contributions from each cell state (growth or antibody-producing 20 

state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-21 

dFBA is that it can be parameterized with only metabolite concentrations from spent media, 22 

although constraining the metabolic model with other omics data can further improve its 23 

capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to 24 
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within 10% of the measured data, and compared to a standard dFBA model, we found the 25 

framework showed a 90% and 72% improvement in cell density and antibody titer prediction, 26 

respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular 27 

metabolism and expands the applicability of dFBA to model the dynamic conditions in a 28 

bioreactor. 29 

Keywords: Bioprocess modeling; Machine learning; Metabolic models; Dynamic flux balance 30 

analysis 31 
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1. Introduction 33 

Maximizing recombinant protein titer in a pharmaceutical bioprocess can be facilitated by 34 

optimizing nutrient feeding. Optimal conditions are commonly identified using time and 35 

resource-intensive design of experiments (DOE) strategies (Kasemiire et al., 2021). Models built 36 

on process data can help predict the trajectory of cellular states and control the process 37 

environment (Sidoli et al., 2004). Predictive models have previously leveraged empirical Monod-38 

based equations to compute growth rates based on the extracellular concentrations of limiting 39 

nutrients (Ben Yahia et al., 2021; Galleguillos et al., 2017). The uptake and secretion rates for 40 

non-limiting nutrients are described by their relative uptake/secretion rates and/or kinetic rate 41 

laws defined by concentrations (López-Meza et al., 2016). However, nutrient depletion and toxic 42 

metabolite accumulation leads to metabolic shifts that cause uptake and secretion rates relative to 43 

the limiting nutrient to change during the bioprocess (Sunley et al., 2008; Templeton et al., 44 

2013). This limitation motivates the inclusion of descriptive and mechanistic models of cellular 45 

metabolism in dynamic bioreactor models.  46 

Genome-scale metabolic models are comprehensive collections of all metabolic pathways for an 47 

organism and are valuable for predicting product yields when nutrient uptake rates are specified. 48 

Metabolic flux through the entire network can be predicted using constraint-based modeling, 49 

such as flux balance analysis (Orth et al., 2010), which assumes that resource allocation in a cell 50 

aims to fulfill specific cellular objectives. This capability is leveraged for dynamic flux balance 51 

analysis (dFBA) (Mahadevan et al., 2002) and uses bioreactor substrate concentrations to 52 

determine nutrient uptake by the metabolic model. Fluxes are then predicted with the metabolic 53 

model to update metabolite concentrations in the bioreactor. Overall, this framework embeds the 54 

FBA problem within a system of ODEs to predict metabolic and cellular dynamics in the reactor.  55 
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While dFBA is structurally simple, it has three disadvantages that limit its application to 56 

mammalian bioprocessing. First, cellular metabolism is dynamic and therefore, the metabolic 57 

model must be tailored to be consistent with the extracellular environment. Otherwise, the full 58 

genome-scale model over-predicts intracellular fluxes as it affords the use of conditionally 59 

inactivated pathways (Jerby et al., 2010). Second, changes in extracellular environments cause 60 

cells to change the abundance of transporter proteins, which further changes kinetic parameters 61 

governing nutrient uptake rates (Laakso et al., 2011). Third, cells exhibit metabolic shifts arising 62 

from metabolite accumulation, such as lactate, wherein lactate production switches to lactate 63 

consumption during the bioprocess (Torres et al., 2018). This is frequently seen in fed-batch 64 

cultures with CHO cells and must be conditionally integrated into existing bioprocess models 65 

(Nolan and Lee, 2011).  66 

Capturing metabolic shifts requires us to first characterize them. Some algorithms rely on visual 67 

inspection (Dean and Reddy, 2013) or piecewise linear regression (Ben Yahia et al., 2017) to 68 

identify different process phases. However, these methods suffer from the drawback that the 69 

model may reflect a single dataset or growth condition. Thus, they may not generalize to other 70 

conditions prevalent in the bioreactor or states of a bioprocess. Finally, predicting product fluxes 71 

requires us to know a cell’s objectives for a given cellular state. Objective functions, such as 72 

growth rate maximization, can be reliably applied to quantify metabolism in prokaryotes; 73 

however, these objectives have limited relevance to mammalian cells, since they only partially 74 

characterize the growth phase (Savinell and Palsson, 1992). To model the non-growing states, 75 

alternative objective functions must be explored (Garcia Sanchez and Torres Saez, 2014). More 76 

recently, parsimonious nutrient uptake was proposed as an objective (Chen et al., 2019), but it 77 

does not capture the variation in amino acid allocation towards different recombinant proteins. 78 
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Therefore, there is a need for a comprehensive framework that correctly and models the 79 

biological characteristics of the cells in the bioreactor with high fidelity by addressing the 80 

changes in cell states arising from constantly changing conditions in an industrial bioprocess. 81 

