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Humans construct internal cognitive maps of their environment directly from sensory
inputs without access to a system of explicit coordinates or distance measurements. While
machine learning algorithms like SLAM utilize specialized inference procedures to identify
visual features and construct spatial maps from visual and odometry data, the general
nature of cognitive maps in the brain suggests a unified mapping algorithmic strategy
that can generalize to auditory, tactile, and linguistic inputs. Here, we demonstrate that
predictive coding provides a natural and versatile neural network algorithm for constructing
spatial maps using sensory data. We introduce a framework in which an agent navigates
a virtual environment while engaging in visual predictive coding using a self-attention-
equipped convolutional neural network. While learning a next image prediction task,
the agent automatically constructs an internal representation of the environment that
quantitatively reflects spatial distances. The internal map enables the agent to pinpoint
its location relative to landmarks using only visual information.The predictive coding
network generates a vectorized encoding of the environment that supports vector navigation
where individual latent space units delineate localized, overlapping neighborhoods in the
environment. Broadly, our work introduces predictive coding as a unified algorithmic
framework for constructing cognitive maps that can naturally extend to the mapping of
auditory, sensorimotor, and linguistic inputs.

Space and time are fundamental physical structures
in the natural world, and all organisms have evolved
strategies for navigating space to forage, mate, and
escape predation.1,2. In humans and other mammals,
the concept of a spatial or cognitive map has been
postulated to underlie spatial reasoning tasks3–5. A
spatial map is an internal, neural representation of an
animal’s environment that marks the location of land-
marks, food, water, shelter, and then can be queried
for navigation and planning. The neural algorithms
underlying spatial mapping are thought to generalize
to other sensory modes to provide cognitive repre-
sentations of auditory and somatosensory data6 as
well as to construct internal maps of more abstract
information including concepts7,8, tasks [9], semantic
information10–12, and memories13. Empirical evidence
suggest that the brain uses common cognitive mapping
strategies for spatial and non-spatial sensory informa-
tion so that common mapping algorithms might exist
that can map and navigate over not only visual but also
semantic information and logical rules inferred from
experience6,7,14. In such a paradigm reasoning itself
could be implemented as a form of navigation within a
cognitive map of concepts, facts, and ideas.

Since the notion of a spatial or cognitive map emerged,
the question of how environments are represented
within the brain and how the maps can be learned
from experience has been a central question in
neuroscience15. Place cells in the hippocampus are neu-
rons that are active when an animal transits through

a specific location in an environment15. Grid cells in
the entorhinal cortex fire in regular spatial intervals
and likely track an organism’s displacement in the
environment16,17. Yet with the identification of a sub-
strate for the representation of space, the question of
how a spatial map can be learned from sensory data
has remained, and the neural algorithms that enable
the construction of spatial and other cognitive maps
remain poorly understood.

Empirical work in machine learning has demonstrated
that deep neural networks can solve spatial naviga-
tion tasks as well as perform path prediction and grid
cell formation18,19. Cueva & Wei18 and Banino et al.19

demonstrate that neural networks can learn to perform
path prediction and that networks generate firing pat-
terns that resemble the firing patterns of grid cells in
the entorhinal cortex. However, these studies allow an
agent to access environmental coordinates explicitly18

or initialize a model with place cells that represent spe-
cific locations in an arena19. In machine learning and
autonomous navigation, a variety of algorithms have
been developed to perform mapping tasks including
SLAM and monocular SLAM algorithms20–23 as well as
neural network implementations24–26. Yet, SLAM algo-
rithms contain many specific inference strategies, like
visual feature and object detection, that are specifically
engineered for map building, wayfinding, and pose
estimation based on visual information. A unified theo-
retical and mathematical framework for understanding
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Figure 1. A predictive coding neural network explores a virtual environment. a, in predictive coding, a model pre-
dicts observations and updates model given the prediction error the latent density using the prediction error.
b, a self-attention-based encoder-decoder neural network architecture learns to perform predictive coding.
A ResNet-18 convolutional neural network acts as an encoder; self-attention is performed with 8 heads, and
a corresponding ResNet-18 convolutional neural network performing decoding to the predicted image.c, the
neural network learns to perform predictive coding effectively—with a mean-squared error of 0.094 between
the actual and predicted images.

the mapping of spaces based on sensory information
remains incomplete.

