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Abstract 26 

Primary production, performed by RUBISCO, and often associated with carbon concentration 27 
mechanisms, is of major importance in the oceans. Thanks to growing metagenomic resources 28 
(e.g., eukaryotic Metagenome-Assembled-Genomes; MAGs), we provide the first reproducible 29 
machine-learning-based framework to derive the potential biogeography of a given function, 30 
through the multi-output regression of the standardized number of reads of the associated genes 31 
on environmental climatologies. We use it to study the genomic potential of C4-photosynthesis of 32 
picoeukaryotes, a diverse and abundant group of marine unicellular photosynthetic organisms. We 33 
show that the genomic potential supporting C4-enzymes and RUBISCO exhibit strong functional 34 
redundancy and an important affinity towards tropical oligotrophic waters. This redundancy is then 35 
structured taxonomically by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and 36 
high latitudes. Finally, unlike the genomic potential related to most C4-enzymes, the one of 37 
RUBISCO showed a clear pattern affinity for temperate waters.  38 

 39 
Keywords: carbon concentration mechanisms; metagenomic; biogeography; multivariate 40 
boosted tree regressor; picoeukaryotes 41 
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 44 
INTRODUCTION 45 
 46 
Most of the photosynthetic production on earth relies on the ribulose-1,5-bisphosphate carboxylase 47 
oxygenase (RUBISCO; 1). However, because RUBISCO emerged ~2 billion years ago in a period 48 
characterized by low oxygen (2), its carboxylase function is surprisingly inefficient relative to its 49 
oxygenase function, when considering the contemporary CO2-to-oxygen ratio (3). To compensate 50 
for this metabolic caveat related to RUBISCO-only photosynthesis (i.e., C3-photosynthesis), carbon 51 
fixation pathways evolved ~30 million years ago, when atmospheric CO2 levels were estimated 52 
under 200 ppm. The latter induced selective pressure towards higher carbon fixation efficiency, 53 
leading to the development of various Carbon Concentration Mechanisms (CCMs; i.e., biophysical 54 
or biochemical) to compensate for the photorespiration affinity of RUBISCO (4). Among 55 
biochemical CCMs, C4-enzymes independently evolved across a large variety of marine and 56 
terrestrial lineages (4, 5). The C4 cycle is performed through 3 acid-decarboxylation types, leading 57 
to an increase of the CO2-to-oxygen ratio at the active site of RUBISCO (6): the MDC-NADP type, 58 
the MDC-NAD type, and the PEPCK type. The common enzyme to all C4 acid decarboxylation 59 
types is phosphoenolpyruvate carboxylase (PEPC), fixing CO2 in the cytosol by producing 60 
oxaloacetate. In the MDC-NADP type, oxaloacetate is transferred to the chloroplast and reduced 61 
to malate. The latter is then decarboxylated, producing CO2 and pyruvate, which is converted back 62 
to phosphoenolpyruvate. In the MDC-NAD type, oxaloacetate is transferred to the mitochondria 63 
and reduced to malate. The decarboxylation reaction transfers CO2 to the chloroplast by producing 64 
pyruvate that is transferred back to the chloroplast to be converted to phosphoenolpyruvate. Finally, 65 
the PEPCK type directly converts the mitochondrial oxaloacetate to phosphoenolpyruvate. 66 
However, it partially performs the MDH-NAD reduction and MDC-NADP decarboxylation reactions 67 
to balance the ATP and NADPH budget, leading to common reactions and enzymes between acid-68 
decarboxylation types (6). In the terrestrial realm, both physiological measurements and stable 69 
isotope techniques confirmed the presence of C3-photoynthesis across a large range of 70 
environmental conditions, conversely to C4-photosynthesis that is adapted to warm, nutrient poor 71 
and high irradiance conditions (7, 8). In the marine realm however, only a few studies explored the 72 
environmental affinity of C4-photosynthesis regarding terrestrial-based hypotheses (e.g., 5, 9, 10). 73 
The potential for C4-photosynthesis is highly suspected in key picoeukaryote lineages such as 74 
Mamiellophyceae and Prymnesiophyceae. Currently, subcellular evidence for C4-enzymes include 75 
(i) MDC-NADP and PEPC in Ostreococcus Tauri (11), (ii) MDC-NADP, PEPC, three different 76 
oxoglutarate-to-malate translocator and pyruvate phosphate dikinase (PEPDK) in various 77 
Micromonas strains (12) and (iii) PEPC in Prymnesiophyceae (Emiliana Huxleyi; plastid presence 78 
and gene encoding; , 13). 79 
 80 
Marine carbon fixation is largely performed by picoeukaryotes (e.g., 30 to 50 % of global primary 81 
production, 14, 15), some of which are suspected to use C4-photosynthesis (e.g., in picoeukaryotic 82 
diatoms; , 5, 9). Picoeukaryotes correspond to the unicellular eukaryotic marine plankton, that are 83 
among the most diverse and abundant organisms in the sunlit layer of the world ocean (16–18). In 84 
