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Abstract1

Discovering the principles underlying the neural and biomechanical control of animal2

behavior requires a tight dialogue between real experiments and data-driven neuromechan-3

ical models. Until now, such models have primarily been used to further our understanding4

of lower-level motor control. For most whole-animal simulations, we still lack an effective5

framework for studying how the brain processes environmental signals to regulate motor6

behavior. The adult fly, Drosophila melanogaster, is well-suited for data-driven modeling7

and can be simulated using the neuromechanical model, NeuroMechFly. However, until8

now this simulation framework did not permit the exploration of full hierarchical sen-9

sorimotor loops. Here we present NeuroMechFly 2.0, a framework that greatly expands10

whole-animal modeling of Drosophila by enabling visual and olfactory processing as well11

as complex three-dimensional environments that can be navigated using leg adhesion.12

To illustrate its capabilities we explore the effectiveness of biologically-inspired leg con-13

trollers for navigating diverse terrain, and show how one can build and use Reinforcement14

Learning to train an end-to-end hierarchical model with multimodal sensory processing,15

descending commands, and low-level motor control in closed loop. NeuroMechFly 2.0 can16

accelerate the discovery of explanatory models of the nervous system and the development17

of machine learning models to control autonomous artificial agents and robots.18
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Introduction19

Achieving a holistic understanding of how the nervous system controls behavior will require solving20

a deeply entangled problem: Biological feedback loops occur at multiple hierarchical levels ranging21

from the physiology of individual neurons to the dynamics of neural circuits; physical feedback loops22

include the impact of biomechanical interactions with the environment as well as the flow of sensory23

information while navigating through the world. Thus, the investigation and modeling of any of these24

elements in isolation, although a useful starting point, will always be fundamentally incomplete. To25

overcome this gap, neuroscience requires integrated simulation frameworks that enable the exploration26

of hierarchical feedback loops in an end-to-end manner. This will permit a deeper understanding of27

how biological systems achieve efficient autonomous control through sensory processing, decision28

making, and motor execution.29

Numerous detailed neuromechanical models have been developed to explore how animals control30

low level motor programs like walking1,2,3,4,5,6,7, swimming8,9, and transitions between them10,11.31

By contrast, in the field of Reinforcement Learning (RL) more abstract and simplified “creatures”12
32

have been widely used to model high-order neural processes including visuomotor coordination13,14,33

decision making15,16, and learning algorithms17,18. These latter models often lack realistic motor34

control and biomechanics and, as a consequence, typically generate only simplified control signals35

that drive unrealistically limited categorical variables or joint degrees of freedom19,20. Thus, although36

progress is being made21,22, a significant gap remains at the interface between neuromechanical37

and machine-learning models of most animals. Ideally, a simulation environment would enable the38

exploration of hierarchical controllers23—like those found in biological agents—which include higher-39

order (i.e., brain-like) systems that integrate multimodal sensory inputs and internal states to make40

appropriate decisions, as well as lower-level (i.e., spinal cord- or ventral nerve cord-like) systems that41

decode descending brain commands and execute behaviors (Fig. 1a).42

The adult fruit fly, Drosophila melanogaster, is an ideal organism for modeling biological hierar-43

chical controller in its entirety. It has only ∼ 200,000 neurons in its brain24 (compared with ∼ 7044

million in the mouse brain25 and ∼ 80 billion in the human brain26). Its principal motor system45

(the ventral nerve cord or VNC) comprises ∼ 15,000 neurons27 (compared with ∼ 106 in the mouse46

spinal cord28 and ∼ 108 in the human spinal cord29). Using this small number of neurons, flies can47

nevertheless generate complex behaviors including walking over complex terrain30, rapid corrective48

maneuvers during flight31, courtship sequences32, aggression towards competitors33, and learning34.49

The global organization of the fly’s nervous system resembles that of vertebrates35,36 yet it can be50

examined at the synaptic level using connectomes—synapse-resolution neural wiring diagrams—of51

the whole brain37 and VNC38,39. Additionally, thousands of transgenic fly lines have been generated52

that allow investigators to repeatedly target sparse sets of neurons40 for optogenetic activation41
53

and recording42. These resources and tools have led to the emergence of data-constrained models54

of neural circuits (e.g.,43,44). Therefore, an integrated, whole-body simulation of the fly is urgently55

needed to expand, test, and iteratively improve whole brain and VNC models in order to uncover56

fundamental principles governing biological intelligence and autonomous behavioral control.57

Towards this goal, we previously developed NeuroMechFly, the first morphologically realistic bio-58

and neuromechanical model of the adult fly, Drosophila melanogaster 22. Using this biomechanical59

model, we could infer unmeasured forces and collisions from the in silico replay of real 3D limb60

kinematics measured from tethered flies walking and grooming on a spherical treadmill. Furthermore,61

with this model we showed how simple, mathematical central-pattern generators (CPGs) could be62

used to control fast and stable tethered locomotion. These efforts established the core motor system63

functionality of our data-driven simulation of Drosophila. However, they did not enable full end-64

to-end modeling of multi-level sensorimotor control. First and foremost, brain-level processing of65

sensory signals were absent. Second, the simulation framework did not confront the model with66

salient sensory objects and challenging terrain. Third, the physics engine and biomechanical system67

were not outfitted for effective untethered behavior including using leg adhesion to navigate three-68

dimensional terrain.69

Here we describe NeuroMechFly 2.0, a simulation framework that fills these important gaps by (i)70

improving the biomechanical model, (ii) adding leg adhesion, (iii) simulating sensing by the retinas,71

antennae, and maxillary palps for vision and olfaction, and (iv) adding environmental features like72

odor sources, obstacles, moving objects, and rugged terrain (Fig. 1a-b). We illustrate how these73

can be used to explore the control of locomotion over challenging terrain, visual object chasing, and74
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olfactory chemotaxis taxis. Finally, we show how our simulation framework can be used as a test bed75

for building machine learning models by solving an integrative multimodal task—avoiding a visual76

obstacle while approaching an attractive odor source over rugged terrain—using an artificial neural77

network controller trained through Reinforcement Learning (RL). By providing an implementation78

compliant with a standard RL task interface, we hope to facilitate a deeper dialogue between neu-79

roscience, machine learning and robotics (Fig. 1c). To accelerate its adoption in both research and80

education, NeuroMechFly 2.0 is modular, allowing users to flexibly interact with the simulation at81

multiple levels of abstraction.82

Results83

The FlyGym package: A standardized simulation framework implemented84

in MuJoCo85

To improve its usability, we made three fundamental changes to the NeuroMechFly simulation frame-86

work (released as the FlyGym Python package, https://neuromechfly.org/). First, this pack-87

age fully complies with Gymnasium12, a standard interface for controller-environment interaction88

in robotics and RL (Fig. 1c). Second, we moved the simulation framework from PyBullet to Mu-89

JoCo45, a more widely used physics simulator. We changed the underlying physics engine because90

(i) MuJoCo is known for better stability and performance46, (ii) MuJoCo supports a wide range of91

actuators including adhesion actuators that can be used to model insect-like adhesive properties at92

the leg tips, and (iii) MuJoCo has been made open-source since our previous results were published.93

Third, we expanded the interface for the arena (the physical environment that the fly model interacts94

with) to enable complex and dynamic environmental features within the simulation.95

We framed the control problem as a partially observable Markov Decision Process (MDP). At each96

time step, the simulation provides the controller with an observation and, optionally, a user-defined97

reward. Then, the simulation receives an action from the controller and steps the physics forward98

accordingly. The observation space is a user-configurable subset of the state space including visual99

inputs, olfactory inputs, ground contacts, joint states (angles, angular velocities, and torques), and100

the position and velocity of the fly model within the arena. The action space includes the control101

signal (e.g., angles for position control) for every actuated joint (e.g., seven degrees-of-freedom (DoFs)102

per leg × six legs) and the on/off signal for leg adhesion. This framework is easily extendable: the user103

can incorporate additional layers of sensory preprocessing or premotor computation into the MDP104

(Fig. 1c). For example, in a visual taxis example described below, we programmed the centroid105

calculation to reduce the observation space to two dimensions (the azimuth of the object seen from106

each eye) and used a CPG network to reduce the action space to a two-dimensional descending107

command.108

Improved morphological accuracy109

Morphologically accurate biomechanical models like NeuroMechFly allow researchers to study precise,110

fine-grained body movements that would not be faithfully represented by simpler geometric (“ball-111

and-stick”) models. One major opportunity afforded by such models is the ability to replay real112

recorded 3D body part kinematics in simulation to infer unmeasured collisions, contacts, and forces22.113