Predictive coding has been proposed as a unifying the-
ory of neural function where the fundamental goal of
a neural system is to predict future observations given
past data27–29. When an agent explores a physical
environment, temporal correlations in sensory obser-
vations reflect the structure of the physical environ-
ment. Landmarks nearby one another in space will
also be observed in temporal sequence. In this way,
predicting observations in a temporal series of sensory
observations requires an agent to internalize some im-
plicit information about a spatial domain. Historically,
Poincare motivated the possibility of spatial mapping
through a predictive coding strategy where an agent
assembles a global representation of an environment
by gluing together information gathered through lo-
cal exploration30,31. The exploratory paths together

contain information that could, in principle, enable
the assembly of a spatial map for both flat and curved
manifolds. Yet, while the concept of predictive coding
for spatial mapping is intuitively attractive, a major
challenge is the development of algorithms that can
glue together local information gathered by an agent
into a global, internally consistent environmental map.

Here, we demonstrate that a neural network trained on
a predictive coding task can construct an implicit spa-
tial map of an environment by assembling observations
acquired along local exploratory paths into a global
representation of a physical space within the network’s
latent space. The strategy can be implemented by a
feed-forward, encoder-decoder network architecture
where the encoder network embeds images collected
by an agent exploring an environment into an internal
representation of space. Within the embedding, the
distances between images reflect their relative spatial
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position, not object-level similarity between images.
During exploratory training, the network implicitly
assembles information from local paths into a global
representation of space as it performs a next image
inference problem. Fundamentally, we connect pre-
dictive coding and mapping tasks, demonstrating a
computational and mathematical strategy for integrat-
ing information from local measurements into a global
self-consistent environmental model.

Mathematical formulation of spatial
mapping as predictive coding
First, we formulate a theoretical model of visual predic-
tive coding and demonstrate that the predictive coding
problem can naturally be solved by an inference pro-
cedure that constructs an implicit representation of an
agent’s environment. Moreover, the theoretical anal-
ysis suggested that the underlying inference problem
that can be solved naturally by an encoder-decoder
neural network that infers spatial position based upon
observed image sequences.

.We consider an agent exploring an environment,
Ω ⊂ R2, while acquiring visual information in the
form of pixel valued image vectors 𝐼𝑥 ∈ R𝑚×𝑛 given
an 𝑥 ∈ Ω. The agent’s environment Ω is a bounded
subset or R2 that could contain obstructions and holes.
In general, at any given time, 𝑡, the agent’s state can
be characterized by a position 𝑥(𝑡) and orientation 𝜃(𝑡)
where 𝑥(𝑡) and 𝜃(𝑡) are coordinates within a global
coordinate system unknown to the agent. While both
position 𝑥 and orientation 𝜃 can be accommodated
within our statistical inference framework, for expos-
itory convenience, we consider an agent that adopts
a constant orientation while moving along a series of
positions 𝑥(𝑡).
The agent’s environment comes equipped with a visual
scene, and the agent makes observations by acquiring
image vectors 𝐼𝑥𝑘 ∈ R𝑚×𝑛 as it moves along a sequence
of points 𝑥𝑘 . At every position x , the agent acquires
an image by effectively sampling from an image the

conditional probability distribution 𝑃(𝐼 |𝑥𝑘) which en-
codes the probability of observing a specific image
vector 𝐼 when the agent is positioned at position 𝑥𝑘 .
The distribution 𝑃(𝐼 |𝑥) has a deterministic and stochas-
tic component where the deterministic component is
set by landmarks in the environment while stochastic
effects can emerge due to changes in lighting, back-
ground, and scene dynamics. Mathematically, we can
view 𝑃(𝐼 |𝑥) as a function on a vector bundle with base
space Ω and total space Ω × 𝐼. The function assigns an
observation probability to every possible image vector
for an agent positioned at a point 𝑥.

