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Abstract

Neural signal shapes convey significant information about their generating processes. In this study, we
introduce a data-driven methodology to identify sensory and behaviourally-relevant traces within neural
responses. We present a phenomenological model that characterises temporal variations in intracranial
EEG using eight interpretable parameters: peak time, peak intensity, initial and final baselines,
accumulation and depletion period, and their respective concavities. This model effectively captures
subtle signal variations, especially in sensory decision-making tasks. By decomposing the signals in this
manner, we then conduct a comprehensive brain mediation analysis on iEEG data’s shape, pinpointing
regions that mediate behavioural processes. Importantly, we can determine which signal dynamics
specifically reflect underlying behavioural processes, enhancing the depth of analysis and critique of their
role in behaviour. Preliminary applications on a cohort of epileptic patients reveal that our model explains
over a third of the signal variance at the trial level across all brain regions. We identified four key
regions—encompassing sensory, associative, frontal, and premotor areas—that mediate the impact of
task difficulty on reaction time. Notably, in these regions, it was the depletion period, rather than signal
amplitude, that correlated with behavioural speed. This study highlights the potential of our approach in
providing detailed insights into the neural mechanisms linking stimuli to behaviour.
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Introduction
One of the key challenges in system and cognitive neuroscience is to understand how sensory
information is processed by the brain and transformed to generate behaviours. Traditionally, statistical
tools in neuroscience treat sensory and behavioural variables as separate. This has led to a predominant
focus on correlations, often overlooking the nuanced neural processes that act as intermediaries
between sensory stimuli and behavioural outcomes. Bridging this gap is essential for a more holistic
understanding of how the brain encodes and generates behaviour. Recent work has proposed a new
framework redefining the “neural code” as the neural features that carry sensory information used by the
animal to drive appropriate behaviour (Panzeri et al., 2017). Recent metrics based on information theory
have been proposed to account for the “intersection” between sensory and behavioural information (Pica
et al., 2017).

Mediation analysis stands out as a simple yet structured method to probe the potential causal links
between environmental stimuli, neural activity and behavioural results. It offers a way to move beyond
mere observation of associations and toward a deeper understanding of the role of neural activity in
cognitive processes. The limitation, however, lies in the interpretability of such results. Neural mediation
tests put the nervous system as an intermediate processing step between stimulus and behaviour
(Brochard & Daunizeau, 2022; Rigoli et al., 2016). Yet they can surprisingly provide little insight into
neural organisations. The issue is not new and has been pointed out before, especially for neuro-imagery
analysis. Many neural studies default to the analysis of overly averaged signals and artificially
disconnected data points. While originally grounded on technical limitations, it risks oversimplifying neural
processing, neglecting temporal dynamics and the influence of lagged responses. Complex cognitive
operations, such as decision-making and choice, may require a more nuanced approach that considers,
for one, temporal aspects.

In the current study, we propose a novel approach that combines mediation analysis with the variability of
the neural response’s shape. Our phenomenological model allows the extraction of key features
characterising neural responses, with a minimal computational burden. Mediation analysis on “shape
features” allows capturing the intermediate steps that lead from stimuli to behaviour bypassing problems
related to variability in sensory-motor transmission. We termed such an approach shape mediation
analysis (SMA).

Previous studies have explored burst analysis and reaction times, providing valuable insights into neural
and behavioural variability.These findings serve as a foundation for understanding the intricate
relationship between neural responses and behaviour. SMA extends this research by offering a
systematic and quantitative approach to identify intermediate factors in the neural pathway. Critically it
separates behaviourally relevant features from purely physiological dynamics of the response, offering
deeper insight into the underlying driver of behaviour variability. Intracranial EEG (iEEG) studies often
face challenges related to statistical power due to limited data samples and noise. Data-driven
approaches are essential for discovering hidden patterns, but they require robust statistical methods to
avoid spurious findings. The simplicity of SMA not only addresses statistical limitations, but also
enhances efficiency by reducing the number of statistical tests and enabling whole-brain exploration.
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Methods

