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Abstract: Though hierarchy is commonly invoked in descriptions of neural system function, its 
presence and manifestation in firing patterns remain poorly resolved. Here we use rapid activity 
perturbations to demonstrate asymmetric influence between premotor and primary motor cortices 
on fast timescales during reaching in mice, confirming hierarchy among endogenous firing 
patterns. However, this hierarchy had a surprising manifestation: firing in each region was 
dominated by temporally-aligned patterns and was equally predictive of future firing in the other 
region. Network modeling suggests an explanation: functional hierarchy can be determined by the 
relative dependence of local circuits on across-region input, rather than asymmetry in that input. 
We propose that motor cortical firing patterns are primarily defined not by across-region input, but 
by the constraints of patterning motor output. 
 
Main Text:  
A hierarchical organization characterized by feedforward influence between neuronal populations 
is commonly imputed to neural systems (1-3). In the motor system, a range of observations 
spanning anatomy (4, 5), lesion (6, 7), activity (8, 9), and activity perturbation (10, 11) have been 
interpreted as reflective of a hierarchical organization in which premotor regions plan movements 
and primary motor cortex executes them (12, 13). A similar range of observations, in particular 
that of substantial premotor projections to brainstem and spinal cord (14-16), interconnection 
between premotor and primary motor cortices (17, 18), and activity related to movement planning 
in primary motor cortex and spinal cord (19, 20), inform an updated view of a partial hierarchy 
(21-23). Here, premotor and primary motor cortices interact and each drive downstream motor 
circuits, though primary motor cortex exerts comparatively more of its influence through its 
descending projections.  
 
However, technical challenges have precluded demonstration of a hierarchy between premotor and 
primary motor cortices mediated by their naturally-occurring (endogenous) firing patterns. It is 
commonly assumed that these endogenous firing patterns will exhibit an asymmetric reciprocal 
influence, with activity in premotor cortex exerting a larger influence on primary motor cortex 
than vice versa, but existing observations have not yet resolved such an asymmetry. Notions of 
hierarchy are informed by observations like those of asymmetric effects on each region from 
electrical stimulation, lesion, or pharmacological inactivation of the other region (24, 25); of 
differing laminar targets of projections between regions (26, 27); and of differing degrees of 
activity related to movement preparation (28-30). Yet such observations do not necessarily imply 
asymmetric reciprocal influence of endogenous activity on the fast timescales of synaptic 
communication between regions (oligosynaptic timescales). Moreover, a number of observations 
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are consistent with a more symmetric influence between premotor and primary motor cortices (31-
33). It has also been proposed that existing observations of asymmetry could instead reflect 
involvement of each region in somewhat different movement components (34, 35).   
 
The ambiguity about hierarchy has in turn prevented resolution of how it manifests in firing 
patterns. Movement-related activity is frequently observed to begin in premotor cortices before it 
begins in primary motor cortex (9, 36, 37); this delay has been interpreted as reflecting feedforward 
influence. The application of time series prediction methods for discerning functional influence 
between neurons (38, 39) is grounded in the notion that feedforward influence leads to predictive 
relationships between firing patterns in upstream and downstream regions. We might expect that 
a (partial) hierarchy between regions would manifest as an asymmetry in firing pattern predictivity, 
where activity in the (more) upstream region is comparatively better at predicting subsequent 
activity in the (more) downstream region. However, local circuit dynamics can also be expected 
to play a substantial role in determining firing patterns. Recent theoretical results suggest that local 
circuit dynamics can be the primary determinant of firing patterns, even in the presence of 
substantial across-region input like that between motor cortical regions (40, 41). Thus, whether 
hierarchy manifests in firing pattern predictivity at the scale of brain regions within neural systems 
remains unresolved.  
 
RFA and CFA activity during directional reaching 
We sought to establish (1) the long-hypothesized hierarchy between premotor and primary motor 
cortex mediated by their endogenous firing patterns, and (2) how any such hierarchy would 
manifest in firing pattern predictivity. Building on recent work (42), we developed a head-fixed 
directional reaching paradigm in which mice learn to rest their hand on a rung and then reach to 
one of four spouts to grab a water droplet (Fig. 1A,B; Fig. S1A; Movies S1,2). Rung touch 
illuminates a visual cue indicating the spout where the droplet will be dispensed after a subsequent 
(1-3 s later) auditory ‘Go’ cue. In trained VGAT-ChR2-EYFP mice (43), we briefly projected a 
small spot of blue light (50 ms, 1.5 mm diameter, 9 mW/mm2) onto the cortical surface unilaterally, 
triggered on reach onset, to silence either forelimb primary motor (caudal forelimb area, CFA) or 
premotor (rostral forelimb area, RFA) cortex. Forelimb muscle activity, recorded with chronically 
implanted electromyographic electrodes, rapidly diverged from controls (Fig. S1B-D), indicating 
that both regions exert oligosynaptic influence on muscles. Simultaneous large-scale 
multielectrode array (Neuropixel) recordings from both CFA and RFA (all layers; 21 sessions 
across six mice; Fig. S2A,B) confirmed that movement-related activity changes begin earlier in 
RFA (Fig. 1C,D), a feature of motor cortical activity assumed to reflect hierarchy. 
 
