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Abstract: In some species, the Y is a tiny chromosome but the dioecious plant Silene latifolia 1 
has a giant ~550 Mb Y chromosome, which has remained unsequenced so far. Here we used a 2 
hybrid approach to obtain a high-quality male S. latifolia genome. Using mutants for sexual 3 
phenotype, we identified candidate sex-determining genes on the Y. Comparative analysis of the 4 
sex chromosomes with outgroups showed the Y is surprisingly rearranged and degenerated for a 5 
~11 MY-old system. Recombination suppression between X and Y extended in a stepwise 6 
process, and triggered a massive accumulation of repeats on the Y, as well as in the non-7 
recombining pericentromeric region of the X, leading to giant sex chromosomes.  8 

 9 
One-Sentence Summary: This work uncovers the structure, function, and evolution of one of 10 
the largest giant Y chromosomes, that of the model plant Silene latifolia, which is almost 10 11 
times larger than the human Y, despite similar genome sizes. 12 
  13 
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Main Text:  1 
Among the multiple paths the evolution of sex chromosomes can take, some lead to giant Y 2 
chromosomes (1,2). Giant Y chromosomes have been first identified in dioecious plant 3 
species (3) but also exist in animals (4). In the last decade, great advances have been made in 4 
studying plant sex chromosomes thanks to genomics and bioinformatics (5,6), but no giant 5 
plant Y chromosome has been assembled yet. Giant Y chromosomes may result from 6 
massive accumulation of transposable elements (TEs) but their chromosome organization, 7 
their precise role in sex determination, and their evolution remain poorly known (3). 8 

Silene latifolia (Caryophyllaceae) is a dioecious plant that has been studied since Darwin’s 9 
time (7). S. latifolia has an XY sex-determination system, which was discovered 100 years 10 
ago (8). The Y is ~550 Mb, and the X ~400 Mb, of the total haploid genome size of ~2.7 Gb 11 
(9). Genetic maps show that the X and the Y are largely non-recombining and share only a 12 
single pseudo-autosomal region (PAR) (10). Recombination has been suppressed 13 
progressively forming groups of X/Y gene pairs with differing synonymous divergence, 14 
called evolutionary strata (11,12). The repeat-richness (13) and size of the S. latifolia Y have, 15 
however, so far prevented its assembly. Mutants with deletions on the Y chromosome and 16 
altered sex phenotypes indicate the presence of three sex-determining regions (14): one 17 
female-suppressing region (carrying a gynoecium-suppressing factor, GSF) and two male-18 
promoting (carrying a stamen-promoting factor - SPF and male-fertiliy factor - MFF) (15). A 19 
GSF candidate gene has recently been proposed (16), but the other sex-determining genes 20 
remain unknown. 21 
Here we used an Oxford-Nanopore-Technology (ONT)-based sequencing approach to obtain 22 
the S. latifolia genome, in order to study the repeat-rich Y chromosome. We also used high-23 
quality genome assemblies of closely related non-dioecious Silene species as outgroups to 24 
make inferences about the evolution of the S. latifolia sex chromosomes. We sequenced 25 
mutants with Y deletions for three sexual phenotypes (hermaphrodites and asexuals with 26 
early/intermediate and late anther development arrest) in order to pinpoint candidate sex-27 
determining genes/regions. Furthermore, we generated expression data at two critical stages 28 
for male and female flower development to help identify sex-determining genes. 29 
 30 