Neurophysiological data and experimental design
Stimuli and experimental design: The stimuli employed in this study were adapted from a classic visual
search test originally developed by (Treisman & Gelade, 1980). Each stimulus comprised a grid of 36
letters arranged in a 6x6 square formation, with 35 “Ls” and one randomly positioned “T”. Participants
were instructed to swiftly locate the "T" and press a response button upon discovery. The study featured
two primary experimental conditions for comparison: an easy search condition and a challenging search
condition, as illustrated in Fig. 1A. In the EASY condition, the target appeared in gray, while all
distractors were in black. To distinguish between correct and incorrect responses, participants had to
indicate whether the target was in the upper or lower half of the display by pressing one of two response
buttons. In the DIFFICULT condition, both the distractors and the target were presented in gray. These
challenging and easy condition stimuli were randomly presented for a fixed duration of 3 seconds, with a
1-second interval between each presentation. The stimuli were displayed on a 19-inch computer screen
positioned 60 cm away from the participants. Each experiment was composed of 6 runs of 5-minute
recording blocks. On average, participants performed 45 and 40 trials in the easy and hard conditions
(Fig. 1B). They had an average of 88% and 82% of correct answers in the two conditions (Fig 1. C) with
a respective response time of 1.2s ± 0.4 and 1.7s ± 0.3 (Fig. 1D).

Fig. 1: Task and behaviour. (A) Behavioural task; (B) Number of easy and hard trials across subjects, (C) percentage of
correct answer easy and hard trials across subjects, (D) Response time for easy and hard trials across subjects
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Participants: Intracranial recordings were gathered from 62 individuals undergoing neurosurgery for
intractable epilepsy at the Epilepsy Department of Grenoble Neurological Hospital in Grenoble, France.
All patients received stereotactic implantation of multi-lead EEG depth electrodes. Any electrode data
displaying abnormal waveforms were excluded from the current study. This process involved
collaboration with the medical team and entailed a visual inspection of the recordings, systematically
omitting data from electrodes subsequently identified as being located within the seizure onset zone. All
participants provided written informed consent, and the experimental procedures received approval from
both the Institutional Review Board and the National French Science Ethical Committee.

Electrode implantation: Between eleven and fifteen semi-rigid multi-lead electrodes were surgically
implanted in each patient using stereotactic techniques. These sEEG (stereotactic
electroencephalography) electrodes had a diameter of 0.8 mm and, depending on the specific target
structure, comprised 10 to 15 contact leads, each 2 mm wide and spaced 1.5 mm apart (manufactured
by DIXI Medical Instruments). To ensure precise localization, all electrode contacts were first marked on
the individual stereotactic implantation plan for each patient and were subsequently mapped
anatomically using Talairach and Tournoux's proportional atlas (Talairach et al., 1993). Additionally,
computer-assisted alignment between a post-implantation CT scan and a pre-implantation 3-D MRI
dataset (utilising VoXim R by IVS Solutions) enabled direct visualisation of the electrode contacts within
the patient's brain anatomy through ACTIVIS (developed by INSERM U1028, CERMEP, and UMR 5230).
When available, a post-implantation MRI was also employed to confirm electrode positioning. The visual
examination of the electrodes overlaid on each subject's individual MRI scan was performed to ascertain
whether each sEEG electrode was situated in gray or white matter. The Talairach coordinates of each
electrode were finally converted into the MNI coordinate system according to standard routines (Jerbi et
al., 2009, 2010; Ossandon et al., 2011; Bastin et al., 2016). Intracranial implantation and cortical
repartitions of the number of recordings and subjects are displayed in Fig. 2.

Fig. 2: iEEG implantation and cortical repartition. (A) Anatomical location of intracerebral electrodes across the 62 epileptic
patients. (B) Number of unique subjects represented per cortical parcel, (C) Number of of bipolar derivations per cortical parcel

sEEG recordings: Intracerebral recordings were conducted using a video-SEEG monitoring system
(provided by Micromed), enabling simultaneous data recording from 128 depth-EEG electrode sites. The
data were subjected to online bandpass filtering within the 0.1 to 200 Hz range and sampled at a rate of
either 512 or 1024 Hz. During acquisition, the data were initially recorded with reference to an electrode
situated in white matter. Subsequently, each electrode trace was re-referenced to its immediate
neighbour, forming a bipolar derivation. This bipolar configuration offers several advantages over
common referencing methods. It effectively mitigates signal artefacts commonly observed in adjacent
electrode contacts (e.g., the 50 Hz mains artefact or distant physiological artefacts) and enhances local
specificity by cancelling out the influences of distant sources that distribute equally to both neighbouring
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sites through volume conduction. The spatial resolution achieved through the bipolar SEEG configuration
is approximately 3 mm, as reported in previous studies (Jerbi et al., 2009; Kahane et al., 2006; Lachaux
et al., 2003). The location of all sEEG bipolar derivations was labelled according to MarsAtlas
parcellation (Auzias et al., 2016).