We next showed that greater early activity change in RFA is a robust feature of firing patterns en 
masse. We used delayed latents across groups (DLAG; 44) to decompose simultaneously recorded 
CFA and RFA firing patterns into latent variables (components) that are either unique to activity 
in each region (within-region) or shared between regions at an arbitrary temporal lag (across-
region). We decomposed each region’s activity into four across-region components (negative lags 
defined as RFA leading) and four within-region components. The distribution of resulting across-
region lags that were significantly different from zero was biased in the direction of RFA leading 
(median = -18 ms; Fig. 1E; Fig. S2C), and remained so after weighting each count in the 
distribution by the fraction of neural activity variance it captured in the lagging region (Fig. 1F; 
Fig. S2D). The same was found when repeating this analysis but varying either the number of 
within-region (Fig. 1G; Fig. S2E) or across-region (Fig. 1H; Fig. S2F) components, while holding 
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the other fixed at four. Thus, a greater fraction of activity variance in CFA is captured by shared 
patterns in which RFA leads, compared to vice versa. 
 
 

 

Fig. 1. RFA and CFA activity during directional reaching in mice. (A) Schematic depicting 
the directional reaching task. (B) Schematic depicting the time course of experimental control 
signals and muscle activity during the directional reaching task. (C) For one mouse, normalized 
activity change from baseline summed across the top three principal components (PCs) for all 
recorded RFA (magenta) or CFA (blue) neurons, and the top PC for muscles (gray). For 
calculations in (C) and (D), downward-going PC time courses were flipped vertically so changes 
from baseline were additive. (D) Time from reach onset at which the activity change from baseline 
summed across the top three PCs for RFA (magenta) or CFA (blue) neurons rose above a low 
threshold. (E),(F) Histogram of DLAG component lags that were significantly different from zero 
and between -100 and 100 ms, either unweighted (E) or weighted (F) by the variance each 
component captures in the lagging region, for all recording sessions together. (G),(H) Mean ± 
SEM fractional activity variance (n = 21 recording sessions) captured in the lagging region by 
DLAG components when the lag was significantly different from zero and between -100 and 100 
ms when varying the within-region (G) or the across-region (H) dimensionality. 
 
 
Asymmetric reciprocal influence of endogenous RFA and CFA activity 
We then sought to establish that the endogenous activity in RFA exerts a larger influence on CFA 
activity than vice versa. We inactivated RFA as described above while recording activity across 
layers in CFA (Fig. 2A-C, n = 3 mice), or similarly inactivated CFA while recording in RFA (Fig. 
2D-F, n = 3 mice). This approach silences the vast majority of endogenous activity in projection 
neurons across all of RFA or most of CFA at least down through layer 5 (45, 46), while affecting 
similarly-sized cortical regions. Analysis of spike latencies after light onset found no evidence of 
direct light responses by ChR2-expressing neurons in the recorded region (Fig. S3A-D).  
 
Results indicated an asymmetry in the oligosynaptic functional influence between CFA and RFA. 
Control and inactivation trial averages showed a larger and longer lasting reduction in CFA firing 
upon RFA inactivation compared to the effect on RFA firing upon CFA inactivation (Fig. 2A-F). 
To quantify the effect on firing in individual neurons, we computed the difference of control and 
inactivation trial averages 50 ms after light/trial onset using z-scored firing rates for each neuron. 
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Distributions of these relative firing rate changes showed more cells with a larger reduction in 
CFA compared to those in RFA, both for all neurons (Fig. 2G) and for wide-waveform, putative 
pyramidal neurons (Fig. 2H). These distributions did show more RFA neurons responding with an 
increase in firing; however, the average absolute change in firing was also substantially larger for 
CFA neurons than RFA neurons, again both for all neurons (Fig. 2I) and the wide-waveform subset 
(Fig. 2J). Moreover, the average absolute difference was significantly larger whether calculated 
over the 25, 50 or 100 ms following light/trial onset (Fig. 2K,L). Inactivation effects were similar 
for both wide-waveform neurons and narrow-waveform, putative inhibitory interneurons (Fig. 
S3E-P). To our knowledge, this is the first demonstration that the endogenous activity in premotor 
and primary motor cortices exert asymmetric effects on one another. We interpret this as a direct 
indication of functional hierarchy on oligosynaptic timescales. 
 
