


Extended data687

688

Extended Data Fig. 1: Improvements to the biomechanical model. A comparison of the
the original (left) and updated (right) NeuroMechFly biomechanical model from the (a) front and
(b) side views as well as a (c) zoomed-in view of the head, highlighting antennal DoFs. DoFs are
indicated (green). The highlighted differences are: (1) additional DoFs in the antennae, (2) a gap
for the neck between the head and the thorax, (3) angles of the thorax and the position of the head
relative to it, and (4) the placement of the legs on the thorax.
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Extended Data Fig. 2: Preprogrammed stepping based on experimentally recorded data.
Joint kinematics for each leg during preprogrammed stepping. Kinematic patterns derived from
behavioral recordings (see Methods). Time series for each joint are color-coded. ThC: thorax-coxa
joint; CTr: coxa-trochanter joint; FTi: femur-tibia jointl; TiTa: tibia-tarsus joint. Note the left-right
symmetry in roll and yaw DoFs. Indicated are periods when adhesion is turned off during swing to
facilitate lifting each leg (light grey).
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Extended Data Fig. 3: Calibration of vision. (a) The calibration environment has pillars spaced
regularly around the fly at 6° intervals (black pillars at 18° intervals). Additionally, red, green, and
blue pillars are used to indicate the anterior, midline, and posterior field of view (FOV) limits of
the left eye. Yellow, magenta, and cyan pillars indicate the FOV limits of the right eye. (b) Each
eye has a FOV spanning ∼ 144° horizontally. The two eyes overlap by ∼ 17°, resulting in an overall
horizontal FOV of ∼ 270°. (c) A raw camera view of what the fly sees in this environment before
applying a fisheye effect. Note that peripheral regions are exaggerated to keep the lines straight. (d)
A fisheye effect is applied to simulate the roughly spherical arrangement of ommatidia in the fly eye.
(e) Retinal inputs are simulated by binning the pixels according to the hexagonal grid of ommatidia
and taking the average intensity within each ommatidium. Ommatidia are randomly sensitive to
green (yellow-type) and blue (pale-type) channels in a 7:3 ratio.
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Extended Data Fig. 4: Vision model used in the multimodal navigation task. (a) The
neighborhood graph used to perform convolution on the hexagonal lattice. (b) Accuracy of the model
in predicting whether the obstacle is present in the fields of view of the fly’s eyes. (c-d) Accuracy of
the model in predicting the (c) direction and (d) distance of the obstacle from the fly. The angular
R2 score is defined as the R2 score of sin(ϑ) concatenated with cos(ϑ), where ϑ is the angle. (e-f)
Accuracy of the model in predicting the (e) azimuth and (f) size of the obstacle in the retinal images.
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Algorithm 1 The main control loop in FlyGym

1: sim params = MuJoCoParameters(physics parameters, rendering parameters, ...)
2: arena = Arena(arena parameters)
3: sim = NeuroMechFlyMuJoCo(sim params, arena, initial pose, actuated joints, spawn pos, ...)
4: controller = User-defined controller ▷ CPG network, neural network, coordination rules, ...
5: observation history, action history, reward history = empty lists
6: observation, info = sim.reset()
7: for a specified maximum number of simulation steps do
8: action = Apply controller given current observation
9: observation, reward, terminated, truncated, info = sim.step(action)

10: Add observation, reward, action to history
11: if terminated or truncated then
12: break ▷ early termination due to task success/failure/timeout
13: end if
14: end for
15: sim.save video(“video path.mp4”)
16: sim.close()

725

Extended Data Fig. 5: The main control loop in the FlyGym package. (Lines 1–3) First,
we define the simulation parameters including the simulation time step, physics parameters such as
joint gains and gravity, and parameters specifying how the scenes should be rendered. We then define
the arena in which the biomechanical model will be embedded. Several predefined arenas are provided
with the package. With the simulation parameters and the arena, we can then define the simulation
itself. The user can configure which joints are actuated and where the fly should be spawned within
the arena. (Line 4) The implementation of the controller is determined by the user. Typically, it has
a prediction function that determines the action to take given the current observation. An internal
state can be maintained within the controller. It can be a hard-coded model or an artificial neural
network (e.g., a network trained through RL). The definition of the controller (or training algorithm)
is isolated from the control loop. (Lines 8–12) This is the portion within the main MDP loop. Using
the user-defined controller, we supply the appropriate action to the simulation and step it forward by
one simulation time step. The simulation returns a new observation, optionally a reward (depending
on the user’s definition), a “terminated” flag indicating whether the simulation has ended due to a
factor within the MDP framing (e.g., task success or failure), a “truncated” flag indicating whether
the simulation has ended due to a factor outside of the MDP framing (e.g., timeout), and a dictionary
containing any additional information.
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Supplementary Videos744