Behaviors based on different body-part contacts like grooming (as opposed to world-body contact114

like walking) require precise kinematic replay as well as more fine-grained read-out of where and how115

individual segments interact with one another. Therefore, we updated the accuracy and granularity116

of individual body part meshes to better match the morphology of the real fly. First, we adjusted117

the placement and default angles of the joints between the thorax and front leg coxae as well as118

between the thorax and head (Extended Data Fig. 1a–b). These adjustments were made based119

on high-magnification video data collected with a multi-camera keypoint tracking system47. Second,120

to better facilitate the control and the accurate readout of mechanosensory signals in the antennae,121

we split each antennal mesh into three independent segments: pedicel, funiculus, and arista. We then122

added degrees of freedom (DoFs) between these segments to allow each to be separately actuated or123

passively moved, and to measure their angular displacement (Extended Data Fig. 1c).124
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Leg adhesion enables locomotion in three dimensions125

Insects, including flies, have evolved highly specialized adhesive structures to facilitate locomotion over126

complex 3D terrain48,49. Adhesive forces are in part mediated by adhesive pads50. Substantial normal127

forces (10–100 times body weight51,52,53) and frictional forces emerge from interactions between the128

substrate and the adhesive pad49,54. These allow insects to navigate 3D terrain with ease. Because129

we cannot fully represent the physics underlying real, biological adhesion, we added more abstract130

leg adhesion to our model by injecting an additional normal force to the pretarsus of each leg when it131

is in contact with a surface (Fig. 2a, Supplementary Video 1). This adhesive force increases the132

normal force toward the object and the frictional force (in insects, normal and frictional forces are133

also correlated52). We opted for a relatively high adhesion force (20–40 mN) to be consistent with the134

high, but somewhat variable, forces reported across insect species52,51. In this basic form, adhesion135

provides mechanical coupling between the legs during locomotion on flat terrain and improves force136

transduction to the ground.137

Despite the huge forces generated by adhesive pads, insects can still lift their legs, seemingly with-138

out effort. The mechanisms for lifting off are known for some insect species—the beetle Gastrophysa139

viridula seems to utilize the anisotropy (i.e., direction-dependence) of the adhesion pads51 and the140

fly Calliphora vicina uses lifting and twisting strategies to overcome adhesive forces49—but not for141

Drosophila melanogaster. Therefore, we abstracted the mechanisms used by other insects for lifting142

by turning adhesion forces on during stance and off during swing.143

Leg adhesion expands the behavioral repertoire of our model. To illustrate this, we simulated144

tripod locomotion55 over 3D surfaces56,57 inclined at different angles up to 120° (Fig. 2b, Sup-145

plementary Video 2). Individual steps were generated by replaying the kinematics of real steps146

measured from a tethered, behaving fly47 (Extended Data Fig. 2, Supplementary Video 3,147

see Methods). Without adhesion, the fly failed to sustain forward locomotion at angles as small148

as 5 degrees. However, as the maximal adhesion force was increased, the fly could locomote over149

increasingly inclined terrain even occasionally beyond 90° (Fig. 2c).150

Complex terrain demonstrates the importance of feedback in locomotion151

Previously, we showed that replaying the real leg kinematics of a tethered walking fly could generate152

stable walking in NeuroMechFly on flat ground22. Although this was an important proof-of-concept,153

locomotion over smooth terrain is an under-constrained problem that can be solved using a variety of154

different control strategies. We previously also used an open-loop, abstract network based on central155

pattern generators (CPGs) to generate fast and stable tethered walking. However, this approach did156

not allow one to investigate the role played by leg mechanosensory feedback for navigating over more157

challenging terrain. Therefore, to enable the exploration of how sensory feedback can facilitate motor158

control over rugged surfaces, we developed three rugged terrain types that complement our baseline159

smooth terrain (Fig. 2d, “Flat terrain”): one with gaps perpendicular to the initial heading of the160

fly (Fig. 2d, “Gapped terrain”), one with blocks of variable height (Fig. 2d, “Blocks terrain”),161

and one that is a mixture of these two (Fig. 2d, “Mixed terrain”). Using these new terrain types,162

we could examine the efficacy of different bioinspired control strategies.163

Two prominent mechanisms have been proposed for insect locomotion. The first is a centralized164

mechanisms that depends on coupled CPGs (i.e., circuits producing rhythmic motor output with-165

out rhythmic input58). The second is a more decentralized approach whereby locomotion emerges166

from the application of sensory feedback-based rules that dictate for each leg when to lift, swing,167

or remain in stance phase1. Evidence for each of these control approaches has been found across168

species58,59,60,61, motivating their application toward robotic motor control62,63. To explore the169

efficacy of these distinct strategies for navigating complex terrain, we built three controllers: (i)170

CPG-based (Fig. 2e, “CPG controller”, Supplementary Video 4), (ii) sensory feedback-based171

(Fig. 2e, “Rule-based controller”, Supplementary Video 5), and (iii) a hybrid controller that172

modulates CPGs with sensory feedback to recover from challenging positions (Fig. 2e, “Hybrid173

controller”, Supplementary Video 6). As before, the kinematics of individual steps were based174

on experimentally recorded tethered walking but these were influenced by CPGs and sensory feedback175

rules (see Methods). In later sensorimotor tasks, we couple the CPG and hybrid controllers with a176

two-dimensional asymmetric descending signal to control turning by modulating oscillator frequencies177

and amplitudes (Fig. 2f).178
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We benchmarked the performance of these controllers by testing them over flat and rugged terrains179

starting from different spawn positions and initial states. We found that the CPG controller led to180

fast locomotion while rule-based locomotion is more robust over rugged terrain. By leveraging both181

CPGs and mechanosensory feedback, the hybrid controller had a higher baseline speed than the rule-182

based controller (Fig. 2g, left, Supplementary Video 7) while also covering greater distances on183

rugged terrain (Fig. 2g, right, Supplementary Video 7). These results demonstrate that rugged184

terrains are important for the study of locomotor control: they can expose failure modes of controllers185

that otherwise work well on flat terrain.186

Vision and olfaction enrich behavior in complex sensory environments187

Animals typically navigate over rugged terrain to reach attractive objects (e.g., potential mates, food188

sources) and to avoid repulsive features (e.g., pheromones from predators) and obstacles. To achieve189

these goals, a controller must be hierarchical: processing higher-order sensory signals, using them to190

select the next action, and translating these decisions into descending commands that drive lower-191

level motor systems. We aimed to simulate this sensorimotor hierarchy by adding vision and olfaction192

to NeuroMechFly (Fig. 3a).193

We first implemented vision. A fly’s compound eye consists of ∼700–750 individual units called194

ommatidia arranged in a hexagonal pattern64. To emulate this, we attached a color camera to each195

of our model’s compound eyes (Fig. 3a, green). We then transformed each camera image into 721196

bins, representing ommatidia (Fig. 3b). Based on previous studies65,66, we assumed a 270° combined197

azimuth for the fly’s field of view, with a ∼ 17° binocular overlap (Extended Data Fig. 3). Visual198

sensitivity has evolved to highlight ethologically relevant color spectra at different locations in the199

environment (see Methods). Here, as an initial step toward enabling this heterogeneity in our model,200

we implemented yellow- and pale-type ommatidia—sensitive to the green and blue channels of images201

rendered by the physics simulator—randomly assigned at a 7:3 ratio67. Users can substitute the green202

and blue channel values with the desired light intensities sensed by yellow- and pale-type ommatidia68
203

to achieve more biorealistic chromatic vision.204

In addition to vision, we also made it possible for our model to detect odors emmited by objects205

in the simulation environment. The olfactory system in Drosophila consists of specialized olfactory206

sensory neurons (OSNs) located in the antennae and maxillary palps. These detect specific odorant207

molecules69 and convey this information to the brain’s antennal lobe, where their signals are further208

processed70. We emulated peripheral olfaction by attaching virtual odor sensors to the antennae209

and maxillary palps of our biomechanical model (Fig. 3a). The user has the option of configuring210

additional sensors at more precise locations on these olfactory organs. These virtual sensors can211

detect odor intensities across a multi-dimensional space that can be thought of as representing, for212

example, the concentrations of monomolecular chemicals sensed by OSNs in the antennae, or the213

intensities of composite odors co-activating numerous projection neurons in the antennal lobe. The214

modularity of our framework makes it possible for users to implement additional signal processing by215

downstream olfactory centers (e.g., lateral horn or mushroom body71,72).216

To illustrate how our model can use visual and olfactory sensing to interact with higher-order217

features in the environment, we implemented two behaviors: visual object chasing and olfactory218

chemotaxis. In our visual object chasing task, the fly model was required to track and follow a black219

sphere moving in an S-shaped curve—akin to a male fly chasing a female during courtship73. We first220

processed the object’s visual location by computing it’s centroid position on the retina. Then, these221

visual features were linearly transformed into a two-dimensional descending signal (Fig. 3c, left).222