 

 

Fig. 2. Asymmetric reciprocal influence of endogenous RFA and CFA activity. (A-F) 
Schematics depicting inactivation and Neuropixel recording (A,D) and mean ± SEM firing rate 
time series for neurons from one animal (B,E) or all three animals (C,F) from inactivating RFA 
and recording CFA (A-C), or vice versa (D-F). The cyan bar indicates light on. The same number 
of cells were used from each animal in (C) and (F). (G),(H) Cumulative histograms of the 
difference between averaged z-scored firing rates for control and inactivation trials averaged from 
45 to 55 ms after trial/light onset, for the top 50 highest firing rate neurons (G) or wide waveform 
neurons (H) from all animals (thick lines) or individual animals (thin lines). (I),(J) Mean absolute 
firing rate difference ± SEM between control and inactivation trial averages for all (I) and wide 
waveform (J) neurons recorded in the other area during RFA and CFA inactivation. Baseline 
subtraction enables negative values. (K),(L) Average absolute firing rate difference from light 
onset to 25, 50, and 100 ms after for all (K) and wide waveform (L) neurons, for individual animals 
(circles) and the mean across animals (black bars). 
 
 
Premotor and primary motor cortical activity are highly similar during reaching 
We then examined how the asymmetric reciprocal influence between CFA and RFA manifests in 
the relationship between their firing patterns. We first assessed the overall similarity of firing 
patterns in the two regions using methods that decompose two sets of variables into pairs of 
components (linear combinations of the original variables) that are highly similar. We used both 
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canonical correlation analysis (CCA; 47, 48), which maximizes the correlation between the time 
courses of component pairs, and partial least squares (PLS; 49), which maximizes their covariance. 
Both methods were applied to matrices comprising the trial averaged firing rates for all neurons 
from a given animal, concatenating separate averages aligned on reach onset and on grasp for 
reaches to each of the four spouts (Figs. 3A and S4A). 
 
Both methods produced a similar basic result: firing patterns in RFA and CFA en masse are 
remarkably similar. CCA revealed that the vast majority of the trial-averaged activity variance in 
RFA and CFA is captured by components with nearly identical time series. On average, over 80% 
of activity in both regions is captured by components whose times series had Pearson correlations 
> 0.94 (Fig. 3B-D). PLS identified components that successively capture nearly the same amount 
of activity variance as corresponding principal components (i.e. the maximum of any possible 
components) while still maximizing the covariance of component time series (Fig. 3E,F). 
 
In a functional hierarchy where one region’s activity rises earlier than another’s, we might expect 
the alignment between sets of firing patterns to be maximal when one set is lagged relative to the 
other. This was not the case for RFA and CFA activity during reaching. Shifting CFA activity 
anywhere from -30 to 30 ms relative to RFA activity gave nearly identical alignment quality, both 
with CCA (Fig. 3G) and PLS (Fig. S4B). However, control analyses in which we aligned CFA 
activity to itself revealed clear maxima in alignment quality at the expected lags (Fig. S4C,D). 
That CFA-RFA alignment does not peak at certain lags could be explained by the across-region 
components DLAG found, with either RFA or CFA activity leading. More CFA variance was 
captured by components in which RFA activity led, compared to vice versa, but components in 
which CFA activity led were also identified. Though unequal in variance capture, these 
components can accommodate similar correlation or covariance when activity is aligned at a lag, 
since paired aligned components can differ in variance capture. Thus, collectively, these results 
indicate similar activity patterns exist in both regions, including those that align at a lag, though 
the variance they capture may vary between regions. 
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Fig. 3. RFA and CFA firing patterns are highly similar. (A) From one animal, four canonical 
variables aligned at reach onset or spout contact (grasp) for reaches to each spout. Bottom row 
shows the corresponding time series for the first principal component of muscle activity. (B),(C) 
Mean ± SEM cumulative variance capture for canonical variables (color) and principal 
components (PCs, black) for RFA (B) and CFA (C) activity (n = 21 sessions). Red annotations 
facilitate comparisons across B-D. (D) Mean ± SEM Pearson correlation for canonical variable 
pairs. (E),(F) Mean ± SEM cumulative variance capture for PLS components (color) and principal 
components (PCs, black) for RFA (E) and CFA (F) activity. (G) Mean ± SEM Pearson correlation 
of CFA and RFA canonical variable pairs computed when shifting CFA activity relative to RFA 
activity, for the average over all pairs either without (purple) or with weighting each correlation 
value by the variance captured by the given pair (black).  
 