nutrient-poor areas, such as the oligotrophic open ocean, they locally contribute up to 80 % of the 85 
phytoplanktonic biomass (19). However, because of their size (i.e., 0.8 to 5 µm), poor 86 
representation in culture collections (20) and thus the difficulty for both physiological measurements 87 
and stable isotope analysis in natural populations, the genomic potential supporting C3, and C4- 88 
photosynthesis, its associated biogeography and functioning remains scarcely documented (5, 8, 89 
9). 90 
 91 
Recent global expeditions focusing on surface plankton sampling, together with advances in 92 
metagenomic sequencing, provided unique data to address the genomic potential and 93 
biogeography-related gaps (e.g., 21–24). In this context, metagenomics data are of growing interest 94 
to explore the hidden taxonomic and functional diversity potentially related to carbon fixation in 95 
picoeukaryotes (e.g., 25, 26). For example, genome-resolved metagenomics (27) based on the 96 
Tara-Oceans eukaryotic metagenome led to the reconstruction of ~800 Metagenome-Assembled-97 
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Genomes (MAGs; 28). The latter are defined as genome-based taxonomic units, functionally and 98 
taxonomically annotated, and quantified by their associated genome-wide metagenomic reads. 99 
Therefore, MAGs offer the unique opportunity to study the genomic potential supporting carbon 100 
fixation and its biogeography, through both a functional and a taxonomic prism. 101 
 102 
Habitat modelling is a popular niche theory-based tool to estimate species biogeography according 103 
to the environmental conditions in which they are observed (29). Marine organisms are known for 104 
their important sensitivity to their surrounding environmental conditions, influencing growth, 105 
reproduction, and metabolic efficiency across all life stages (30). Thus, habitat modelling has been 106 
widely used to project the past, present, and future biogeography across various marine organisms, 107 
from zooplankton to fishes (e.g., 31). However, omics-based habitat modelling is still an emerging 108 
field to explore functional and taxonomic biogeography associated with unicellular planktonic 109 
organisms (32–34). Building on the above-mentioned properties associated with MAGs, habitat 110 
modelling is transferable to genomic potential, thus exploring the quantitative response of the 111 
associated taxonomic and functional gene annotations to environmental conditions.  112 
 113 
Here, complementing recent studies on prokaryote - environment relationships (32), we provide an 114 
original, machine learning-based, comprehensive, and reproducible framework to derive the 115 
biogeography of the genomic potential related to metabolic functions, from metagenomic-based 116 
relative abundances data. Using Multivariate Boosted Tree Regressors (35), we simultaneously 117 
project the biogeography of selected  genomic functional annotations, while accounting both for 118 
their interactions and environmental responses. We applied this framework to metagenome-based 119 
Protein Functional Clusters (PFCs; hereafter referred to as “clusters”) linked to RUBISCO and C4-120 
enzymes only, in marine picoeukaryotes. Compared to a more traditional approach (i.e., searching 121 
reads in a functional database using sequence similarity), our methodology combining MAGs and 122 
PFCs offers several advantages. The quantitative signal resulting from a MAG is (i) standardized 123 
by the genome length and (ii) correspond to a taxonomic identity. Combined in PFCs, (iii) it also 124 
includes the fraction of signal corresponding to not yet annotated genes. Thus, this approach offers 125 
a more robust quantitative framework than traditional approaches, representative of eukaryotic 126 
plankton diversity in open oceans (39.1 billion reads recruited, ~97% identity, ~25 Gbp; , 28) and 127 
transferable to a variety of functions or enzymes of interest using the already computed PFC 128 
network. Finally, habitat modeling provides an interesting tool to estimate the response and co-129 
dominance patterns of C4-enzymes and RUBISCO to environmental conditions representative of 130 
the global ocean, conversely to estimates from the samples only, that might be driven by sampling 131 
and associated environmental biases. 132 
 133 
RESULTS 134 
 135 
2.1. C4-CCM enzymes across sampled stations 136 
 137 
From the Tara Oceans eukaryotic MAGs, ~1.2 million clusters were built, for which 349 are related 138 
to RUBISCO or C4-enzymes (Fig. S1, Table S1). This dataset corresponds to 817 unique genes, 139 
with a median observed presence across 45 sampled stations per cluster. To avoid considering 140 
enzymes related to other metabolic functions, we only selected those related to RUBISCO or C4-141 
enzymes only, corresponding to 240 clusters, distributed across the world Ocean except the Arctic, 142 