In the predictive coding problem, the agent moves
along a series of points 𝑥0 , 𝑥1 , . . . , 𝑥𝑘 while acquiring
images 𝐼0 , 𝐼1 , . . . 𝐼𝑘 . The motion of the agent in Ω is
generated by a Markov process with transition proba-
bilities 𝑃(𝑥𝑖+1 |𝑥𝑖). Note that the agent has access to the
image observations 𝐼𝑖 but not the spatial coordinates
𝑥𝑖 . Given the set {𝐼0 . . . 𝐼𝑘} the agent aims to predict
𝐼𝑘+1. Mathematically, the image prediction problem
can be solved theoretically through statistical inference
by (a) inferring the posterior probability distribution
𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1....𝐼𝑘) from observations. Then, (b) given
a specific sequence of observed images {𝐼0 . . . 𝐼𝑘}, the
agent can predict the next image 𝐼𝑘+1 by finding the
image 𝐼𝑘+1 that maximizes the posterior probability
distribution 𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1....𝐼𝑘).
The posterior probability distribution𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1 , ....𝐼𝑘)
is by definition

𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1 , ...., 𝐼𝑘) =
𝑃(𝐼0 , 𝐼1 , ..., 𝐼𝑘 , 𝐼𝑘+1)

𝑃(𝐼0 , 𝐼1 , ..., 𝐼𝑘)
.

If we consider 𝑃(𝐼0 , 𝐼1 . . . 𝐼𝑘 , 𝐼𝑘+1) to be a function of
an implicit set of spatial coordinates 𝑥𝑖 where the 𝑥𝑖
provide an internal representation of the spatial envi-
ronment. Then, we can express the posterior proba-
bility 𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1....𝐼𝑘) in terms of the implicit spatial
representation

𝑃(𝐼𝑘+1 |𝐼0 , 𝐼1 , . . . , 𝐼𝑘) =
∫
Ω

dx 𝑃(𝑥0 , 𝑥1 , ..., 𝑥𝑘)
𝑃(𝐼0 , 𝐼1 · · · 𝐼𝑘 |𝑥0 , ..., 𝑥𝑘)

𝑃(𝐼0 , 𝐼1 , ...., 𝐼𝑘)
𝑃(𝑥𝑘+1 |𝑥𝑘)𝑃(𝐼𝑘+1 |𝑥𝑘+1)

=

∫
Ω

dx 𝑃(𝑥0 , 𝑥1 , ..., 𝑥𝑘 |𝐼0 , 𝐼1 · · · , 𝐼𝑘)︸                              ︷︷                              ︸
encoding(1)

𝑃(𝑥𝑘+1 |𝑥𝑘)︸      ︷︷      ︸
spatial transition probability (2)

𝑃(𝐼𝑘+1 |𝑥𝑘+1)︸        ︷︷        ︸
decoding (3)

(1)

where in 1 the integration is over all possible paths
{𝑥0 . . . 𝑥𝑘} in the domain Ω and dx = 𝑑𝑥𝑖 . . . 𝑑𝑥𝑘 . Equa-
tion 1 can be interpreted as a path integral over the
domain Ω. The path integral assigns a probability
to every possible path in the domain and then com-
putes the probability that the agent will observe a
next image 𝐼𝑘 given an inferred location 𝑥𝑘+1. In de-