Here we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a 82 

multi-scale modeling framework for predicting concentration profiles of glucose, metabolic 83 

byproducts, antibody, amino acids, and cell density in a perfusion bioprocess (Figure 1). As with 84 

standard dFBA, COSMIC-dFBA predicts concentration profiles of metabolites by solving a 85 

system of ODE equations in which the uptake rates of metabolites are determined by kinetic rate 86 

laws and product secretion rates are predicted by the metabolic model. To compute fluxes using 87 

the metabolic model, COSMIC-dFBA first determines the number of metabolic states by 88 

inspecting uptake and production fluxes between various sampling intervals. Using these data, 89 

we then compute the fraction of cells in each phase, which provides a measure of state shift. We 90 

then identify the metabolites that show a significant difference in concentration between the 91 

identified states and train the cell state distribution predictor, a statistical model to predict state 92 

shift based on the prevailing bioreactor conditions. Using uptake and secretion rates inferred 93 

from spent media analysis, we then generate a priority list for metabolic tasks to determine the 94 

order of resource allocation of various cellular objectives for each identified state. A 95 

parameterized kinetic rate law is used to constrain nutrient uptake in each identified state. This 96 

information is then used to solve the metabolic model and predict the net uptake and secretion 97 

rates of all tracked metabolites. This framework accurately predicts concentration profiles and 98 

antibody titers in a diverse range of bioreactor conditions including glucose, amino acid, and 99 

oxygen depleted media. Therefore, this framework is a valuable resource for bioprocess 100 

characterization and optimization. 101 
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2. Results 102 

2.1. The COSMIC-dFBA framework 103 

 104 

Figure 1A: Overall workflow showing the pre-requisites and simulation approach used by105 

COSMIC-dFBA. COSMIC-dFBA predicts metabolite concentration, cell density, and antibody106 

titer profiles by solving a system of ordinary differential equations in which the rate of107 

metabolite uptake/secretion is determined using a metabolic model. In order to accomplish this,108 

three inputs must be specified. The first input is the state-specific metabolic model, which is109 

derived from a genome-scale metabolic model by overlaying different types of -omics data110 

(metabolomic, transcriptomic, or fluxomic data). The second requirement is the knowledge of111 

state-specific cellular objectives encoding the allocation of nutrients into various products, which112 

is inferred from metabolite uptake and secretion rates computed using spent media analysis. The113 

third requirement is a cell state distribution predictor, a machine learning model that predicts the114 

cell state based on prevailing conditions to adjust nutrient uptake by the metabolic model. 115 
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 116 

Figure 1B: Computing instantaneous metabolic fluxes in COSMIC-dFBA. The system of ODEs117 

solved to update reactor metabolite concentrations requires uptake and secretion rates that are118 

computed as a weighted average of metabolism from all possible metabolic states (growth and119 

production states, in this case). The weights for the contributions are computed using the cell120 

state distribution predictor. The fluxes corresponding to each metabolic state are solved by121 

solving a multi-level flux balance analysis problem using the state-specific metabolic model,122 

provided state-specific uptake rates (determined by reactor metabolite concentrations using a123 

Monod-like equation), and specified cellular objectives. The net result is a set of flux124 

distributions corresponding to various metabolic states. These flux distributions are averaged125 

based on weights computed by the cell state distribution predictor to obtain the net uptake and126 

secretion rates. 127 

Cellular Objectives and State Modulation In bioreaCtors (COSMIC-dFBA) is a multi-scale128 

hybrid dynamic flux balance analysis framework that predicts total cell density, antibody titer,129 

and metabolite concentration profiles throughout a bioprocess. Figure 1 shows the schematic130 

representation of COSMIC-dFBA along with the pre-requisites and dynamic inputs required for131 

execution. We define a metabolic state (hereafter referred to as “state”) as the aggregate of132 

nutrient uptake, afforded pathways for metabolism, and flux distribution into various products.133 