These modulated the frequencies and amplitudes of CPG-based oscillators on either side of the body223

(Fig. 2f, “Turning controller”), allowing the fly to effectively track the object moving through224

the environment (Fig. 3c, right; Supplementary Video 8).225

Similarly, to illustrate olfactory chemotaxis—akin to odor-based food search, but simplified by226

the absence of complex plumes74—we required the fly model to seek an attractive odor source while227

avoiding two aversive odor sources. To achieve this, the controller used the antennae and the maxillary228

palps to compare the relative intensities of attractive and aversive odors across the two sides of the229

head75 and multiplied them by the appropriate weights (opposite signs for attractive versus aversive230

odors). This left-right bias was used to asymmetrically control the descending signal (Fig. 3d,231

left), yielding effective odor-driven navigation through the simulation environment (Fig. 3d, right;232

Supplementary Video 9).233
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Finally, we sought to demonstrate the capacity of our simulation framework to use machine learn-234

ing to learn a controller for whole-body, multi-modal behavior in a modular fashion. Specifically, we235

trained the fly to avoid an obstacle while also seeking an attractive odor source by locomoting on236

rugged terrain (Fig. 1b). Our controller consisted of the following: (i) a vision module (implemented237

as a convolutional neural network on the hexagonal lattice) that extracts the object’s direction, dis-238

tance from the fly, location on the retinas, and size on the retinas (Extended Data Fig. 4); (ii)239

a decision-making module that receives preprocessed visual features from the vision model and odor240

intensities detected from each antenna as inputs to compute a turning bias; (iii) a two-dimensional241

descending representation, transformed from the turning bias, that modulates locomotor CPGs to242

drive turning; and (iv) a hybrid controller integrating CPGs and sensory feedback to enable locomo-243

tion on rugged terrain. We trained the vision module in a supervised manner by randomly placing244

the fly and obstacle in the arena to collect training data and learned the decision making module245

through RL. This approach enabled multimodal visual-olfactory navigation despite the challenges of246

locomoting over rugged terrain (Fig. 3e, right; Supplementary Videos 10 & 11). This inte-247

grated task demonstrates that with NeuroMechFly 2.0, one can define individual components in a248

modular fashion and combine them to investigate a hierarchical sensorimotor task in closed loop.249

Although we have used simpler models in the examples above, the user has full access to the250

raw light intensities sensed by the retinas as well as the raw concentration of chemicals or odorants251

sensed by the antennae and maxillary palps. Thus, one can implement one’s own sensory processing252

model with the level of biological realism required to address the question at hand (e.g., visual optic253

flow algorithms76, connectome-constrained visual feature extraction43, olfactory gain control77, odor254

motion sensing algorithms78, olfactory memory formation72; see Table 1).255

Discussion256

Here we have introduced NeuroMechFly 2.0, a framework for performing integrated sensorimotor257

neuromechanical simulations of the adult fly Drosophila melanogaster. This new framework includes258

fundamental updates including (i) the development of “FlyGym,” an open-source Python package259

based on the MuJoCo physics simulator that interfaces easily with user-specified neural controllers260

and RL algorithms, (ii) complex, rugged terrain types that can be modified and used to benchmark261

the efficacy and robustness of different motor control strategies, (iii) improved morphological realism262

of the biomechanical model, (iv) leg adhesion enabling 3D locomotion, (v) visual and (vi) olfactory263

systems that allow the simulated fly to interact with higher-order sensory features in the environment,264

(vii) a descending interface between higher-level sensing and lower-level locomotion, and (viii) the265

ability to use machine learning approaches to perform whole-body, closed-loop simulation of mul-266

timodal navigation. Beyond the particular examples presented here, our generalizable framework267

allows researchers to develop more biologically realistic models. We have provided a summary of268

what our simulation framework currently supports, what we have used to implement the examples in269

this paper, and some potential opportunities for future work (Table 1). Importantly, our simulation270

framework is modular, allowing the community to build whole-animal models in an interoperable271

manner: Researchers can choose the appropriate level of detail for each part of the model in a way272

that suits the scientific question under consideration. For example, one can use more abstract base-273

lines or existing models for elements of neural control that are not the focus of investigation. Notably,274

important behaviors, including those involving the control of wings/halteres (e.g., flight), abdomen275

(e.g., egg-laying), and proboscis (e.g., feeding) are not yet demonstrated but are supported within this276

framework. Additionally, signals like ascending motor-related feedback79 and those encoding internal277

states33 or learning-based72 changes in sensory valence can be easily incorporated into user-defined278

controllers.279

With enriched sensory feedback and improved biomechanics, our simulation framework makes a280

number of new modeling and experimental paradigms possible. First, it can enable the modeling of281

complex behaviors requiring controllers that span sensing, navigation, learning, and motor control282

within a whole-body simulation framework. We envision that these explorations will facilitate our283

understanding of the hierarchical organization of information processing in the nervous system. In the284

future, a similar simulation framework could be integrated into closed-loop experiments. For example,285

NeuroMechFly could be used during experiments to replay an animal’s kinematics as captured by286

pose estimation methods80, enabling the real-time inference of dynamic variables such as forces and287
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torques and informing experimental perturbations in closed-loop81.288

Beyond this current implementation, we anticipate that in the future our simulation framework289

can be further improved in several ways. First, we anticipate that recent developments in physics290

simulation, particularly GPU-acceleration82,83 and differentiable simulation84,85,83, will enable ad-291

vances in FlyGym that facilitate the training of larger models through RL. Second, as more detailed,292

possibly connectome-constrained models of specific neural circuits emerge, they can be added to a293

corpus of controllers in our modular simulation framework. Furthermore, its compatibility with the294

Gymnasium API will ensure that changes are implemented relatively easily without disrupting the295

established user interface. Third, the careful measurement and analysis of the Drosophila muscu-296

loskeletal system (i.e., tendons and muscles) will improve the interface between connectome-inspired297

neural networks and control of the biomechanical model. These efforts will bring the field closer to298

achieving the ultimate goal of uncovering neuromechanical mechanisms giving rise to flexible and299

adaptive animal behaviors in a sensory-rich and physically complex world.300
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Figures301

302

Fig. 1: Schematic overview of the NeuroMechFly 2.0 modeling framework. (a) Diagram
highlighting the integrative and hierarchical aspects of the newly expanded NeuroMechFly framework.
Sensory inputs—visual and olfactory—are processed in the central brain to select an appropriate ac-
tion as driven by a left-right pair of descending inputs to lower motor centers (Ventral Nerve Cord
or VNC). Motor output drives joint torques and mechanosensory feedback signals are sent back to
the motor system to inform the next movement. Indicated are components that were present in the
original model but improved (black) as well as components that are entirely new (blue). (b) Simu-
lation camera view of the neuromechanical model, NeuroMechFly, locomoting over complex terrain,
using vision to avoid a pillar, and using olfaction to reach an attractive odor source (orange). (c) The
biomechanical model and its interaction with the environment are encapsulated as a Markov Decision
Process (MDP) task. A user-defined controller interfaces with the task through actions (red) and
observations (blue). The user can extend the MDP task by adding preprogrammed processing rou-
tines for sensory inputs (purple) and motor outputs (light blue), to modify the action and observation
spaces handled by the controller.
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Fig. 2 - See Figure Legend on next page.