tail term 1 assigns a probability to every discrete path
{𝑥0 . . . 𝑥𝑘} ∈ Ω as the conditional likelihood of the
path given the observed sequences of images {𝐼0 . . . 𝐼𝑘}
. Term 2 computes the probability that an agent at a
terminal position 𝑥𝑘 moves to the position 𝑥𝑘+1 given
the Markov transition function 𝑃(𝑥𝑘+1 |𝑥𝑘). Term 3 is
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Figure 2. Predictive coding neural network constructs an implicit spatial map. a-b, The latent space encodes spa-
tial position. b, a neural network predicts the spatial location from the predictive coding’s latent space. b,
predictive coding’s latent space encodes spatial position. The histogram of prediction errors of positions from
the predictive coder’s latent space. The additive noise model and the random shuffle model provide baselines
for the minimum and maximum errors, respectively. c, predictive coding’s latent distances recover the envi-
ronment’s spatial metric. Sequential visual images are mapped to the neural network’s latent space, and the
latent space distances (ℓ2) are plotted with physical distances onto a joint density plot.

the conditional probability that image 𝐼𝑘+1 is observed
given that the agent is at position 𝑥𝑘+1.

Conceptually, the product of terms solves the next
image prediction problem in three steps. First (1), es-
timating the probability that an agent has traversed a
particular sequence of points given the observed im-
ages; second (2), estimating the next position of the
agent 𝑥𝑘+1 for each potential path; and third (3), com-
puting the probability of observing a next image 𝐼𝑘+1
given the inferred terminal location 𝑥𝑘+1 of the agent.
Critically, an algorithm that implements the inference
procedure encoded in the equation would construct an
internal but implicit representation of the environment
as a coordinate system x that is learned by the agent and
used during the next image inference procedure. The
coordinate system provides an internal, inferred rep-
resentation of the agent’s environment that is used to
estimate future image observation probabilities. Thus,
our theoretical framework demonstrates how an agent
might construct an implicit representation of its spatial
environment by solving the predictive coding problem.

The three step inference procedure represented in
the equation for 𝑃(𝐼𝑘+1 |𝐼0 . . . 𝐼𝑘) can be directly imple-
mented in a neural network architecture. The first term
acts as an ‘encoder’ network that computes the proba-
bility that the agent has traversed a path 𝑥0...𝑥𝑘 given
an observed image sequence 𝐼0 , . . . , 𝐼𝑘 that has been
observed by the network (Figure 1(b)). The network
can, then, estimate the next position of the agent 𝑥𝑘+1
given an inferred location 𝑥𝑘 , and apply a decoding
network to compute 𝑃(𝐼𝑘+1 |𝑥𝑘+1) while outputting the
prediction 𝐼𝑘+1 using a decoder. A network trained
through visual experience must learn an internal coor-
dinate system and representation x that not only offers
an environmental representation but also establishes a
connection between observed images 𝐼 𝑗 and inferred
locations 𝑥 𝑗 .
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A neural network performs accurate
predictive coding within a virtual
environment
Motivated by the implicit representation of space con-
tained in the predictive coding inference problem, we
developed a computational implementation of a pre-
dictive coding agent, and studied the representation
of space learned by that agent as it explored a virtual
environment. We first create an environment with
the Malmo environment in Minecraft32. The physical
environment measures 40 × 65 lattice units and encap-
sulates three aspects of visual scenes: a cave provides
a global visual landmark, a forest provides degener-
acy between visual scenes, and a river with a bridge
constrains how an agent traverses the environment
(Figure 1(a)). An agent follows paths, determined by
𝐴∗ search, between randomly sampled positions and
receives visual images along every path.

To perform predictive coding, we construct an encoder-
decoder convolutional neural network (CNN) with a
ResNet-18 architecture33 for the encoder and a cor-
responding ResNet-18 architecture with transposed
convolutions in the decoder (Figure 1(b)). The encoder-
decoder architecture uses the U-Net architecture34 to
pass the encoded latent units into the decoder. Multi-
headed attention35 processes the sequence of encoded
latent units to encode the history of past visual observa-
tions. The multi-headed attention has ℎ = 8 heads. For
the encoded latent units with dimension𝐷 = 𝐶×𝐻×𝑊 ,
the dimension 𝑑 of a single head is 𝑑 = 𝐶 × 𝐻 ×𝑊/ℎ.