Extraction of gamma envelope: To extract the gamma power envelope, we followed established
procedures as outlined in prior work (Ossandón et al., 2011, 2012). In brief, we initiated the process by
applying a series of continuous iEEG signal bandpass filters, spanning multiple 10-Hz-wide frequency
bands. This encompassed 10 distinct bands, ranging from 50 – 60 Hz to 140 –150 Hz. Subsequently, for
each signal filtered within these bands, we computed the envelope using the standard Hilbert transform.
The resulting envelope possessed a time resolution of 15.625 ms. For each individual frequency band,
we then normalised the envelope signal (representing time-varying amplitude) by dividing it by the mean
value across the entire recording session and multiplying the result by 100. This transformation yielded
instantaneous envelope values expressed as a percentage of the mean. Finally, the envelope signals
computed for each consecutive frequency band (comprising 10 bands with 10 Hz intervals between 50
and 150 Hz) were amalgamated by averaging, resulting in a single time-series known as the high
gamma-band envelope across the entire recording session. Notably, by design, the mean value of this
time-series throughout the recording session equaled 100. Finally, the gamma envelope was
down-sampled to 64 Hz. Examples of time courses of instantaneous gamma power are represented in
Fig. 3.

Fig. 3: Time courses of instantaneous gamma power. The solid line and the shaded area represent the mean and SEM of
the across-subjects gamma power estimated for easy trials (blue) and hard trials (red). Data are aligned to the stimulus
presentation (vertical line at 0 seconds).

Shape Model
In this section, we describe the construction and parameters of the shape model used to analyze neural
responses.
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Model Parameters: The central component of our analysis is a descriptive model of neural response
shape described from eight simple parameters. They capture various aspects of the temporal
characteristics of neural signals. Specifically:

1. Peak Time (c): The time point at which the neural response reaches its extrema.
2. Amplitude (A): Amplitude of the signal at its extrema.
3. Initial Baseline (b1): The baseline level preceding the response.
4. Finishing Baseline (b2): The baseline level following the response.
5. Integration Time Window (w1): The duration of the activity before its extrema.
6. Depletion Time Window (w2): The duration of the activity after its extrema.
7. Concavity of Integration (p1): The concavity of the activity before its extrema.
8. Concavity of Depletion (p2): The concavity of the activity after its extrema.

They are all integrated together in four simple steps to retain simple interpretability:
1. The distance to the peak is first computed and scaled: |(t-c)/w|
2. The approach dynamic of the signal is modulated by the concavity parameter |(t-c)/w|^p
3. The signal is reversed and bounded by a positivity function preventing infinite values : Pos(1-
|(t-c)/w|^p)
4. Its peak and baseline are finally scaled: b + (A-b) * Pos(1- |(t-c)/w|^p)

Figure 4: Equations governing the phenomenological model (left) and illustrations of the parameters
impacts in green, on top of the red left part and the blue right part (right).

Parameter Estimation: To obtain an estimate of these parameters for each electrode and each trial, we
implemented a one-pass hierarchical estimation procedure. We first fitted parameters through gradient
descent to the iEEG signal averaged across all levels: brain regions, participants, electrodes and
experimental trials. Then we used these parameters as a starting value for the next level and rerun the fit
separately for every brain region averaging the signal over the remaining levels, then again at the
participants' level, then again for each electrode and finally for each experimental trial. Ultimately, these
provided a granular characterisation of the signal at multiple levels of abstraction with a relatively low
computational burden.

Statistical Analysis
In this section, we outline the statistical approaches employed to analyse the neural response data
obtained through the shape model.

Parameter recovery analysis: To validate both the shape model and our fitting procedure we randomly
draw generative parameter values, generate synthetic data under various noise levels, and recover
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parameter estimates. The correlation matrix between generative and estimated parameters captures
both the recoverability of each parameter and its independence from the other.

Mediation Analysis: We applied mediation analysis techniques to investigate the interplay between the
stimulus type, each aspect of the neural response and the subsequent behavioural outcomes. Concretely
two correlation factors were evaluated across every trial, for each participant, region and electrode. The
first assesses how much each parameter covaries with the difficulty level of the trials, the second how,
beyond this first relation, each parameter also covaries with reaction times. A mediation test then
reduces to testing the simultaneity of these relations. In this work, we focus on group-level statistics in
each region. Across participants, both links need to be separately significant for a brain region to pass
the test.