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.18.556649doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.18.556649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2: Locomotion in three-dimensions and over challenging terrain. (a) A schematic of
contact forces on the fly’s leg with the addition of adhesion. (b) Trajectory (blue) of the fly as it
walks up a vertical wall. Fly image is not to scale. The legs are controlled by a CPG controller with
adhesion enabled (F=20 mN). (c) Critical slope (angle) at which the fly falls or does not proceed
forward as a function of leg adhesion force. (d) Challenging terrains for exploring the efficacy of
distinct locomotor strategies. We tested four terrains: a flat surface, a surface with gaps, a surface
with blocks, and a mixture of all surface types. (e) Three controllers tested across terrains: a
controller with six coupled CPGs controlling the swing and stance of the legs, a rule-based controller
in which the phase of one leg’s movements influences the movements of neighboring legs, and a
hybrid controller consisting of coupled CPGs with sensory feedback-based corrective mechanisms to
lift the leg when it may be stuck. See Methods for a detailed explanation of rules based on sensory
feedback. (f) Turning is controlled by the asymmetric modulation of a two-dimensional descending
command signal that regulates the frequencies and amplitudes of oscillators on each side of the body.
(g) The performance (forward displacement) of each locomotor control strategy walking over four
types of terrain. For flat terrain, the absolute displacement is shown. For rugged terrain types, the
displacement is normalized to the mean displacement of the controller over flat terrain. N = 20
single trials with a random spawn location and controller initialization are shown (colored circles).
Overlaid are box plots indicating the median, upper and lower quartiles, and whiskers extending to
the furthest points excluding outliers that are more than 1.5× the interquartile range (ICR) beyond
the ICR. One-sided, asymptotic Mann-Whitney U rank test was used to generate the statistics: “ns”
not significant; ** p < 0.01, *** p < 0.001 (see Table 6 for complete statistics).
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Fig. 3 - See Figure Legend on next page.
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Fig. 3: Vision and olfaction enable closed-loop sensorimotor control. (a) The placement
of cameras for vision (green), and odor sensors—antennae (blue) and maxillary palps (yellow)—
on the fly model’s head. (b) A simulation of the visual inputs perceived by the fly while facing
three different colored pillars. Ommatidia perceive the same pillar in two different intensities due
to the two-dimensional color space. Ommatidia types are randomly assigned. (c) The visual object
tracking task. (left) First, the azimuth of the centroid of the object on the retina is extracted for
each eye. These azimuths are then linearly transformed and capped to generate the appropriate
descending turn signal to CPG-based controllers. (right) This controller allows the fly to follow a
black sphere moving in S-shaped curve. (d) The odor taxis task. (left) First, the differences in mean
odor intensities sensed by the antennae and maxillary palps on either side of the head (transformed
with the square root operator) are multiplied by the gains of the corresponding odor type. The
product is then passed through the tanh function and supplied to the descending controller as a
turn signal. (right) This controller allows the fly to seek an attractive odor source while avoiding
two aversive odor sources. Note that the orange odor marker is for visualization purposes only and
is not seen by the fly model. (e) The multimodal RL-based navigation task. (left) Visual features
are extracted using a convolutional neural network. Olfactory features are processed as in panel d.
These features are passed to an artificial neural network as inputs. The neural network is trained
through RL to predict the appropriate turn commands. These commands are executed by a hybrid
lower-level motor controller integrating CPGs and sensory feedback and using leg adhesion. (right)
This controller allows the fly to seek an attractive odor source while avoiding a visually-detected
obstacle over complex terrain. (top) An example of a successful trial. The orange odor marker is
for visualization purposes only and is not visible to the fly. (bottom) The trajectory of the fly in 9
examples (6 successful, blue; 3 failed, red) beginning from different spawn positions (circle markers).
Videos of these examples are compiled in Supplementary Video 10.

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363364

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.18.556649doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.18.556649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables365

Visual system

Currently Supported Shown in Examples Future Potential

• Raw retina readings processed
by any user-defined visual
system model

• Object size / location on
retina

• Artificial neural network
(convolution on a hexagonal
lattice)

• Algorithmic visual system
model76

• Connectome and
physiology-constrained visual
system model43

• Robotics/AI: Vision models
at variable levels of
abstraction

Olfactory system

Currently Supported Shown in Examples Future Potential

• Intensity readout in an
n-dimensional space
according to a user-defined
diffusion relationship

• User can decide where sensors
are placed on the antennae
and/or maxillary palps

• Signals can be processed with
any user-defined olfactory
system model

• Readout of 2D (attractive vs.
aversive) odor intensities by
antennae and maxillary palps

• Simple model computing the
difference in odor intensities
between bilateral olfactory
organs

• Integration with dispersion
models of odor plumes86

• Algorithmic odor plume
processing model78,87,88

• Connectome and
physiology-constrained
olfactory system model71

• Robotics/AI: Odor search
models at variable levels of
abstraction

Action selection model
Currently Supported Shown in Examples Future Potential

• Arbitrary user-defined process
with access to visual/olfactory
signals, ascending motor
signals, and internal states

• Simple calculations based
asymmetry in odor intensities
or object position multiplied
by gains

• Black-box Multilayer
Perceptron (MLP) trained by
RL

• Algorithmic action selection
model

• Connectome and
physiology-constrained action
selection model89,37

• Robotics/AI: Action selection
models at variable levels of
abstraction

Table 1: (part 1 of 3) Summary of features supported by our modeling framework, im-
plementations used in the examples presented in this paper, and future possibilities.
Continued on the next page.
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Descending controller

Currently Supported Shown in Examples Future Potential

• n-dimensional descending
space defined by the user

• 2D descending drive
modulating CPGs on each
side of the body

• High-dimensional descending
representation allowing
command-like and
population-based coding90

VNC (motor control) model

Currently Supported Shown in Examples Future Potential

• Arbitrary user-defined VNC
model/process with access to
mechanosensory signals,
internal states, and
descending signals

• CPG-based controller10

• Sensory feedback rule-based
controller91

• Hybrid controller integrating
CPGs and sensory feedback
rules

• Additional algorithmic motor
system models

• Connectome and
physiology-constrained motor
system model38,92

• Robotics/AI: Hexapod motor
system models at variable
levels of abstraction93

Ascending feedback

Currently Supported Shown in Examples Future Potential

• n-dimensional ascending
space defined by the user

• None

• High-dimensional ascending
representation encoding
behavioral and internal states
at variable levels of
abstraction79

• Robotics/AI: Ascending
motor signals at variable
levels of abstraction94

Behavioral kinematics
Currently Supported Shown in Examples Future Potential

• User-defined limb kinematics,
either estimated from
recordings of real animals, or
generated by models

• User-defined sets of actuated
versus passive DoFs

• User-defined rules to turn
adhesion on/off

• Each walking step: 42
actuated leg DoFs (7 per leg)
playing out preprogrammed
stepping sequences

• Stepping coordination: see
VNC model

• Adhesion on/off periods
defined as a part of
preprogrammed stepping
sequences

• Inclusion of motor neuron and
muscle models95,96

• Real-time replay of animal
behavior enabling closed-loop
experimentation81

• Robotics/AI: Body movement
patterns learned by imitating
animals97

Table 1 (part 2 of 3). Continued on the next page.
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Environment
Currently Supported Shown in Examples Future Potential

• User-defined arena with static
(e.g., rugged terrain,
obstacles, odor sources) or
dynamic (e.g., moving
objects, moving odor sources)
features

• Low-level features: Rugged
terrain for benchmarking
locomotor controllers

• Higher-order features: Odors,
obstacles, and a moving
sphere for sensory-guided
locomotion

• Aerodynamics for flight and
odor plume propagation

• Compliant objects
• Complex, visually realistic
terrain

• Additional fly models for
social behavior32,33

Parametrization / training algorithm

Currently Supported Shown in Examples Future Potential

• Manual parameter tuning or
arbitrary user-defined
optimization algorithm (e.g.,
genetic algorithms, RL
algorithms)

• Manual parameter tuning
• Gradient-based RL algorithm
(SAC98)

• Larger-scale simulation,
optimization, and neural
architecture search

Physics simulator

Currently Supported Shown in Examples Future Potential

• PyBullet (original version22)
• MuJoCo45 • MuJoCo45

• GPU-accelerated and/or
gradient-aware simulators for
large-scale model
training82,84,85,83

Table 1 (part 3 of 3).
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Variable Value
ϕij See Table 3, row i, column j
wij 10 if i ̸= j, otherwise 0
νi 12Hz, unless modulated for turning (see “Control of turning”)
Ri 1, unless modulated for turning (see “Control of turning”)
αi 20

370

Table 2: Parameters of the CPG-based controller.371372

RF RM RH LF LM LH
RF 0 π 0 π 0 π
RM π 0 π 0 π 0
RH 0 π 0 π 0 π
LF π 0 π 0 π 0
LM 0 π 0 π 0 π
LH π 0 π 0 π 0

373

Table 3: Phase biases between legs (tripod gait). “L”: left, “R”: right; “F”: front leg, “M”: middle
leg, “H”: hind leg.

374

375376

Weight
Rule 1 -10,000 if in swing
Rule 2 (ipsilateral) 25,000/s, cumulative
Rule 2 (contralateral) 10,000/s, cumulative
Rule 3 (ipsilateral) 30,000/s, cumulative
Rule 3 (contralateral) 20,000/s, cumulative

377

Table 4: Weights used in the rule-based controller.378379

Degree of freedom
Increment

per adjustment

Adjustment interval
Retraction rule Stumbling rule
Lifting Recovery Lifting Recovery

Front leg
Coxa-trochanter pitch -0.02 rad.

2ms 0.5ms 3ms 2ms

Femur-tibia pitch 0.016 rad.

Middle leg

Thorax-coxa pitch 0.015 rad.
Coxa-trochanter pitch 0.04 rad.
Femur-tibia pitch 0.01 rad.
Tibia-tarsus pitch -0.008 rad.

Hind leg
Coxa-trochanter pitch -0.01 rad.
Femur-tibia pitch 0.005 rad.

380

Table 5: Parameters of mechanosensation-based joint angle adjustment rules. Joint angles
are adjusted by the specified increment at the specified interval during leg lift and recovery.