The conceptual advancement by COSMIC-dFBA is the seamless transition between states in a134 

dynamic bioprocess without the need for condition-specific parametrization of state transition.135 

Because FBA is only applicable at metabolic steady-state, intracellular flux distributions are136 
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constrained via nutrient uptake rates in traditional dFBA. COSMIC-dFBA overcomes this 137 

limitation by assuming that overall metabolism in the reactor is a weighted average of 138 

metabolism of cells in various states. The cell state at any time point is predicted by the Cell 139 

State Distribution Predictor model based on instantaneous bioreactor conditions and feature 140 

metabolite concentrations using a supervised machine-learning classifier (See Methods section 141 

4.4. The four prerequisites for executing COSMIC-dFBA include (i) state-specific metabolic 142 

models that contain limits on nutrient uptake and pathways available for metabolism, (ii) state-143 

specific uptake kinetics that reflect the effects of changing gene expression on nutrient uptake in 144 

different cell states, (iii) state-specific metabolic tasks that encode the resource allocation in each 145 

cell state, and (iv) a machine learning model to predict population distribution among cell states 146 

based on the prevailing conditions in the bioreactor. The procedure for preparing these 147 

prerequisites is described in the Supplementary Methods. 148 

COSMIC-dFBA simulates bioreactor metabolite and product concentrations by solving a system 149 

of ODEs describing the feeding, removal, and metabolism of nutrients and products in the 150 

bioreactor (Figure 1B). At each time point, the uptake rates and secretion rates are computed in 151 

three steps. First, uptake rates for all nutrients are calculated using computed kinetic rate laws for 152 

each state. Next, the computed nutrient uptake rates are used to constrain the respective state-153 

specific metabolic models. The state-specific secretion rates are computed by solving the state-154 

specific metabolic model using a multi-objective FBA. Finally, the average uptake and secretion 155 

rates are computed by weighting the computed state-specific uptake and secretion rates by the 156 

fraction of cells in each state, predicted by the cell state distribution predictor model based on 157 

prevalent bioreactor condition. These overall rates are then used to update the nutrient 158 

concentrations in the bioreactor.  159 
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2.2. Cellular objectives are cell state-specific 160 

A PCA of computed fluxes revealed two distinct cellular metabolic states (state 1 and state 2) 161 

representing metabolism before day 3 and after day 10. We analyzed the computed state-specific 162 

uptake and secretion rates (see Methods section 4.3 and Supplementary methods section 1) in the 163 

context of the iCHO1766 metabolic model to quantify the changes in resource allocation 164 

associated with state shift. We first computed the task efficiencies (defined as the ratio of 165 

measured flux to maximum flux predicted by the metabolic model) for each secreted product and 166 

assigned priorities to each metabolic task (see Supplementary Methods). Figure 2 shows the task 167 

efficiency averaged across all reactor conditions for all measured metabolic byproducts in both 168 

states. We found that biomass formation and lactate secretion were the top two metabolic tasks in 169 

state 1, accounting for 88% of the consumed carbon and 40% of the consumed nitrogen, as 170 

quantified by FBA. Based on this, we call state 1 the “growth state”. The primary metabolic task 171 

in the production phase was antibody production, accounting for 73% of the consumed nitrogen. 172 

Based on this, we call state 2 the “production state”. Although the total cell density did not 173 

change for cells in the production state, the cell size steadily increased, suggesting that biomass 174 

precursors were being synthesized and accumulated. These findings demonstrate that metabolism 175 

qualitatively changes upon state shift in the bioprocess and motivates the need to incorporate 176 

approaches to account for cell state shifts and changing metabolic objectives in a dFBA 177 

simulation.  178 
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 179 

Figure 2: Resource allocation towards various metabolic tasks in the growth and production 180 
phases. Cells were predominantly in the growth state before day 3 and transitioned to the 181 
production state between day 3 and day 10. Past day 10, cells were primarily in the production 182 
state. Most of the cellular resources were channeled into biomass formation in the growth state 183 
and towards antibody production in the production state. Lactate was produced from glucose via 184 
glycolysis and from asparagine and glutamine via the anaplerotic pathways. Additional carbons 185 
were channeled into synthesizing biomass precursors in the production state, which were 186 
accumulated intracellularly. A similar fraction of consumed nitrogen was channeled into 187 
ammonia generation (via glutaminolysis and asparagine degradation) and alanine production via 188 
transamination in both states. Glycine production was significantly reduced in the production 189 
state. 190 
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 200 

