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Abstract 
 
Motivated by the growing number of single cell RNA sequencing datasets (scRNAseq) revealing the 
cellular heterogeneity in complex tissues, particularly in brain and induced pluripotent stem cell 
(iPSC)-derived brain models, we developed a high-throughput, standardized approach for reproducibly 
characterizing cell types in complex neuronal tissues based on protein expression levels. Our 
approach combines a flow cytometry (FC) antibody panel targeting brain cells with a computational 
pipeline called CelltypeR, with functions for aligning and transforming datasets, optimizing 
unsupervised clustering, annotating and quantifying cell types, and statistical comparisons. We 
applied this workflow to human iPSC-derived midbrain organoids and identified the expected brain cell 
types, including neurons, astrocytes, radial glia, and oligodendrocytes. Defining gates based on the 
expression levels of our protein markers, we performed Fluorescence-Activated Cell Sorting of 
astrocytes, radial glia, and neurons, cell types were then confirmed by scRNAseq. Among the sorted 
neurons, we identified three subgroups of dopamine (DA) neurons; one reminiscent of substantia nigra 
DA neurons, the cell type most vulnerable in Parkinson’s disease. Finally, we use our workflow to 
track cell types across a time course of organoid differentiation. Overall, our adaptable analysis 
framework provides a generalizable method for reproducibly identifying cell types across FC datasets.  
 
Introduction 
 
Investigating the molecular, cellular, and tissue properties of the human brain requires the use of 
cellular models, as live human brain tissue cannot be easily accessed for research. Patient-derived 
disease 3D tissues, such as human midbrain organoids (hMOs), derived from human induced 
pluripotent stem cells (iPSCs), provide a promising physiologically relevant model for human brain 
development and diseases, including neurodegenerative diseases such as Parkinson’s disease 
(PD).1–4 Yet, as new models emerge, the complexity and reproducibility of these systems needs to be 
captured to utilize this models in addressing biological questions. To determine how faithfully 
organoids recapitulate the human brain and how organoids derived from individuals with disease differ 
from those derived from healthy controls, new approaches towards characterization are required. 
Effective and quantitative methods are needed to determine the cell types within these complex 
tissues and to apply these benchmarks reproducibly across experiments. At present, individual cells 
within brain or organoid tissue can be identified using single cell RNA sequencing (scRNAseq) or 
labeling of protein or RNA in tissue sections. These tools are useful but limited. scRNAseq is a 
powerful tool that has been used to identify known and novel cell types, cell states, and cell fate 
trajectories5–7. However, using scRNAseq to compare proportions or populations of cells between 
genotypes over multiple time points is not practical for hMOs and may result in sampling bias, as less 
than 1% of the whole tissue is sequenced. While scRNAseq provides detailed expression values to 
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determine sub-types of cells, only relatively few samples can be run at a given time and all the cells 
must be alive and prepared in parallel, which can lead to technically challenging experiments. These 
experiments are also costly for the number of replicates needed to ensure sufficient power for 
comparing multiple time points, disease states, or pharmacological treatments8–10. Another option to 
quantify cell types is immunostaining or in situ hybridization of tissue sections. This has the advantage 
of capturing cell morphology and spatial resolution. However, sample preparation, image acquisition, 
and analysis are labour intensive and limited in quantitative accuracy. Moreover, for 3D tissues, either 
only a small section can be analyzed or the entire tissue must be reconstructed and only a few cell 
types can be detected at once.11,12  
 
Here, we use flow cytometry (FC) to measure the protein expression levels of a panel of cell surface 
markers enriched in specific brain cell types. FC is a fast, quantitative, and robust method, used widely 
in immunology and cancer research13–15 but to date only sparsely in neuroscience. Typically in 
neurobiology, only two or three antibodies are used to distinguish between pairs of cell types16,17 or to 
enrich one cell type.18,19 Traditional FC analysis methods using commercially available analysis 
software packages, such as FlowJo (Becton-Dickinson Biosciences) are time consuming and subject 
to user error. Methods to standardize data preprocessing and analyze combinations of more than 3 
antibodies in one experiment are starting to emerge.20,21 However, no methods are available to 
streamline cell type annotation in FC from complex tissues such as brain or 3D brain organoids using 
a large antibody panel. To create such an analysis framework, we produced an experimental dataset 
using cultured hMOs differentiated from human iPSCs.1,4,22 Our workflow also provides the methods to 
select subtypes of cells and gate these cells for further analysis, such as RNAseq, proteomics, or 
enriching cultures. We select example cell populations, sort these cell types, and further characterize 
these with scRNAseq. Here we present a complete framework for annotating cell types within complex 
tissue and comparing proportions of cell types across conditions and experiments. 
 
Results 
 
An antibody panel to identify multiple cell types in human midbrain organoids 
 
In Figure 1A, we provide a schematic of the CelltypeR analysis workflow (see methods) used to 
quantify and compare cell types from tissues containing a heterogeneous population of cells with a 
particular focus on neuronal tissue through brain organoids. To test our CelltypeR pipeline, we used 
hMOs4 differentiated from iPSC lines derived from three unrelated healthy individuals (Methods Table 
1). The hMOs were grown for 9 months in culture, a time point at which neurons are expected to be 
mature and astrocytes and oligodendrocytes have been shown to be present.1,23 Immunofluorescence 
staining of cryosections show that these organoids contain neurons, astrocytes and oligodendrocytes 
(Figure 1B and S1). In FC, combinations of the relative intensities of 2-3 antibodies are often used to 
distinguish between cell types. However, in hMOs we expect approximately nine cellular types with a 
continuum of stages of differentiation.1,4,24 We first defined a panel of 13 antibodies, which included 
well-characterized antibodies previously used to define neural stem cells, neurons, astrocytes, and 
oligodendrocytes or to define other cell types in cultured immortalized human cell lines, blood, or brain 
tissues (Table 1). We dissociated the mature hMOs and labeled the cell suspension with these 
antibodies then measured the fluorescence intensity values corresponding to the protein targets using 
FC. The single live cells were sequentially gated using FlowJo. The FC results show that each protein 
has a range of expression across different cells (Figure 1C and S2). We conclude that the antibody 
panel has the potential to define cell types by identifying combinations of protein expression profiles 
unique to different cell groups.  
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Table 1: Antibody panel with cell types previously reported to be identified by each marker. 

 

 
Analysis of expression profiles in 2D cultures 
 
To validate the expression of the proteins targeted by the selected antibodies on known cell types, we 
separately differentiated iPSCs into dopaminergic neuronal precursor cells (DA NPCs),22 
dopaminergic neurons (DA neurons),35 astrocytes,36 and oligodendrocytes34 (Figure 2A). The cultures 
were dissociated and the 13 antibodies in the FC panel were applied. We examined the staining for 
each antibody across the cultured 2D cells (Figure 2B). Within each cell type there was a variation in 
protein expression levels that could be used to define subgroups of cells. To identify subgroups of 
cells and visualize the markers, we applied unsupervised clustering developed as part of the 
CelltypeR workflow. Some tools exist for automated processing and formatting of FC and numerous 
tools exist for cluster analysis of single cell transcriptomic data that can be applied to other FC data. 
Thus, we took advantage of these existing tools and created new functions in an R package to 
process FC data (see methods). We combined the FC acquired protein expression levels from the five 
separate iPSC derived cultures, normalized the data, and performed dimensional reductions. The 
UMAP visualization shows separate groups for each of the five cell types with some overlap (Figure 
2C). The iPSCs are separate from all other cell cultures. Whereas the NPC culture splits into separate 
groups and overlaps with different cell types, the same is observed for the oligodendrocyte culture 
(Figure S3A). Clustering analysis identifies subgroups of cell types and some clusters with cells from 
multiple 2D cell cultures (Figure 2D and S3B). The DA NPC culture is an intermediate stage between 
iPSC and the three other cell cultures; therefore, it is not surprising that the cells from the NPC culture 
cluster together with other cell cultures. In the oligodendrocyte culture there is one cluster with the 
highest O4 expression that represents the oligodendrocytes within the culture (Figure 2E and S4). We 
conclude from these findings using iPSC-derived 2D cultures that our antibody panel can distinguish 

Antibody/
Marker 

Protein/ 
Gene 

Reported Cell type 
marker 

References 

CD24 CD24 Neurons and neural 
stem cells 
Cancer stem cells 

Uchida 2000,25 Pruszak 2007,16 Pruszak 2009,26 
Sundberg 2009,27 Yuan 2011,19 Wang 201328 

CD56 NCAM1 Neurons and neural 
stem cells 
Cancer cells 

Pruszak 2007,16 Pruszak 2009,26 Sundberg 
200927 

CD29 ITGB1 Stem cell Pruszak16, Yuan 201119, 

CD15 FUT4 Neural precursor Pruszak 2007,16 Pruszak 2009,26 Yuan 2011,19 
Sandor 201729 

CD184 CXCR4 Neural stem cell Yuan 2011,19 Sandor 201729 

CD133 PROM1 Stem cell Uchida 2000,25 Pruszak 2007,16 Barraud 200730, 
Pruszak 2009,26 

CD71 TFRC Stem cell Pruszak 2007,16 

CD44 CD44 Glia Liu 2004,31 Yuan 2011,19 

GLAST GLAST/SLC1
A3 

Glia Liu 2004,31 Jurga 202132 

AQP4 AQP4 Astrocyte Wang 2013,28 Jurga 202132 

HepaCAM HEPACAM Astrocyte Heiland 201933 

CD140a PDGFRA OPC Liu 2004,31 Wang 201328 

O4 Gene 
unknown 

Oligodendrocyte Liu 2004,31 McPhie 201834 
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different cell types and subgroups of cells that we expect to find in 3D hMOs and other complex 
neuronal tissues.  
 
Identification of different brain cell types in human midbrain organoids 
 
To identify cell types within hMOs using the antibody panel, we ran our R preprocessing pipeline to 
align and normalize the data. To compare samples from different iPSC lines, different batches of 
hMOs, and measurements run on different experiment days, we developed methods to combine and 
harmonize samples. This is the first step in the computational pipeline. We combined nine hMO 
samples and selected a subset of the total cells (9000 cells or the max number of cells available). The 
samples were first merged, then transformed and aligned to reduce batch effects, and finally retro-
transformed for better cluster visualization (Figure S5). If removing batch effects is not desired (as in 
the separate cell cultures above), the preprocessing is stopped after merging. The hMOs contain a 
combination of neurons, neural precursor cells (NPCs), astrocytes, oligodendrocyte precursors 
(OPCs), oligodendrocytes, radial glia (RG), stem cells, pericytes, endothelial cells, and epithelial cells, 
all differentiated from the starting iPSCs.4,23,37 The standard method of manually defining cell groups 
using FlowJo or multiple scatter plots in R is time consuming and not reproducible across 
experiments. To overcome this barrier, we developed tools to identify cell types described below: A) A 
correlation cell type assignment model (CAM) using a custom reference matrix and B) clustering 
parameter exploration functions with tools to visualize and summarize of protein expression levels. 
 
We created a reference matrix with the predicted relative expression of each cell surface marker in 
different cell types expected to be present in hMOs based on previous hMO data and human brain. 
Using scRNAseq data from human brain and organoids, total mRNA on brain cell types, and FC (see 
methods), we calculated the relative expression levels for each protein marker in our antibody panel 
(Figure 3A). The CAM function calculates the correlation of protein expression levels of the 13 
markers in each hMO-derived cell to the expression levels of the same markers in the reference matrix 
we created, calculating the Pearson correlation coefficient (R). The R value is calculated for each cell 
type in the reference matrix. The cell type with the highest R value, above an adjustable threshold, out 
of the nine possible cell types is assigned for a given hMO derived cell (Figure 3B). Cells with R 
values below the selected cut-off are left unassigned. The FC panel contains 13 markers used as 
comparison points, thus an R value of 0.553 is required for a statistically significant correlation (p < 
0.05). Applying this significance threshold, neurons are the most assigned cell type (Figure 3C). The 
number of assigned cells depends on the R threshold (Figure S6). Some hMO-derived cells 
correlated close to equally (within 0.05) with two cell types. When this was the case, these cells were 
assigned a merged cell type, and may represent an intermediated cell type, for example neurons and 
NPCs, which are the same cell type on a continuum of differentiation (Figure S7 and S8).  The 
correlation assignment is a useful tool to provide biologists with a predicted cell type and guide 
annotation, however, it does not deliver the accuracy needed to quantify cell types across 
experiments. We therefore created tools to use CAM in combination with other methods. Clustering 
algorithms group together cells with similar expression profiles, thus cell that are not clearly identified 
as a given cell type in isolation can be identified based on their neighbours. We created functions to 
identify the topmost predicted cell types per cluster. 
 
Using the functions in our CelltypeR library we performed unsupervised clustering using Louvain 
network detection and visualized the protein expression levels in each cluster (Figure S9). Clusters 
were annotated with cell types using a combination of marker expression by cluster and the output 
from the correlation predicted cell types (Figure 3D). We identified astrocytes, radial glia (RG), 
epithelial cells, endothelial cells, NPCs, neurons, a small proportion of oligodendrocytes and 
oligodendrocyte precursors (OPCs), and stem cell-like cells in the hMOs (Figure 3E). Clustering the 
hMO cells identified distinct subpopulations of RG, astrocytes, and neurons. All these cell types have 
a wide diversity in the brain and as well as in hMOs.1,38 For example, neurons 1 and 2 could represent 
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different stages of maturation. We conclude that our workflow can be used to annotate cell types in 
hMOs and capture some diversity within cell types.  
 
Comparison of cell types between iPSC derived cell types and hMOs 
 
After annotating a subset of 9000 cells from each of the nine hMO samples, we next analyzed the total 
available cells. We again followed the CelltypeR workflow and can now use the labelled subset of cells 
to annotate the full dataset. We first clustered the full dataset and then annotated the cells from the 
nine hMO samples (Figure 4A). Using CelltypeR functions, we trained a random forest classifier 
model (RFM) to predict cell types (Figure S10). In addition to analyzing protein expression profiles by 
cluster, we used three prediction methods (CAM, RFM, Seurat label transfer) to annotate cell types 
(Figure S11 and S12). We observe the same cell types in the full dataset as in the subset of data; 
however, we now identify a cell group predicted to be OPCs and Radial Glia 1, which we termed OPC-
like (Figure 4A). We examined the protein expression levels within our cell type annotations and 
distinctive expression profiles (Figure 4B).  
 