381

382383
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CPG < hybrid Rule-based < hybrid

Raw
displacement

Flat terrain u = 231, p = 8.0× 10−1 u = 0, p = 3.4× 10−8

Gapped terrain u = 105, p = 5.3× 10−3 u = 70, p = 2.3× 10−4

Blocks terrain u = 57, p = 5.8× 10−5 u = 38, p = 6.3× 10−6

Mixed terrain u = 39, p = 7.1× 10−6 u = 20, p = 6.0× 10−7

Normalized
displacement

Flat terrain u = 196, p = 4.6× 10−1 u = 185, p = 3.5× 10−1

Gapped terrain u = 98, p = 3.0× 10−3 u = 78, p = 5.1× 10−4

Blocks terrain u = 53, p = 3.7× 10−5 u = 73, p = 3.1× 10−4

Mixed terrain u = 32, p = 2.9× 10−6 u = 35, p = 4.3× 10−6

384

Table 6: Statistics on the controller benchmark. The u-statistics and p-values in the one-
sided, asymptotic Mann-Whitney U rank test used to generate the statistics. “Raw displacement”:
displacement in the forward direction over 1 s. N=20 for each combination of controller and terrain
type. “Normalized displacement“: displacement in the forward direction over 1 s as a percentage of
the mean forward displacement of the same controller over flat terrain.

385

386

387

388

389390

Variable Value
ρ̄ 40
k -3
b 1
δmin 0.2
δmax 1

391

Table 7: Parameters used in the controller for visual object chasing.392393

Variable Value
γattractive -500
γaversive 80
δmin 0.2
δmax 1

394

Table 8: Parameters used in the controller for olfactory chemotaxis.395396

Layer
1 GCNConv: 2 in channels, 4 out channels
2 Tanh
3 GCNConv: 4 in channels, 2 out channels
4 Tanh
5 Concatenation of left/right outputs
6 Linear: 2× 2× 721 = 2884 inputs, 16 outputs
7 Tanh
8 Linear: 16 inputs, 16 outputs
9 Tanh
10 Linear: 16 inputs, 7 outputs

397

Table 9: Parameters used in the vision module of the multimodal navigation model.398399
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Model Variable Value

Vision

ρ̄ 40
Loss weights kdir = 0.5, kdist = 2, kclass = 0.1, kazi = 4, ksize = 2
Learning rate 0.001
Architecture See Table 9

RL

m 4
ϵ 2
q 3

Reward weights kprox = 1, kavoid = 7, k
(near)
attract = 10, k

(far)
attract = 1

Termination rewards Rsuccess = 10, Rfail = −5
Learning rate 0.01
Architecture MLP with 2 hidden layers of size 32

DN/VNC DN range δ ∈ [0.2, 1]

400

Table 10: Parameters used in the multimodal navigation model.401402
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Methods403

The FlyGym package404

FlyGym is implemented based on MuJoCo45 and the dm control99 library and complies with the405

Gymnasium API for MDP12. The user interacts with the simulation through actions and observations406

(Fig. 1, Extended Data Fig. 5). While more detailed, low-level information can be accessed using407

dm control directly, in the typical use case, the core simulation class NeuroMechFlyMuJoCo offers the408

following action and observation spaces:409

• Action space:410

– Joint actuation signals: The target angle, velocity, or force (as specified by the user) of411

the n actuated joint degrees of freedom (by default all 42 leg degrees-of-freedom (DoFs)),412

Rn.413

– Adhesion on/off signals (if adhesion is enabled): Whether adhesion is turned on or off at414

the tip of each leg, {0, 1}6.415

• Observation space:416

– Joint states: The angle, velocity, and force at each of the n actuated joint DoFs (by default417

all 42 leg DoFs), R3×n.418

– Fly state: The linear (x-y-z) position, linear velocity, angular (pitch-roll-yaw) position,419

and angular velocity of the base of the fly (thorax) in the arena, R4×3.420

– Fly orientation: The thorax’s mesh z axis (unit vector aligned with the anterior-posterior421

axis of the fly), R3..422

– Ground reaction forces: The ground reaction forces in all three dimensions when experi-423

enced by the m body segments (by default the tibia and all five tarsal segments of all legs),424

Rm×3.425

– Visual inputs (if vision is enabled): Light intensity readings from all 721 ommatidia on426

each eye, R2×721×2. Note that 70% of the ommatidia are yellow-type and 30% are pale-427

type. The last dimension indicates the color channel (for each ommatidium, only one of428

the two values is nonzero).429

– Odor inputs (if olfaction is enabled): Odor intensities sensed by the antennae and maxillary430

palps on either side of the fly in a k-dimensional odor space, Rk×4.431

We configured the meshes at 1000x scale in MuJoCo to obtain measurements in mm and mN in the432

observation. The user can build preprogrammed premotor computations and sensory preprocessing by433

extending the base NeuroMechFlyMuJoCo class (Fig. 1c). This will modify the action and observation434

spaces accordingly. For example, for the odor taxis, visual taxis, and navigation tasks we used a CPG-435

based network to reduce the action space to a two-dimensional descending command encoding the436

intended walking direction (see “Control of turning”).437

Updated rigging of the biomechanical model438

In Drosophila, the antenna consists of three main segments—the scape, pedicel, and funiculus—and439

the arista100. The fly has four muscles that can actively control the joint between the scape and440

pedicel101. By contrast, the funiculus and the arista move or deform passively in response to external441

forces (e.g., wind, limb contact during grooming). In the original NeuroMechFly, the entire antenna442

could move relative to the head with one DoF. We improved the model by separating each antennal443

mesh into three different meshes in Blender. In the biomechanical model, “bones” determine how444

objects move with respect to one another. We positioned the bones to accurately replace joints based445

on anatomical features such as the stalk-like structures connecting the funiculus to the pedicel102.446

We then constructed a kinematic chain connecting these segments: scape-pedicel-funiculus-arista447

from proximal to distal. Instead of simulating the arista as a soft body (which is computationally448

expensive), we emulated the compliance of the arista by adding three DoFs between the funiculus449

and the arista. The passive movement of the arista can be fine-tuned by modifying the stiffness and450
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damping coefficients of these DoFs. We gave the remaining joints (i.e., head-pedicel and pedicel-451

funiculus) three DoFs because the real number of DoFs in these antennal joints remains unknown.452

Future users can modify each DoF (e.g., fix/unfix or stiffen) in the model file to emulate the measured,453

real movement dynamics of the antennae.454

The position of the neck joint affects the translation of the segments on the head, such as the455

proboscis, antennae, and eyes. The neck is located ventral to the hair plate behind the head. In our456

previous model, the neck had one unactuated pitch DoF. Here we modified the location of the neck457

joint by comparing head rotations of the model with those of the real fly and added two known DoFs458

(yaw and roll) to the neck. Furthermore, we spaced the head away from the thorax to emulate the459

space filled by the neck. The size of the neck was determined by measuring the proportion of head460

size to neck size in real animals (data not shown). We confirmed that the rotation center of the neck461

joint fits the original pose from the NeuroMechFly CT scan by actuating the neck joint to match the462

original pose. Next, we adjusted the positions of the front legs based on the distance between the463

front leg thorax-coxa position and anatomical landmarks (e.g., humeral bristles) and an overlay of464

camera images of real animals with images of the model (data not shown). Finally, we changed the465

resting pose of the model such that the angle of the scutellum would resemble that of real animals466

standing freely (untethered) on flat terrain. We used FARMSIM to generate the URDF file of the467

updated model103.468

Implementation of leg adhesion469

Leg adhesion was added using built-in MuJoCo actuators. Adhesion takes the form of an artificial470

force injected normal to the point of contact. This force is oriented toward the object colliding with471

the body part containing the actuator. If multiple contacts occur with external objects and the472

adhesion actuated body, the force is equally divided between these contact points.473

In our model, adhesion is actuated and can be turned on and off during locomotion. We manually474

defined the adhesion on/off periods within the preprogrammed stepping pattern (Extended Data475

Fig. 2). Adhesion is on during the stance phase and off during the swing phase (see “Stepping476

pattern”). We controlled adhesion in a binary fashion but it is possible to use an intermediate level477

of adhesion by modulating the input to the adhesion actuator at every time step.478

Critical angle calculation479

To quantify the impact of maximal adhesive force on the ability of the fly model to climb Fig. 2c, we480

measured the critical slope—the angle in degrees at which the fly could no longer maintain forward481

locomotion, or flipped—as a function of the maximal adhesion force. Flipping is defined as when482

the absolute roll and pitch angles of the fly are above π/2. A fly has failed to maintain forward483

locomotion if its position along the surface is negative compared to its initial position after 1s.484