western Pacific and to a lesser extent Southern Ocean (Figure 1). The successive cluster selection 143 
criteria (i.e., PFCs exclusive to RUBISCO or C4-enzymes, minimum presence at 10 sampling 144 
stations) did not present significant effects on the distribution of clusters across number of reads, 145 
number of genes and taxonomic classes (Fig. S3). In contrast, we observed a loss of signal for the 146 
MDCs (-NAD and -NADP), between functionally exclusive and non-exclusive clusters, highlighting 147 
an important fraction of sequence homologs for these enzymes (Fig. S3). 148 
 149 
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 150 

 151 
 152 
Figure 1. Location of the Tara Oceans (TO) sampling stations, represented as black dots. Annual 153 
sea surface temperature from World Ocean Atlas (Boyer et al. 2018) are represented in 154 
background. 155 
 156 
2.2. Standardized distribution of the genomic potential related to C4-photosynthesis 157 
 158 
Here we present projections for each C4-enzyme and RUBISCO. First, we rescaled the cluster-159 
level projections (i.e., model outputs; Fig. S1D) between 0 and 1 (i.e., distribution patterns, Fig. 160 
S2). Then, we aggregated these patterns at the enzyme-level according to their respective 161 
functional annotation. We therefore alleviated the propagation of the observed dominance of a 162 
given cluster to the aggregated enzyme-level patterns. The resulting enzyme-level projections are 163 
referred to as standardized patterns. For each enzyme, it represents a prediction of the genomic 164 
potential according to the environmental conditions at each geographical location, and 165 
independently of any taxonomic dominance. 166 
 167 
Because most C4-enzymes are involved in several acid-decarboxylation types, we cannot directly 168 
infer their corresponding distribution. However, MDC - NAD, MDC - NADP and PEPCK are 169 
considered representative of their respective acid-decarboxylation types. We predicted similar 170 
standardized patterns (Figure 2) for all acid decarboxylation types and RUBISCO. The 171 
standardized patterns of all C4-enzymes presented medium to high pairwise Pearson’s correlation 172 
(0.5 to 0.9), except MDC - NAD and GOT which are weakly correlated (0.3). 173 
 174 
We predicted a high genomic potential (> 0.6) for all standardized patterns  in temperate to tropical 175 
latitudes, with an associated coefficient of variation below 30 % (Figure 2A). We also predicted a 176 
high potential (> 0.8) for RUBISCO and PEPDK for temperate to tropical waters only. In contrast, 177 
the potential for PEPC, GOT, MDCs and MDHs were high in equatorial latitudes. These patterns 178 
suggest a higher affinity of the genomic potential of C4-enzymes for the equatorial ocean, in 179 
comparison to RUBISCO. Furthermore, we predicted low-to-moderate potential (between 0 and 180 
0.4) in high latitudes (i.e., above polar circles) for all standardized patterns (Figure 2A). Predictions 181 
in such latitudes also present important calibration and projection-related variability, with 182 
coefficients of variations ranging from 30 to 100 % (e.g., for the MDH – NADP and PEPCK). 183 
Therefore, our genomic potential predictions remain inconclusive in high latitudes, also subject to 184 
lower sampling coverage. 185 
 186 
 187 
 188 
 189 
 190 

Annual sea surface temperature (°C)

0 10 20 30
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 191 

 192 
 193 
Figure 2. Standardized patterns corresponding to the relative genomic potential supporting C4- 194 
enzymes and RUBISCO. (A) Synthetic diagram of the metabolic pathway and corresponding 195 
projections. (B) Inter-projections Pearson’s spatial correlation index. The three mains currently 196 
described acid-decarboxylation types are represented in blue (MDC-NADP), red (MDC-NAD) 197 
and black (PEPCK), respectively. Involved metabolic components and enzymes are indicated 198 
on the diagram by squares and circles, respectively. The 2D color scale represents the 199 
standardized genomic potential for the target enzyme as the hue value (Y-axis) and the 200 
associated coefficient of variation as the saturation (i.e., uncertainty in % of the mean; X-axis). 201 
An orange to red hue corresponds to region where environmental conditions yield a high 202 
proportion (>0.6) of the target genes in the model. A low saturation level corresponds to an 203 
important variance among the underlying cluster-level projections. 204 
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 205 
The environmental variables importance in the trained model (Fig. S4) highlighted the predominant 206 
roles of dissolved oxygen concentration (contributing to 34% of the explained variance) and the 207 
yearly variability (i.e., inter-month standard deviation) in Salinity (29%) and, to a lesser extent, of 208 
oxygen saturation, chlorophyll a concentration and temperature. Furthermore, we revealed a strong 209 