Visualizing the distribution of cell types in hMOs derived from each cell line, we can see there are 
some differences in the proportion of cell types (Figure 4C,D). We observe more Neurons 1 and fewer 
Neurons2 in the AIW002 hMOs compared to the other two lines. The AIW002 hMOs also have less 
oligodendrocytes than AJG001-C4 and 3450 hMOs. We next preformed permutation tests to 
determine if the differences in proportions of cell types between the cell lines are significant.  We find 
in addition to changes in neurons and oligodendrocytes cell proportions, subtypes of glia cells are also 
significantly different (Figure 4E). Comparing pairwise combinations between the three iPSC lines we 
also see differences across all lines. Notably AJG001-C4 hMOs have the most oligodendrocytes and 
OPCs, and fewer NPCs than the other two lines (Figure S13). To visualize if expression patterns differ 
within one cell type between iPSC lines, we plotted a heatmap of mean protein expression and 
observe most proteins have consistent expression across iPSC lines in most cell types (Figure 4F). 
To further explore expression differences between groups, we created functions in our R package to 
run ANOVAs, post-hoc tests, and identify significant differences. We performed two-way ANOVAs 
followed by Tukey’s post-hoc tests to compare expression levels for each marker protein across iPSC 
lines in each cell type. There are significant differences in overall marker expression levels between 
the lines in neurons, NPCs, oligodendrocytes, and OPC-like cells (Table S1). A few significant 
differences in expression of one protein are seen between pairs of iPSC lines (Table S2). Using our 
framework, we can reliably quantify cell types and compare proportions of cells and levels of antibody 
expression across different conditions. We find significant differences in the proportion of cell types 
and in marker expression levels within cell types between different healthy control iPSC lines.   
 
Application of the CelltypeR workflow to new datasets 
 
We next generated new batches of hMOs using the control cell line AIW002-02 to validate the 
CelltypeR workflow on a new dataset. The antibody panel was applied, and intensity levels were 
measured by FC from two different batches on one experiment day, and on one of the batches on a 
second experiment day. The cell types in these new batches were processed as previously described 
above and in the methods. The cell types were annotated using CelltypeR functions. For RFM and 
Seurat label transfers, the cell type labels from Figure 3D were used as the reference data. The cell 
types in the new hMO samples were found to be consistent with the original AIW002-02 samples 
(Figure 5A). To determine if the proportion of cells was similar across the two new and two original 
AIW002-02 batches, we plotted the percentage of each cell type grouped by hMO batch and observe 
similar but varying proportions of cell types across batches (Figure 5B). Batches A and B are from the 
original data set and were grown with a different protocol than the two new batches C and D (see 
methods). We next performed permutation tests and find more differences in cell type proportions 
between batches A,B and C,D than between the batches grown with the same protocol (Figure S14). 
The relative proportion of several radial glia populations are increased in batches A and B compared 
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to batches C and D. Whereas Neurons 2, OPCs, oligodendrocytes and stem cell like populations are 
all relatively decreased in batches A and B compared to batches C and D (Figure 5B and S14). We 
concluded that CelltypeR can identify cell types across data sets separately processed and compare 
between batches.  
 
Enriching and purifying populations of interest identified by CelltypeR clustering analysis 
 
After annotating a dataset, we could plot the proportion and mean expression of each antibody marker 
in each group to try and define the relative marker expression of a given cell group and then isolate 
that population by FACS. However, manually reverse engineering a gating strategy is difficult with 
more than a few cell type markers. Thus, we defined cell types using CelltypeR, applied the package 
hypergate39 to identify which combinations of antibody markers clearly define a given cell population, 
and then manually gated these cells in FlowJo (Figure 5C). To reduce the number of potential 
populations to gate, subgroups of the radial glia cells and astrocytes were merged. Hypergate was 
applied to define the threshold for each antibody relevant for gating. The resulting gating accuracy for 
all cell types is above 95% (Table S3). We next used the defined gates in FlowJo to gate the cell type 
populations (Figure 5D). After gating in FlowJo we found that OPC, OPC-like and stem cell like cell 
populations were much larger than expected and we didn’t include these populations in the next steps. 
The remaining gated populations were entered into the CelltypeR workflow and clusters of cells were 
annotated (Figure 5D). Some clusters clearly contained two cell types, and these were labelled as 
such to reflect the mixtures. The proportion of CelltypeR cell types within each FlowJo gated 
population was calculated (Figure 5E). The most frequent annotated cell type within each gated 
population is the intended cell type. Merging the populations, astrocytes resulted in gating the 
astrocytes 1 population and not enough of astrocytes 2 to be detected. The merged radial glial 
populations resulted in a less effective gate that only selected radial glia 1 and radial glia 3 
populations. We concluded that our workflow can be used to isolate selected populations, but these 
populations must be carefully selected and tested in FlowJo.  
 
Analysis of purified neuronal and glia populations followed by single cell sequencing analysis.  
 
Our workflow can be used to enrich populations of interest by FACS, separating selected populations 
for further analysis. We selected four cell types that were gated well in FlowJo and were of interest for 
further study: neurons 1, neurons 2, astrocytes, and radial glia. We next designed a gating strategy to 
simultaneously sort the four populations (Figure 6A). We sorted the hMO-derived cells using the 
defined gates, split the samples, and then acquired FC measurements and scRNAseq on the sorted 
populations. The protein expression levels in the sorted populations match the expected levels from 
the gates (Figures 6B). We also obtained a single cell transcriptomic library for each of the FACS 
populations (see methods). We first compared the RNA expression levels of the genes corresponding 
with the protein expression levels measured by FC and found they highly correlate (Figure 6C and 
Table S4). The scRNAseq libraries from the four populations were merged, clustered, and plotted on a 
UMAP to visualize the overlap between the different sorted cell types (Figure 6D). The Neurons1 
population is mostly separate from the other populations with some overlap with Neurons2. Clusters 
were first annotated for main groups of cell types: DA neurons, neurons, NPCs, radial glia, and 
astrocytes and the proportion of these cell types in each sorted population was calculated (Figure 6E). 
These main cell types were isolated and annotated for subtypes of cells using differential gene 
expression between clusters (Figure 6F, S15-18 and Table S5).  To annotate the three subgroups of 
DA neurons we used cluster markers and compared expression with published markers (Figure S16 
and Tables S6 and S7). Next, we examined the proportion of cellular subtypes in the sorted 
populations (Figure S19 and Table S8). We found that non-DA neurons in Neurons1 are excitatory 
neurons, neurons with potential to be reactivated as neural stem cells, NPCs, and ventral zone (VZ) 
radial glia undergoing neurogenesis (Figure S15). The non-DA neurons in the Neurons2 population 
are GABAergic, serotonergic (5HT), and endocrine neurons (Figure S15). As quantification of DA 
neurons is of particular interest in hMOs for PD, we calculated the proportion of all the DA neurons 
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and the three subtypes of DA neurons in the sorted populations. We find that Neurons1, Neurons2, 
and Radial Glia all contain DA neurons (Figure S20 and Table S8). The Neurons1 FACS population 
has slightly more DA neurons overall, and specifically more of the substantia nigra (SN) subtype, 
whereas the Neurons2 FACS population has more cells from the cluster identified as general ventral 
midbrain (VM) DA neurons. The subgroup containing ventral tegmental area (VTA) DA neurons didn’t 
show a significant differential distribution between the Neurons1 and Neurons2 FACS groups (Figure 
6G and S20). Thus, the two sorted neuron populations contain distinctive subtypes of DA and non-DA 
neurons. Moreover, the astrocyte population also segregated into three subgroups, immature, resting, 
and reactive (Figure S17 and S19). The radial glia population contains five different subtypes (Figure 
S18 and S19). Taken together, our findings indicate that each FACS population is enriched in the 
expected cell type and there are identifiable subtypes within these groups, confirming the 
effectiveness of the CelltypeR framework. 
 
CelltypeR workflow on a time course of organoids to identify changes in cell type proportion 
over time. 
 
To display the ability to adjust and refine the antibody panel we decided to change our antibody panel 
and apply the pipeline to a time course of hMOs in one genetic background. To directly track DA 
neurons we added TH, the only protein with a cytoplasmic epitope to the panel. Adding a cytoplasmic 
marker does slightly increase the experiment time, but it is still feasible for multiple samples (see 
methods). We made other alterations to the panel to display the flexibility of our CelltypeR pipeline.  
We added "SSEA4", a pluripotency marker40 and "CD49f"41, reported to be a marker of activated 
astrocytes(ref) and removed CD71, AQP4 and GLAST, HepaCam and O4 (Table S9). A new 
reference matrix was created for the adapted marker panel, now including DA neurons and DA NPCs 
(Figure 7A). We acquired FC measure of protein expression across four time points in one batch of 
AIW002-02 hMOs and followed the CelltypeR workflow. Using CAM prediction with the new reference 
matrix, RFM and Seurat label transfer predictions from the overlapping antibodies and expression 
analysis to annotate clusters (Figure 7B). To determine if the proportion of cell types are changing 
over time in these hMOs, we plotted the proportion of cell types at each time point and found that cell 
types are changing over time and show less variation between replicates (Figure 7C and S21). We 
observe that the proportions of both DA neurons, neurons and DA-NPCs increase from 38 to 63 days, 
then decrease from 98 and 155 days. Stem cell like and glial populations show an increase over time. 
To test if the changes in the proportions of cell types are significant, permutation test were performed. 
There are significantly more DA-neurons at 63 than 38, but not between 63 and 98 days, then 
significantly fewer DA neurons at 155 days (Figure 7D). Using the proportion of each cell type we 
performed a two-way ANOVA with Tukey’s HSD post-hoc tests to determine which cell types were 
changing over time. DA-NPCs are significantly different between all-time point comparisons, however 
DA neurons are only different between 63 and 155 days (Table S10). The changes in cell type 
proportions match with the expected time course of differentiation, as stem cell and early glial cells will 
continue to divide where-as neurons and mature astrocytes do not divide. We conclude that the 
CelltypeR workflow can be applied with an altered antibody panel and is useful for detecting 
differences in cell type populations over time.  
 
Discussion 
 
Taken together, we present the first comprehensive antibody-based workflow to identify, quantify, 
compare, and sort cell types in complex 3D tissue, specifically hMOs. We define a 13-antibody panel 
that can be used to distinguish between eight different brain cell types and identify subtypes of 
astrocytes, radial glia, and neurons. The antibody panel is modular, such that it can be altered or 
expanded for any organoid or tissue type and will function with the computational workflow. We show 
an example of this by generating an altered antibody panel using the cytosolic TH antibody to detect 
DA NPCs and neurons. In our CelltypeR library, we provide a method to preprocess and merge FC 
samples, acquired from multiple samples at different dates. We created tools to optimize and visualize 
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clustering and to assist in consistent cell type annotation. We also created functions to quantify cell 
types and compare different conditions.  
 
The same workflow with sorting can be used to isolate a more homogenous subpopulation of a given 
cell type for use in other assays that includes but is not limited to proteomics, lipidomics, testing small 
molecules, or even replating of cells in culture to grow as a purified population. Here we selected four 
populations, FACS sorted the cells, and then performed scRNAseq analysis. We confirmed that each 
of the populations, Neurons1, Neurons2, Radial Glia and Astrocytes, are all highly enriched in the 
expected cell types. Further analysis of the scRNAseq data identified subtypes within each cell type 
group. We identified DA neurons within both neuronal populations but find different DA neuron 
subtypes enriched in each of the two FACS sorted neuron populations. As an example, we identified 
TPGB as a DA subtype marker (ventral), in agreement with a recent publication proposing TPGB as a 
marker of ventral DA neurons in mice.42. The DA neurons of the SN are selectively lost in PD, whereas 
the VTA neurons are important for studying addiction and the reward system. We see an enrichment 
of SN-like neurons in one of our sorted neuron populations. Isolating specific subtypes of DA neurons 
is fundamental for research targeting specific disease pathways, like those leading to SN DA neuron 
cell death in PD. We also identified VTA DA neurons which were not specifically enriched in either 
sorted neuron population. The third group of DA neurons were identified as ventral midbrain DA 
neurons but were not specific for SN or VTA.  
 
Using an adjusted antibody panel, we applied the CelltypeR workflow to track cell type proportions 
over time in AIW002-02 hMOs. We found that the proportion of DA-NPCs, neurons 1, and DA neurons 
all follow a similar pattern, increasing from 38 days to 63 days and then decrease at later time points. 
Neurons 2 only appear at the 155-day time point, indicating this group could be more mature. The 
neural populations within the organoids exhibited intriguing temporal dynamics. It's important to note 
that this decrease in relative neuronal proportion does not necessarily signify a reduction in the total 
number of neurons but rather suggests changes in their proportions within the overall cell population. 
Additionally, we observed relative increases in radial glia 1a, radial glia 3, stem cell like cells, and 
OPC-like cell populations. These cells populations are likely proliferating and represent partially 
differentiated cells, which possess the potential to differentiate into astrocytes, neurons, or other brain 
cells over time.  
 
In our analysis of the differences between three healthy control iPSC lines, we find a clear difference 
in the proportion of cells for the two subtypes of neurons between AIW002-02 compared to the other 
two lines, AJG001 and 3450. AIW002-02 has more Neurons1 with higher CD24 expression and fewer 
of the Neurons2 population, with lower CD24 expression than AJG001 and 3450. scRNAseq reveals 
the Neurons1 population has more NPCs and DA neurons. We also find that AIW002-02 has more 
radial glia, fewer astrocytes, and fewer oligodendrocytes than the other two lines, indicating that this 
cell line may be less mature. AIW002-02 might mature at a slower rate or given the late age of the 
organoids, maintain cell populations with potential to become precursors perpetually. These findings 
also indicate that to study the role of myelination, the AJG001 or 3450 lines could be a better choice 
than AIW002-02.  
 