The structure and gene content of the sex chromosomes  31 
To assemble the complex S. latifolia genome, we produced an inbred population from 17 32 
generations of brother-sister crosses to reduce heterozygosity (see Material and Methods for 33 
the details of the sequencing, assembly and annotation methodologies). We selected one male 34 
and one female individual from this inbred population for sequencing. The male was 35 
sequenced using ONT at 100X coverage to ensure 50X coverage for both sex chromosomes 36 
(Table S1). Assembly was performed using an initial hybrid long-read approach including 37 
Flye (Figure S1). The ONT contigs were polished using 200X of short Illumina reads and 38 
then scaffolded using Bionano optical mapping data followed by Omni-C contact data (see 39 
Table 1 for genome statistics and Table S2 for more details). The polished consensus 40 
sequence reached a phred quality score of ~30 (1/1000 base error). All scaffolds were 41 
anchored onto our genetic map, except scaffolds 1, 12, 13, 16 and 41 (Figure S2). These 42 
unplaced scaffolds were classified as likely fragments of the Y chromosome based on 43 
female/male sequence depths and mapping of previously well-characterized sex-linked genes 44 
(see below). They were assembled into a single sequence. Re-mapping the Omni-C data onto 45 
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the chromosome sequences obtained in this manner further improved the scaffolding of the X 1 
and Y chromosomes. The final chromosome sequences show high consistency with the 2 
contact data (Figure S3). During the assembly process, the two haplotypes of each sequenced 3 
region were collapsed into a single sequence. We present this a haploid version of the S. 4 
latifolia genome with a single pseudomolecule for each chromosome, including separate 5 
assemblies of X and the Y chromosomes, except for the PARs on the X and Y, which were 6 
also collapsed (the resulting single PAR sequence is assembled on the X chromosome only 7 
(see below). The sizes of the genome and sex chromosomes obtained closely match the 8 
previous C-value-based size estimates (Table 1). Gene annotation identified 35,436 protein-9 
coding genes. BUSCO scores were high at different steps of the assembly/annotation process 10 
and the final score was 86.5% (Tables 1 and S2). Repeat analysis revealed that 79.24% of the 11 
S. latifolia male genome consists of repeats (Table S3). Annotated repeats represented 12 
61.18% of the S. latifolia genome with a very high abundance of two LTR retrotransposons 13 
Copia (20.73%) and Gypsy (33.69%). Telomere-associated repeats were found at the 14 
expected locations for all chromosome sequences, which constitute telomere-to-telomere 15 
assemblies (Figure 1A). Genes are concentrated in the chromosomal arms and are sparse in 16 
the pericentromeric regions, and vice versa for repeats, as in many eukaryotic genomes (17).  17 
Our assemblies of the X and the Y chromosomes are of high quality. In systems in which the 18 
X and Y are differentiated (with SNPs and indels) and using stringent mapping parameters, 19 
female/male sequence-depth ratio of ~1, ~2 and ~0 for autosomes, X, and Y chromosomes, 20 
respectively, are expected, and were observed in our data (Figure 1A). A smaller set of 21 
experimentally validated sex-linked genes (compiled in Muyle et al. 2018) also mapped as 22 
expected to their previously assigned X or Y position (Figures 2 and 3). The X chromosome 23 
sequence obtained is 346 Mb long. The distribution of genes and repeats (in particular 24 
centromere- and telomere associated repeats) is also as expected for a typical metacentric 25 
chromosome (Figure 1A). Sex-specific recombination data and other data identified the 26 
pseudo-autosomal region (Figure 1B). The PAR is a small gene-rich region (25 Mb with 27 
1,286 genes). The Y chromosome assembly is 497 Mb long (522 Mb if the PAR is included) 28 
and includes some of the largest scaffolds (1 - 364.5 Mb, 12 - 45.7 Mb, 13 - 41.9 Mb).  29 
 30 

Evolution of the sex chromosomes 31 
The high-quality assembly of the X and Y chromosomes illuminates the evolution of 32 
recombination suppression between the sex chromosomes of S. latifolia. We found three 33 
evolutionary strata, and extensive rearrangements on the X, and especially the Y 34 
chromosome. Our analyses of rearrangements and estimates of synonymous site divergence 35 
(dS) between the X and Y copies used a set of 355 gametologs (= X/Y gene pairs) with 1:1 36 
orthology with the outgroup species Silene conica and Silene vulgaris. Change-point analysis 37 
identified four regions in the non-recombining region with different pairwise mean X-Y dS 38 
values in adjacent X chromosome regions, based on the gene order in the assembly (Figures 39 
2 and S4A). We defined three evolutionary strata, S1, S2 and S3, based on the different dS 40 
levels (Figures 2A and S4B). The oldest stratum, region S1, is split in two by S3. S3 has a 41 
lower dS mean than its two flanking regions, which does not fit the expected pattern of 42 
decreasing divergence with proximity to the PAR; it has dS value similar to that of the S2 43 
region but much higher synteny, and it was not formed via the same type of rearrangements 44 
(see below). S1 and S3 are small regions located within the first 27 Mb of the X chromosome 45 
q arm. S2, on the other hand, is very large and includes most of the X chromosome. Using a 46 
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molecular clock approach, we found that strata S2 and S3 evolved 4.9 [3.8, 6] and 4.4 [3.3, 1 
5.6] MY ago respectively and stratum S1 10.8 [9.7, 11.9] MY ago, i.e. when the S. latifolia 2 
sex chromosomes originated (18).  3 
Comparisons of gene order between S. latifolia and two non-dioecious close relatives, S. 4 
conica and S. vulgaris revealed large syntenic blocks with some rearrangements (Figure S5). 5 
The S. latifolia Y chromosome stands out as highly rearranged compared with either the X or 6 
both outgroups, with the notable exception of the S3 stratum, which includes in particular a 7 
syntenic block of 4 Mb (Figure S6A and S6C). The S. latifolia X shows homology with four 8 
S. vulgaris scaffolds (1, 3, 6 and 16; Figures S5) and with chromosome 5 of S. conica (its 9 
closest relative), and smaller parts of chromosomes 1, 2 and 6 (Figures S5 and S6B). 10 
Reconstruction of the rearrangements between the X, the Y and the outgroups (Figures 2B, 11 
S6C-E and S7) showed that stratum S1 may have resulted from two inversions, one on the X 12 
encompassing S1a to S1b and one on the Y including S1c, that occurred early in the 13 
evolution of the sex chromosomes.  14 