affinity (i.e., maximum potential) of most standardized patterns (Fig. S5) for tropical, oligotrophic 210 
conditions (e.g., temperature between 15 to 30 °C; phosphate concentration below 0.5 µmol/kg). 211 
However, we predicted different responses to the variability in Chlorophyll a concentration and 212 
euphotic zone depth across enzymes (Fig. S5). Finally, we highlighted no taxonomic dominance 213 
across world oceans, according to the taxonomic composition associated to each cluster, 214 
suggesting a worldwide functional redundancy in the genomic potential supporting C4-enzymes 215 
(Fig. S7). 216 
 217 
2.3. Weighted distribution of the genomic potential related to C4-photosynthesis 218 
 219 
Here we present projections for each C4-enzyme and RUBISCO. First, we rescaled the cluster-220 
level projections (i.e., model outputs; Fig. S1D) by their observed metagenomic read abundance 221 
(i.e., weighted distribution patterns, Fig. S2). Then, we aggregated these patterns at the enzyme-222 
level according to their respective functional annotation. We therefore propagate the observed 223 
dominance of a given cluster (i.e., and associated taxa) to the aggregated enzyme-level patterns. 224 
The resulting enzyme-level projections are referred to as weighted patterns. For each enzyme, it 225 
represents the corresponding genomic potential (i.e., relative to the other considered enzymes), 226 
according to the environmental conditions at each geographical location. 227 
 228 
We predicted contrasted weighted patterns between RUBISCO and across acid decarboxylation 229 
type (Figure 3A). Indeed, the weighted pattern of RUBISCO presented maximum potential in 230 
temperate areas (Figure 3B). 231 
 232 
We predicted low-to-moderate potential (< 0.3) and moderate (~ 30 %) uncertainty in high latitudes 233 
for the weighted patterns of PEPC, MDCs, MDHs, and transferases (i.e., GOT and GPT – GGAT; 234 
Figure 3A). These patterns also presented moderate-to-high potential (between 0.5 and 1) in 235 
tropical areas, with some discrepancies. We show a Pearson’s correlation index above 0.5 between 236 
the above-mentioned enzymes, and above 0.7 for GOT and MDHs (Figure 3B). The latter 237 
presented an important potential in oligotrophic regions (e.g., Pacific gyres), suggesting functional 238 
redundancy in the genomic potential from Oxaloacetate to Malate (Figure 3A). In contrast, we 239 
predicted a high potential (> 0.7) in eutrophic Pacific waters for the weighted patterns of MDCs 240 
(Pearson’s correlation above 0.7;  Figure 3A). Overall, we show high confidence in the areas 241 
associated to high genomic potential, with coefficient of variations lower than 30 % among all 242 
trained algorithms and 100-bootstrap projections. The above-mentioned weighted responses to 243 
environmental variables are similar to the ones highlighted in section 3.1., characterized by higher 244 
potential in warm, low seasonality, and generally oligotrophic water bodies (Fig. S4 and S6). 245 
 246 
Conversely, we predicted moderate to high intensity values in oligotrophic tropical areas, but most 247 
importantly in the Southern Ocean (> 0.5; Figure 3) for the weighted pattern of PEPCK (i.e., a 248 
different acid decarboxylation type). The latter was preferentially distributed along water bodies 249 
characterized by (i) high seasonality of the Chlorophyll a concentration and the depth of the 250 
euphotic zone, (ii) high concentrations of oxygen (presenting the highest explanatory power in the 251 
model training; Fig. S4) and nutrients (e.g., phosphates and nitrates) and (iii) average temperatures 252 
below 8 °C (Fig. S6). 253 
 254 
 255 
 256 
 257 
 258 
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 259 
 260 
Figure 3. Weighted patterns corresponding to the relative genomic potential supporting C4- 261 
enzymes and RUBISCO, re-scaled by the corresponding observed relative metagenomic reads 262 
abundance. (A)  Synthetic diagram of the metabolic pathway and corresponding projections. (B) 263 
Inter-projections Pearson’s spatial correlation index. The three mains currently described acid-264 
decarboxylation types are represented in blue (Malate-NADP), red (Malate-NAD) and black 265 
(PEPCK), respectively. Involved metabolic components and enzymes are indicated on the 266 
diagram by squares and circles, respectively. The 2D color scale represents the weighted 267 
genomic potential for the target enzyme as the hue value (Y-axis) and the associated coefficient 268 
of variation as the saturation (i.e., uncertainty in % of the mean; X-axis). An orange to red hue 269 
corresponds to region where environmental conditions yield a high proportion (>0.6) of the target 270 
genes in the model. A low saturation level corresponds to an important variance among the 271 
underlying cluster-level projections. 272 
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 273 
Finally, we highlighted that weighted patterns associated with high latitudes (e.g., correlated with 274 