In conclusion, we established an adaptable method for reproducibly identifying and quantifying cell 
types in complex 3D tissues, such as hMOs, using a flow cytometry panel. Our scalable single-cell 
biology workflow enables rapid and efficient cell type quantification across multiple replicates and 
experimental conditions. Additionally, we have highlighted the potential of our workflow in the context 
of tracking cell type dynamics over time, comparative analysis of iPSC lines, and its adaptability for 
diverse tissue types. Furthermore, we emphasize the importance of creating reference matrices for 
changes in the antibody panel, thereby enhancing the utility and applicability of the CelltypeR workflow 
in various research domains. 
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Methods 
 
1. Human midbrain organoids (hMOs) 

 
1.1 iPSC lines  
Three iPSC cell lines were used: AJG001-C4-C4, AIW002-02-02, and 3450. All were previously 
reprogrammed from peripheral blood mononuclear cells as previously described.22 All work with 
human iPSCs was approved by McGill University Faculty of Medicine and Health Sciences 
Institutional Review Board (IRB Internal Study Number: A03-M19-22A).22  
 

1.2 hMO cultures 
hMOs were derived from iPSC lines using two different protocols.4,43 For batches A and B (Table M1) 
iPSCs were seeded in separate ultra-low attachment plates in neural induction medium for embryonic 
bodies (EBs) to form. On day four, medium was changed to midbrain pattering medium to promote a 
dopaminergic neural cell fate. On day seven, hMOs were embed in Matrigel. On day eight, hMOs were 
transferred to 6-well plates with 4-6 hMOs per cell line in organoid growth media and placed in shaking 
cultures.4 hMOs were maintained in shaking cultures with media change every 2-3 days. For batches 
C, D, and E,  iPSCs were seeded in eNuvio disks for EB formation and Matrigel embedding, then 
transferred to bioreactors for culture maintenance.43 Media changes were performed weekly, and all 
the same growth mediums were used in both protocols.   

1.3 hMO FC samples 

The iPSC lines and time points for FC acquisition are shown in Methods Table 1. The date of seeding 
iPSCs, 8 days before final differentiation is indicated. Days in culture is the time between transfer to 
final differentiation and FC. The date of dissociation, labelling and acquisition (FC acquisition date) is 
indicated. The line AIW002-02 was used to generate hMOs for follow up experiments with FACS gates 
defined in the CelltypeR workflow. In sorting experiments FC measurements were taken before sorting 
from a sample of the total proportion of cells and post sorting on a small portion of the resulting sorted 
sample. The cell counts refer to the data acquired pre-sorting not the post sorted populations. The 
total values from all replicates are shown in #live cells. The number of days in culture is calculated 
from the first day of final differentiation media to the experiment date (FC acquisition date). 
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Methods Table 1: Description of hMO data sets.  
 

iPSC line Batch date Batch Days in 
culture 

FC 
acquisition 
date 

hMO 
per 
tube 

Tech 
rep 

#live cells Experiment 

AIW002-02 30/05/2019 A 273 06/03/2020 3 1 43941 Quantify cells 

AIW002-02 20/06/2019 B 263 17/03/2020 3 1 35833 Quantify cells 

AIW002-02 30/05/2019 A 284 17/03/2020 3 1 9071 Quantify cells 

AJG001-C4 30/05/2019 A 273 06/03/2020 3 1 34031 Quantify cells 

AJG001-C4 20/06/2019 B 263 17/03/2020 3 1 15049 Quantify cells 

AJG001-C4 30/05/2019 A 284 17/03/2020 3 1 1578 Quantify cells 

3450 30/05/2019 A 273 06/03/2020 3 1 30404 Quantify cells 

3450 20/06/2019 B 263 17/03/2020 3 1 9205 Quantify cells 

3450 30/05/2019 A 284 17/03/2020 3 1 18048 Quantify cells 

AIW002-02 27/08/2021 C 273 10/05/2022 40 2 60017 FACS sort 

AIW002-02 02/08/2021 D 246 10/05/2022 40 2 60458 FACS sort 

AIW002-02 27/08/2021 C 304 10/06/2022 20 3 81923 FACS sort & 
scRNAseq 

AIW002-02 06/12/2021 E 38 21/01/2022 8 4 226210 Time course 

AIW002-02 06/12/2021 E 63 15/02/2022 8 4 327811 Time course 

AIW002-02 06/12/2021 E 98 22/03/2022 8 4 221598 Time course 

AIW002-02 06/12/2021 E 155 18/05/2022 8 4 474805 Time course 

 
 

2. 2D Cell culturing conditions 

2.1 iPSC 

The control cell line AIW002-02 was used for all 2D cell cultures. Prior to differentiation, the iPSC 
cultures were maintained and expanded on Matrigel coated plates and grown in either mTeSR1 or E8 
media as previously described.22  

2.2 Dopaminergic neural precursor cells (DA-NPC) and neurons (DA neurons) 
 
DA-NPC cultures were generated by dissociating iPSCs into single cell suspensions and then 
culturing these cells in low attachment plates to generate EBs. EBs were re-plated onto polyornithine 
and laminin-coated plates and differentiated into neural rosettes, which were then differentiated into 
DA-NPCs. DA neurons were differentiated from DA-NPC cultures on laminin coated culture flasks in 
neural basal media with supplements and inhibitors as described.35  
 
2.3 Oligodendrocyte precursor cells (OPCs) and oligodendrocytes 
To derive OPCs and oligodendrocytes we used a three-phase protocol as previously described.34 In 
phase one, iPSCs were induced towards neural progenitors while being patterned with Retinoic Acid 
in order to resemble spinal cord progenitors. The Sonic Hedgehog pathway was activated for ventral 
patterning to recapitulate the conditions of the oligodendrocyte fate. The progenitors were 
subsequently expanded as EBs with the addition of the bFGF.  In phase two, OPCs were expanded in 
suspension and subsequently plated onto polyornithine/laminin-coated vessels for adhesion. Growth 
factors and mitogens were added in the medium for differentiation and maintenance of the OPCs, 
respectively. Images of PDGFRα positive cells were acquired at this phase. In phase three, mitogens 
are withdrawn to allow the progenitors to exit the cell cycle and to complete differentiation into 
oligodendrocytes. Imaging and FC were performed in this phase when oligodendrocytes would 
generate O4 positive cells.   
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2.4 Astrocytes 
Astrocytes were derived from NPCs cultures as previously described.36  NPCs were seeded at low cell 
density and grown in NPC expansion medium. The next day, medium was replaced with ‘Astrocyte 
Differentiation Medium 1’. Cells were split 1:4 every week and were maintained under these culture 
conditions for 30 days. At DIV50, cultures were switched to ‘Astrocyte Differentiation Medium 2’ and 
maintained with half medium changes every 3-4 days.  
 
2.5 2D cultures used in FC acquisition. 
 
Methods Table 2: Description of 2D cultures 
 

iPSC line Culture type Days in Culture 
in Final Media 

FC acquisition 
date 

AIW002-02 iPSC 4 days 06/03/2020 

AIW002-02 Astrocytes 60 days 06/03/2020 

AIW002-02 Oligodendrocytes 45 days 06/03/2020 

AIW002-02 DA NPC 4 days 17/03/2020 

AIW002-02 DA Neurons 21 days 17/03/2020 

 
 
3. Immunofluorescence  
 
3.1 iPSC, NPCs and Dopaminergic Neurons 
 
Cells were fixed in 4% PFA/PBS at RT for 20 minutes, permeabilized with 0.2% Triton X-100/PBS for 
10 min at room temperature (RT), and then blocked in 5% donkey serum, 1% BSA and 0.05% Triton 
X-100/ PBS for 2h. Cells were incubated with primary antibodies: MAP2 (1:1000, EnCor Biotech 
CPCA-MAP2); Nestin (1:500, Abcam ab92391); SSEA-4 (1:200, Santa Cruz Biotechnology sc-21704); 
in blocking buffer overnight at 4 °C. Secondary antibodies were applied for 2h at RT, followed by 
Hoechst 33342 (1/5,000, Sigma)  nucleic acid counterstain for 5 minutes. Immunocytochemistry 
images were acquired using Evos FL-Auto2 imaging system (ThermoFisher Scientific). 
 
3.2 Astrocytes. 

Cells were fixed for 15 minutes at room temperature with 4% formaldehyde in PBS, followed by 3 
washes of 5 minutes in PBS. Cells were permeabilized for 10 min at RT in blocking solution: 5% 
normal donkey serum (JacksonImmunoResearch Laboratories, West Grove, PA), 0.1% Triton-X-100, 
and 0.5 mg/ml bovine serum albumin (Sigma-Aldrich) in PBS. Cells were incubated for 1h at RT 
before overnight incubation at 4°C with primary antibodies: Glial Fibrillary Acidic Protein (GFAP) 
(1/500 Dako Cat. Number Z0334); AQP4 (1/500, SIGMA, cat#  HPA014784). Secondary antibodies 
were incubated 2h at, followed by Hoechst 33258 (1/5,000, Sigma) for 5 min, mounted with 
Fluoromount-G, and examined by fluorescence microscopy.  

 
3.3 Oligodendrocytes and OPCs.  
 
Cells were fixed in 2% PFA for 10 min and blocked in 5% BSA, 0.05% Triton for 1h.  Mouse anti-O4 
(R&D, MAB1326) was added in live cells before fixation for 1h at a final concentration of 
1μg/mL. Rabbit anti-PDGFRa (Cell Signaling, 3174) was added post-fixation at a dilution of 1:200 and 
incubated overnight at 4°C. Secondary antibodies were added at a dilution of 1:500 and incubated for 
2h at RT.  Nuclei were identified with incubation with Hoechst 33342 (1/5,000, Sigma) for 5 min. 
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3.4 Midbrain organoids 

hMOs were washed in PBS, and then fixed for 2h in 4% PFA diluted in PBS at RT, then placed in a 
sucrose gradient overnight at 4°C. hMOs were then embedded in Optimal Cutting Temperature 
Compound (OTC) (Fisher Healthcare 23-730-571) and frozen. Cryosections of 20μM were cut using 
Cryostat Cryostar NX70 (Thermo Scientific). The slides with the sections were rehydrated in PBS for 
15 minutes and surrounded by a hydrophobic barrier using a hydrophobic pap pen. Sections were 
then blocked for 1 hour in blocking solution (5% Normal Goat Serum (Jackson Immuno Research 
Laboratories, West Grove, PA), 0.05% BSA (Sigma-Aldrich), 0.2% Triton X-100 in PBS), and 
incubated with primary antibodies diluted in blocking buffer: anti-O4 (1:200, R&D, MAB1326); Glial 
Fibrillary Acidic Protein (GFAP) (1/500 Dako Cat. Number Z0334); MAP2 (1:1000, EnCor Biotech 
CPCA-MAP2), Tyrosine-Hydroxylase (TH) (1/500 Pel-Freez P40101), Neurofilament (NF) (1/500 
Sigma N5264), GIRK2 (1/250 NovusBio NB100-74575), FOXA2 (1/500 abcam ab117542), AQP4 
(1/500 Sigma HPA014784), S100b (1/500 Sigma S2532)  at RT for 1h. Fluorescent-labeled secondary 
antibodies (Invitrogen) were added at a dilution of 1:500 and incubated for 1 hour. Nuclei were 
identified with Hoechst 33258 (1:5000, Sigma) diluted in PBS and incubated with the cryosections for 
10 minutes at RT. Cover slides were mounted using Aqua-Poly/Mount mounting medium 
(Polysciences) and imaged using confocal microscopy (Leica TCS SP8 confocal).  
 
4. Sample preparation for flow cytometry 

4.1 Tissue dissociation and processing – Main data set hMOs 
 
hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First, 
three individual hMOs from each of the data set of nine samples were removed from shaking cultures 
and combined into one 15mL tube. Pooled hMOs were washed three times with Dulbecco’s PBS (D-
PBS) (Wisent) to completely remove remaining culture media. Then, after completely removing D-
PBS, 2mL of TrypLE express (without phenol red) (ThermoFisher) was added to each sample. The 
hMOs were incubated at 37°C for ten minutes then removed to be subjected to mechanical 
dissociation by pipette trituration (slowly pipetting up and down ten times). The incubation and the 
pipette trituration are repeated twice more. Afterwards, 8mL of D-PBS was added to the samples to 
stop the enzymatic reaction. The samples were filtered through a 30µm filter (Miltenyi Biotec) to 
remove any clumps remaining after digestion and dissociation. Samples were washed twice more with 
D-PBS.  
 
4.2 Tissue dissociation and processing – Sorting data set hMOs 
 
hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First, 
twenty individual hMOs were removed from a bioreactor and combined into one 50mL tube. Pooled 
hMOs were washed three times with Dulbecco’s PBS (D-PBS) (Wisent) to completely remove 
remaining culture media. Pooled hMOs were transferred to a gentleMACS M-Tube (Miltenyi Biotec). 
Then, after completely removing D-PBS, 2mL of TrypLE express (without phenol red) (ThermoFisher) 
was added to each sample. The hMOs inside the M-Tube are then next placed on an automated 
GentleMACS Octo Heated dissociator. The settings for the dissociation were as follows: 37°C is ON. 
Spin -20rpm for 24 minutes. Spin 197rpm for 1 minute. After incubation, 8mL D-PBS was added to the 
samples to stop the enzymatic reaction. The samples were filtered through a 30µm filter (Miltenyi 
Biotec) to remove any clumps remaining after digestion and dissociation. The samples were then 
washed twice more with D-PBS.  
 
4.3 Tissue dissociation and processing – 2D cell cultures  
 
T-flasks containing cells were washed in PBS then incubated at 37°C in 2mL of TrypLE express 
(without phenol red) (ThermoFisher) for 5-20 minutes depending on cell type. Cells were washed off 
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the growth surface with a pipette, then manual dissociated by trituration until no clumps were seen and 
transferred to a 15ml tube.  Cells were washed twice in D-PBS.  