Stepping pattern485

We derived the kinematics for each individual step from recordings of real animal behavior47, be-486

ginning with the kinematics of a tethered fly walking on a spherical treadmill22. From this initial487

kinematic replay, we recorded contact forces and end effector positions. To isolate individual steps488

for each pair of legs, we identified peaks in end effector z-positions. Each peak indicates the middle489

of a swing phase. To identify the duration of steps, we used the contact data and defined a step490

as the period of time from the first loss of contact preceding the swing to the next loss of contact491

following the swing. The contact data was median filtered with a centered window of size 0.0501s492

such that, despite leg dragging sometimes resulting in small jumps of the leg, contacts could still be493

properly labelled as swing and stance. We excluded all steps that were shorter than 0.1 s and longer494

than 0.2 s. In this manner, we selected steps for the front, middle, and hind legs. We pooled steps495

from left and right leg data and selected the ones with the largest z elevation. We then cropped each496

joint angle trace to the length of the shortest one (0.1273s, middle leg): The selected hind leg step497

was cropped by 0.0266s (17.3% of the initial hind leg step duration); the selected front leg step was498

cropped by 0.0180s (12.4% of the initial front leg step duration). All steps differed mostly in the499

lengths of their stance phases. To ensure that steps were cyclical, we extended the step duration by500

1% through linear interpolation of joint angles between the last and first time-points of the step. For501
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each leg pair, we extracted swing and stance onsets by stepping each leg in place and visually defining502

the swing and stance periods. All steps, including swing and stance periods, are left-right symmetric.503

CPG-based controller504

Central Pattern Generators (CPGs) are neural circuits that generate rhythmic output without re-505

ceiving rhythmic input58. Through interactions, coupled CPGs can synchronize with given phase506

offsets. As for the previous version of NeuroMechFly, we implemented CPGs by adapting those used507

to model limb actuation in salamanders10. All DoFs for a given leg of the fly were controlled by a508

single CPG. The oscillatory output of a given CPG was then interpreted non-linearly as the phase509

and amplitude of the swing-to-stance cycle. The gait pattern emerges from the phase biases of the510

different CPGs. More precisely,511

θ̇i = 2πνi +
∑
j

rjwij sin(θj − θi − ϕij) (1)

ṙi = αi(Ri − ri) (2)

ψi,dof = Ψi,dof(0) + ri

[
Ψi,dof

(
θi
2π

|Ψi,dof|
)
−Ψi,dof(0)

]
(3)

where θi and ri are the state variables describing the phase and amplitude of the oscillator for leg512

i; νi is the intrinsic frequency of leg i; Ri is the amplitude of leg i; αi is a constant determining the513

rate of convergence to synchrony; wij and ϕij are the coupling weight and phase bias between legs514

i and j; ψi,dof is the angle of the degree of freedom dof on leg i; Ψi,dof(t) gives the angle of dof at515

time t of the preprogrammed step cycle; Ψi,dof(0) is the neutral position; |Ψi,dof| is the duration of516

the preprogrammed step. We used an idealized tripod gait for walking in our centralized model. The517

parameters of the CPG controller are detailed in Table 2 and Table 3.518

Rule-based controller519

The rule-based controller was inspired by the first three rules described in Walknet104,1,105. The first520

rule ensures stability by inhibiting swing onset in the rostral neighbor of a swinging leg. The second521

rule ensures the propagation of the wave by eliciting a swing in the rostral and contralateral neighbor522

of a leg entering stance phase. The third rule enforces temporal coherence by eliciting a swing in523

the caudal and contralateral neighbor of a leg approaching the end of its stance phase. The rules524

modify a stepping likelihood score for each leg, and a step is initiated on the leg in stance phase with525

the highest positive score. If all legs have negative scores, no step is initiated. If multiple legs have526

similar scores (< 0.1% of the highest score), a leg is selected at random to avoid artifacts resulting527

from small numerical errors. The contributions of these rules are weighted (Table 4): Rule 1 is528

weighted most heavily as it is crucial to maintain stability. Rules 2 and 3 are given different weights529

for ipsi- and contralateral connections. To maintain synchrony, we ensured that the duration of the530

swing and stance periods were identical across all legs.531

Hybrid controller532

The hybrid controller is a CPG controller with two additional rules that can be activated depending533

on leg mechanosensory signals. These rules allow the fly to recover when a leg becomes stuck in a gap534

(e.g., in gapped terrain) or hits an obstacle (e.g., in block terrain) by adjusting the leg in question. The535

first rule (“retraction rule”) is activated when a leg is extended farther than expected along the z-axis536

(indicating that the leg may have fallen into a gap). More precisely, this rule becomes active when the537

tip of a leg is > 0.05 mm lower than the third most extended leg. Due to numerical errors and physics538

instabilities, the z positions of the tips of the legs read out from the physics simulator are sometimes539

slightly below 0 when the legs are on the ground. A 0.05 mm margin was therefore added to avoid540

spurious leg retraction. If multiple legs meet this criterion, only the leg that extends the lowest is541

corrected. The second rule (“stumbling rule”) is activated when a leg comes into unexpected contact542

with an object, resulting in a horizontal force against the direction of locomotion. More precisely, this543

rule becomes active when the tibia or the two most proximal segments of the tarsus have a contact544

force greater than 1 mN opposing the heading of the fly while the leg is in swing. When either rule545
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is activated, a shift is progressively added to a subset of joints on the leg in question. When the546

condition is no longer met, the joint angles progressively reset. Table 5 provides a summary of the547

joints involved and the rate at which they increment or decrement. Adhesion is turned off when one548

of the rules is active.549

Locomotor controller benchmarking550

We benchmarked locomotor controllers by running 20 simulations, starting from different spawn551

positions and initial states, each for 1 s and computing the average displacement per second along the552

x axis (the anterior-posterior axis of the fly’s original spawn orientation). The controllers are given553

0.2 extra seconds in the beginning of the simulation to stabilize (i.e., to stand stably in its initial pose554

without movement). The “gapped terrain” consists of horizontal 1 mm-wide blocks separated by 0.4555

mm-wide gaps. The “blocks terrain” consists of 1.3 × 1.3 mm blocks configured in a checkerboard556

pattern, with half of the blocks 0.35 mm higher than the others. A small overlap is added between557

the blocks to avoid extremely thin surfaces near the corners that can lead to physics instabilities. The558

“mixed terrain” consists of alternating flat, gapped, and block patterns along the x axis. We used a559

joint position gain kp of 30 and adhesion forces of 40 mN.560

Control of turning561

Walking flies use different strategies to turn depending on the sharpness of the turn55. For smoother562

turns (i.e., rotations < 20°) the fly mostly increases the stroke amplitude of its outer legs. For sharper563

turns (20° - 50°) the fly additionally decreases the stroke amplitude of its inner legs. For very sharp564

in-place turns (>50°), the fly steps its inner legs backward. Our controller receives a two-dimensional565

descending input that controls turning. On each side, the descending signal δ ∈ [−1, 1] modifies the566

intrinsic frequency νi and maximum amplitude Ri of each oscillator i as follows:567

R′
i(δ) = |δ| ν′i(δ) =

{
νi if δ > 0

−νi otherwise
(4)

where R′
i and ν

′
i are the modified maximum amplitude and intrinsic frequency.568

Implementation of vision569

Flies have three major types of ommatidia. These differentiate colors and polarization properties by570

using different combinations of photoreceptors. Yellow- and pale-type ommatidia are stochastically571

arranged throughout the eye and enable two-dimensional chromatic sensitivity in the UV∼300nm-to-572

yellow range68. The yellow- and pale-type ommatidia are found at 7:3 ratio67. A third type is573

found in the eye’s dorsal rim area (DRA) facing the sky and specialized for polarization detection574

during navigation106. In our implementation yellow- and pale-type ommatidia are instead made575

sensitive to the green and blue channels of the physics simulator. For a more biologically accurate576

representation of color, the green- and blue-channel display color can be set as the product of the577

actual surface reflectance spectrum of the object and the spectral response curve of the appropriate578

photoreceptors68.579

Calibration of visual input580

To calibrate vision, we surrounded the model with color-coded pillars in the arena (Extended Data581

Fig. 3a–b). This allowed us to identify the limits and midlines of each eye’s (camera’s) field of view582

(FOV) to configure the camera’s orientation and FOV correctly. MuJoCo’s built-in camera renders a583

rectilinear image with a distortion: the periphery of the image is enlarged to keep lines straight. This584

distortion is especially severe at large FOV, such as those used to simulate fly vision. To remove this585

distortion, we applied a fish-eye effect on the raw camera readings (Extended Data Fig. 3c–d) to586

represent the same angular span approximately equally in the rendered image. More precisely, the587

pixel on row r, column c in the transformed image is assigned the value of the pixel on row r′, column588

c′ of the original image, where r′, c′ are determined by589
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r′ =
r/z