the one of PEPCK) were composed at 28 % of Prymnesiophyceae and 50 % of Mamiellophyceae 275 
(Shannon index of 1.5), based on the taxonomic composition of each cluster. Mamiellophyceae 276 
also composed 40 % of the patterns with a clear temperate affinity (e.g., correlated with the one of 277 
RUBISCO; Fig. S8). In contrast, we highlight a larger diversity of taxonomic classes, with a 278 
Shannon index of 2.1, for patterns associated with equatorial latitudes. 279 
 280 
DISCUSSION 281 
 282 
3.1. Genomic potential for C4-CCM in picoeukaryotes  283 
 284 
By selecting clusters (i.e., PFCs) annotated by C4-enzymes or RUBISCO only, we considered a 285 
fraction of the available metagenomic information (i.e., ~67 % of the clusters related to C4-enzymes 286 
or RUBISCO). In addition, genes related to other metabolic pathways may have responses to 287 
environmental variables different from genes related to C4-enzymes, potentially including bias in 288 
their corresponding PFC’s projection. Therefore, selecting a reduced set of clusters alleviates the 289 
risk of metabolic noise in the environmental responses, limited to the effect of C4-enzymes 290 
potentially involved in other pathways (e.g., GPT-GGAT transporter). 291 
 292 
Our study focused on planktonic picoeukaryotes, the photosynthetic fraction of which is generally 293 
dominated by the Mamiellophyceae, Prasinophyceae, Prymnesiophyceae, Bacillariophyceae, and 294 
Dinophyceae lineages in the open ocean (16, 20). The potential for C4-photosynthesis has been 295 
suggested for several families, including Bacillariophyceae by combining C4-enzyme inhibition and 296 
photosynthetic efficiency monitoring (e.g., PEPDK 36, PEPC and PEPCK, 37). Evidence for genes 297 
encoding all C4-enzymes exist in Micromonas and Ostreococcus, Mamiellophyceae (38, 39). A 298 
plastid PEPC enzyme was recently discovered in Emiliana huxleyi (38), a Prymnesiophyceae 299 
abundant in temperate and polar regions (40). However, to our knowledge, no study provided 300 
univocal evidence for C4-CCM usage in situ. Stable isotope measurements would be necessary to 301 
fully understand C4-photosynthesis in picoeukaryotes, but they are difficult to apply at species-level 302 
in natural, uncultured, plankton communities (e.g., 8, 10). Alternatively, recent literature suggests 303 
the need for further studies on deep chlorophyll a maxima and various transporters (e.g., 304 
bicarbonate transporters), some of which are associated with or specific to C4 metabolism, to better 305 
understand C4-CCM in natural populations (5, 6). 306 
 307 
Complementing these experimental approaches, we use a data-driven approach to shed more light 308 
on the environmental drivers of C4-genes in marine picoeukaryotes. However, MAGs integrate 309 
chloroplast and mitochondrial genes corresponding to C4-enzymes but do not distinguish their 310 
origin (28), nor provide information on the subcellular location of the corresponding enzymes (9, 311 
41). Therefore, the patterns presented here must be interpreted as the potential for the (co-) 312 
presence of those pathways in the genome. They should be complemented by culture-based 313 
studies, locating enzymes within cells and/or performing carbon isotope discrimination to confirm 314 
C4-CCM presence, expression, and its co-existence with C3-photosynthesis in picoeukaryote 315 
lineages (8). The present study could be used to locate regions where such mechanisms are most 316 
likely to occur. 317 
 318 
3.2. Environment-driven genomic potential 319 
 320 
The modeled distribution patterns revealed that the genomic potential for C4-photosynthesis is 321 
more associated with tropical oligotrophic and annually stratified waters. Conversely, the proportion 322 
of reads related to RUBISCO (i.e., considered as a representative of all photosynthetic pathways, 323 
due to its central role in C3, C4 and CAM photosynthesis) is higher in temperate regions (Figure 324 
2A). The fact that terrestrial C4-plants (4) and the genomic potential for C4-CCM in picoeukaryotes 325 
display similar latitudinal distribution, around the tropics, does not imply that the environmental 326 
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drivers of those distributions are the same. In terrestrial plants, C4-CCMs are considered as an 327 
adaptation to drought and are, for example, also associated with a specific leaf structure that 328 
reduces their water consumption (4). Drought is of course not an evolutionary driver for marine 329 
picoeukaryotes. Alternatively, they present an important surface-to-cytoplasm ratio (i.e., small cells 330 
or presence of a vacuole, 42, 43) leading to a high nutrient absorption yield, which is adapted to 331 
oligotrophic waters, common in the tropical ocean. 332 
 333 
In addition to environmental conditions, the biogeography of the genomic potential supporting C4-334 