4.4 Antibody staining – All samples 
 
After counting and isolating one million cells, single cell suspensions were incubated for 30 minutes at 
room temperature in the dark with Live/Dead Fixable dye to assess viability. Single cell suspensions 
were washed twice with D-PBS to remove any excess dye. After, single cell suspensions were 
incubated for 15 minutes at room temperature in the dark with Human TruStain FcX (Biolegend) at a 
concentration of 5µL per million cells to block unspecific Fc Receptor binding. Single cell suspensions 
were washed once with FACS Buffer (5% FBS, 0.1% NaN3 in D-PBS) and then incubated for 30 
minutes at room temperature in the dark with a fluorescence-conjugated antibody cocktail in FACS 
Buffer (Methods Table 3). The information regarding working dilutions used in this antibody cocktail is 
in Methods Table 1. The optimal working dilutions were determined by titrations with similar hMOs and 
experimental conditions. After incubation, single cell suspensions were washed twice with FACS 
Buffer and resuspended in FACS Buffer. Samples were placed at 4°C until ready to be analyzed by 
flow cytometry. 
 
In parallel, compensation control staining was performed with the same conditions as the single cell 
suspensions. The compensation controls used are UltraComp eBeads™ Plus Compensation Beads 
(ThermoFisher) and ArC™ Amine Reactive Compensation Bead Kit (ThermoFisher) Samples were 
placed at 4°C until ready to be acquired by flow cytometry. 
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Methods Table 3: Panel of antibodies and protein targets to measure using Flow Cytometry to 
identify cell types in hMOs with Fluorochrome and antibody information indicated.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*For TH antibody fluorochrome coupling was used following manufacturer’s protocol (Lightning-Link 
PE, Abcam, CAT# ab102918) 
 
4.5 Fixation and permeabilization for TH internal antibody labelling 
 
Following cell surface antibody staining of the single cell suspension, all cells were washed twice and 
incubated with 2% PFA diluted in PBS for 15 minutes at room temperature in the dark. After fixation 
the cells were washed 3 times with FACS buffer and centrifuged at 350g for 5 minutes. Following 
washes, the cells were permeabilized (0.7% Tween-20 in FACS buffer) for 15 minutes at room 
temperature in the dark. Cells were washed once (centrifuge 350g 5 minutes) and incubated in the 
dark for 30 minutes with the fluorescent-conjugated TH antibody. Cells were washed twice in FACS 
buffer (centrifuged 350g for 5 minutes) and resuspended in FACS buffer for further analysis by flow 
cytometry.  
  
 

Antibody 
Gene/Protein 
Name 

Fluorochrome Ab clone Manufacturer (CAT#) 
Dilution 
used 

CD44 CD44 BV421 BJ18 Biolegend (338810) 1:192 

Aquaporin-4 AQP4 AF488 Polyclonal Bioss (bs-0634R-A488) 1:28 

GLAST GLAST APC ASCA-1 
Miltenyi Biotec (130-
095-814) 

1:20 
 

HepaCAM HepaCAM AF594 Polyclonal Bioss (bs-5840R-A594) 1:333 

CD71 TNR BV650 CY1G4 Biolegend (334116) 1:333 

CD184 CXCR4 BV605 12G5 BD Optibuild (334116) 1:48 

CD133 PROM1 PE-Cy7 clone 7 Biolegend (372810) 1:333 

CD15 FUT1/SSEA-1 BV785 W6D3 Biolegend (323044) 1:48 

CD29 ITGB1 APC-Cy7 TS2/16 Biolegend (303014) 1:48 

CD56 NCAM PercP-Cy5.5 5.1H11 Biolegend (392420) 1:96 

CD24 CD24 BV711 ML5 Biolegend (311136) 1:192 

O4 
O4- 
Glycoprotein 
epitope 

PE REA576 
Miltenyi Biotec (130-
117-357) 

1:31 

CD140α PDGFRalpha AF700 PRa292 
R&D Systems 
(FAB1264N) 

1:40 

SSEA-4 
Glycoprotein 
epitope 

APC MC-813-70 Biolegend (330418) 1:80 

CD49f TGA6 PE-Dazzle594 GoH3 Biolegned(313626) 1:1280 

Tyrosine 
Hydroxylase* 

TH Purified 1B8D2 Invetrogen(MA5-38641) 1:1700 
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4.6 Flow Cytometry acquisition – All data sets 
 
Single cell suspensions were acquired on an Attune NxT (ThermoFisher). The information for the 
configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T performance tracking was 
done prior to cell acquisition by recommendation of manufacturer. PMT voltages were determined by 
Daily CS&T performance tracking. Compensation controls were also acquired, creating an acquired 
compensation matrix. Between 48 000 to 338 000 cells were acquired per sample. 
 
4.6 Flow Cytometry cell sorting defined by CelltypeR workflow – Sorting data set 
 
Single cell suspensions were sorted on a FACSAria Fusion (Becton-Dickinson Biosciences). The 
information for the configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T 
performance tracking was done prior to cell acquisition by recommendation of manufacturer. PMT 
voltages were determined by Daily CS&T performance tracking. Compensation controls were also 
acquired, creating an acquired compensation matrix.   
 
Methods Table 4: ThermoFisher’s Attune NxT optical path configuration. 
 

Laser 
Wavelength 
(nm) 

Detector Dichroic mirror  
Filter (Band 
pass) 

V
io

le
t 

405 

VL6 740 LP 780/60 BP 

VL5 680-740 710/50 BP 

VL4 635-680 660/20 BP 

VL3 555-635 610/20 BP 

VL2 495-555 525/50 BP 

VL1  417-495 450/40 BP 

B
lu

e
 

488 

BL2 555 LP 695/40 BP 

BL1 503-555 530/30 BP 

SSC  - 488/10 BP 

Y
e
llo

w
-

G
re

e
n

 

561 

YL3 650 LP 780/60 BP 

YL2 600-650 620/15 BP 

YL1 577-600 585/16 BP 

R
e
d

 

640 

RL3 740 LP 780/60 BP 

RL2 690-740 720/30 BP 

RL1  654-690 670/14 BP 

 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2022.11.11.516066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516066
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

Methods Table 5: BD’s FACSAria Fusion optical path configuration. 
 

Laser 
Wavelength 
(nm) 

Detector 
Dichroic mirror 
(Long pass) 

Filter (Band 
pass) 

V
io

le
t 

405 

A 750 LP 780/60 BP 

B 690 LP 710/50 BP 

C 630 LP 660/20 BP 

D 595 LP 610/20 BP 

E 505 LP 525/50 BP 

F   450/50 BP 

B
lu

e
 

488 

A 655 LP 695/40 BP 

B 502 LP 530/30 BP 

C   488/10 BP 

Y
e
llo

w
-G

re
e

n
 

561 

A 735 LP 780/60 BP 

B 685 LP 710/50 BP 

C 630 LP 670/14 BP 

D 600 LP 610/20 BP 

E   582/15 BP 

R
e
d

 

640 

A 755 LP 780/60 BP 

B 690 LP 730/45 BP 

C   670/30 BP 

 
 
5. Single cell sequencing of FACS sorted populations 
 
Three separate tubes of AIW002-02 hMOs were dissociated as described above. At the antibody 
labelling stage oligonucleotide tagged antibodies (Hashtags, Biolegend) were added with the other cell 
type specific antibodies. The cells were sorted into FACS buffer. The same sorted populations from 
each of the three samples (replicates) were combined after sorting. These four populations were 
sorted into four gates and were sorted until the sample with fewest cells (Neurons1) contained 
100,000 events. The sorted samples were centrifuged for 5 minutes at 400g and resuspended in 250 
ml of D-PBS + 0.1% BSA. The cell concentrations were calculated with FACSAria Fusion (Becton-
Dickinson Biosciences). The single cell suspensions were diluted to 1000 cells/ml targeting ~15,000 
cells captured for sequencing. One sample was prepared for each FACS sorted population.  

Following the creation of the cell suspension, the Chromium NextGEM Chip G (PN-1000120) was then 
loaded as per manufacturer recommendation and run on the Chromium Controller (PN-1000204) for 
GEM creation. All proceeding thermocycler steps in the 10X protocol were carried out on a Bio-Rad 
C1000 Touch thermal cycler (1851196). Following GEM-RT incubations, samples were stored at 4°C 
overnight. Post GEM-RT cleanup and cDNA amplification were carried out per manufacturer protocol. 
Samples were stored at -20°C until they were processed for library generation. 3’ gene expression and 
cell surface protein libraries were constructed per manufacturer protocol and stored at -20°C until 
sequencing submission. 25 mL of each sample library was sent for sequencing at the McGill Genome 
Centre. 
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Methods Table 6: Single cell RNA sequencing reagents 
 

Product Vendor Product 
number 

Chromium Next GEM Single Cell 3’ kit v3.1 10X Genomics 1000268 

3’ Feature Barcode kit 10X Genomics 1000262 

Chromium Next GEM Chip G Single Cell Kit 10X Genomics 1000120 

Dual Index Kit TT Set A  10X Genomics 1000215 

Dual Index Kit NT Set A  10X Genomics 1000242 

Dynabeads MyOne SILANE  10X Genomics 2000048 

Magnetic Separator  10X Genomics 230003 

SPRIselect Reagent Beckman Coulter B23318 

Qiagen Buffer EB  Qiagen 19086 

 
 
6. Data processing 
 
6.01 Flow Cytometry data cleanup for analysis – All data sets 
 
The data generated was cleaned up using FlowJo (version 10.6) (Becton-Dickinson Biosciences). 
Briefly, a starting gate was used to select appropriate cell size (X: FSC-A, Y: SSC-A). A second gate 
was used to discriminate doublets from the analysis (X: FSC-W, Y: FSC-H). Finally, the last gate was 
used to remove dead cells from the analysis (X: LiveDead Fixable Aqua, Y: FCS-A). See Methods 
Figure 1 for a gating example. After data cleanup, a new .fcs file was generated with FlowJo and 
exported for further analysis done with R. 
 
6.02 Data analysis and CelltypeR R library 
 
All computations were performed in R. We created a R library of functions to perform the analysis, 
CelltypeR. Our functions required functions from multiple other R libraries referenced in descriptions to 
follow.  
The R library can be found, along with workbooks for the complete workflow and generation of each 
figure, at https://github.com/RhalenaThomas/CelltypeR. 
 
Computational Workflow: 
 

1. Data preprocessing:  
a. Read FlowJo files into R. 
b. Create a data frame with intensity measurements for each marker for all samples within 

the experiment to be analyzed.   
c. Harmonize data if desired.  
d. Create a Seurat single cell object for further analysis.  

2. Creation of cell type clusters 
a. Clustering optimization to compare clustering methods and parameters and visualize 

results. 
b. Summarize statistics to compare clustering methods and parameters. 
c. Select one method and smaller parameter space to compare cluster stability. 
d. Evaluate statistics and visualization to determine the best clustering method for a given 

visualization. 
3. Cluster annotation 

a. For first data set: marker visualization and correlation assignment model. 
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b. For subsequent data sets: marker visualization and correlation assignment model, 
Random Forest Model, Seurat Label Transfer. 

4. Quantify cell types and measure expression levels of markers within cell types.  
5. Define marker levels for cell types. 
6. Statistical analysis between different groups of interest. 

 
 
6.03 Data preprocessing 
 
The .fcs files without dead cells, debris, and doublets created in FlowJo are read into R and 
processed. The .fsc files contain area, width, and height of the fluorescence signal for each marker as 
well as the forward and side scatter of the light. Then R using the flowCore package is used (Hahne et 
al., 2009). The area values for each channel are selected to represent the expression intensity for 
each antibody. All the .fsc files within one folder are read into into one R data object. A dataframe is 
created with the channels and saved for further use. Individual cell cultures and hMO organoid 
samples for testing the pipeline and gating were used in this raw format to create a Seurat single cell 
data object.  

For the hMO samples, the data was aligned to remove batch effects and technical variability. Each file 
represents an experimental sample, and the samples were aligned as follows: First, to enhance the 
distinction between positive and negative antibody staining the raw data is transformed using the 
biexponential transform function from flowCore with default parameters (a=0.5, b=1, c=0.5, d=1, f=0, 
w=0). The transformed data was visually inspected to confirm there were no errors (see R workbooks 
on Github). To combine the nine different hMO samples and account for batch effects, the signals 
were aligned using an unbiased approach, the gaussNorm function in flowStats (Hahne et al., 2013). 
Local maxima are detected above the bandwidth we set to be above 0.05, to avoid picking up noise, 
each peak is given a confidence score reflecting the height and sharpness of the peak, the threshold 
for two peaks to be considered too close together was set too 0.05.  Landmarks are then detected and 
aligned, such that each landmark is shifted to a benchmark, which corresponds to the position of the 
closest peaks across all samples. After alignment the data is reverse transformed to improve 
visualization by UMAP in downstream analysis.  

 
6.04 Creation of cell type clusters 
 
For the analysis in Figure 3, to test cluster methods and cell type annotation methods, we selected a 
subset of hMO cells. From 8 of the hMO 9000 cells were randomly selected and one sample all the 
cells (1578) cells were selected before transformation and alignment. We compared FlowSom44, 
Phenograph45 and the Seurat46 Louvain network detection function as well as parameter space (k 
neighbours, resolution, k clusters) available for the different algorithms. We calculated intrinsic 
statistics and produced UMAPs and heatmaps for visualization.  We found FlowSom was not suitable 
for creating clusters based on cell types, although the intrinsic statistics are best for FlowSom. 
Phenograph uses the Louvain network detection method and computes the Jaccard coefficient which 
considers the number of common neighbours between cells. Phenograph functions well, however we 
saw little difference to the Louvain using the Seurat library and proceeded to use the Seurat package 
for Louvain network detection to obtain clusters for ease of use with the overall workflow. We then 
proceeded to test the cluster stability at different resolutions, calculating the RAND Index and standard 
deviation of the number of clusters across 100 iterations of clustering with different random start 
points.  The results informed the choice of cluster numbers to annotate.  
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6.05 Cluster annotation 
 
Cell type annotation was performed on the subset of 9000 cells using visualization and a correlation 
assignment model (CAM) we created. For visualization we created functions to make UMAPs for 
expression levels of each antigen targeted in the antibody panel as well as heatmaps grouped by 
cluster numbers.  The expended expression patterns were of the antibodies as used in combination 
with the CAM predictions. For the 2D cultures in Figure 2, cell types were assigned by the visualization 
of expression values, the known original cell type, and the overlap in space on the UMAP.  In our 
culture system iPSC can become any cell type, NPCs are precursor cells for all three other cell types 
included (astrocytes, DA neurons, and oligodendrocytes). The NPC cultures are multipotent but will 
contain cells that are beginning lineage selection and those retaining a multipotent state.  
 