The predictive coder approximates predictive coding
by minimizing the mean-squared error between the
actual observation and its predicted observation. The
predictive coder trains on 82, 630 samples for 200
epochs with gradient descent optimization with Nes-
terov momentum36, a weight decay of 5 × 10−6, and a
learning rate of 10−1 adjusted by OneCycle learning
rate scheduling37. The optimized predictive coder has
a mean-squared error between the predicted and actual
images of 0.094 and a good visual fidelity (Figure 1(c)).

Predictive coding network
constructs an implicit spatial map
We show that the predictive coder creates an implicit
spatial map by demonstrating it recovers the environ-
ment’s spatial position and distance. We encode the
image sequences using the predictive coder’s encoder to
analyze the encoded sequence as the predictive coder’s
latent units. To measure the positional information
in the predictive coder, we train a neural network to
predict the agent’s position from the predictive coder’s
latent units (Figure 1(a)). The neural network’s predic-
tion error

𝐸(𝑥, 𝑥̂) = ∥ 𝑥̂ − 𝑥∥ℓ2

indirectly measures the predictive coder’s positional
information. To provide comparative baselines, we
construct two different position prediction models to
lower bound and upper bound the prediction error.
To lower bound the prediction error, we construct a

model that gives the agent’s actual position with small
additive Gaussian noise

𝑥̂ = 𝑥 + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎).
To upper bound the prediction error, we construct a
model that shuffles the agent’s actual position without
replacement. To compare the predictive coder to the
baselines, we compare the prediction error histograms
(Figure 2(b)).

The predictive coder encodes the environment’s spatial
position to a low prediction error (Figure 2.d). The
predictive coder has a mean error of 5.04 lattice units
and > 80% of samples have an error < 7.3 lattice units.
The additive Gaussian model with 𝜎 = 4 has a mean
error of 4.98 lattice units and > 80% of samples with
an error < 7.12 lattice units. The shuffle model, on the
other hand, has a mean error of 15.87 lattice units and
> 80% of samples have an error < 22.24 lattice units.

We show the predictive coder’s latent space recovers
the local distances between the environment’s physical
positions. For every path that the agent traverses, we
calculate the local pairwise distances in physical space
and in the predictive coder’s latent space with a neigh-
borhood of 100 time points. To determine whether
latent space distances correspond to physical distances,
we calculate the joint density between latent space dis-
tances and physical distances (Figure 2(c)). We model
the latent distances by fitting the physical distances
with additive Gaussian noise to a logarithmic function

𝑑(𝑧, 𝑧′) = 𝛼 log(∥𝑥 − 𝑥′ + 𝜖∥) + 𝛽, 𝜖 ∼ 𝒩(0, 𝜎).
In addition, as a null distribution, we shuffle the physi-
cal positions and calculate the latent distances on this
shuffled set. The modeled distribution is concentrated
with the predictive coder’s distribution with a Kullback-
Leibler divergence (DKL(𝑝PC∥𝑝model)) of 0.429 bits. The
null distribution shows a low overlap with the predic-
tive coder’s distribution with a DKL(𝑝PC∥𝑝null) of 2.441
bits.

Predictive coding network learns
spatial proximity not image
similarity
In the previous section, we show that a neural network
that performs predictive coding learns an internal rep-
resentation of its physical environment within its latent
space. Here, we demonstrate that the prediction task
itself is essential for spatial mapping . Prediction forces
a network to learn spatial proximity and not merely
image similarity. Many frameworks including princi-
pal components analysis, IsoMap38, and autoencoder
neural networks can collocate images by visual sim-
ilarity. While similar scenes might be proximate in
space, similar scenes can also be spatially divergent.
For example, the virtual environment we constructed
has two different ‘forest’ regions that are separated by
a lake. Thus, in the two forest environments might
generate similar images but are actually each closer to
the lake region than to one another (Figure1. )