CCM may also relate to irradiance levels, largely controlling ATP generation, necessary to the 335 
decarboxylation reaction (42). Indeed, C4-CCM requires additional ATP generation to increase the 336 
RUBISCO efficiency in comparison to classical C3-photosynthesis, without impacting the energy 337 
available for the latter (42, 44). In contrast, an excess of ATP may lead to photoinhibition, thus 338 
lower carbon fixation efficiency (36, 45). Therefore, it has been suggested that C4-photosynthesis 339 
is particularly adapted to dissipate excess energy in the cell in high irradiance areas such as tropical 340 
oceans (5, 36). Our weighted patterns highlighted differences between PEPCK and MDCs (Figure 341 
3). The latter require 2 extra ATP compared to the C3 carbon fixation to complete the pathway. In 342 
a logical way, the PEPCK acid decarboxylation type, which only requires 1 extra ATP and thus is 343 
supposed to be more efficient in low irradiance environments (44), showed here the highest 344 
genomic potential in polar or sub-polar regions. 345 
 346 
3.3. Functional and ecological implications 347 
 348 
We highlighted functional redundancy among C4-genes in oligotrophic tropical waters (Fig. S7). 349 
This contrasts with high latitudes, where only a few taxa dominate (Fig. S8) (17, 46). More 350 
interestingly, we highlighted a biogeographical differentiation between the weighted pattern of 351 
RUBISCO – i.e., the baseline photosynthetic enzyme – and those of C4-enzymes. Since 30 million 352 
years ago, atmospheric CO2 concentration has drastically reduced from c.a. 1000 ppm to less than 353 
200 ppm 20.000 years ago, resulting in lower dissolved carbon in the oceans (4). This led to a 354 
selective pressure towards efficient photosynthetic metabolism, like C4-photosynthesis (7) or, in a 355 
lesser extent, RUBISCO of higher carboxylation affinity (e.g., type II in Dinoflagellates, 9). While 356 
the evolution of C4-CCM in marine organisms is not yet fully understood, 48 independent evolutions 357 
of C4-CCM were identified in the genome of terrestrial plants (e.g., grasses, caryophyllales, 4), 358 
suggesting a higher genomic potential for C4-photosynthesis in taxonomically diverse areas (7). 359 
The above-mentioned functional redundancy in the genomic potential for C4-CCM in taxonomically 360 
rich tropical waters may relate to a co-evolution between taxonomic diversification and its 361 
associated functions (i.e., neutral theory). However, the functional diversity among C4 acid-362 
decarboxylation types may also reflect – or be amplified by – a selection process, as it may present 363 
a selective advantage. Moreover, the respective dominance of Mamiellophyceae in temperate 364 
latitudes (i.e., correlated with the patterns associated to RUBISCO) and Prymnesiophyceae in polar 365 
latitudes, are concordant with the literature (40, 47), thus validating the environmental predictors 366 
controlling their biogeography. We identified key environmental predictors shaping the 367 
biogeography and (co-)dominance patterns of the genomic potential supporting C4-enzymes and 368 
RUBISCO. Such results open new perspectives of exploring the relationship between functional 369 
and taxonomic diversity in the oceans, complementing already diverse approaches and data types, 370 
and better understand the environmental drivers of key biogeochemical cycles in the current and 371 
future climatic context. 372 
 373 
MATERIAL AND METHODS 374 
 375 
4.1. Data 376 
4.1.1. Genomic data 377 
 378 
We studied the biogeography of the genomic potential related to C4-CCM through the prism of 379 
Metagenomic Assembled Genome (MAG, 28) retrieved from the Tara Oceans expedition (2009-380 
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2013). Briefly, 280 billion reads from 798 metagenomes, corresponding to the surface and deep 381 
chlorophyll maximum layer of 210 stations from the Pacific, Atlantic, Indian, Southern and Arctic 382 
Oceans, as well as the Mediterranean and Red Seas (Figure 1), encompassing eukaryote-383 
enriched plankton size fractions ranging from 0.8 µm to 2 mm, were used as inputs for 11 384 
metagenomic co-assemblies (6–38 billion reads per co-assembly) using geographically bounded 385 
samples. We thus created a culture-independent, non-redundant (average nucleotide identity 386 
<98%) genomic database for eukaryotic plankton in the sunlit ocean consisting of 683 MAGs and 387 
30 single-cell genomes (SAGs), all containing more than 10 million nucleotides for a total size of 388 
25.2 Gbp and encoding for 10,207,450 genes. Then, a sequence similarity network was built out 389 
using the 683 manually curated MAGs following a similar methodology to the one developed in 390 
Faure et al. (32). A pairwise comparison was computed between each protein sequence. The 391 
resulting alignment was then filtered, removing self-hits and pairs showing less than 80% of 392 