For the full hMO dataset of nine samples and the follow up hMO datasets used for gating and sorting 
experiments, a Random Forest Model trained on the subset hMO data and Seurat transfer labels 
predictions were used in addition to the CAM and visualization methods used on the subset data.  The 
combined results of methods are more reliable than each method alone.  Each of the four methods of 
annotation are input into the cluster annotate function to automate the cluster annotation process.   
 
6.6 Creation of the predicted expression matrix for antigen proteins in the antibody panel and 
the new time course antibody panel 
 
Expression values for expected cell type were combined from several sources (Methods Table 7). 
Microglia are found in brain tissue but are not expected to be present in hMOs due to their 
mesodermal lineage and thus were not included in the reference matrix. In the first (13 antibody panel) 
there is not a specific DA marker and so we only define NPCs and neurons. The DA subtype is 
specified in the second (time course) panel reference matrix. For the 2D cell cultures we collected FC 
expression values for the 13-antibody panel. For the TH time course panel, we could only use the 
overlapping markers for the FC expression. For RNA seq data we used the gene expression 
equivalents to each marker in the two panels. Not all gene equivalents for the protein markers were 
available from all cell types or databases. For the antibody O4, the epitope is a glycoprotein, and the 
specific corresponding gene is unknown, however the gene NKX6.2 is a marker of mature 
oligodendrocytes, with expression highly correlated to O4 protein detection.47 For SSEA-4, another 
glycoprotein epitope we used gene encoding the SSEA4 synthase enzyme 

We used total RNA and scRNAseq from adult human brain as well as scRNAseq data from organoids. 
For each expression data set the values were z-scored and normalized between 0-1.  The mean 
expression form human brain and organoids were calculated and normalized.  Then the mean values 
from 2D culture FC, brain RNA expression and organoid RNA expression were calculated and then 
normalized for the final matrix. Details for each step and how to make a qualitative reference matrix 

can be found in the R notebook “CreateReferenceMatrix.Rmd”. ateRefereneMatrix.Rmd 

Inputs were taken from bulk RNAseq from human brain tissue48, scRNAseq data from human fetal 
midbrain49 and adult midbrain50, from developing human cortex and forebrain, and cerebral 
organoids51. Finally, the FC data acquired in this study from 2D cell cultures, iPSC, neural precursor 
cells, neurons, astrocytes, and oligodendrocytes. For each data set the values were z-scored then 
minmax normalized marker by marker to fit between 0 and 1.  The mean expression values were 
calculated separately for scRNAseq organoid data and scRNAseq brain data. Then the mean 
expression values were then calculated between scRNAseq-hMO, scRNAseq-Brain, and RNAseq.  
Then the mean of that result was calculated with the FC data. The FC data was weighted more highly 
than the public data sets because it is experimental data collected on protein levels with the exact 
antibodies used for hMO experiments; however, we didn’t generate data on all possible cell types. The 
predicted expression values were again z-scored then minmax normalized marker by marker to fit 
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between 0 and 1 to be comparable to the transformed FC data to be used in the correlation 
assignment model.  

 

Methods Table 7: Sources of expression values used for reference matrices  

Expression 
type 

Tissue type Source/Reference URL 

Protein (FC) Separate 2D 
cultures 

This work NA 

Total 
RNAseq 

Cell isolated from 
adult brain 

Zhang et al, 201648 https://www.brainrnaseq.org/ 

scRNAseq Developing cortex Nowakowski et al,  
201738 

https://cortex-dev.cells.ucsc.edu 

scRNAseq Developing forebrain Van Bruggen et al, 
202252 

https://human-
forebraindev.cells.ucsc.edu 

scRNAseq Fetal midbrain La Manno et al, 
201649 

https://www.ncbi.nlm.nih.gov/geo/query/a
cc.cgi?acc=GSE76381 

scRNAseq Developing midbrain 
and striatum 

Bhaduri et al, 
202153 

https://dev-brain-regions.cells.ucsc.edu 

snRNAseq Adult midbrain Kamath et al, 
202250 

https://singlecell.broadinstitute.org/ 
single_cell/ study/SCP1768/ 

scRNAseq Midbrain organoids Mohamed et al 
20211 

https://www.ncbi.nlm.nih.gov/geo/query/a
cc.cgi?acc=GSE186780 

scRNAseq Cerebral organoids Tanaka et al, 
202054 

https://cells.ucsc.edu/?ds=organoidatlas
&meta=Cluster 

 
 
6.07 Assigning cell type labels to clusters using correlation to the predicted expression matrix 
 
Pearson correlation coefficient R values, were assigned to each cell, correlating the FC intensity 
expression levels of antibody panel to the predicted expression values in the reference matrix for each 
cell type expected in the hMO. The R values were calculated for each potential cell type.  Then for 
each hMO cell, the max R value and the second max R value were selected. These values were then 
used to predict the cell type for each hMO cell. A threshold was set of R > 0.45 for a cell type to be 
predicted, otherwise the cell is assigned as ‘unknown’.  If the Rmax1 – Rmax2 < 0.05, then a mixed 
cell type is assigned.  For example, Neuron-NPC. For the cluster annotations, the top three most 
frequently predicted cell types for each cluster were calculated.  If most of cells were predicted within a 
cluster as one cell type, this cell type was assigned to the cluster. If the frequencies of predicted cell 
types were distributed across many cell types, the cluster was assigned as mixed or unknown.   
 
6.08 Random Forest Model 
 
A data frame was created from cell type from the 9000 cells per sample subset of hMO data and the 
matching expression. The data was split 50/50 into test and training data.  The training data was input 
into the function RFM_train which uses the randomForest package and the caret package for 
optimization. A range of the number of variables (antibodies) was randomly sampled in each split 
(mtry) from 1 to 10, and the best mtry was 6. Ranges of other parameters were tested, and the optimal 
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values were used in to train the final model: max nodes = 30, starting node size = 25 and number of 
trees = 1000.  The trained model was then used to predict the cell type of each cell in the full data set 
and the new flow sorted data. The topmost predicted cell type for each cluster was used as the cluster 
annotation prediction.  
 
6.09 Label transfer using Seurat 
 
We made a function that follows the Seurat workflow for label transfer combined into one function. The 
annotated Seurat object from the 9000 cells per sample subset of hMO data was used as the 
reference data and the full dataset and FACS datasets were used as the query objects. Anchors were 
found between the two objects using 25 principal components to predict the cell types, the max 
prediction was selected for each cell in the query data.  No threshold for predictions was set.  The 
most frequently predicted cell types within each cluster were used as the cluster predictions.  
 
6.10 Quantification of cell types and statistical analysis 
 
Permutation tests were used to determine if the changes in cell type proportions were significant 

between two groups using the R library scProportionTest 

(https://github.com/rpolicastro/scProportionTest). In the permutation test, sample labels are repeatedly 

shuffled and the log2-fold is calculated change in fraction for each shuffle to create a null distribution 

of log2-fold changes. This distribution represents what we'd expect to see if there were no real 

differences between the two samples. Next, p-values are calculated for each cluster (cell type) by 

comparing how many times the permuted log2-fold changes are as extreme as the observed log2-fold 

change. These p-values are adjusted for multiple comparisons using the false discovery rate (FDR) 

method, providing a measure of the statistical significance of the observed differences in proportions. 

Permutations tests were selected over the commonly used Chi square or Fisher’s exact test because 

tests assume the observation are independent. However, the proportion of the cell types within a 

sample is directly dependent on the other cell types because the confounding these tests.  

Two-way ANOVAs and Tukey’s pos hoc tests for main effects and interactions were all run using 
functions in our R library. A preprocessing function is used to pull the expression data out of the 
Seurat object and add the desired variables. The statistic functions used the base R functions aov and 
TukeyHSD. The effect of each variable was analyzed separately.  A loop was used to analyze each 
cell type separately.  
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Methods Table 8: Function names in the CelltypeR library for analysis processes.  
 

Analysis step Function name Processes 

Data preprocessing fsc_to_fs Read in fsc create R list flowset object 

 harmonize Transform, align, retro-transform, create 

 flowset_to_csv Convert the list object into a dataframe 

 make_seu Create a Seurat single cell object 

Create cell type clusters 
 

explore_param Run FlowSom, Phenograph, Louvain 
(Seurat) with vectors of parameters. Create 
UMAPs, heatmaps, clustree plot. 

 clust_stability Select one clustering method and compare 
one parameter. Run cluster stability statistic 
RAND Index. 

 get_clusters Add optimized clustering to Seurat object. 
Visualization with UMAP and heatmap of 
expression by cluster. 

Annotate clusters 
 

find_correlation 
plot_corr 

Correlation assignment method, predicts cell 
types, creates plots and tables of the 
prediction outputs. Requires a reference 
matrix. 

 RFM_train Input annotated FC dataset to train the 
Random Forest Model internally optimizing 
parameters and saving the best model. 

 RFM_predict Predict cell types with RFM, creates plots 
and tables of the prediction outputs. 

 seurat_predict Requires and annotated Seurat object as a 
reference, creates plots and tables of the 
prediction outputs.  

 plot_lab_clust Creates data frame and plots the predicted 
cells by cluster. 

 get_annotation Take the predicted labels and makes a 
vector for annotation. 

 cluster_annotate Annotates clusters on the consensus of 
inputs.   

Compare Groups Prep_for_stats Selects expression data from Seurat object 
organized by designated variables 

 run_stats Runs a series of ANOVAs with Tukey’s test 
and outputs results tables. 

 plot_proportions 
plot_mean 

Plot proportions of cell types by group. 
Make a heatmap or dot plot for marker 
expression grouped by cell type. 

 
 
6.11 Testing gates reverse engineered using hypergate 
 
Cell types were selected in the full annotated hMO dataset and input into the hypergate function.39 A 
table of predictions was output. For each cell type the threshold levels for each antibody required to 
define the cell type were output. These thresholds are in order from most to least important.  For 
testing the gates, manual gating was applied in FlowJo with the top gate for each cell type in each 
sample being set as live single cells. The gates were applied in an AIW002-02 sample and then 
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applied across the other samples. For gating, the two antibodies were visualized by scatter plot and a 
box was drawn selecting the thresholded cells from the antibody pair. The gated cells were then 
selected and gated with the next pair of antibodies until all thresholds were applied. The final gated 
cell types from all samples were exported as fsc files and read into R following the CelltypeR workflow. 
To apply gates to FACS four selected samples examined each cell type gate and selected gates 
which mostly exclusive for different cell types. The neurons can be separated from glia and then split 
into two populations and the glia can be split into two populations.  
 
6.12 Single cell sequencing analysis 
 
The FASTQ files processed using 10X CellRanger 5.0.1 software are installed on the Digital Research 
Alliance of Canada: Beluga computing cluster. For each of the four sorted populations, the CellRanger 
output files raw expression matrix, barcode, and feature files were used to create a Seurat data object 
with minimum filtering of RNA features > 100.  After this point data was run locally and all details can 
be found in the R notebook, ‘scRNAseq_processing’. RNA features, RNA counts, and percent 
mitochondria were checked for quality control for each sample: Neurons1, Neurons2, 
Glia1(astrocytes), and Glia2 (radial glia). Further filters were applied. 
 
Methods Table 9: Filters applied to each scRNA population 
 

Sample RNA features RNA count Percent Mitochondria 

Neurons1 >250 <10000 <25 

Neurons2 >300 <10000 <25 

Astrocytes >500 <10000 <25 

Radial Glia >300 <10000 <25 

 
For the glia samples, there were a large number of cells after filtering.  The Seurat function 
HTODemux was used to assign Hashtag (replicate labels). For neuron samples and radial glia all cells 
were selected, for glia1/astrocyte sample the original count was very high. To increase selection of 
true cells, cells with assigned hashtags were used for further processing. For all samples, doublets 
were removed using Doublet Finder55. The expected percent of doublets estimation was based on the 
number of cells present after filtering and the 10X version 3 user guide. For each sample data was 
normalized, variable features selected, PCA and UMAP dimensional reductions were performed, and 
clusters detected with Louvain network detection (25 dimensions and 43 neighbours selected, and a 
range of resolutions was run).   
 
Clusters were annotated using a consensus between expression of known cell type markers from 
gene lists, analysis of cluster markers, and cell type predictions of reference data (see below) using 
Seurat find anchors and label transfer. Subtypes of major cell type groups were observed and at this 
point these clusters were all merged into major cell types. The individually processed samples were 
then merged, samples were down sampled to balance the data and decrease processing time.  
 
Methods Table 10: Cell counts after filtering and counts used in merged data object 
 

Sorted Population Approximate 
number of cells 
loaded in 10X 
Controller 

Cell count after filtering Down sample to 

Neurons1 10000 1723 1723 

Neurons2 15000 9390 2000 

Astrocytes 15000 8123 3000 

Radial Glia 15000 4805 2000 
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After the four samples were merged the standard processing and clustering was run again using the 
same settings. Clusters were annotated again, retaining subtypes of each cell type, and identifying the 
DA neurons. Each subtype was analyzed to find subtype markers and analyze using GO biological 
processes.  Reference datasets using Seurat anchors and label transfer predictions were used to 
define subtypes of cells. All the scRNAseq data sets in Methods Table 7 were used. A threshold for 
cell type assignment was set to 0.5 for brain reference data and 0.8 for hMO scRNAseq data.  
 
Developing cortex, forebrain and whole brain datasets were all reconstructed into Seurat objects from 
the UCSC cell browser following the website instructions.56 Each reference was down sampled in 
Seurat to reduce the total cell number to less than 50000.  
 