Stratum S3 had a lower dS than stratum S1 and was the only region showing extended 15 
synteny between the X and Y chromosomes, which suggests that S3 has recently translocated 16 
into the middle of the oldest stratum S1 (Figure S6C). However, comparisons between S. 17 
latifolia X and the outgroups suggest that S3 was ancestrally located within the S1 stratum at 18 
the very same place (Figures 2 and S6D-E). To reconcile these findings, we propose that S3 19 
(initially within the S1 stratum) was lost from the Y and later regained by a recent 20 
duplicative-translocation from the X (Figure 2B). Stratum S2 is likely slightly older than S3 21 
as it is more rearranged, and probably arose through a different mechanism (Figure 2C). 22 
Reconstruction of the rearrangements between the X, the Y and the outgroups (Figures 2 and 23 
S8) could not associate S2 formation to a single event. We found several inversions, some of 24 
them pericentric, as previously speculated (19).  25 
The Y and the X chromosomes are giant sized in S. latifolia and we infer that this is due to 26 
TE accumulation in both sex chromosomes. Our repeat analysis indeed revealed massive TE 27 
accumulation on the Y, but also, to a lesser extent, on the X (Tables 1 and S3, Figure 1). This 28 
explains why the X and Y, are, respectively, 4 and 5.5 times larger than a typical S. conica 29 
chromosome such as chromosome 5, with which most of the orthologs with the sex-linked 30 
genes are from. The S. latifolia autosomes average size is twice that of their S. conica 31 
homologs, supporting the view that TEs on sex chromosomes constitute a reservoir spreading 32 
genome-wide (20). In Eukaryotes, the non-recombining pericentromeric regions are TE-rich 33 
as recombination helps purge deleterious TE insertions (21) and this pericentromeric effect 34 
on the X chromosome is strikingly large (Figure S2B).  35 
The Y chromosome exhibits signs of considerable degeneration. Out of 1,541 1:1 orthologs 36 
in S. latifolia X, S. conica and S. vulgaris, 963 had no detected ortholog on the Y 37 
chromosome. A model-based phylogenetic analysis of gene gain and loss confirmed this 38 
observation. As many as 58% of the genes on the Y appeared to have been lost since it 39 
stopped recombining with the X about ~11 MY ago. In addition, we detected more genes 40 
with premature stop codons on the Y compared to the X, except for stratum 3 (Figure 2E), 41 
suggesting the X might also be degenerating in this stratum. Among the gametologs with 42 
apparently functional X and Y copies, 77% of those with significant differences in rates of 43 
non-synonymous versus synonymous (dN/dS) changes between X and Y had the Y copies 44 
with higher dN/dS values, indicating relaxed selection (Figure 2D). Another form of 45 
degeneration is when Y-linked genes have lower expression than their X counterparts, which 46 
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has been reported in S. latifolia (22-24); this may be explained by epigenetic modifications 1 
(Figure 2F-I), as Y genes had more TEs in their vicinity and bear hallmarks of silencing, i.e., 2 
a higher number of 24 nucleotide small RNA mapping and higher levels of DNA 3 
methylation, especially around the promoter in the CHH context, compared to X genes (other 4 
contexts are shown in Figure S9). Using RAD-seq data, we found that the Y chromosome 5 
exhibits considerably lower genetic diversity as compared to the X chromosome and 6 
autosomes (Figure S10), in agreement with this chromosome undergoing genetic 7 
degeneration .  8 