sequence identity and coverage. Resulting Protein Functional Clusters (PFCs, as in 32) were built, 393 
hereafter referred to as clusters. The functional annotation performed with eggNOG mapper v2.1.5 394 
was added on the sequences, and the functional homogeneity was checked in each cluster (48, 395 
49). The surface and metagenomic samples correspond to 130 stations. 396 
 397 
4.1.2. Environmental data 398 
 399 
For each of the 130 selected Tara Oceans metagenomic surface samples, we retrieved a set of 400 
monthly, global scale, environmental climatologies encompassing the 2005 to 2017 period, at a 401 
spatial resolution of 1° x 1° (Table S2). The latter corresponds to the available climatology 402 
encompassing the sampling period (2009-2013), where we considered temporal environmental 403 
variations negligible in comparison to spatial environmental gradients. They correspond to a 404 
restricted set of factors characterizing the water body (e.g., oligotrophic, eutrophic) and related to 405 
C4-photosynthesis, for which we calculated the yearly average and yearly standard deviation (i.e., 406 
proxy of seasonal variations). 407 
 408 
4.2. Data selection and pre-processing 409 
4.2.1. Protein functional cluster selection 410 
 411 
We first selected a reduced set of clusters, within the 0.8 to 5 µm size fraction and surface samples, 412 
for which 100% of the KEGG Orthology (KO, 50) annotated protein members were related to C4-413 
enzymes or RUBISCO (Fig. S1, Table S1). To avoid model over-parameterization and because 414 
rare clusters were assumed as not influencing the large-scale patterns investigated in this study, 415 
we only considered clusters that were present in a minimum of 10 Tara Oceans stations. 416 
 417 
The corresponding dataset contained 240 clusters distributed across 130 Tara Oceans stations. 418 
The 240 clusters, functionally annotated with C4-enzymes and RUBISCO, were associated with 419 
234 MAGs. The latter presented an average completeness estimate of 57% (Table S3). In 420 
comparison, the average completeness estimate across all MAGs from Delmont et al. (28) yield at 421 
37 %. As a supplementary quality check, we estimated a minimum horizontal coverage (i.e., 422 
number of bases of a MAG covered with a certain depth) of 68 % for each of the 234 MAGs (Table 423 
S3). Finally, we show that our MAGs are associated with an average BUSCO completeness (i.e., 424 
the percentage of mapped BUSCO genes in each MAG) of 55.7% (Table S3). We therefore 425 
consider these MAGs of sufficient quality for identifying C4-genes across our samples. 426 
 427 
To reduce the number of response variables (clusters; PFCs) to a reasonable amount for 428 
multivariate modelling, with respect to the limited number of stations, we performed an Escoufier 429 
dimensional reduction (51). The latter iteratively selects the clusters whose pattern across stations 430 
minimize the residual variance of the dataset. Here, we selected 50 clusters that represent over 431 
95% of the 240 clusters variance to be included in the multivariate algorithm.  432 
 433 
 434 
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4.2.2. Metagenomic data pre-processing 435 
 436 
Genes abundances among samples were determined by mapping raw metagenomic reads against 437 
the gene database (28). Briefly, reads were mapped using the bwa tool, and only random best 438 
matches with at least 95% of sequence identity over at least 80% of the read length were retained 439 
as positive. To alleviate the effect of gene length and sequencing effort variability between samples 440 
on the number of reads, we normalized the metagenomic reads by the length of the corresponding 441 
gene coding part and the total number of reads per station (i.e., including reads of all non-442 
considered clusters), respectively. Because the total genomic material present at each sampling 443 
station is unknown (i.e., non-exhaustive sampling and sequencing effort), the absolute number of 444 
reads is not comparable among stations. To compare the abundance between selected clusters at 445 
different sampling stations, we transformed the dataset to relative abundance (Supplementary 446 
information text and Fig. S1). 447 
 448 
4.3. Multivariate Boosted Regression Tree 449 
4.3.1. General principle 450 
 451 
Recently, growing interest for interactions between response variables led to the development of 452 
multivariate machine learning algorithms, such as Multivariate Boosted Tree Regressors (MBTR, 453 
35). The latter is also particularly adapted to small sample size as the interactions between 454 
response variables is considered as supplementary information to calibrate the model. Here, MBTR 455 
is used to model the relationship between climatologies and metagenomic relative abundance (i.e., 456 
summed at 1 for each station; Supplementary information text and Fig. S1). To best reproduce 457 
the response of metagenomic reads (i.e., response variable) to the corresponding environmental 458 