1− k(r2 + c2) + ϵ
c′ =

c/z

1− k(r2 + c2) + ϵ
(5)

where r, r′ and c, c′ are each normalized to the range [−1, 1] (i.e., the pixel in the center of the image590

would have the coordinates (0, 0)); k describes the extent of the fisheye distortion, and z describes591

the zoom level of the resulting image. A small constant ϵ is added to avoid numerical issues. Where592

r′, c′ are outside the range [−1, 1], an empty value is assigned. Finally, we binned the pixels by593

the ommatidium they belong to and took the mean intensity per ommatidum (Extended Data594

Fig. 3e).595

Visual object chasing task596

In our visual object chasing task, the fly follows a black sphere moving in an S-shaped curve at 8597

mm/s. To achieve this, we first used a thresholding rule to detect the object (intensity below ρ̄/255).598

Then, we computed the position and size of the object (both normalized) seen from each eye. Finally,599

we linearly adjusted the descending signal on each side depending on the object’s azimuth as seen600

from the ipsilateral eye. The turning bias is updated every 0.05 s of simulated time. More precisely,601

δi = min(max(kai + b, δmin), δmax) (6)

where δi is the descending signal on side i; ai is the azimuth expressed as the deviation from the602

anterior edge of the eye’s field of view, normalized to [0, 1]; k, b describe the response curve; δmin, δmax603

are the minimal and maximal allowed values for the descending signal. The values used in our604

controller are detailed in Table 7.605

Olfactory chemotaxis task606

In the olfactory chemotaxis task, the fly seeks an attractive odor source while avoiding two aversive607

odor sources. To achieve this, we first calculate the odor intensities sensed at the location of the608

antennae and maxillary palps based on a diffusion function, I(d), where I is the intensity and d is609

the distance from the odor source. The odor diffusion relationship can be defined by the user. In our610

example, we used the inverse square relationship I(d) = Ipeak/d
2 where Ipeak is the peak intensity. If611

there are multiple sources for the same odor, their intensities are summed. Then, for the attractive612

odor, we averaged intensities sensed by the antenna and the maxillary palp weighted by 9:1 (roughly613

comparable to the ratio of OSNs in the antenna and maxillary palps107). By contrast, we used only614

the intensity sensed by the antenna for the aversive odor to emulate odorants that can only be sensed615

by one but not both organs. We performed this process for olfactory organs on each side of the head616

and multiplied the relative differences in intensities between both sides with a gain factor. Next,617

we summed up this product for each odor and nonlinearly transformed it into a turning bias. This618

bias modulates descending signals that drive turning. The turning bias is updated every 0.05 s of619

simulated time. More precisely,620

s =
∑
o

γo
Ileft,o − Iright,o

(Ileft,o + Iright,o)/2
(7)

b = tanh(s2) (8)

δleft =

{
δmax if s > 0

δmax − b(δmax − δmin) otherwise
δright =

{
δmax − b(δmax − δmin) if s > 0

δmax otherwise
(9)

where s is the weighted sum of bilateral differences in odor intensities, b is the nonlinearly transformed621

turning bias, Iside,o is the mean intensity of odor o sensed by the antenna and the maxillary palp on622

the specified side; γo is the gain of odor o; δmin, δmax are the minimal and maximal allowed values for623

the descending signal. The values used in our controller are detailed in Table 8.624
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Multimodal navigation task solved using reinforcement learning (RL)625

In the multimodal navigation task, the fly seeks an attractive odor source while avoiding a visual626

obstacle in its path while locomoting over rugged terrain. To achieve this we used a hierarchical con-627

troller consisting of (i) a vision module that extracts lower-dimensional visual features from retinal628

inputs, (ii) a decision-making module that predicts the appropriate turning bias given pre-extracted629

visual features and odor intensities, and (iii) a descending interface passing the turning bias to a630

downstream (iv) hybrid motor controller that integrates CPG states with leg mechanosensory feed-631

back. We used a simplified “mixed terrain” environment with gap widths reduced to 0.2 mm and632

block heights reduced to 0.3 mm.633

We started by training a visual model that performs convolution on the retinal image. Because the634

retinal image is on a hexagonal lattice, we built a graph representation of the lattice and performed635

graph convolution108 on it using PyTorch109 and PyTorch Geometric110. The precise architecture636

of the model is detailed in Table 9. Given the ommatidia intensity readings, this model predicts (i)637

the direction of the object relative to the fly, (ii) the distance of the object from the fly, (iii) whether638

the object is within the fly’s eyes FOVs, (iv) the azimuth of the object seen from each eye, and (v)639

the percentage size of the object on the retina. We gathered 10, 000 training samples by randomly640

spawning the fly and the obstacle (within 10 mm of the fly) and injecting Gaussian noise (standard641

deviation 0.05x the intensity range) into the visual inputs. We then trained the model in a supervised642

manner using the Adam optimizer111 with the loss L defined as follows643

L = kdirMSE(ϑ̂, ϑ) + kdistMSE(d̂fo, dfo) + kclassBCE(p̂, p) + kaziMSE(â, a) + ksizeMSE(ŝ, s) (10)

where kdir, kdist, kclass, kazi, ksize are the coefficients for the obstacle direction, obstacle distance, ob-644

stacle presence classification, obstacle azimuth, and obstacle size terms; MSE is the Mean Squared645

Error, BCE is the Binary Class Entropy; ϑ is the direction of the obstacle from the fly; dfo is the646

distance of the obstacle from the fly; p is the predicted probability on whether the obstacle is within647

the fields of view of the fly’s eyes; a is the azimuth of the obstacle on the retina from each eye; s648

is the relative size of the obstacle on the retina from each eye; ϑ̂, d̂fo, p̂, â, ŝ are the predictions of649

ϑ, dfo, p, a, s. The exact hyperparameters chosen are detailed in Table 10. We obtained satisfactory650

model performance after 150 epochs of training (Extended Data Fig. 4).651

Next, we calculated the odor intensity sensed on each side of the head by averaging the intensities652

sensed by the antenna and ipsilateral maxillary palp at a relative weight of 9:1. We then concatenated653

the odor intensities on each side of the head with the extracted visual features (described above) and654

the turning bias b from the previous time step (described below). This feature vector was given655

to a Multilayer Perceptron (MLP) as the input. The MLP predicts a scalar turning bias b which656

is converted to a descending representation according to Equation 9. The turning bias is updated657

every 0.05 s of simulated time. We train this MLP using RL: If the fly has reached within 3 mm of the658

target, a reward of Rsuccess is given and the simulation is terminated. If the fly has flipped or touched659

the obstacle, a reward of Rfail is given and the simulation is terminated. If none of these special660

conditions are met, we calculate a score Sobstacle describing whether the fly is facing the obstacle:661

Sobstacle = 1 when ϑ = 0; Sobstacle = 0 when ϑ > m arctan(r/dfo) where r is the radius of the obstacle.662

In other words, this score is 1 when the fly is perfectly facing the obstacle and 0 when the fly is facing663

away from the obstacle by a margin of m. When the fly’s heading is within this range, Sobstacle is664

linearly interpolated. Similarly, we calculated a second score Starget that is 1 when the fly is facing665

within ϵ mm of the target; by contrast, Starget = 0 when the fly is facing more than qϵ away from666

the target. Starget is also linearly interpolated when the fly is facing between ϵ and qϵ away from the667

target. Then, we calculated the reward R defined as follows:668

kattract =

{
k
(near)
attract if fly has passed obstacle

k
(far)
attract otherwise

(11)

R = kdist∆dft − kattract∆Starget + kavoid∆Sobstacle (12)

where kdist, kattract, kavoid are the weights of the proximity, target facing, and obstacle avoiding terms669

of the reward; dft is the distance from the fly to the target; ∆dft,∆Starget,∆Sobstacle are the current670

values of dft, Starget, Sobstacle subtracted from their values in the previous decision-making time step.671

We trained the model using the Soft Actor Critic algorithm112 provided by the Stable Baselines 3672
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library113. We trained the model for 266,000 decision steps (approximately 3.7 simulated hours). We673

consider this training time reasonable as the network is randomly initialized and the simulated fly674

has to “evolve” the entire circuit for decision making. Parameters used in the model and the training675

process are expressed in Table 10.676

Data availability677

Data are available at: https://doi.org/10.7910/DVN/3MCEYR678

This repository includes the parameter files of the trained visual processing and RL models used in679

the multimodal navigation task, the training data for the visual processing model, and the graph680

representation of the ommatidia lattice used to perform convolution on the visual input.681

Code availability682

The FlyGym package is available at: https://github.com/NeLy-EPFL/flygym.683

Its documentation is available at: https://neuromechfly.org/684

The code used to generate data presented in this paper are available at:685

https://github.com/NeLy-EPFL/nmf2-paper686
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Extended data687