Multiple Comparison Correction: Given the large number of electrodes, brain regions and participants,
we gradually reduced the number of tests to control type I errors and maintain statistical power. First, for
each brain region of each subject, we average the correlation coefficients across electrodes, to retain
one value per mediation path, per subject. Then each region is tested at the group level for the
behavioural relationship, and the tests are corrected for all the brain regions with a FDR-correction.
Finally, the selected regions are tested for the stimulus relationship and FDR corrected as well. This
procedure avoids the explosion of comparison induced by the number of electrodes and avoids
superfluous double tests.

Results

Modelling intracranial local field potential’s shape
Parameter recovery: To simulate synthetic signals, we used a time window of 3.2 seconds and
repeatedly drew shape parameters from uniform distributions. A, b1, b2, p1 and p2, were drawn from the
interval [-1,1], c from [1,2] and w1 and w2 from [0.25,1]. This ensured that all the variability of the model
was represented in the synthetic data. The generated data was then corrupted with an additive noise at a
signal-to-noise (SNR) ratio of 0.5, 1 or 2. For each SNR level, 500 synthetic trials were generated and
separately fitted. The figure below shows the correlation between generative and fitted parameters.

Figure 5: Correlation matrix of the generative and fitted parameters averaged across all trials
and separated per SNR.
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The correlation matrix shows an unbiased parameters recovery, with little confusion between the
parameters (all off-diagonal correlation <0.2). At high SNR, shape parameters are almost perfectly
recovered. However, noise does not affect each parameter equally; the amplitude parameters A, b1 and
b2 are the more robust. This is not surprising, given that each parameter has a different impact level on
the signal’s variations.

Electrodes fit quality: To capture any traces of behavioural processing of the stimuli, we focused on the
time windows covering both the stimulus presentation and the participant response. For each trial the
time was then rescaled to align every stimulus presentation with time t=0 and every response with time
t=1, effectively changing the time scale to a trial-completion scale: . This
simple procedure allowed us to examine both types of sensitivity without artificially biasing the models
with variable time windows. In this setting, our model explained on average 33% (std 5.25%) of signal
variances across all ROIs. Respectively 37% (std 5.5%) and 30% (std 5%) for easy and hard trials. This
quality of fit decreased to 22% (std 4.3%) and 22% (std 4.2%) when aligning the signals to either the
stimulus or the response.

Time scale →
Explained variance ↓

Completion time Stimulus-locked time Response-locked time

All trials 33.9% (+-5.25) 21.97% (+-4.32) 21.92% (+-4.16)

Easy trials 37.1% (+-5.56) 22.05% (+- 4.34%) 22.03% (+-4.13)

Hard trials 30.21 (+-5.06) 21.86 (+- 4.29) 21.77% (+-4.21)

Table 1: Fit quality across the Completion-time scale, the Stimulus-locked time scale and the
Response-locked time scale.

Mediation analysis on neural shape parameters
Mediation analysis: After FDR correction across the 82 regions, four regions yield significant mediation
results: the right caudal medial Visual Cortex (R VCcm), rostral ventral Premotor Cortex (R PMrv), ventral
Inferior Parietal Cortex (R IPCv) and the left ventral Orbito Frontal Cortex (L OFCv). Overall, the model
explained 38% of their electrodes’ variance. All four regions mediated the effect of the task difficulty on
the reaction time through the length of the depletion time window (w2). Switching from easy to hard trials
increased each region's depletion window, relative to the reaction time. In turn, increases in w2 were
associated with a shortening of the reaction time, above and beyond the changes induced by the
difficulty level.
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Figure 6: Signal variations with difficulty level (blue vs red) in the four mediating regions. All time-scale
are represented for visualisation: Stimulus-locked (top left), Response-locked (top right),
Completion-time (bottom). Plains curves and shaded area represent the signal’s mean and estimation
error across participants, along side the mean fitted signal (dotted curves).
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Figure 7: Parameters of the shape model in the four mediating regions. Upper row: separated by
difficulty level (left), and response time intensity (median split per participant). Lower row: Overall value
of each shape parameter (left) and relationship between participant depletion window size and reaction
time (RT).