2.3.The cell state distribution predictor captures phase-shifts driven by nutrient and201 

oxygen depletion 202 

 203 

Figure 3: Training the phase classifier model to predict cell state based on bioreactor conditions 204 

 205 

To ensure that cell state is properly predicted by changes in reactor conditions when simulating a206 

bioprocess, we developed a state classification model and trained it through a three-step207 

workflow (Figure 3). The first step is to identify metabolites whose depletion correlates with the208 

observed state shift. To accomplish this, we label each data measurement as either growth state,209 

production state, or mixed state based on the state progression parameter computed concurrently210 

with uptake and secretion rates (see Supplementary Methods section 1). The state progression211 
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parameter, p, represents the distribution of cell populations in each metabolic state with p = 0 212 

indicating that all cells are in the growth state and p = 1 indicating that all cells are in the 213 

production state. Metabolite concentrations at time points with p < 0.2 (less than 20% of the cells 214 

in the production state) were considered to represent the growth state and at time points with p > 215 

0.8 (more than 80% of the cells in the production state) were considered to represent the 216 

production state. We excluded metabolites whose media concentration increased over time as 217 

metabolic byproducts were constantly cleared from the bioreactor by perfusion and retain only 218 

those metabolites whose media concentration decreases by at least 50%. For the cell line and 219 

process considered here, the full list of features includes glucose, asparagine, and glutamine as 220 

the potential metabolite candidates in addition to oxygen level and bioreactor temperature 221 

(Supplementary Figure S1).  222 

The second step in developing the phase classifier model is dimensional reduction with Linear 223 

Discriminant Analysis (LDA) to project the features to a lower dimensional space, such that 224 

projected features are correctly classified into the growth and production state. For this, we 225 

consider features corresponding to growth state and production states (p < 0.2 or p > 0.8) and 226 

ignore features corresponding to the mixed state. In the final step, we fit a logistic curve to model 227 

the relationship between projected features from all three states and the predicted state 228 

progression parameter. The resulting machine learning model intakes the prevailing bioreactor 229 

features and predicts cell state to determine the net uptake and secretion rates in the reactor (See 230 

Figure 1B). 231 

The cell state distribution predictor model correctly predicted the state for 94 of 130 time points 232 

across all bioreactor growth conditions with an accuracy of 0.1 (difference between predicted 233 

and computed state is less than 0.1) and 118 of 130 time points with an accuracy of 0.2 (Figure 234 
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4). The model had a specificity of 0.78 and a sensitivity of 0.681. The F1-score was 0.731 and 235 

Matthews’ correlation coefficient was 0.454. In contrast, models based on a random classifier 236 

(cell state distribution assumed to be a random number between 0 and 1) had a Matthews’ 237 

correlation coefficient of -0.72, indicating that the state prediction by the trained model 238 

significantly outperformed random chance (permutation test, p-value < 10-6). The model 239 

correctly identified state shifts associated with the depletion of asparagine, glutamine, and 240 

glucose, even in growth conditions with altered amino acid and glucose availability. In cases 241 

with altered oxygen availability, the model correctly identified the cell state for all data except 242 

those between days 6 to 8. This was because the cells had already transitioned into the 243 

production state in the oxygen-depleted condition before the feature metabolites were 244 

sufficiently depleted for the model to identify and predict a state shift, leading to a false negative 245 

prediction. Other cells had not transitioned to the production state despite depletion of the feature 246 

metabolites in the high-oxygen condition, leading to a false positive prediction by the phase 247 

classifier. Except for a small number of extreme conditions, the model robustly predicts cell state 248 

shifts arising from nutrient depletion within the bioreactor across a wide range of conditions.   249 
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 250 

Figure 4: Comparison of model-predicted and measured population fractions in the production251 

phase. The Blue dots represent the data points that were correctly identified to be in either the252 

growth or production phase with a 10% margin of error. The orange dots represent the correctly253 

predicted phases with a 20% margin of error. The red dots represent data that were incorrectly254 

predicted by the phase classifier model.  255 
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2.4. The dFBA algorithm accurately predicts concentration profiles 261 