For single nuclear RNAseq data from human adult postmortem brains (Kamath et al) three separate 
reference sets were created. The expression matrix, barcodes, and feature files were used to create a 
Seurat object.  The metadata for cell type and cell subtype annotations data was added from the 
UMAP_tsv files provided by Kamath et al. The brain region data was added from the provided meta 
data file. The adult midbrain was subset by brain region selecting only the midbrain cells. The DA 
subtypes and astrocyte subtypes were separately subset by using the main cell type annotation. 
 

1. All cell types (astrocytes, oligodendrocytes, microglia, endothelial cells, DA neurons and other 
neurons).  This was used in the initial cell type annotations. 

2. DA neuron subtypes, used to try to identify DA subtypes. All the hMO subtypes matched only 
one subtype from adult brain.  

3. Astrocyte subtypes, used to identify astrocyte subtypes. All astrocyte subtypes in hMO 
matched one subtype.  

 
After annotating the main groups of cell types (DA neurons, neurons, astrocytes, radial glia, NPCs, 
mixed) subtype annotations were applied. To annotated subtypes, the main cell type was subset. The 
Seurat find all markers function was used allowing both up and down regulated gene markers of the 
clusters within each main cell type. The top 5-10 marker genes sorted by highest Log2 Fold change 
with significant adjusted p-values were further investigated by literature search to determine the cell 
subtypes.   
 
7. Data availability 
 
Flow cytometry: FlowJo selected live gated cells in the form of .fsc files are available in the github 
repository: https://github.com/RhalenaThomas/CelltypeR. 
 
Cell type annotation: The expression matrix for the proteins/genes targeted by the antibody panel to 
run CAM and a trained RFM are in the github repository in the data folder.  
 
scRNAseq: The FASTQ files, CellRanger filtered outputs, processed annotated Seurat R objects for 
each of the four sorted population and the combined processed annotated  Seurat data object are all 
deposited in the NCBI Gene Expression Omnibus (GEO) under the accession number GSE226890. 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226890.  
 
8. Code availability 
 
All code is available on github: 
https://github.com/RhalenaThomas/CelltypeR  
 
The repository includes: 

1. R library CelltypeR containing all functions in Methods Table 5. 
2. Code for the CelltypeR library functions. 
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3. Workbook with the analysis workflow and application of CelltypeR functions.  
4. Workbooks with the code used to generate the figures. 
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Figures  

 
 
 
Figure 1: A workflow to identify and quantify cell types in midbrain organoids (hMOs) using a panel of 
flow cytometry antibodies. A) Schematic of the CelltypeR workflow: tissue (hMO) is dissociated and labelled 
with an antibody panel, expression levels are measured on individual cells using flow cytometry (FC), and live 
single cells are gated from the debris and doublets in FlowJo. The data is then preprocessed in R, merging files 
and harmonizing the data if desired. Unsupervised clustering is used to find groups of cell types, methods are 
provided to aid in cluster annotation, annotated cells are quantified, and statistical analyses are applied. B) 
Example image of a cryosection from an AJG001-C4C hMO, 285 days in final differentiation culture, showing 
total nuclei (Hoechst), oligodendrocytes (O4), astrocytes (GFAP), and neurons (MAP2). Top: cross section of a 
whole hMO stitched together from tiled images, scale bar = 250mm. Bottom: zoomed in image cropped from the 
whole hMO image, scale bar = 250mm. C) Contour plots showing the cell size on the y-axis (FSC) and intensity 
of staining for each antibody in the panel on the x-axis (log scale biexponential transformation).   
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Figure 2: The antibody panel can be used to identify cell types expected to be present in hMOs.  
A) Example images of different brain cell types (indicated on the left) derived from the healthy control 
AIW002-02-02 human iPSC line and individually differentiated. Cell cultures were stained with a cell 
type specific marker (green) and Hoechst (blue) for nuclei. Scale bars 200mM. B) Heatmap of the 
normalized and z-scored protein levels measured by FC (area under the curve) for a subset of cells 
from each cell culture (indicated above). The marker proteins are indicated on the left. C) UMAP of 
merged cell cultures (indicated by colour) showing the separation and overlap of cell types D) The 
same UMAP with annotated clusters identified by Louvain network. Cell types are labelled by colour 
and in the legend. E) Heatmap of the mean expression of each protein within the cell subgroups 
identified by clustering. Values are z-scored. 
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Figure 3:  Identification of cell types in hMO using the flow cytometry antibody panel. A) Heatmap of 
predicted relative expression of each antibody in the FC panel for each potential cell type in hMOs. Values are 
calculated from 2D FC intensities, scRNAseq from hMOs and human brain, and RNAseq from human brain. B) 
Violin plot showing the distribution Pearson’s correlation coefficients (R) for hMO cells (y-axis) with the indicated 
potential brain cell type (x-axis). The R values are plotted for the cell type with the max R value. The black line 
indicates the threshold of R=0.45 which was set as the cut-off for assigning a cell type prediction. C) Bar chart 
showing the number of hMO cells categorized as each cell type by the max correlation. Each cell type is 
indicated on the x-axis. hMO cells were assigned as a double cell type if the first and second max R values were 
within 0.05. Only cell assignments with over 100 cells are included in the bar chart. D) UMAP showing 
unsupervised clustering by Louvain network detection. Cell types were annotated using a combination of 
correlation assignment and expert analysis of expression within clusters. E) Heatmap of relative expression of 
each antibody grouped by the cell types identified by unsupervised clustering of hMO cells. (n=73,578 cells from 
9 hMO samples). 
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Figure 4: Differences in cell types and protein expression between three healthy control donor iPSCs. A) 
UMAP of the full dataset from nine hMO samples (n > 197,000 cells) annotated using CelltypeR. B) Dot plot of 
the expression level (colour intensity) and the proportion of cells (dot size) for each protein marker detected with 
the panel in each cell type group. Scaled z-score values are shown. C) UMAP split by iPSC line (3 samples 
pooled per iPSC line) showing the proportion of cells in each iPSC line.  Cell annotations and colours are the 
same as the UMAP in A. D) Bar chart of the proportion of hMO cells in each cell type (indicated by colour) for 
each iPSC line (x axis). Colours corresponding to cell types are shown in the legend on the right. E) Dot plot with 
confidence interval for the proportionality test comparing the AIW002-02 iPSC line to the AJG001-C4 and 3450 
iPSC lines, for each cell type (y-axis). Pink dots indicate a significant difference in cell type proportion (FDR < 
0.05 and absolute value of Log2FD > 0.58). Negative log2FD values indicate cell proportions increased in 
AIW002-02 and positive values indicate cell proportions decreased in AIW002-02 compared to the other two 
iPSC lines. F) Heatmap of mean protein expression values grouped by cell type and split into the three iPSC 
lines. Line names are indicated on the bottom x-axis and cell types are indicated on the top x-axis. Scaled z-
score values are shown. 
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Figure 5: CelltypeR can be used to identify cell types in a new population, gate populations of interest 
and annotate the gated cells. A) Two new batches of AIW002-02 hMOs were processed with the CelltypeR 
workflow and cell types were annotated. UMAP shows cells from seven samples dissociated and acquired on 
two different days. B) Bar chart showing the proportions of cell types across four different batches of AIW002-02 
hMOs. Batches A and B are the samples from the 9 hMO comparisons, batches C and D are the new samples 
shown in panel A. C) Schematic showing the method used to gate cell type populations defined with CelltypeR. 
Cell types were annotated and selected in the full 9 hMO dataset. Then the package hypergate was applied to 
reverse engineer the threshold expression levels to define each cell population. D) UMAP coloured by the 
FlowJo gated populations (legend), gated using the thresholds and markers selected by hypergate. Astrocytes, 
radial glia, oligodendrocytes, epithelia cells, endothelial cells, NPCs, neurons 1, and neurons 2 cell populations 
were exported as fsc files and input into the CelltypeR workflow. Gated cells were down sampled to 5000 cells, 
except for oligodendrocytes where all were included. The labels on the UMAP are the cell types annotated using 
the CelltypeR workflow. E) Bar chart with the proportion of cell types identified with CelltypeR (indicated by 
colour in the legend) within each FlowJo gated population (x-axis).  
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Figure 6: scRNAseq analysis of four FC sorted populations defined using CelltypeR confirms cell types 
and provides transcriptional profiles for these cell populations. A) FlowJo gating strategy applied to new 
hMO derived cells to isolate four cell populations by FACS: neurons1, neurons2, astrocytes, and radial glia. The 
approximate proportion of cells gated in each final sorted population is indicated in the gating box. B) Ridge plot 
of protein expression levels measured by FC antibody intensity for each FACS gated cell population. C) 
Correlation of RNA transcript expression of genes corresponding to the 13 protein markers used for FACS. Note 
there is a high correlation between RNA expression and protein expression for radial glia, neurons1, and 
astrocytes. Only the astrocytes RNA to protein correlation was statistically significant. The neurons2 protein 
expression correlates more strongly with the neurons1 RNA expression. D) UMAP of the four sorted populations 
merged and clustered with Louvain network detection. Neurons1 has only 1723 cells, neurons2 was down 
sampled to 2000, astrocytes were down sampled to 3000, and radial glia were down sampled to 2000 to improve 
visualization. The original FACS sorted population is indicated by colour and in the legend. E) Stacked bar chart 
of the proportion of each main cell type identified by the cluster transcriptomes in each FACS sorted population. 
F) UMAP of the four merged populations with cell types and cell subtypes annotated from the scRNAseq data. 
The UMAP is coloured by cell subtypes and the main cell types are labelled on top of the UMAP.  Subtypes were 
identified from differential RNA between clusters to identify markers and comparison with reference datasets. G) 
Stacked bar chart showing the proportion of each DA neuron subtype within each sorted neuron population.  
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Figure 7: Cell type proportions in hMOs change over time in culture. A) Heatmap of predicted relative 
expression of each protein targeted in the new FC panel for each potential cell type in hMOs. Values are 
calculated from 2D FC intensities, scRNAseq from hMOs and human brain, and RNAseq from human brain. B) 
UMAP of cells from all four time points, annotated using the CelltypeR workflow. C) Barchart of the proportions 
of cell types for each time point. Each time point has 4 technical replicates and combined values are used. D) 
Proportionality tests comparing time points in pairs, from left to right: 30 days vs 60 days, 60 days vs 100 days 
and 100 days vs 150 days. Differences that have a change in proportion > 0.58 logFold change and an adjusted 
p value < 0.05 are shown in pink.  
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Supplemental Figures 
 

 
 
 
 
Figure S1: Example images with characterization of cell types in hMO 9 months in culture. 
Cryosection with immunostaining of iPSC lines AIW002-02 (left) and AJG001C (right). Whole organoid 
sections with merged signals are shown in the left panel, the area in the white rectangles is enlarged 
on the left with each staining shown separately. Nuclei are labelled with Hoechst and shown in blue. 
A, B) Tyrosine hydroxylase (TH) marker of DA neurons in red and neurofilament (NF) a general 
neuronal marker in green, indicate DA neurons are present in hMOs from both iPSC lines. C,D) 
FOXA2 a neural progenitor marker of DA neuron lineage is absent at this late stage (would be yellow). 
GIRK2 (green) is expressed in DA neurons of the SN and is present in the hMOs. E,F) Astrocyte 