 9 
The sex-determining genes on the Y chromosome 10 

We identified candidate sex-determining genes by sequencing at low coverage 18 mutants for 11 
sexual phenotypes (Table S4 and Material and Methods). Hermaphrodite mutants have 12 
deletions in the GSF region, asexual mutants in which anther development was stopped at 13 
early or intermediate stages in flower development have a deletions in the SPF region, and 14 
asexual mutants with pollen defects (late events) have deletions in the MFF region. SPF and 15 
MFF mutants were phenotypically very diverse, suggesting they have several different 16 
deleted genes (25,26).  17 
Figure 3A shows the mapping of the mutant reads onto the reference Y chromosome along 18 
with reads from normal (U17) males and females, which indicate the expected coverage for 19 
presence (male) or absence (female) along the Y chromosome. Note that female coverage is 20 
generally low but not always null depending on how many X reads can mismap on the Y 21 
chromosome. A region is inferred as deleted in a mutant if the coverage is similar (or lower) 22 
to the normal female and different from the normal male. While the data are noisy, regions of 23 
very low coverage in all mutants of a given category (but not other categories) are still easily 24 
identified and are limited in number (3 for GSF; 2 for SPF; 3 for MFF categories). They were 25 
located as expected on the Y based on a map of the Y built using genetic markers to genotype 26 
the mutants and locate their deletions (26). In particular, MFF deletions cluster near the PAR 27 
and Y4; GSF deletions are close to Slss, DD44, Cyp and Y6a; SPF deletions are close to 28 
Y6b.  29 
One of the three GSF deletions includes Clavata3 (scaffold_1_000153), the recently 30 
proposed GSF candidate gene (16). Differences in the balance of the Clavata-Wuschel 31 
pathway in males and females has been proposed to explain carpel formation/inhibition in 32 
female and male flowers as Clavata3 (a carpel inhibitor) has a functional copy on the Y and a 33 
pseudogene on the X, while Wuschel (a carpel promoter) is present on the X and deleted 34 
from the Y (27). Consistent with this, both Clavata3 and Wuschel are in stratum 1, as 35 
expected if both changed during the first step of sex-chromosome evolution, i.e., they support 36 
the model involving male-sterility and female-suppressing mutations (28). Figure 3B focuses 37 
on genes located in the deletions, combining information on coverage, gene expression 38 
during early or late flower development (Table S5) and functional annotation of sterility 39 
terms. We also considered genes that are absent in at least one mutant of a category, possibly 40 
explaining the observed phenotypic variability observed among the mutants. We found 41 
several MFF candidate genes. A notable MFF candidate is the gene scaffold_1_000971 that 42 
encodes a cytochrome P450 protein and is homologous to the Arabidopsis thaliana 43 
Cyp704B1 gene, which is crucial for pollen maturation, is expressed in the tapetum, and 44 
involved in the sporopollenin synthesis (a pollen cell wall component). Its inactivation causes 45 
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male-sterility in A. thaliana. This gene is expressed in stage 8 but not stage 5 in S. latifolia 1 
male flower development consistent with a MFF gene. Another MFF candidate gene is 2 
scaffold_1_003352 that encodes for a papain-like cysteine protease also expressed in tapetum 3 
and important for pollen maturation, through involvement in proteolysis and tapetal cell 4 
degeneration). It is also annotated as a male-sterility gene. No clear SPF candidate was found 5 
and this region is not shown in Figure 3B. scaffold_1_000971 is probably located in stratum 6 
1 while scaffold_1_003352 is located in stratum 2. Our best MFF candidate is thus located in 7 
S1 as the best GSF one, which suggests that S1 might have formed when successive closely 8 
linked female-suppressing/male-enahncing mutations appeared during the evolution of 9 
dioecy (28).  10 