variables (i.e., explanatory variable), the model sequentially fits decision trees (i.e., boosting 459 
rounds) using gradient descent to minimize a specific loss function (see Supplementary 460 
information text for hyperparameter and loss choice). At each boosting round, the algorithm fits a 461 
decision tree on the residuals of the previous boosting round and computes a tree loss (i.e., a 462 
measure of deviation between observed and predicted response variable values). Decision trees 463 
are constructed using the hessian of the loss function (i.e., second order tensor of its partial 464 
derivatives) to minimize the loss gradient. Therefore, the information learned by the nth tree is 465 
passed to the n+1th tree at a user-defined learning rate (Supplementary information text and Fig. 466 
S1). The ensemble of sequentially fitted decision trees are considered in the model until the 467 
minimum loss is reached. Finally, one important feature of MBTR is the conservation of the initial 468 
correlation structure between the response variables (see methods in 35). The latter is tested by 469 
computing a Pearson correlation matrix between response variables before and after model fitting, 470 
whose conservation is tested by a Mantel matrix comparison test (Supplementary Information 471 
text). 472 
 473 
4.3.2. Model training and evaluation 474 
 475 
To avoid over-fitting, the explanatory and response datasets were split between training set and 476 
test set using a n-fold cross-validation procedure. For each model, n algorithms were trained on 477 
different n-1 folds, while the remaining fold was used for testing only (i.e., computing the loss at 478 
each boosting round). To minimize the effect of spatial and temporal autocorrelation in our data 479 
(i.e., leading to over-optimistic model evaluation, 52), the n-folds were defined according to the 480 
Tara Oceans station number. Because the cruise followed a continuous trajectory in time and along 481 
the sampled stations, the resulting folds are spatially and temporally distant (i.e;, spatial and 482 
temporal block splitting, as recommended in 52). The resulting n-algorithms predictions were 483 
aggregated in an average response and its corresponding coefficient of variation (CV). The ability 484 
of the final model to reproduce the observed clusters relative abundance across environmental 485 
conditions has been measured by the R2 criteria and the root mean square error (RMSE, between 486 
0 and 1 according to the distribution pattern scale). 487 
 488 
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4.3.3. Spatial projections 489 
 490 
To better estimate projection uncertainty, our spatial projections were constructed using a bootstrap 491 
procedure. For each 100-bootstrap round, we first re-sampled the original dataset (i.e., train and 492 
test response dataset and corresponding explanatory variable values) with replacement. Then, we 493 
re-fitted an MBTR algorithm on the re-sampled data by using the hyperparameters corresponding 494 
to the validated model, including the number of boosting rounds corresponding to the minimum loss 495 
across all n-algorithms. Finally, the re-fitted MBTR algorithm was used to predict the relative 496 
abundance of clusters worldwide, using the corresponding climatologies values at each 497 
geographical cell. 498 
 499 
4.4. From model projections to final outputs 500 
 501 
We only modelled the 50 clusters representing 95% of the dataset variability. Therefore, we 502 
indirectly reconstructed the projections of the 190 others by identifying their most representative 503 
Escoufier-selected cluster. To this extent, we performed a correspondence analysis based on the 504 
observed relative abundance of all clusters. By using the dimensions of the correspondence 505 
analysis space corresponding to a minimum of 80% variance explained, we calculated the 506 
Euclidean distance between each non-selected cluster, and its nearest neighbor selected by the 507 
Escoufier criteria. Because the 50 Escoufier selected clusters represented over 95% of the dataset 508 
variability, we considered that a cluster and its nearest neighbor in the correspondence analysis 509 
space share the same relative abundance pattern. In addition, we calculated the scale of each non-510 
selected cluster with respect to their nearest Escoufier-selected neighbors using the sum of their 511 
observed relative abundance across all stations (Fig. S2). We then reconstructed the spatial 512 
projections of the 190 clusters not considered in MBTR according to their projected nearest 513 
Escoufier-selected neighbor. The resulting 240 cluster-level projections of the genomic potential 514 
were then aggregated at the enzyme level according to their functional annotation (see Result 515 
section, Fig. S2). 516 
 517 
  518 
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