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« HKxtended data

688

@ Extended Data Fig. 1: Improvements to the biomechanical model. A comparison of the
o0 the original (left) and updated (right) NeuroMechFly biomechanical model from the (a) front and
s (b) side views as well as a (c¢) zoomed-in view of the head, highlighting antennal DoFs. DoF's are
o2 indicated (green). The highlighted differences are: (1) additional DoFs in the antennae, (2) a gap
o3 for the neck between the head and the thorax, (3) angles of the thorax and the position of the head
s relative to it, and (4) the placement of the legs on the thorax.
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s Extended Data Fig. 2: Preprogrammed stepping based on experimentally recorded data.
es Joint kinematics for each leg during preprogrammed stepping. Kinematic patterns derived from
000 behavioral recordings (see Methods). Time series for each joint are color-coded. ThC: thorax-coxa
70 joint; CTr: coxa-trochanter joint; FTi: femur-tibia jointl; TiTa: tibia-tarsus joint. Note the left-right
0 symmetry in roll and yaw DoFs. Indicated are periods when adhesion is turned off during swing to
w3 facilitate lifting each leg (light grey).
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s  Extended Data Fig. 3: Calibration of vision. (a) The calibration environment has pillars spaced
w6 regularly around the fly at 6° intervals (black pillars at 18° intervals). Additionally, red, green, and
77 blue pillars are used to indicate the anterior, midline, and posterior field of view (FOV) limits of
s the left eye. Yellow, magenta, and cyan pillars indicate the FOV limits of the right eye. (b) Each
700 eye has a FOV spanning ~ 144° horizontally. The two eyes overlap by ~ 17°, resulting in an overall
70 horizontal FOV of ~ 270°. (c) A raw camera view of what the fly sees in this environment before
m  applying a fisheye effect. Note that peripheral regions are exaggerated to keep the lines straight. (d)
n2 A fisheye effect is applied to simulate the roughly spherical arrangement of ommatidia in the fly eye.
ns  (e) Retinal inputs are simulated by binning the pixels according to the hexagonal grid of ommatidia
s and taking the average intensity within each ommatidium. Ommatidia are randomly sensitive to
s green (yellow-type) and blue (pale-type) channels in a 7:3 ratio.
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Extended Data Fig. 4: Vision model used in the multimodal navigation task. (a) The
neighborhood graph used to perform convolution on the hexagonal lattice. (b) Accuracy of the model
in predicting whether the obstacle is present in the fields of view of the fly’s eyes. (c-d) Accuracy of
the model in predicting the (c) direction and (d) distance of the obstacle from the fly. The angular
R? score is defined as the R? score of sin(1) concatenated with cos(1), where ¥ is the angle. (e-f)
Accuracy of the model in predicting the (e) azimuth and (f) size of the obstacle in the retinal images.
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Algorithm 1 The main control loop in FlyGym

1: sim_params = MuJoCoParameters(physics parameters, rendering parameters, ...)
2: arena = Arena(arena parameters)
3: sim = NeuroMechFlyMuJoCo(sim_params, arena, initial_pose, actuated_joints, spawn_pos, ...)
4: controller = User-defined controller > CPG network, neural network, coordination rules, ...
5: observation_history, action_history, reward_history = empty lists
6: observation, info = sim.reset()
I for a specified maximum number of simulation steps do
8: action = Apply controller given current observation
9: observation, reward, terminated, truncated, info = sim.step(action)
10: Add observation, reward, action to history
11: if terminated or truncated then
12: break > early termination due to task success/failure/timeout
13: end if
14: end for
15: sim.save_video( “video_path.mp4”)

—_
<@

sim.close()

7  Extended Data Fig. 5: The main control loop in the FlyGym package. (Lines 1-3) First,
727 we define the simulation parameters including the simulation time step, physics parameters such as
78 joint gains and gravity, and parameters specifying how the scenes should be rendered. We then define
79 the arena in which the biomechanical model will be embedded. Several predefined arenas are provided
0 with the package. With the simulation parameters and the arena, we can then define the simulation
71 itself. The user can configure which joints are actuated and where the fly should be spawned within
2 the arena. (Line 4) The implementation of the controller is determined by the user. Typically, it has
73 a prediction function that determines the action to take given the current observation. An internal
74 state can be maintained within the controller. It can be a hard-coded model or an artificial neural
75 network (e.g., a network trained through RL). The definition of the controller (or training algorithm)
76 is isolated from the control loop. (Lines 8-12) This is the portion within the main MDP loop. Using
757 the user-defined controller, we supply the appropriate action to the simulation and step it forward by
18 one simulation time step. The simulation returns a new observation, optionally a reward (depending
70 on the user’s definition), a “terminated” flag indicating whether the simulation has ended due to a
o factor within the MDP framing (e.g., task success or failure), a “truncated” flag indicating whether
1 the simulation has ended due to a factor outside of the MDP framing (e.g., timeout), and a dictionary
a2 containing any additional information.
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« Supplementary Videos