 11 
Conclusions  12 

We produced high-quality S. latifolia sex chromosome assemblies, which provided insights 13 
about their structure, function, and evolution. We found that the evolution of the S. latifolia 14 
sex chromosomes started ~11 MY ago with the differentiation of a small region including the 15 
GSF and MFF sex-determining genes. This first stratum probably formed by two paracentric 16 
inversions on both the X and the Y. More recently, another stratum including the centromere, 17 
S2, was formed ~5 MY ago. This generated a very large non-recombining region on the Y, in 18 
which a massive accumulation of TEs occurred, and from which they dispersed throughout 19 
the chromosome. These repeats and the lack of recombination probably allowed 20 
chromosomal rearrangements to occur on the Y. The absence of recombination also led to 21 
genetic degeneration, with as much as 58% of the genes on the X being lost from the Y. 22 
Interestingly, similar changes also affected the X chromosome, as its non-recombining 23 
pericentromeric region also expanded to a giant size via massive TE accumulation, which 24 
might have been driven by a reduced effective population size of the X chromosome (29,30).  25 

  26 
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 1 

Fig. 1. View of the assembly of the S. latifolia male genome assembly. (A) Circos plot of the S. 2 
latifolia male genome. Circles included in the Circos plot are from outer to inner circles: 1. The 3 
coverage Female/Male ratio distribution. 2. Gene density highlights the most populated regions 4 
(dark green); they are defined as those with a density larger than the average plus 1 sd. 3. Family 5 
repeats density distribution showing satellite elements (black), LTR elements: Ty3/Gypsy 6 
(orange), Ty1/Copia (yellow), LINE (violet), and Helitron (grey). 4. SNP Female and male 7 
distribution (purple for female and orange for male). This analysis is consistent with the sequenced 8 
male being highly homozygous, although some chromosomes show heterozygosity. It is also 9 
consistent with the female being a sister of the male. 5. Rearrangements between X and Y 10 
chromosomes based on the gametologs. (B) Zoom in on the X chromosome showing 11 
recombination in males (blue) and females (red) defining the pseudo-autosomal boundary at 321 12 
Mb, female/male sequence coverage ratio, and significant differential expression between male 13 
and female flowers (stage 5); the full analysis of differential gene expression is shown in Figure 14 
S11. All panels have data summarised in 1Mb windows. 15 
  16 
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Fig. 2. The evolution of the sex chromosomes. (A) The X chromosome sequence. The 417 1 
gametologs genes are placed and colored according to their evolutionary stratum (S1a, S1b, S1c, 2 
S2 and S3). Zoom in of the extremities of the X chromosome are also shown. Genes previously 3 
characterized in the literature are identified by a ball-headed pin colored according to their 4 
stratum and located over the X chromosome sequence. (B) Schematic view of the first step of the 5 
evolution of the sex chromosomes with a zoom in on the first 35 Mb of the p arm of the X 6 
chromosome. The formation of stratum 1 (from S1a to S1c) is shown. Strata are not represented 7 
on the Y. (C) Global view of the other steps of the evolution of the sex chromosomes (full 8 
chromosomes are shown). (D) Violin plot of dN/dS differences among X and Y copies, 9 
gametologs pairs with significant differences (p-value < 0.05) are shown in blue. (E) Genes with 10 
premature stop codons on the sex chromosomes shown by strata. (F) Distribution of Y over X 11 
gene expression ratio in four S. latifolia males in flower buds. The boxplots below the 12 
distribution represent the median, the first and third quartiles (hinges) and 1.5 times the distance 13 
between the first and third quartiles (whiskers). (G) Sum of repeat lengths around X/Y gene 14 
pairs, from 4000 bp upstream to 4000 bp downstream of the gene. If repeats went beyond the 15 
borders (+/- 4000bp), their length was not included. (H) Mapping of 24nt small RNA (in reads 16 
per million mapped reads, abbreviated RPM) on X/Y gene pairs for three S. latifolia females and 17 
three males in flower buds and leaves. The boxplots represent the median, the first and third 18 
quartiles (hinges) and 1.5 times the distance between the first and third quartiles (whiskers). The 19 
red dot stands for the mean. Both X alleles in females are represented in red and their sRNA 20 
mapping was divided by two for stochiometric comparison to the X allele in males (represented 21 
in green) and the Y allele in males (represented in blue). (I) Plot of X/Y genes DNA methylation 22 
in CHH context. Both X alleles in the female are represented in red, the X allele in the male in 23 
green and the Y allele in the male in blue. All X/Y genes were combined to plot the average 24 
proportion of methylated reads at cytosine positions along sliding windows; the 95% confidence 25 
interval is represented as a small ribbon around the curve. Twenty windows of 200 bp were 26 
studied upstream of the transcription start site (TSS) and twenty windows of 200 bp were studied 27 
downstream of the transcription termination site (TTS). The gene body (from TSS to TTS) was 28 
divided into twenty windows of equal size.   29 
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 1 