262 

Figure 5A: Consistency of measured and predicted concentrations on day 13 for amino acids263 

(downward triangles), glycolytic metabolites (upward triangles), cell density (circles) and264 

antibody titer (square) using COSMIC-dFBA (blue markers), a standard dFBA algorithm with265 

specified cellular objectives and phase switch at a fixed time point (red markers), and a standard266 

dFBA algorithm with the phase classifier from COSMIC-dFBA but assuming maximize biomass267 

objective during the growth phase and maximize antibody production objective in the production268 

phase (orange markers). 269 
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270 

Figure 5B: Improvement in predictions by COSMIC-dFBA compared to models with no271 

classifier or assumed objective functions. 272 

We simulated the cell density, glucose, lactate, antibody, and 17 amino acid concentration273 

profiles over the 13-day perfusion bioprocess run across 8 different media conditions274 

(Supplementary Figures S2 – S11). To evaluate its performance, we compared the concentration275 

profiles, predicted using COSMIC-dFBA with two implementations of traditional dFBA. In the276 

first case (referred to as the “traditional dFBA case”), we retained the cellular objectives, but277 

assumed that phase transition coincided with the hypothermic shift. In the second case (referred278 

to as the “assumed objective case”), we retained the phase classifier from COSMIC-dFBA, but279 

assumed that the cells only maximize biomass during the growth phase and maximize antibody280 

production in the production phase. Figure 4A compares the day 13 concentration predictions by281 

COSMIC-dFBA and the two test cases. We found that COSMIC-dFBA significantly282 

outperformed both test cases based on traditional dFBA, thus highlighting the need to account283 

for changing bioreactor conditions and metabolic tasks. We also evaluated the improvement in284 

prediction (defined as the mean fractional reduction in disagreement between predicted and285 
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measured concentrations over the course of the bioprocess) as a measure of how well the 286 

concentration profiles predicted by each algorithm agree with the experimental data. From this 287 

we found that the concentration profiles predicted by COSMIC-dFBA for cell density, antibody 288 

titer, glucose, lactate, glutamine, and glutamate were in better agreement with the measured data 289 

than the traditional dFBA cases (Figure 4B). However, the standard dFBA test cases better 290 

predicted the consumption of several essential amino acids. 291 

The traditional dFBA case greatly overestimated the final cell density in all eight growth 292 

conditions. This was because the traditional dFBA case assumed that the entire cell population 293 

transitioned from the growth phase to the production phase when the hypothermic shift was 294 

applied, regardless of the bioreactor conditions. Thus, this case failed to account for the 295 

redistribution of metabolic fluxes and a shift from cell growth to antibody production when key 296 

metabolites were depleted early, particularly in the low glucose and low amino acid cases. This 297 

led to an extended growth phase in all eight conditions, and a higher cell density at the end of the 298 

growth phase. Consequently, this approach predicted a higher antibody titer in all growth 299 

conditions. On the other hand, the final cell density predicted using the “assumed objectives” 300 

case was only 14.8% higher than those predicted using COSMIC-dFBA. This agreement 301 

between COSMIC-dFBA and the “assumed objectives” case arises from the fact that the 302 

assumed maximization of biomass formation is close to the actual metabolism of the cells, which 303 

channels, on average, 82% of the resources towards biomass production in the growth phase 304 

(Figure 2). This implementation also assumed that all available resources were channeled into 305 

antibody production in the production phase, whereas the experimental data suggests that 25% of 306 

the resources were channeled into other cellular processes. This led to a dramatic overprediction 307 

of antibody titer in the bioreactor. Overall, these comparisons demonstrate the importance of the 308 
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two integral components of COSMIC-dFBA (the phase classifier and comprehensive accounting 309 

of metabolic tasks), which contribute to the algorithm’s superior predictive capabilities compared 310 

to existing dFBA-based bioprocess modeling frameworks. 311 

 312 

3. Discussion 313 

This study presents COSMIC-dFBA, a multi-scale dynamic flux balance analysis framework that 314 

combines machine learning and mechanistic modeling techniques to simulate cell behavior in a 315 

perfusion bioprocess and predict metabolic shifts in response to changing bioreactor conditions. 316 

This framework operates at two scales: the bioreactor scale and the cellular scale. The cellular 317 

scale interfaces with the bioreactor scale using the cell state distribution predictor that determines 318 

the distributions of cell populations in various states based on prevailing bioreactor conditions. 319 