Supplementary Video 1: Ground reaction forces experienced by the fly’s legs. Ground745

reaction forces during locomotion with a CPG-based controller. Here and in all subsequent videos,746

the tarsi are color-coded based on whether adhesion is on and the tarsus is in contact with the ground747

(black) or not in contact with the ground (red). Note that in this video the tarsus is never red because748

the legs are always in contact with the ground when adhesion is on. Simulation is played back at749

0.05x original speed.750

Link to Supplementary Video 1751

752

Supplementary Video 2: Locomotion over sloped terrain using leg adhesion. Locomotion753

is driven by a CPG-based controller. Shown are simulations (left) without or (right) with adhesion.754

Simulation is played back at 0.1x original speed.755

Link to Supplementary Video 2756

757

Supplementary Video 3: Preprogrammed stepping of each leg. Individual legs are stepped758

in series according to their data-derived joint kinematics. Adhesion is disabled in this video.759

Link to Supplementary Video 3760

761

Supplementary Video 4: Control signals of the CPG-based controller. Shown for all legs762

are the CPG phases (wrapped by 2π) and amplitudes from random initialization. As CPGs syn-763

chronize, the amplitude is set low to prevent abrupt movements. The CPGs eventually synchronize,764

forming a tripod gait. Simulation is played back at 0.1x original speed.765

Link to Supplementary Video 4766

767

Supplementary Video 5: Control signals of the rule-based controller. Shown for all legs768

are the stepping scores and contributions of each of the three coordination rules. Indicated are the769

initiation of steps (triangles). Simulation is played back at 0.1x original speed.770

Link to Supplementary Video 5771

772

Supplementary Video 6: Control signals of the hybrid controller. Shown for all legs are773

the CPG phases (wrapped by 2π) and amplitudes as well as the activation of the retraction (solid)774

and stumbling (dashed) rules based on sensory feedback. The tibia is colored (dark blue) when the775

retraction rule is active. The coxa is colored (red) when the stumbling rule is active. Simulation is776

played back at 0.1x original speed.777

Link to Supplementary Video 6778

779

Supplementary Video 7: Locomotion over multiple terrain types. The fly walks over a flat780

surface (first column), a surface with gaps (second column), a surface with blocks (third column),781

and a hybrid surface (fourth column). The fly is either controlled by a CPG-based controller (top),782

a rule-based controller (middle), or a hybrid controller integrating both CPGs and sensory feedback783

rules (bottom). Shown are the results from 20 trials for each condition. Simulation is played back at784

0.1x original speed.785

Link to Supplementary Video 7786

787

Supplementary Video 8: Visual object chasing task. The fly uses vision to follow a sphere788

that is moving away along an S-shaped trajectory. Shown are visual inputs to the left and right eyes789

(bottom). Locomotion is regulated using a hybrid controller with leg adhesion. Note that each eye’s790

field of view can observe front leg movements. Simulation is played back at 0.5x original speed.791

Link to Supplementary Video 8792

793

Supplementary Video 9: Olfactory chemotaxis task. The fly seeks an attractive odor source794

(orange) while avoiding two aversive odor sources (blue). Colored bars (bottom) indicate the inten-795

sities of attractive (orange) and aversive (blue) odors sensed by antennae on each side of the head.796

Locomotion is regulated using a hybrid controller with leg adhesion. Simulation is played back at797

0.5x original speed.798
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Link to Supplementary Video 9799

800

Supplementary Video 10: Multimodal navigation task controlled by an RL-trained arti-801

ficial neural network. The fly seeks an attractive odor source (orange) while visually avoiding an802

obstacle (gray pillar) over rugged hybrid terrain. Shown are visual inputs to the left and right eyes803

(bottom-center). Orange bars (bottom-left and bottom-right) indicate the intensity of an attractive804

(orange) odor sensed by antennae on each side of the head. Locomotion is regulated using a hybrid805

controller with leg adhesion. Simulation is played back at 0.2x original speed.806

Link to Supplementary Video 10807

808

Supplementary Video 11: Multimodal navigation task executed from different spawn809

positions. Shown are the nine trials illustrated in Fig. 3e (bottom right). Simulation is played810

back at 0.5x original speed.811

Link to Supplementary Video 11812
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