Parameters →
Regions ↓ c A w1 p1 b1 w2 p2 b2

OFCv
(left)

-0.0085
+-0.011

1.5e-06
+-9.4e-07

0.0065
+-0.012

0.049
+-0.02

-9.9e-08
+-2.8e-07

0.041
+-0.01

-0.01
+-0.019

3.1e-07
+-3.1e-07

IPCv
(right)

0.014
+-0.0086

1.4e-06
+-9.6e-07

0.045
+-0.012

0.033
+-0.028

-3e-07
+-3.1e-07

0.039
+-0.0076

0.067
+-0.017

-1.4e-07
+-3.3e-07

PMrv
(right)

-0.0051
+-0.013

-5.4e-07
+-1.2e-06

-0.026
+-0.017

0.049
+-0.027

1.8e-07
+-3.6e-07

0.032
+-0.0077

0.028
+-0.022

7.2e-07
+-5.1e-07

VCcm
(right)

-0.064
+-0.017

4.1e-06
+-1.9e-06

0.039
+-0.021

0.029
+-0.027

2.9e-07
+-3e-07

0.073
+-0.015

0.0059
+-0.035

-7.9e-07
+-4.5e-07

Table 2: Strength of the mediation’s path between the task difficulty and each shape parameter, in
each region alongside their estimation’s error. Significant elements (FDR-corrected) are bolded.
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Parameters →
Regions ↓ c A w1 p1 b1 w2 p2 b2

OFCv
(left)

0.0055
+-0.006

0.012
+-0.0053

-0.013
+-0.0064

-0.019
+-0.0065

0.0023
+-0.0071

-0.025
+-0.0066

-0.00062
+-0.0051

-0.015
+-0.008

IPCv
(right)

0.0016
+-0.0049

-0.0025
+-0.0083

-0.0066
+-0.006

-0.016
+-0.0053

0.0068
+-0.0056

-0.018
+-0.005

-0.013
+-0.0054

0.0022
+-0.0044

PMrv
(right)

-0.0041
+-0.0034

-0.00029
+-0.0084

-0.0098
+-0.0048

-0.0095
+-0.0022

0.0045
+-0.0071

-0.02
+-0.0035

-0.0097
+-0.0052

-0.005
+-0.0097

VCcm
(right)

0.023
+-0.01

-0.014
+-0.0079

-0.015
+-0.0044

-0.0068
+-0.005

0.019
+-0.0089

-0.021
+-0.0059

-0.0055
+-0.0066

0.033
+-0.0088

Table 3: Strength of the mediation’s path between each shape parameter and the subject’s reaction
time, in each region alongside their estimation’s error. Significant elements (FDR-corrected) are
bolded.

Discussion
In our study, we aimed to identify neural processes related to the processing of sensory information that
leads to behavioural control. To achieve this, we employed a novel technique, the Shape Mediation
Analysis (SMA), to gain deeper insights into the temporal patterns present in iEEG signals. Our approach
decomposes these signals into eight distinct features, allowing us to observe their variations across
different trials. This detailed analysis enabled us to pinpoint features that simultaneously reflect sensory
sensitivity and describe behaviour.

SMA's application to iEEG effectively bridges the detailed physiological recording of iEEG toward the
broad discovery potential seen in fMRI studies. However, instead of relying solely on extensive activation
maps, SMA emphasizes a select set of features, making it conducive to modelling neural populations and
their interconnections. Our findings underscore that focusing on neural activation limits results by
weakening statistical sensitivity. By examining other signal features, we can obtain a richer
understanding of how different neural populations interact across brain regions.

Our results not only corroborate but also refine disparate findings from the neuro-imaging literature on
decision-making. For instance, the involvement of the VCcm in attentional and risk evaluation processes
is supported by works like (Giesbrecht et al., 2006; Krain et al., 2006) . The IPCv's association with motor
selection, action evaluation, evidence accumulation, and exploration in studies by (Daw et al., 2006;
Gluth et al., 2012; Krueger et al., 2017; Madlon-Kay et al., 2013; Paulus et al., 2005). The PMrv,
highlighted in many of these studies, is not only linked to information gathering and uncertainty
evaluation (as seen in (Krug et al., 2014)) but also showcases a functional organization spanning
accumulation, selection, and execution(Rebola et al., 2012). This suggests a need for a more detailed
segmentation than what we used with marsAtlas. Lastly, the OFCv's role in valuing decisions under
uncertainty (Krug et al., 2014) and risky behaviour (Fishbein et al., 2005) further complement our
findings. Our approach binds all these results within one interpretable data-driven framework.
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