Based on the determined cell state, nutrients are consumed according to previously 320 

parameterized kinetic rate laws, and consumed nutrients are channeled into appropriate state-321 

specific metabolic tasks (e.g., cell growth, antibody production, etc.). This yields the net 322 

instantaneous production and consumption rates of all metabolites in the bioreactor, which are 323 

then used to update the bioreactor concentrations by solving a system of ODEs. Leveraging the 324 

metabolic model provides a mechanistic relationship between nutrient uptake and product 325 

secretion as well as additional pathways through which metabolic flux is diverted to generate 326 

byproducts. By dynamically adjusting product yields, this framework always ensures that 327 

nutrient consumption and product formation in the bioreactor satisfy conservation of mass and 328 

are thermodynamically feasible, which is not always the case when modeling a bioprocess using 329 

empirical models. Unlike previous dFBA approaches (Nolan and Lee, 2011), COSMIC-dFBA 330 

does not need to solve any quadratic programming problems, which considerably decreases the 331 
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computational cost. This permits the use of genome-scale metabolic models for dFBA, which 332 

increases generalizability. Incorporating the means to modulate cellular resource allocation using 333 

a hybrid modeling paradigm improves fidelity without the need for developing detailed 334 

mechanistic models such as whole-cell models or ME-models. Furthermore, by using an adaptive 335 

time step, a desired integration accuracy can be ensured without resorting to collocation (St John 336 

et al., 2017), which significantly reduces the number of time-steps and by extension, the number 337 

of times the FBA problem must be solved (de Oliveira et al., 2023; Zhuang et al., 2011). 338 

COSMIC-dFBA is particularly versatile in that it only requires the usual data typically collected 339 

during a bioprocess to train the model. Uptake and secretion rates were computed from 340 

metabolite concentration profiles and analyzed to determine phase-specific resource allocation to 341 

identify the major metabolic tasks prioritized by the cell in various states, whereas phase shifts 342 

were predicted based on reactor metabolite concentrations and temperature shifts. Other types of 343 

omics data can be readily incorporated to minimize manual interventions. For example, 344 

integrating gene expression data enables extraction of context-specific metabolic models 345 

(Gustafsson et al., 2023; Opdam et al., 2017), which have been previously shown to vary 346 

between process phases. Transcriptomics data can also suggest metabolic tasks not captured by 347 

exo-metabolomics data (Helen et al., 2022; Masson et al., 2023; Richelle et al., 2021). 348 

Proteomics data can be incorporated to correlate changes in transporter abundance with phase 349 

shifts (Colijn et al., 2009; Sanchez et al., 2017; Tian and Reed, 2018; Yeo et al., 2020), which 350 

modulates the maximum uptake rate of nutrients in each process phase.  351 

The key strength of COSMIC-dFBA is the ability to learn from additional experimental data that 352 

allows it to predict newer states. Our analyses indicate that the cell state distribution predictor is 353 

a vital component of this framework that smoothly modulates state shifts using a single layer 354 
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perceptron (linear combination of inputs combined with a logistic activation function). The 355 

choice of activation function was based on previous efforts to model cellular signal transduction 356 

(Samaga and Klamt, 2013; Wynn et al., 2012) and gene activation (Ay and Arnosti, 2011) in 357 

response to changing environmental conditions within the bioreactor. The main drawback of this 358 

approach is that the framework cannot automatically determine the cause of the state shift 359 

(arising from nutrient depletion, temperature shift, oxygen limitation, etc.) and assumes that all 360 

phase shifts are of the same nature. In the current implementation of COSMIC-dFBA, we 361 

circumvent this by defining the cellular objectives for each type of phase shift in advance. 362 

However, automated prediction of changes in metabolic task priorities in response to phase shifts 363 

will require an overlay of the signaling (Lin et al., 2022; Sompairac et al., 2019) and gene 364 

expression networks (Pio et al., 2022) on to existing models of metabolism in the absence of 365 

fully descriptive whole-cell models (Ahn-Horst et al., 2022; Karr et al., 2012). Such models will 366 

expand the predictive capabilities of COSMIC-dFBA to predict heterogeneity in cell populations 367 

in large-scale bioreactors arising from non-homogeneous mixing and poor local oxygen transfer. 368 