688

Extended Data Fig. 1: Improvements to the biomechanical model. A comparison of the
the original (left) and updated (right) NeuroMechFly biomechanical model from the (a) front and
(b) side views as well as a (c) zoomed-in view of the head, highlighting antennal DoFs. DoFs are
indicated (green). The highlighted differences are: (1) additional DoFs in the antennae, (2) a gap
for the neck between the head and the thorax, (3) angles of the thorax and the position of the head
relative to it, and (4) the placement of the legs on the thorax.
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696

Extended Data Fig. 2: Preprogrammed stepping based on experimentally recorded data.
Joint kinematics for each leg during preprogrammed stepping. Kinematic patterns derived from
behavioral recordings (see Methods). Time series for each joint are color-coded. ThC: thorax-coxa
joint; CTr: coxa-trochanter joint; FTi: femur-tibia jointl; TiTa: tibia-tarsus joint. Note the left-right
symmetry in roll and yaw DoFs. Indicated are periods when adhesion is turned off during swing to
facilitate lifting each leg (light grey).
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704

Extended Data Fig. 3: Calibration of vision. (a) The calibration environment has pillars spaced
regularly around the fly at 6° intervals (black pillars at 18° intervals). Additionally, red, green, and
blue pillars are used to indicate the anterior, midline, and posterior field of view (FOV) limits of
the left eye. Yellow, magenta, and cyan pillars indicate the FOV limits of the right eye. (b) Each
eye has a FOV spanning ∼ 144° horizontally. The two eyes overlap by ∼ 17°, resulting in an overall
horizontal FOV of ∼ 270°. (c) A raw camera view of what the fly sees in this environment before
applying a fisheye effect. Note that peripheral regions are exaggerated to keep the lines straight. (d)
A fisheye effect is applied to simulate the roughly spherical arrangement of ommatidia in the fly eye.
(e) Retinal inputs are simulated by binning the pixels according to the hexagonal grid of ommatidia
and taking the average intensity within each ommatidium. Ommatidia are randomly sensitive to
green (yellow-type) and blue (pale-type) channels in a 7:3 ratio.
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717

Extended Data Fig. 4: Vision model used in the multimodal navigation task. (a) The
neighborhood graph used to perform convolution on the hexagonal lattice. (b) Accuracy of the model
in predicting whether the obstacle is present in the fields of view of the fly’s eyes. (c-d) Accuracy of
the model in predicting the (c) direction and (d) distance of the obstacle from the fly. The angular
R2 score is defined as the R2 score of sin(ϑ) concatenated with cos(ϑ), where ϑ is the angle. (e-f)
Accuracy of the model in predicting the (e) azimuth and (f) size of the obstacle in the retinal images.
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Algorithm 1 The main control loop in FlyGym

1: sim params = MuJoCoParameters(physics parameters, rendering parameters, ...)
2: arena = Arena(arena parameters)
3: sim = NeuroMechFlyMuJoCo(sim params, arena, initial pose, actuated joints, spawn pos, ...)
4: controller = User-defined controller ▷ CPG network, neural network, coordination rules, ...
5: observation history, action history, reward history = empty lists
6: observation, info = sim.reset()
7: for a specified maximum number of simulation steps do
8: action = Apply controller given current observation
9: observation, reward, terminated, truncated, info = sim.step(action)

10: Add observation, reward, action to history
11: if terminated or truncated then
12: break ▷ early termination due to task success/failure/timeout
13: end if
14: end for
15: sim.save video(“video path.mp4”)
16: sim.close()

725

Extended Data Fig. 5: The main control loop in the FlyGym package. (Lines 1–3) First,
we define the simulation parameters including the simulation time step, physics parameters such as
joint gains and gravity, and parameters specifying how the scenes should be rendered. We then define
the arena in which the biomechanical model will be embedded. Several predefined arenas are provided
with the package. With the simulation parameters and the arena, we can then define the simulation
itself. The user can configure which joints are actuated and where the fly should be spawned within
the arena. (Line 4) The implementation of the controller is determined by the user. Typically, it has
a prediction function that determines the action to take given the current observation. An internal
state can be maintained within the controller. It can be a hard-coded model or an artificial neural
network (e.g., a network trained through RL). The definition of the controller (or training algorithm)
is isolated from the control loop. (Lines 8–12) This is the portion within the main MDP loop. Using
the user-defined controller, we supply the appropriate action to the simulation and step it forward by
one simulation time step. The simulation returns a new observation, optionally a reward (depending
on the user’s definition), a “terminated” flag indicating whether the simulation has ended due to a
factor within the MDP framing (e.g., task success or failure), a “truncated” flag indicating whether
the simulation has ended due to a factor outside of the MDP framing (e.g., timeout), and a dictionary
containing any additional information.
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Supplementary Videos744

Supplementary Video 1: Ground reaction forces experienced by the fly’s legs. Ground745

reaction forces during locomotion with a CPG-based controller. Here and in all subsequent videos,746

the tarsi are color-coded based on whether adhesion is on and the tarsus is in contact with the ground747

(black) or not in contact with the ground (red). Note that in this video the tarsus is never red because748

the legs are always in contact with the ground when adhesion is on. Simulation is played back at749

0.05x original speed.750

Link to Supplementary Video 1751

752

Supplementary Video 2: Locomotion over sloped terrain using leg adhesion. Locomotion753

is driven by a CPG-based controller. Shown are simulations (left) without or (right) with adhesion.754

Simulation is played back at 0.1x original speed.755

Link to Supplementary Video 2756

757

Supplementary Video 3: Preprogrammed stepping of each leg. Individual legs are stepped758

in series according to their data-derived joint kinematics. Adhesion is disabled in this video.759

Link to Supplementary Video 3760

761

Supplementary Video 4: Control signals of the CPG-based controller. Shown for all legs762

are the CPG phases (wrapped by 2π) and amplitudes from random initialization. As CPGs syn-763

chronize, the amplitude is set low to prevent abrupt movements. The CPGs eventually synchronize,764

forming a tripod gait. Simulation is played back at 0.1x original speed.765

Link to Supplementary Video 4766

767

Supplementary Video 5: Control signals of the rule-based controller. Shown for all legs768

are the stepping scores and contributions of each of the three coordination rules. Indicated are the769

initiation of steps (triangles). Simulation is played back at 0.1x original speed.770

Link to Supplementary Video 5771

772

Supplementary Video 6: Control signals of the hybrid controller. Shown for all legs are773

the CPG phases (wrapped by 2π) and amplitudes as well as the activation of the retraction (solid)774

and stumbling (dashed) rules based on sensory feedback. The tibia is colored (dark blue) when the775

retraction rule is active. The coxa is colored (red) when the stumbling rule is active. Simulation is776

played back at 0.1x original speed.777

Link to Supplementary Video 6778

779

Supplementary Video 7: Locomotion over multiple terrain types. The fly walks over a flat780

surface (first column), a surface with gaps (second column), a surface with blocks (third column),781

and a hybrid surface (fourth column). The fly is either controlled by a CPG-based controller (top),782

a rule-based controller (middle), or a hybrid controller integrating both CPGs and sensory feedback783

rules (bottom). Shown are the results from 20 trials for each condition. Simulation is played back at784

0.1x original speed.785

Link to Supplementary Video 7786

787

Supplementary Video 8: Visual object chasing task. The fly uses vision to follow a sphere788

that is moving away along an S-shaped trajectory. Shown are visual inputs to the left and right eyes789

(bottom). Locomotion is regulated using a hybrid controller with leg adhesion. Note that each eye’s790

field of view can observe front leg movements. Simulation is played back at 0.5x original speed.791

Link to Supplementary Video 8792

793

Supplementary Video 9: Olfactory chemotaxis task. The fly seeks an attractive odor source794

(orange) while avoiding two aversive odor sources (blue). Colored bars (bottom) indicate the inten-795

sities of attractive (orange) and aversive (blue) odors sensed by antennae on each side of the head.796

Locomotion is regulated using a hybrid controller with leg adhesion. Simulation is played back at797

0.5x original speed.798
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Link to Supplementary Video 9799

800

Supplementary Video 10: Multimodal navigation task controlled by an RL-trained arti-801

ficial neural network. The fly seeks an attractive odor source (orange) while visually avoiding an802

obstacle (gray pillar) over rugged hybrid terrain. Shown are visual inputs to the left and right eyes803

(bottom-center). Orange bars (bottom-left and bottom-right) indicate the intensity of an attractive804

(orange) odor sensed by antennae on each side of the head. Locomotion is regulated using a hybrid805

controller with leg adhesion. Simulation is played back at 0.2x original speed.806

Link to Supplementary Video 10807

808

Supplementary Video 11: Multimodal navigation task executed from different spawn809

positions. Shown are the nine trials illustrated in Fig. 3e (bottom right). Simulation is played810

back at 0.5x original speed.811

Link to Supplementary Video 11812
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