Fig. 3. Y deletion mutants analysis. (A) The Y chromosome sequence and its putative sex-2 
determining regions (MFF, SPF, and GSF) with estimated location from Bergero et al. (2008). 3 
The 417 gametologs genes are placed and colored according to their evolutionary stratum (S1a, 4 
S1b, S1c, S2 and S3). Additionally, genes previously characterized in the literature are identified 5 
by a ball-headed pin colored according to their stratum and located over the Y chromosome 6 
sequence. (B) Each plot shows the read count of all individuals (blue) grouped by mutant’s 7 
phenotypic category (from top to bottom: GSF mutants, SPF mutants, and MFF mutants) after 8 
mapping their reads onto the reference Y chromosome. The read count of the female and male 9 
control are also present in the plot (solid and dashed black line, respectively) and coincide with 10 
the maximum and the minimum (male and female values, respectively) read count of the 11 
mutants. Red rectangles depict genes that are deleted in all mutants of a given phenotypic 12 
category and present in all the remaining mutants (i.e., phenotype-specific deleted genes): 3 in 13 
GSF mutants at 370–440Mb, 3 in SPF mutants at 260Mb–280Mb and 8 in MFF mutants at 5Mb–14 
30Mb. The maximum number of reads was set to 50. Window size=1Mb. (C) Phenotype-specific 15 
deleted genes and their neighbor genes with a relevant presence/absence pattern within the low 16 
covered regions in the GSF and MFF mutants’ phenotypic category: row A concerns the 17 
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presence/absence of the gene among mutants, in which green is for phenotype-specific deleted 1 
genes and gray is for genes deleted in at least one mutant of the category of interest and present 2 
in all the remaining mutants; row B and C concern the expression of each gene in a normal male 3 
at stage 5 and 8 of development, respectively: green is for genes expressed in the stage expected 4 
for sex determining genes (stage 5 for GSF genes or stage 8 for MFF genes), gray is for genes 5 
that do not follow the expected pattern of expression in sex determining genes, and blank means 6 
the gene is not expressed in any of the stages; row D concerns the functional annotation of each 7 
gene: green is for genes annotated with a sex determining function, gray is for genes annotated 8 
with no clear sex determining function, and blank is for genes without available functional 9 
annotation; row E regards they possible role as a sex determining gene, in which we highlight 10 
with asterisk (*) a very good candidate to sex-determining gene and with a plus signal (+) good 11 
candidates to sex-determining genes; row F indicates the stratum of each gene: brown for S1a, 12 
red for S1b, pink for S1c, light blue for S3 (for the genes with striped squares the stratum was 13 
inferred from the closest genes). 14 
  15 
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Table 1. Statistics for the genome and the sex chromosomes. All assembly metrics were 1 
computed by the total assembly and sex chromosomes.  2 

 3 
 Whole genome X chromosome Y chromosome 

Total assembled size (bp) 2,739,705,433 346,484,273 497,814,031 

Number of contigs 1553 55 29 

Number of scaffolds 929 21 4 

N50 (bp) 100,527,128 50,520,191 364,495,762 

N90 (bp) 24,182,774 21,428,974 364,495,762 

Largest length size (bp) 364,495,762 133,616,578 364,495,762 

Anchored of the total 
sequences (anchoring rate) 2,586,997,243 (95%) 

Annotated protein-coding 
genes 

35,436 3,520 2,344 

Mean gene length (bp) 4,155 4,332 4,045 

BUSCO score  86.5%  

Identified repeats 79.24% 77.75% 81.38% 

Annotated repeats 61.18% 58% 65% 

LTR retrotransposons 54.42% 52.7% 60.55% 

DNA transposons 4.11% 3.11% 3.22% 

MITE 0.14% 0.098% 0.068% 

LINE 0.48% 0.37% 0.55% 

Satellite repeats 2.04% 2.014% 1.18% 

 4 
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