That will allow the framework to predict and correct the potential detriments to process yield and 369 

productivity upon scale-up to manufacturing scales. Despite these limitations, COSMIC-dFBA 370 

significantly outperforms traditional dFBA in its current form. The ability to model dynamic 371 

metabolism uniquely positions this framework for applications in bioprocesses with metabolic 372 

shifts. 373 

4. Methods 374 

4.1. Cell culture and process data acquisition 375 

A stable, clonally derived Chinese hamster ovary (CHO) cell line expressing a non-glycosylated 376 

recombinant protein was thawed and scaled up in proprietary growth media to generate sufficient 377 
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cell mass to inoculate a production perfusion bioreactor. The production bioreactors were 378 

operated in 3 L stirred tank bioreactors with a 1.5 L working volume for 13 days using 379 

proprietary chemically defined media. Bioreactors were inoculated in the same basal production 380 

media. Perfusion was performed using alternating tangential flow filtration starting at Day 0 at a 381 

perfusion rate of 1 bioreactor volume per day for a duration of 13 days. On Day 8, the 382 

temperature setpoint was decreased for the remaining duration of the experiment. The 383 

experimental conditions were set up following a Box Behnken DOE varying dissolved oxygen, 384 

perfusion media amino acid levels, and perfusion media glucose concentration as shown in 385 

Supplementary Table ST1.  386 

Bioreactor parameters, such as agitation, dissolved oxygen concentration, pH, and temperature 387 

were monitored and controlled through a DeltaV controller (Emerson, St. Louis, MO, USA). The 388 

pH was controlled through CO2 or 1 M Na2CO3 addition. Dissolved oxygen was maintained by 389 

sparging oxygen through a drilled pipe and a sintered sparger. Additionally, inline off-gas O2 and 390 

CO2 were monitored using the BlueSens BlueVary gas sensor (BlueSens, Wood Dale, IL, USA). 391 

The daily sampling procedure consisted of cell density and viability using a Cedex HiRes 392 

analyzer (Roche Diagnostics, Indianapolis, IN, USA), metabolites (lactate, glucose, glutamine, 393 

glutamate, and ammonium) from a Cedex Bio HT analyzer (Roche Diagnostics, Indianapolis, IN, 394 

USA), osmolality using the Advanced Instruments OsmoPRO (Advanced Instruments, Norwood, 395 

MA, USA), and external pH, pCO2, and pO2 using a Siemens RAPIDLab 1260 (Siemens 396 

Healthineers, Erlangen, Germany). Daily clarified samples for each reactor were analyzed for 397 

titer via HPLC. Amino acid concentrations were determined as follows: cell culture supernatant 398 

samples were filtered through a 0.2µm filter then diluted properly with 18 mM HCl and mixed 399 

with the internal standard mixture containing heavy isotope labeled amino acids. An UHPLC 400 
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system Agilent 1290 (Agilent Technologies, Santa Clara, CA, USA) equipped with a reversed 401 

phase C18 column (Agilent Poroshell 120 SB-C18, 1.9 µm, 2.1 mm × 100 mm) was used for 402 

components separation. The mobile phases used were water (A) and acetonitrile (B) in 0.2% 403 

heptafluorobutyric acid (HFBA). Targeted quantitation data were acquired using the dynamic 404 

Multiple Reaction Monitoring (MRM) mode on an Agilent 6490 Triple Quadrupole mass 405 

spectrometer. Agilent MassHunter B.08.00 was used for data acquisition and data analysis. 406 

4.2. Metabolic model and data processing 407 

iCHO1766 was used as the base metabolic model (Hefzi et al., 2016). The protein secretory 408 

pathway (Gutierrez et al., 2020) was appended to iCHO1766 to accurately model the precursor 409 

and energy demands for antibody synthesis and secretion. Two phases were identified using the 410 

concentration data. The growth rate, antibody specific productivity, uptake and secretion rates of 411 

all measured metabolites, and the fraction of cell population in each phase were computed from 412 

the concentration profiles using nonlinear regression as described in the supplementary methods. 413 

The computed fluxes in each growth condition are reported in Supplementary Table ST3. 414 

4.3.Inferring state-specific metabolic task objectives and priorities 415 

State-specific metabolic flux distributions were modulated in terms of metabolic tasks and task 416 

efficiencies. Each state-specific model was calibrated as described in the supplementary material. 417 