ns  Supplementary Video 1: Ground reaction forces experienced by the fly’s legs. Ground
s reaction forces during locomotion with a CPG-based controller. Here and in all subsequent videos,
=7 the tarsi are color-coded based on whether adhesion is on and the tarsus is in contact with the ground
us  (black) or not in contact with the ground (red). Note that in this video the tarsus is never red because
no  the legs are always in contact with the ground when adhesion is on. Simulation is played back at
70 0.05x original speed.

1 Link to Supplementary Video 1

752

7 Supplementary Video 2: Locomotion over sloped terrain using leg adhesion. Locomotion
7 is driven by a CPG-based controller. Shown are simulations (left) without or (right) with adhesion.
s Simulation is played back at 0.1x original speed.

6 Link to Supplementary Video 2

757

s Supplementary Video 3: Preprogrammed stepping of each leg. Individual legs are stepped
o in series according to their data-derived joint kinematics. Adhesion is disabled in this video.

w0 Link to Supplementary Video 3

761

w2 Supplementary Video 4: Control signals of the CPG-based controller. Shown for all legs
w3 are the CPG phases (wrapped by 27) and amplitudes from random initialization. As CPGs syn-
s chronize, the amplitude is set low to prevent abrupt movements. The CPGs eventually synchronize,
s forming a tripod gait. Simulation is played back at 0.1x original speed.

w6 Link to Supplementary Video 4

767

s Supplementary Video 5: Control signals of the rule-based controller. Shown for all legs
o are the stepping scores and contributions of each of the three coordination rules. Indicated are the
7o initiation of steps (triangles). Simulation is played back at 0.1x original speed.

m  Link to Supplementary Video 5

772

7z Supplementary Video 6: Control signals of the hybrid controller. Shown for all legs are
7 the CPG phases (wrapped by 27) and amplitudes as well as the activation of the retraction (solid)
75 and stumbling (dashed) rules based on sensory feedback. The tibia is colored (dark blue) when the
76 retraction rule is active. The coxa is colored (red) when the stumbling rule is active. Simulation is
77 played back at 0.1x original speed.

7¢  Link to Supplementary Video 6

779

w0  Supplementary Video 7: Locomotion over multiple terrain types. The fly walks over a flat
m  surface (first column), a surface with gaps (second column), a surface with blocks (third column),
72 and a hybrid surface (fourth column). The fly is either controlled by a CPG-based controller (top),
3 a rule-based controller (middle), or a hybrid controller integrating both CPGs and sensory feedback
7 rules (bottom). Shown are the results from 20 trials for each condition. Simulation is played back at
s 0.1x original speed.

7 Link to Supplementary Video 7

787

s Supplementary Video 8: Visual object chasing task. The fly uses vision to follow a sphere
70 that is moving away along an S-shaped trajectory. Shown are visual inputs to the left and right eyes
0 (bottom). Locomotion is regulated using a hybrid controller with leg adhesion. Note that each eye’s
1 field of view can observe front leg movements. Simulation is played back at 0.5x original speed.

72 Link to Supplementary Video 8

793

7 Supplementary Video 9: Olfactory chemotaxis task. The fly seeks an attractive odor source
s (orange) while avoiding two aversive odor sources (blue). Colored bars (bottom) indicate the inten-
6 sities of attractive (orange) and aversive (blue) odors sensed by antennae on each side of the head.
7 Locomotion is regulated using a hybrid controller with leg adhesion. Simulation is played back at
s 0.5x original speed.
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79 Link to Supplementary Video 9

800

g1 Supplementary Video 10: Multimodal navigation task controlled by an RL-trained arti-
s2 ficial neural network. The fly seeks an attractive odor source (orange) while visually avoiding an
w03 obstacle (gray pillar) over rugged hybrid terrain. Shown are visual inputs to the left and right eyes
ss  (bottom-center). Orange bars (bottom-left and bottom-right) indicate the intensity of an attractive
ws (orange) odor sensed by antennae on each side of the head. Locomotion is regulated using a hybrid
ss controller with leg adhesion. Simulation is played back at 0.2x original speed.

g7 Link to Supplementary Video 10

808

g0  Supplementary Video 11: Multimodal navigation task executed from different spawn
s positions. Shown are the nine trials illustrated in Fig. 3e (bottom right). Simulation is played
s back at 0.5x original speed.

a1z Link to Supplementary Video 11
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