To demonstrate the central role for prediction in map-
ping, we compared the latent representation of images
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Figure 3. Predictive coding network learns spatial proximity not image similarity a, an autoencoding neural net-
work compresses visual images into a low-dimensional latent vector and reconstructs the image from the
latent space. Auto-encoder trains on visual images from the environment without any sequential order. b-c,
auto-encoding encodes lower resolution in positional information. b, a neural network predicts the spatial
location from the auto-encoding’s latent space. c, auto-encoding captures less positional information com-
pared to predictive coding. The histogram shows the prediction errors of positions from the latent space of
both the auto-encoder and the predictive coder. d, latent distances, however, show a weaker relationship
with physical distances, as the joint histogram between physical and latent distances is less concentrated.
e, predictive coding’s latent units communicate more fine-grained spatial distances whereas auto-encoding
communicates broad spatial regions. Joint density plots show the association between latent distances and
physical distances for both predictive coding and auto-encoding. Predictive coding’s latent distances increase
with spatial distances, with a higher concentration compared to auto-encoding.
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generated by the predictive coding network to a repre-
sentation learned by an autoencoder. The auto-encoder
network has a similar architecture to the predictive
encoder but encodes a single image observation in a
latent space, and decodes the same observations. As
the auto-encoder only operates on a single image—
rather than a sequence, the auto-encoder learns an
embedding based on image proximity not underlying
spatial relationships. As with the predictive coder,
the auto-encoder (Figure 3(a)) trains to minimize the
mean-squared error between the actual image and the
predicted image on 82, 630 samples for 200 epochs with
gradient descent optimization with Nesterov momen-
tum, a weight decay of 5 × 10−6, and a learning rate of
10−1 adjusted by the OneCycle learning rate scheduler.
The auto-encoder has mean-squared error of 0.039 and
a high visual fidelity.

The predictive coder encodes more positional infor-
mation in its latent space than the auto-encoder. As
with the predictive coder, we train an auxiliary neu-
ral network to predict the agent’s position from the
auto-encoder’s latent units (Figure 3(b)). The neural
network’s prediction error indirectly measures the auto-
encoder positional information. The auto-encoder has
greater than 80% of its points and has a prediction
error of less than 13.1 lattice units, as compared to the
predictive coder that has > 80% of its samples have a
prediction error of 7.3 lattice units (Figure 3(c)).

We also show that the predictive coder recovers the
environment’s spatial distances with finer resolution
compared to the auto-encoder. As with the predic-
tive coder, we calculate the local pairwise distances in
physical space and in the auto-encoder’s latent space,
and we generate the joint density between the phys-
ical and latent distances (Figure 3d). Compared to
the predictive coder’s joint density, the auto-encoder’s
latent distances increase with the agent’s physical dis-
tance. The auto-encoder’s joint density shows a larger
dispersion compared to the predictive coder’s joint den-
sity, indicating that the auto-encoder encodes spatial
distances with higher uncertainty.

We can quantitatively measure the dispersion in the
auto-encoder’s joint density by calculating mutual in-
formation of the joint density (Figure 3(e))

𝐼[𝑋;𝑍] = E𝑝(𝑋,𝑍)

[
log

𝑝(𝑋, 𝑍)
𝑝(𝑋)𝑝(𝑍)

]
.

The auto-encoder has a mutual information of 0.227
bits while the predictive coder has a mutual informa-
tion of 0.627 bits. As a comparison, positions with
additive Gaussian noise having a standard deviation
𝜎 of 2 lattice units has a mutual information of 0.911
bits. The predictive coder encodes 0.400 additional bits
of distance information to the auto-encoder. The pre-
dictive coder’s additional distance information of 0.4
bits exceeds the auto-encoder’s distance information of
0.227 bits, which indicates the temporal dependencies
encoded by the predictive coder capture more spatial
information compared to visual similarity.