Briefly, all measured quantities were classified into either nutrients (consumed by cells) or 418 

byproducts (generated by cells) in each phase. All secreted byproducts were considered 419 

“metabolic tasks” and their priority order was determined in an iterative manner. First, the uptake 420 

rates of nutrients were fixed in the metabolic model. Following this, the flux through each 421 

metabolic task was individually maximized using Flux Balance Analysis (FBA) (Varma and 422 
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Palsson, 1994). Task efficiency for each metabolic task was computed as the ratio of measured 423 

flux through the metabolic task to the maximum flux predicted using FBA. The task with the 424 

highest efficiency was considered the highest priority task as it reflects the maximal nutrient 425 

utilization towards this task and its corresponding efficiency was stored. To find the next priority 426 

task, the experimentally measured flux through the previous task was enforced as a lower bound 427 

in the metabolic model and that task was removed from the list of metabolic tasks to be 428 

evaluated. Following this, the task efficiency calculation steps were repeated to identify the next 429 

highest priority task. This loop was repeated until all metabolic tasks were ordered. The list of 430 

state-specific metabolic tasks and their corresponding task efficiencies are reported in 431 

Supplementary Table ST4. 432 

4.4.Training the cell state distribution predictor 433 

The cell state distribution predictor is a machine-learning model that predicts cell state based on 434 

bioreactor conditions. Using bioreactor media concentrations, partial pressure of oxygen, and the 435 

temperature of the bioreactor as inputs, the phase classifier model is trained using the three-step 436 

process depicted in Figure 3 and predicts the fraction of cell population in the production state.  437 

For each condition considered in this study, time points were classified into either growth state, 438 

production state, or mixed populations based on whether the fraction of cells in the production 439 

state were less than 20%, greater than 80%, or somewhere in between, respectively. 440 

Concentrations of all metabolites were grouped into these three classes and plotted to identify 441 

metabolites correlated with phase shifts. Candidate metabolites were chosen such that their (a) 442 

median concentrations changed drastically between the growth and production states, and (b) 443 

they were depleted, or close to depleted in the production state. Oxygen and temperature were 444 

included to account for premature state shifts arising from hypoxic (Zeh et al., 2021) and 445 
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hypothermic shifts (Wulhfard et al., 2008). The second step is to reduce the dimensionality of the 446 

data such that the growth and production state data are separated into distinct clusters. We used 447 

Linear Discriminant Analysis (LDA) to achieve this. The projected concentration � is related to 448 

feature � (metabolite concentration, partial pressure of oxygen, or temperature) via a weighted 449 

linear combination using weights ��  using Equation (1): 450 

� �  � �� � �	
��	�
�

�

 (1) 

Following this, projected concentrations were computed for all three classes and logistic 451 

regression was performed to compute the parameters 
 and �, representing the steepness of the 452 

transition and the bias, respectively and model the transition from growth to production state 453 

using Equation (2): 454 

���� � 1
1 � 	����� (2) 

 455 

4.5.Simulating metabolite concentration profiles and culture parameters using COSMIC-456 

dFBA 457 

COSMIC-dFBA simulates bioreactor concentration profiles by solving the following initial value 458 

problem (IVP) for cell density (����), cell size (����), and concentration of metabolite � (�����) 459 

from time �� to �	: 460 

�����
�� � �
		���� 

(3) 

�����
�� � ���������� 

(4) 
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 461 

In Equations (3), (4), and (5), �
		, ������,
		, and ��,
		 represent the effective growth rate, 462 

effective biomass accumulation rate, and the effective uptake/secretion rate of metabolite �, and 463 

are related to the growth and production phase fluxes via the population fraction parameter ���� 464 

computed using Equations (1) and (2): 465 

�
		��� � �1 � ������������ � ��������������� (9) 

������,
		��� � �1 � �����������,������ � ����������,���������� (10) 

��,
		��� � �1 � �������,������ � ������,���������� (11) 

 466 

The above IVP is solved using the Bulirsch-Stoer algorithm (Bulirsch and Stoer, 1966) with 467 

adaptive step-size control (Deuflhard, 1983) to reduce the number of times the metabolic model 468 

must be solved without loss of accuracy. COSMIC-dFBA is encoded and executed in 469 

MATLABTM. The source code is provided as a zip file in the supplementary material.  470 

 471 
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