markers S100 (green) and AQP4 (red) indicate astrocytes are present in the hMOs.  
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Figure S2: Expression of the 13 protein markers varies across cells in hMOs. Protein expression 
levels measured by FC in a subset of cells from 9 different hMO samples.  The three iPSC lines (3450, 
AIW002-02-02, AJG001-C4, two batches (A = 20190620, B = 20190530) and two different experiment 
days (1 = 06/03/2020, 2 = 17/03/2020) are indicated at the top.   
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Figure S3: UMAPs of 2D cell cultures and clusters. A) UMAP showing cell split by the original 
culture type and coloured by the original culture type. B) UMAP of cell split by the original culture type 
and colour by the clusters identified by unsupervised Louvain network detection.  
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Figure S4: UMAPs of 2D cell cultures with clusters labelled. The marker expression measured is 
labelled above each plot.  
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Figure S5: Preprocessing of fsc files exported from FlowJo and read into R. A) Samples are 
merged by concatenation and not transformed or aligned in preprocessing. Files can be saved at this 
level of processing and one can proceed with the rest of the CelltypeR workflow if desired. For 
individual 2D iPSC derived cell lines, processing was stopped at this step. B) The merged expression 
data is biexponentially transformed and aligned by shifting means to match peaks between samples. 
C) The merged, biexponentially transformed, and aligned data is reverse transformed removing the 
biexponential transformation. The full processing was applied for hMO samples to remove 
experimental variability. Left panel indicates the data processing performed. Center panel indicates 
UMAPS to visualize hMO cell samples indicated by colour in the sample legend. Seurat was used to 
scale before PCA and UMAP dimensional reductions. Right panel indicates heatmap of the marker 
expression levels across each sample. Scale bars indicate the relative expression and are matched in 
the heatmap and UMAP plots. Normalized expression is plotted. 
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Figure S6: Comparison of different R thresholds for CAM to predict cell types. A) Bar chart 
showing cell counts for assigned cell types and cells left unassigned with the significant R threshold of 
0.553. B) Bar chart for cell counts excluding the unassigned cells for the R threshold of 0.553. C) Bar 
chart showing cell counts for assigned cell types and cells left unassigned with R threshold of 0.35. D) 
Bar chart for cell counts excluding the unassigned cells for the R threshold of 0.35. E) Bar chart 
showing cell counts for assigned cell types with R threshold of 0.1. All cells pass the threshold with 
this correlation threshold. F) Violin plot showing the max correlation coefficients grouped by the cell 
type with the max correlation coefficient. The R threshold of 0.1 is indicated by the horizonal line.  
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Figure S7: Some cells have high correlation with two cell types. A) Box plot showing the max 
correlation coefficient for each cell type (cor1) and the second max correlation coefficient (cor2) for 
each cell.  The cor2 value is not for a specific cell type, it is the second highest correlation value 
regardless of the cell type. B) Connected point plots from a subsampling of cells in each of the 
predicted cell types with cor1 matched to cor2.  The cor1 values are for the indicated cell type and the 
cor2 values are corresponding to the second max value for each hMO cell. Horizontal lines indicate 
that the first and second highest R values are close to equivalent.  
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Figure S8: Pairs of cell types with close correlation coefficients could indicate an intermediate 
cell type.  Connected point plots of pairs of predicted cell types with a difference between the first and 
second highest R values less than 0.05. Only correlation with R value greater than 0.553 were 
included. Only cell type pairs with more than 8 cells were included. The cell type with the max 
correlation coefficient is on the left (cor1, blue) and the cell type with the second max correlation 
coefficient (cor2, green) is on the right. The hMO pairs of correlations coefficients for a given hMO cell 
are joined by a black line. Cell type names are abbreviated as follows: oligodendrocytes (Oligo), 
oligodendrocyte precursor cells (OPC), neural precursor cells (NPC), radial glia (RG), neural stem 
cells (stemlike). Cell types that are a continuum of differentiation, such as neural stem cells and NPCs, 
or NPCs and neurons have close R values, possibly indicating these cells are starting to express 
markers of differentiated cell types or retaining some earlier marker expression. The neuron-
oligodendrocyte pairs are not a match of a cell type continuum; however, the expression profiles of 
these cell types overlap.   
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Figure S9: Visualization of antibody expression levels in the subset of hMO cells used for cell 
type annotation. A) Feature plots for each antibody. Normalized expression for the indicated 
antibodies shown as intensity on UMAPs. The scale for each antibody is indicated. B) UMAP pseudo 
coloured by cluster. Cluster numbers are indicated. C) Heatmap of relative expression for each 
antibody in the panel grouped by cluster. 
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Figure S10: Training random forest model (RFM) with the annotated subset of hMO data. A) 
Confusion matrix showing the number of cells predicted to be in each cell type for a hidden group of 
cells from the annotated data. The y-axis shows the true label annotation in the subset of cells and the 
x-axis shows the predicted cell labels. When the x and y axis labels match, the cells are correctly 
predicted. The number of cells predicted are indicated in the squares. The scale also indicates the 
number of cells in each true label to predicted label match. B) MDS plot showing the contribution of 
antibodies to the prediction in the RFM. High Gini decrease (y-axis) and lower mean minimum depth 
(x-axis) indicate a greater importance to classification. C) Line graph showing the prediction error (y-
axis) for different numbers of trees used in training the RFM (x-axis). Coloured lines correspond to 
each cell type. OOB is the overall error rate. A low error rate indicates a better prediction. Most cell 
types are predicted accurately, but radial glia2, radial glia3, and oligodendrocytes are not predicted 
well in the RFM.  
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Figure S11: Visualization of protein expression levels in the full nine sample hMO dataset for 
cell type annotation. A) Feature plots for each antibody. B) UMAP visualization of Seurat clusters. C) 
Heatmap protein expression per cluster.  
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Figure S12: Cell type annotation predictions from CAM, RFM and Seurat label transfer. Left, bar 
charts with the counts of cells predicated as each cell type in each cluster. Right, UMAPs colours by 
predicted cell types. Top; CAM predictions with an R threshold for assignment of 0.35 and a double 
cell type threshold of max R-second max1 of less than 0.01. The results were then filtered to included 
only predicted cell types with over 200 cells. Middle, RFM predictions from the model trained on the 
subset of 9000 cells from each of 9 hMOs. Bottom, Seurat label transfer method using the Seurat 
object from the subset of cells as the reference data.  
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Figure S13: Proportionality test of cell types between each iPSC line. Point range plots showing 
significant differences in proportions of cell types between iPSC lines.  The line contrasts are indicated 
above the plots. Pink dots indicate a significant difference in the proportion of the indicated cell type 
between the two iPSC lines. Each iPSC line has three samples. A) AIW002-02 compared to AJG001-
C4. B) AIW002-02 compared to 3450. C) AJG001-C4 compared to 3450. 
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Figure S14: Proportionality test of cell types between AIW002-02 batches. Point range plots 
showing significant differences in proportions of cell types between hMO batches.  The line contrasts 
are indicated above the plots. Pink dots indicate a significant difference in the proportion of the 
indicated cell type between the two batches.  
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Figure S15: Neuronal subtypes and selected markers. A) Neurons were subset from the total 
population and plotted on a UMAP. Subtypes based are differentially expressed genes are indicated in 
the legend. B) Dot plot of 5 selected differentially expressed genes. The proportion of cells in each 
group expressing a marker is indicated by dot size and the expression level is shown by intensity.  
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Figure S16: DA neuronal subtypes and selected markers. A) DA neurons were subset from the 
total population and plotted on a UMAP. Subtypes were annotated using the markers identified by 
differential gene expression and analysis of expression of known markers and subtypes DANeurons-
VTA (ventral tegmental area), DANeurons-VM (ventral midbrain) and DANeurons-SN (substantia 
nigra).  See Table S13 and S14. B) Dot plot of 5 selected differentially expressed genes. The 
proportion of cells in each group expressing a marker is indicated by dot size and the expression level 
is shown by intensity.  
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2022.11.11.516066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516066
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

53 

 
Figure S17: Astrocyte subtypes and selected markers. A) Astrocytes were subset from the total 
population and plotted on a UMAP. Subtypes based are differentially expressed genes are indicated in 
the legend. B) Dot plot of 5 selected differentially expressed genes. The proportion of cells in each 
group expressing a marker is indicated by dot size and the expression level is shown by intensity.  
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Figure S18: Radial glia subtypes and selected markers. A) Radial glia cells were subset from the 
total population and plotted on a UMAP. Subtypes based on differentially expressed genes are 
indicated in the legend. B) Dot plot of 5 selected differentially expressed genes. The proportion of cells 
in each group expressing a marker is indicated by dot size and the expression level is shown by 
intensity.  
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Figure S19: Visualization of the number of cellular subtypes identified by scRNAseq 
transcriptomes in each FC sorted population. A) UMAP split by sorted population and coloured by 
cell subtypes. B) Stacked bar chart showing the number of each non-DA neuron cell subtype in each 
sorted population. C) Stacked bar chart showing the number of each DA neuron cell subtype in each 
sorted population. D) Stacked bar chart showing the number of each astrocyte cell subtype in each 
sorted population. E) Stacked bar chart showing the number of each radial glia cell subtype in each 
sorted population. 
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Figure S20: Proportion of cell types and DA neuron subtypes in FACS populations neurons 1 
compared to neurons 2. A) Point range plot showing the differences in proportions of DA neuron 
subtype cells neurons1 and neurons 2. B) Point range plot showing the differences in proportions of 
cell types in neurons1 compared to neurons2. Negative log2FD values indicate a greater proportion of 
cells in neurons1 and positive log2FD values indicate a greater proportion of cells in neurons2. Pink 
dots indicate a significant difference.  
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Figure S21: Proportions of cell types in AIW002 over time. A) Bar chart showing proportions of cell 
types in each sample. Cell types are coloured and shown in the legend. Sample are replicates 
grouped by the indicated type points. B) Line plots showing the proportion of each cell type over time. 
Dots are shown for each replicate, time points are shown on the x-axis. Each cell type is shown 
separately.  Cell types are indicated in the legend and facet labels above each plot.  
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Methods Figure 1: Live cell gating strategy. A) Using SCC-A by FSC-A axis the cells are selected, 
and debris is excluded. Double clicking the gated cells will give the selected population. B) Change 
the axis to FSC-H by FSC-W and adjust the x-axis (FSC-W) to log scale. (By clicking the ‘T’). Draw a 
gate on the cells on the left to select single cells and exclude doublets. C) Change the axis to FSC-A 
by the LiveDead stain.  The dead cells take-up the dye. To easily distinguish the live and dead cell 
populations the x-axis scale needs to be adjusted. Click the ‘T’ and select ‘Customize Axis’ D) The 
custom axis window. The scale ‘Positive Decades’ (circled in red) needs to be adjusted. E) Adjust the 
scale until you can see two peaks in the histogram.  Click apply. F) With the adjusted scale the live cell 
population is now gated from the dead cells by drawing a gate. These live single cells are the cells 
selected for further analysis. 
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Table S1: Main effect of iPSC line from a 2-way ANOVA and Tukey’s posthoc test of the 
significant differences. Significant differences with a p-value < 0.05 are highlighted in bold. P values 
are shown for the 2-way ANOVA main effects and the adjusted p Value from the Tukey’s HSD post 
hoc tests.  
 

Cell type Variable Contrast Test P value 

Neurons 1 IPSC Main effect  ANOVA 2-way 0.00046 

Neurons 2 IPSC Main effect  ANOVA 2-way 0.00174 

NPC IPSC Main effect  ANOVA 2-way 0.04065 

Oligodendrocytes IPSC Main effect  ANOVA 2-way 0.00127 

OPC-like IPSC Main effect  ANOVA 2-way 0.00177 

Neurons 1 IPSC AJG001-AIW002 Tukey 0.00409 

Neurons 1 IPSC 3450-AIW002 Tukey 0.87746 

Neurons 1 IPSC 3450-AJG001 Tukey 0.00085 

NPC IPSC AJG001-AIW002 Tukey 0.96515 

NPC IPSC 3450-AIW002 Tukey 0.05442 

NPC IPSC 3450-AJG001 Tukey 0.09643 

Neurons 2 IPSC AJG001-AIW002 Tukey 0.76817 

Neurons 2 IPSC 3450-AIW002 Tukey 0.00215 

Neurons 2 IPSC 3450-AJG001 Tukey 0.01683 

Oligodendrocytes IPSC AJG001-AIW002 Tukey 0.00081 

Oligodendrocytes IPSC 3450-AIW002 Tukey 0.07856 

Oligodendrocytes IPSC 3450-AJG001 Tukey 0.10891 

OPC-like IPSC AJG001-AIW002 Tukey 0.01652 

OPC-like IPSC 3450-AIW002 Tukey 0.00222 

OPC-like IPSC 3450-AJG001 Tukey 0.77824 
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Table S2: Tukey’s HSD test of the interaction effect between iPSC line and protein expression. 
Showing all significant differences between iPSC pairs for a given protein marker. The significance 
threshold was considered p value < 0.05. Mean values across cells were taken for each sample in 
each cell type (n=3). Diff, indicates the difference between the mean values of the 3 replicates.  
 

Cell type Marker iPSC contrast Diff P value 

Astrocytes 2 AQP4 3450-AIW002 0.98259126 0.00055 

NPC CD15 3450-AIW002 1.32415615 0.00045 

Neurons 1 CD24 AJG001-AIW002 1.48879002 0.00000 

Neurons 1 CD24 3450-AJG001 -1.3728338 0.00000 

Astrocytes 1 CD29 3450-AJG001 1.95363377 0.00000 

Astrocytes 1 CD29 3450-AIW002 1.45368611 0.00149 

Neurons 2 CD56 3450-AIW002 1.58062883 0.00000 

Neurons 2 CD56 3450-AJG001 0.96197282 0.00120 

Radial Glia 2 GLAST 3450-AIW002 1.50443557 0.00011 
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Table S3: Hypergate prediction of cell types.  Astrocytes 1 and 2 are combined and radial glia 1 
and 2 are combined.  Neurons1, neurons2, NPCs, and oligodendrocytes are left as separate 
populations. The rest of the cell types were combined into one group labelled ‘other’. 
 

Cell type Accuracy Gating strategy 

Astrocytes 95.30% 

 "CD44 >= 69134.93, CD184 >= 4790.36, CD24 <= 14941.93, CD15 <= 21652.39, CD133 
<= 16111.91, CD71 <= 24201.84, CD56 <= 31661.17, CD184 <= 41979.12, GLAST >= -
1829.09, CD29 >= -221.8, GLAST <= 19910.19, O4 <= 28771.54, CD15 >= -5153.37, O4 
>= -13039.53, CD133 >= -5203.24" 

Endothelial 97.78% 

"CD71 >= 10690.89, CD133 <= 14612.87, CD56 <= 23612.89, CD44 <= 154039.7, CD15 
<= 33664.2, CD184 >= -8415.42, O4 <= 6648.85, HepaCAM >= -2266.38, CD184 <= 
26695.98, GLAST >= -3953.12, AQP4 <= 179930, GLAST <= 41721.09, CD24 <= 
204827.5, CD29 <= 93582.52, CD133 >= -6085.38" 

Epithelial 96.14% 

"CD44 >= 57643.44, CD184 <= 3973.42, CD24 <= 13819.15, CD133 <= 10956.84, CD15 
<= 18368.35, CD44 <= 217613.6, CD184 >= -7614.27, CD29 <= 41852.39, CD71 <= 
16803.39, CD56 <= 27459.87, HepaCAM >= -2503.27, GLAST >= -21787.42, O4 <= 
13506.06, GLAST <= 7895.25, O4 >= -15995.77, CD71 >= -7398.14, AQP4 >= -
27593.11, AQP4 <= 58460.66, CD140a <= 2380.11" 

Glial lineage 98.19% 

 "CD44 >= 18981.62, CD44 <= 67947.27, CD24 <= 8532.04, CD133 <= 6503.12, CD184 
>= 671.64, CD184 <= 6027.05, CD56 <= 10803.37, CD15 <= 9272.85, CD71 <= 9899.44, 
CD29 <= 18512.49, GLAST <= 2972.65, GLAST >= -4303.57, O4 >= -8600.3, AQP4 <= 
25934.81, O4 <= 3831.41, AQP4 >= -30283.57, HepaCAM <= 2853.07, CD15 >= -
8752.85" 

Neural 
lineage 

99.12% 

"CD29 <= 5164.46, CD44 <= 16345.29, CD56 <= 8228.51, CD15 <= 10097.88, CD24 <= 
14430.59, CD133 <= 4690.34, AQP4 <= 10768.68, CD71 <= 9058.63, CD184 >= -
4118.05, CD184 <= 4616.04, GLAST <= 3205.48, GLAST >= -5846.58, HepaCAM >= -
2172.31, AQP4 >= -32414.35, O4 <= 7012.81, O4 >= -10615.22, CD15 >= -9709.93" 