Predictive coding generates units
with localized receptive fields that
support vector navigation
In the previous section, we demonstrate that the pre-
dictive coding neural network captures spatial relation-
ships within an environment containing more internal
spatial information than can be captured by an auto-
encoder network that encodes image similarity. Here,
we analyze the structure of the spatial code learned by
the predictive coding network. We demonstrate that
each unit in the neural network’s latent space activates
at distinct, localized regions—akin to place fields in
the mammalian brain—in the environment’s physical
space (Figure 4(a)). These place fields overlap and
their aggregate covers the entire physical space. Each
physical location, is represented by a unique combina-
tion of overlapping regions encoded by the latent units.
This combination of overlapping regions recovers the
agent’s current physical position. Furthermore, given
two physical locations, there now exist two distinct
combinations of overlapping regions in latent space.
The differences in these two combinations, the Ham-
ming distance, provides the distance between the two
physical locations (Figure 4(b)). By comparing the com-
binations of overlapping regions at different positions,
the neural network can perform vector navigation given
its place fields.

To support this proposed mechanism, we first demon-
strate the neural network generates place fields. In
other words, units from the neural network’s latent
space produce localized regions in physical space. To
determine whether a latent unit is active, we threshold
the continuous value with its 90th-percentile value. To
measure a latent unit’s localization in physical space,
we fit each latent unit distribution, with respect to phys-
ical space, to a two-dimensional Gaussian distribution
(Figure 4(c), top)

𝑝 =
1

2𝜋|Σ| exp
[
−1

2 (𝑥 − 𝜇)⊺Σ−1(𝑥 − 𝜇)
]

We measure the area of the ellipsoid given by the
Gaussian approximation where 𝑝 ≥ 0.0005 (Figure 4(c),
bottom). The area of the latent unit approximation
measures how localized a unit is compared to the en-
vironment’s area, which measures 40 × 65 = 2, 600
lattice units. The latent unit approximations have a
mean area of 254.6 lattice units and a 80% of areas are
< 352.6 lattice units, which cover 9.79% and 13.6% of
the environment, respectively.

The units in the neural network’s latent space provide a
unique combinatorial code for each spatial position.The
aggregate of latent units covers the environment’s en-
tire physical space. At each lattice block in the en-
vironment, we calculate the number of active latent
units (Figure 4(d), left). The number of active latent
units is different in 87.6% of the lattice blocks. Every
lattice block has at least one active latent unit, which
indicates the aggregate of the latent units cover the
environment’s physical space.

Lastly, we demonstrate that the neural network can
measure physical distances and could perform vector
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Figure 4. The predictive coding network generates place fields that support vector based distance calculations
a, when encoding past images for predictive coding, the self-attention module generates latent vectors. Each
continuous unit in these latent vectors activates in concentrated, localized regions in physical space. These
continuous units can be thresholded to generate a binary vector determining whether each unit is active.
Each latent unit covers a unique region, and each physical location gives a unique combination of these over-
lapping regions. As an agent moves away from its original location, the combination of overlapping regions
gradually deviates from its original combinations. This deviation, as measured by Hamming distance, cor-
relates with physical distance. b, distance is given by the difference in the latent units’ overlapping regions.
Two nearby locations have small deviations in overlap (right) while two distant locations have large deviations
(middle). c, latent units are spatially organized into localized regions. The active latent units are approximated
by a two-dimensional Gaussian distribution to measure the latent unit’s localization (top). The latent units’
Gaussian approximations are highly localized with a mean area of 254.6 for densities 𝑝 ≥ 0.0005. d, latent
units distributed across the environment. The number of latent units was calculated as each lattice block in
the environment (left), and the number of lattice blocks were calculated for each active unit (right). The la-
tent units provide a unique combination for 87.6% of the environment, and their aggregate covers the entire
environment. e, distance from the region overlap captures most of the predictive coder’s spatial informa-
tion. We calculate the distance for every pair of active latent vectors and their respective physical Euclidean
distances as a joint distribution. The proposed mechanism captures a majority of the predictive coder’s spa-
tial information—as the proposed mechanism’s mutual information (0.542 bits) compares to the predictive
coder’s mutual information (0.627 bits)
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navigation by comparing the combinations of overlap-
ping regions in its latent space. We first determine
the active latent units by thresholding each continuous
value by its 90th-percentile value. At each position, we
have a 128-dimensional binary vector that gives the
overlap of 128 latent units. At every two positions, we
calculate the Hamming distance between each binary
latent vector as well as the physical Euclidean distance
(Figure 4(a), bottom). Similar to the Sections and , we
compute the joint densities of the binary vectors’ Ham-
ming distances and the physical positions’ Euclidean
distances. We then calculate their mutual information
to measure how much spatial information the Ham-
ming distance captures. The proposed mechanism
for the neural network’s distance measurement—the
binary vector’s Hamming distance—gives a mutual
information of 0.542 bits, compared to the predictive
coder’s mutual information of 0.627 bits and the auto-
encoder’s mutual information of 0.227 bits (Figure 4(e)).
Compared to the auto-encoder, the vector based dis-
tance calculations capture a majority amount of the
predictive coder’s spatial information.

Discussion
Mapping is a general mechanism for generating an
internal representation of sensory information. While
spatial maps facilitate navigation and planning within
an environment, mapping is a ubiquitous neural func-
tion that extends to representations beyond visual-
spatial mapping. The primary sensory cortex (S1), for
example, maps tactile events topographically. Phys-
ical touches that occur in proximity are mapped in
proximity for both the neural representations and the
anatomical brain regions45s39. Similarly, the cortex
maps natural speech by tiling regions with different
words and their relationships, which shows that to-
pographic maps in the brain extend to higher-order
cognition. Similarly, the cortex maps natural speech by
tiling regions with different words and their relation-
ships, which shows that topographic maps in the brain
extend to higher-order cognition. The similar repre-
sentation of non-spatial and spatial maps in the brain
suggests a common mechanism for charting cognitive40.
However, it is unclear how a single mechanism can
generate both spatial and non-spatial maps.

Here, we show that predictive coding provides a ba-
sic, general mechanism for charting spatial maps by
predicting sensory data from past sensory experiences.
Our theoretical framework applies to any vector valued
sensory data and could be extended to auditory data,
tactile data, or tokenized representations of language.
We demonstrate a neural network that performs pre-
dictive coding can construct an implicit spatial map of
an environment by assembling information from local
paths into a global frame within the neural network’s
latent space. The implicit spatial map depends specifi-
cally on the sequential task of predicting future visual
images . Neural networks trained as auto-encoders do
not reconstruct a faithful geometric representation in
the presence of physically distant yet visually similar
landmarks.

Moreover, we study the predictive coding neural net-
work’s representation in latent space. Each unit in the
network’s latent space activates at distinct, localized
regions—called place fields—with respect to physi-
cal space. At each physical location, there exists a
unique combination of overlapping place fields. At
two locations, the differences in the combinations of
overlapping place fields provides the distance between
the two physical locations. The existence of place fields
in both the neural network and the hippocampus715

suggest that predictive coding is a universal mechanism
for mapping. In addition, vector navigation emerges
naturally from predictive coding by computing dis-
tances from overlap- ping place field units. Predictive
coding may provide a model for understanding how
place cells emerge, change, and function.

Predictive coding can be performed over any sensory
modality that has some temporal sequence. As natural
speech forms a cognitive map, predictive coding may
underlie the geometry of human language. Intriguingly,
large language models train on causal word prediction,
a form of predictive coding, build internal maps that
support generalized reasoning, answer questions, and
mimic other forms of higher order reasoning41. Sim-
ilarities in spatial and non-spatial maps in the brain
suggest that large language models organize language
into a cognitive map and chart concepts geometrically.
These results all suggest that predictive coding might
provide a unified theory for building representations of
information—connecting disparate theories including
place cell formation in the hippocampus, somatosen-
sory maps in the cortex, and human language.
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