Neurons 1 97.84% 

"CD24 >= 11411.88, CD71 <= 13046.05, CD15 <= 26938.4, CD133 <= 9407.79, CD56 <= 
24563.79, HepaCAM >= -2301.21, GLAST <= 7464.28, GLAST >= -10157.93, CD29 >= 
388.64, CD29 <= 32358.1, CD184 >= -8356.64, CD184 <= 34967.37, AQP4 <= 54412.99, 
CD44 <= 330276.01, CD44 >= 370.32, CD71 >= -6552.91, O4 <= 5850.52, AQP4 >= -
36288.88, CD140a <= 1853.66" 

Neurons 2  97.35% 

"CD56 >= 11306.47, O4 <= 6512.56, CD184 <= 5993, CD15 <= 35454.67, CD133 <= 
14378.52, CD44 <= 69578.63, CD184 >= -4544.7, HepaCAM <= 2516.97, AQP4 <= 
56704.2, O4 >= -3686.94, CD71 <= 37546.04, GLAST >= -8086.99, CD24 <= 89382.14, 
CD133 >= -6581.01, AQP4 >= -35872.41, CD29 >= -1750.44, CD29 <= 127463.18, CD44 
>= -1745.39, GLAST <= 46130.06" 

NPC 

98.19% 

"CD15 >= 16883.48, CD56 <= 68152.13, CD29 <= 32492.33, O4 <= 6603.71, CD133 <= 
34264.57, CD71 <= 33362.52, CD44 <= 579529, GLAST >= -8585.92, CD184 >= -
8395.97, AQP4 <= 143544.3, CD24 <= 126973.72, CD184 <= 64418.66, HepaCAM <= 
8196.44, CD24 >= -10750.26, CD56 >= -863.58, GLAST <= 100720.56, CD140a <= 
4207.56, O4 >= -20194.79, CD133 >= -4657.86" 

Oligodendroc
ytes 99.85% 

"O4 >= 6954.58, CD71 <= 259264.61, AQP4 <= 251950.1, CD24 <= 79343.15, GLAST 
>= -12629.13" 

OPC 
99.14% 

"CD184 <= -3881.47, O4 <= 5819.9, HepaCAM <= 2576.93, CD15 <= 20078.87, CD133 
<= 24914.78, GLAST <= 25128.87, CD44 <= 169438.5, CD71 <= 47633.15, CD56 <= 
70209.7" 

OPC-like 

98.69% 

"CD133 >= 17973.84, HepaCAM <= 7386.68, CD15 <= 93841.76, AQP4 <= 93903.5, O4 
<= 19514.81, CD71 <= 171467.93, CD24 <= 186318.34, CD29 <= 75236.89, CD184 >= -
18571.9, CD56 <= 102289.4, CD184 <= 66643.74, GLAST <= 54848.83, HepaCAM >= -
8102.46" 

Radial Glia 91.93% 

"CD184 >= 4670.84, CD24 <= 13151.85, CD15 <= 16116.35, CD44 <= 108487.72, AQP4 
<= 27956.54, CD133 <= 19864.36, CD71 <= 10261.43, CD29 <= 39977.27, O4 <= 
2775.15, GLAST >= -2949.46, CD56 <= 43016.34, O4 >= -6620.26, HepaCAM >= -
1840.22, CD56 >= -1630.13, CD71 >= -8436.27, CD44 >= -164.1, AQP4 >= -27462.2, 
HepaCAM <= 5943.6" 

Stem-like 99.95% 
"GLAST <= -5784.06, CD133 <= 17757.4, CD184 >= -2183.33, O4 <= 43826.44, CD44 
<= 132336.8" 
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Table S4: Correlation coefficient between protein intensity levels measured by FC and RNA 
expression measured by scRNAseq. The four FACS sorted populations are indicated. The 13 
proteins targeted in the FC antibody panel and the corresponding genes are used as the input.  
 

  scRNAseq 

   Astrocytes RadialGlia Neurons1 Neurons2 

FC 

Astrocytes 0.55533284 0.15228784 -0.4517431 -0.1806433 

RadialGlia 0.13058154 0.44510732 -0.3314321 0.05559489 

Neurons1 -0.4098105 -0.3016957 0.45349104 0.05175022 

Neurons2 -0.4858683 -0.1624758 0.37703856 0.23752196 
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Table S5: Cell type name with selected cell type markers and which FACS sorted population 
contains each cell subtype.  
 

Cell subtype Selected markers 
Prevalence in FACS 
population 

Neurons-GABAergic ASCL1,CCNG2, EGR1, PATJ,CMIP Neurons2 

Neurons-mature CP,IGFBP7,CA2,ADAM10,VEGFA,RDH10 Neurons1 

Neurons-Glutamatergic GRIA2,NRN1,DCLK1,CELF4,RELN Neurons1 

Neurons-stem-potential MGP,WFIKKN2,ID1,WIF1,HPD Neurons2 

Neurons-excitatory SPARCL1,PTGDS,PTN,FTH1,SELENOW Neurons1 

Neurons-endocrine TFPI2,LY6H,IFI27,S100A10,PEG10 Neurons2 

Neurons-5HT TPH1,PCAT4,NCKAP5,GNB3,CHGB Neurons2 

   

DANeurons-VTA RASGRP1,SCG2,RAB3B,CALB1,ADCYA Neurons1 and Neurons 2 

DANeurons-VM TPGB, HES1, IFITM2, PTGDS Neurons2 

DANeurons-SN TTR, SYT1, PCDH9, SLC1A2, OLFM3 Neurons1 

   

Astrocytes-immature COL3A1,VCAN, APOD, OGN, PRRX1 Astrocytes and RG 

Astroctyes-reactive DNC, FABP5, APOE, S100A6, KDR Least abundant 

Astrocytes-resting HPD,WFIKKN2,PRNP,KRT8,KRT18,  Most abundant 

   

RadialGlia-VZ CYP1B1,ID1, RBP1, ECEL1, GPHN Neurons 1 

RadialGlia-SVZ NEAT, ZMAT1, DDX17, PNISR, PRRT2 RadialGlia 

RadialGlia-outer PTN, PTPRZ, SPARCL1, LIX1 RadialGlia 

RadialGlial-NSC TPT1,FAU,NACA,RPL34,RPS12 RadialGlia 

RadialGlia-proliferating TOP2A,MKI67,CDK1,NUSAP1,CENPF Neurons1 and Astrocytes 
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Table S6: References of DA neuron subtypes for selected cluster markers. 

 
Subgroup 
Cluster 

Marker 
gene 

Region or subtype 
indicated 

Reference 

DA1 
 
DANeurons-
VTA 

RAB3B VM DA maturation Monzon-Sandoval 202057  

SCG2 VTA Wen 202158, Greene 201559 

CALB1 VTA Chung 200560, Greene 200559 

RASGRP1 
 

VM  Eshraghi 202061 

STMN2 VM DA development Yin 200962, Fernandes 202063 

ADCYAP1 VTA  Chung 200560, Greene 200559 

PTPRO VM DA maturation Xu 202264 

DA2 
 
DANeurons-
VM 

TPBG VM DA maturation Yoo 202142 

PTGDS VM Zeisel 201865 

CD9 VTA Li 201466 

DLK1 DA neurons Birtele 202267 

SPARC SN Monzon-Sandoval 202057 

RBP1 VM Veenvliet 201368 

HES1 VM Kameda 201169, Hegarty 201370 

DA3 
 
DANeurons-
SN 

TTR DA neurons Kim 202171 

NEUROD1 DA neurons Earley 202172, Termine 202273 

NDUFA4 DA neurons Fernandes 202063 

SYT1 SN Poulin 201474 

SLC1A2 SN Zhang 202075 

OLFM2 SN Bosser 200976, Yang 202277 

FAM19A4 SN Li 201678 , Kamath 202250 
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Table S7: Annotation of DA subtypes from different references. 
 

Source DA1 - VTA DA2 - VM DA3 - SN 

Kamath 202250 DA 
subtypes of SN 
(Human) 

SOX6_DDT CALB1_RBP4 CALB1_CALCR (not a 
good fit) 
Should be FAM19A4 

Poulin 201474 DA 
subtypes 
(Mouse) 

DA2B (VTA)  DA1A (SN) 
 

Maybe DA2C 
OTX2 and SLC17A6 
(VGLUT2).   

Poulin 201474 VTA vs 
SN list 

Both – more VTA Both Both – RAB3C SN and 
OTX2 VTA 

Tiklova 201979  
Gene expression in 
shiny app 
(Mouse) 

VT-Dat-high (doral 
VTA/PAG) 

VT-Dat-high (doral 
VTA/PAG) 

AT-Dat-high (SN), N-
Dat-low (not matched to 
a region) 

Tiklova 201979 
From marker list 
(Mouse) 

AT-Dat (SN), VT-Dat 
(dorsal VTA/PAG), T-
Dat   (VTA some SN) 

AT-Dat (SN) (possible 
strongest match), VT-
Dat (dorsal 
VTA/PAG), T-Dat   
(VTA some SN) 

AT-Dat, VT-Dat, T-Dat 
also G-dat-low, GT-Dat-
low (VTA) 

Aguila 202280 
SN vs VTA 
(Human) 

VTA VM SN 

Cluster markers 
(Table 13) 

Ventral Midbrain 
possible VTA 

Ventral midbrain both 
SN and VTA 

Possible SN 

Overall VTA VM  SN 
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Table S8: Proportions of cell types and cell subtypes in four FACS sorted populations from 
scRNAseq transcriptomics. 
 

Cell types Neurons 1 Neurons 2 Astrocytes Radial Glia 

Astrocytes 1% 4% 87% 19% 

DANeurons 12% 7% 0% 6% 

Neurons 67% 71% 5% 7% 

NPC 8% 0% 0% 0% 

All Neuronal Cells 87% 79% 5% 13% 

RadialGlia 11% 13% 5% 65% 

Mix 1% 4% 3% 2% 

Cell subtype Neurons 1 Neurons 2 Astrocytes Radial Glia 

Astrocytes-immature 0% 4% 51% 9% 

Astrocytes-reactive 0% 0% 25% 10% 

Astrocytes-resting 0% 0% 11% 0% 

DANeurons-SN 4% 1% 0% 1% 

DANeurons-VM 1% 3% 0% 2% 

DANeurons-VTA 8% 4% 0% 3% 

Mix 1% 4% 3% 2% 

Neurons_stem_potential 14% 0% 0% 0% 

Neurons-5HT 0% 5% 0% 1% 

Neurons-Endocrine 0% 39% 0% 3% 

Neurons-Excitatory 33% 0% 0% 0% 

Neurons-GABAergic 0% 15% 2% 3% 

Neurons-Glutamatergic 19% 0% 0% 0% 

Neurons-Mature 0% 12% 2% 1% 

NPC 8% 0% 0% 0% 

RadiaGlia-proliferating 1% 0% 1% 2% 

RadialGlia-NSC 3% 0% 0% 0% 

RadialGlia-outer 0% 1% 1% 12% 

RadialGlia-SVZ 7% 3% 2% 22% 

RadialGlia-VZ 1% 9% 2% 29% 
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Table S9: Antibody panel used for time course analysis with cell types previously reported to 
be identified by each marker. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Antibody/
Marker 

Protein/ 
Gene 

Reported Cell type 
marker 

References 

CD24 CD24 Neurons and neural 
stem cells 
Cancer stem cells 

Uchida 2000,25 Pruszak 2007,16 
Pruszak 2009,26 Sundberg 2009,27 
Yuan 2011,19 Wang 201328 

CD56 NCAM1 Neurons and neural 
stem cells 
Cancer cells 

Pruszak 2007,16 Pruszak 2009,26 
Sundberg 200927 

CD29 ITGB1 Stem cell Pruszak16, Yuan 201119, 

CD15 FUT4 Neural precursor Pruszak 2007,16 Pruszak 2009,26 
Yuan 2011,19 Sandor 201729 

CD184 CXCR4 Neural stem cell Yuan 2011,19 Sandor 201729 

CD133 PROM1 Stem cell Uchida 2000,25 Pruszak 2007,16 
Barraud 200730, Pruszak 2009,26 

CD44 CD44 Glia Liu 2004,31 Yuan 2011,19 

CD140a PDGFRA OPC Liu 2004,31 Wang 201328 

TH TH Dopaminergic neurons 
and lineage 

Wolf 1989,81 Kan 200782  

SSEA4 Carbohydrate 
epitope 

Neural stem cell, stem 
cell 

Henderson, 2002,40 Barraud 2007,30  
Pruszak 2007,16  Abujarour 201383  

CD49f ITA6/ITGA6 Activated astrocytes Barbar 202041 
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Table S10: Tukey’s test results comparing each time point for each cell types. Significant 
differences are shown, all not listed contrasts are not significant.  
 
 

Celltype time1 time2 p adj 

Astrocytes 1 38 98 0.000 

Astrocytes 1 38 155 0.000 

Astrocytes 1 63 155 0.022 

DA-neurons 1 63 155 0.020 

DA-NPC 63 38 0.000 

DA-NPC 98 63 0.005 

DA-NPC 155 38 0.001 

DA-NPC 155 63 0.000 

DA-NPC 155 98 0.000 

Neurons 1 38 98 0.004 

Neurons 1 38 155 0.000 

Neurons 1 63 98 0.000 

Neurons 1 63 155 0.000 

RadialGlia 1 38 63 0.000 

RadialGlia 1 38 98 0.000 

RadialGlia 1 38 155 0.000 

RadialGlia 1a 38 155 0.000 

RadialGlia 1a 63 155 0.000 

RadialGlia 1a 98 155 0.000 

RadialGlia 2 38 63 0.000 

RadialGlia 2 38 98 0.000 

RadialGlia 2 38 155 0.001 

RadialGlia 3 38 98 0.002 

RadialGlia 3 38 155 0.000 

RadialGlia 3 63 155 0.000 

RadialGlia 3 98 155 0.000 

RG1a-Astrocytes 1 38 98 0.002 

RG1a-Astrocytes 1 38 155 0.000 

RG1a-Astrocytes 1 63 98 0.017 

RG1a-Astrocytes 1 63 155 0.000 
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