 
Symmetric firing pattern predictivity 
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We then asked whether asymmetric reciprocal influence between CFA and RFA manifests in an 
imbalance in the ability to predict the activity in one region from that in the other. Though the 
methods we applied can be used to probe for potential causal influence between neurons, we stress 
that we are not making causal claims here and are focusing only on what these metrics directly 
compute: how the firing of one neuron enables or improves prediction of subsequent firing in 
another. For comprehensiveness, we applied three metrics that each make different assumptions 
about how one firing pattern enables or improves prediction of another: transfer entropy (38), 
point-process Granger causality (39), and convergent cross mapping (50). 
 
We computed each metric for pairs of neurons recorded simultaneously during reaching, one in 
each region, with one defined as source and the other as target. To focus attention on the timescale 
over which we expect oligosynaptic influence to manifest, we considered models that use source 
activity at different lags ranging up to 30 ms preceding firing in the target neuron and chose the 
lag that maximized predictivity. To focus calculations on cell pairs for which statistical power was 
greatest, we identified 10,000 pairs with the highest product of average firing rates. To avoid 
directional bias due to differing firing rates (CFA firing rates were slightly higher on average), we 
algorithmically adjusted this set of pairs to match the overall firing rate distributions for neurons 
used from each area (Fig. S5A,B). To assign a p-value to each metric computed for each cell pair, 
we generated an empirical null distribution by recomputing the metric after many different circular 
permutations of the spike time series. 
 
Results revealed a striking symmetry in the degree of firing pattern predictivity in each direction. 
For all three metrics, p-value distributions for predictions in each direction were skewed toward 
zero (Fig. 4A-C), indicating that for some fraction of pairs, source activity did enable or improve 
predictions (51). Yet for all three metrics, p-value distributions for predictions in each direction 
were highly similar. This implies a similar fraction of pairs in each direction exhibit predictivity 
above chance. Furthermore, the degree of predictivity in each direction appeared similar; 
distributions of metric values were very similar for pairs with p-values below a significance 
threshold (false discovery rate < 0.10; Fig. 4D-F). Interestingly, metric value distributions 
computed instead for pairs of neurons within each region were also fairly similar, though there 
were more large extreme values, potentially reflecting strongly coupled cells (Fig. 4G-I). These 
results held when repeated using only spiking from the 300 ms before reach initiation (Fig. S5C-
H). Thus, firing pattern predictivity does not reflect an asymmetry like that seen in the actual 
influence of endogenous activity. 
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Fig. 4. RFA and CFA firing pattern predictivity. (A-C) P-value distributions from calculations 
of Granger causality, transfer entropy, and convergent cross mapping using firing patterns of 
across-region neuron pairs. (D-F) For across-region neuron pairs, distributions of metric values 
reflecting the improved prediction of target neuron firing using source neuron firing (D and E), or 
the improved prediction of source neuron firing using target neuron firing (F). In (D-I), only values 
for which the corresponding p-value fell below a false discovery-corrected threshold are included, 
and box plots on top show the minimum, 1st, 2nd, and 3rd quartile, and maximum values. (G-I) 
Distributions of metric values computed instead for within-region neuron pairs. 
 
 
A network model recapitulates findings without asymmetric across-region input 
How do we reconcile this symmetry in firing pattern predictivity with our observation of 
asymmetric reciprocal influence? Asymmetric influence might arise not from asymmetric across-
region input, but instead from a difference in the relative dependence of activity in each region on 
that input. In this scenario, differences between the local circuit dynamics in each region would 
cause a different degree of robustness to the loss of input from the other region. 
 
We thus questioned whether the asymmetric reciprocal influence we observed might naturally 
emerge from local circuit interactions, rather than asymmetric across-region input. To address this, 
we constructed a recurrent network model to observe how it would capture our results. We built a 
network of two populations (“RFA” and “CFA”), each 80% excitatory and 20% inhibitory, with 
local recurrent (within-region) connectivity and sparser connectivity between populations (across-
region) to align with experimental observations (Fig. 5A). In response to a ‘Go’ signal, the network 
generates a muscle activity output. We trained instances of the model to generate measured muscle 
activity (summed across all four muscles) and measured neural activity (summed across all 
neurons recorded in a given region), in three cases: recording from either region while inactivating 
the other, and paired recording of both regions without inactivation. For the two inactivation cases, 
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an additional input was provided to inhibitory interneurons to mimic ChR2 stimulation. 
Measurements for each case were drawn from different animals and 30 model instances were 
computed from different random initial conditions. Both within-region and across-region 
connection weights were free to vary during training. 
 
Analysis of fit results showed that indeed, networks do not capture the asymmetric influence we 
observed with greater input from “RFA” to “CFA.” Fit quality was very good, as measured neural 
and muscle activity were closely fit and individual model instances readily exhibited both the 
temporal offset in activity rise and the substantial asymmetry in inactivation effects (Fig. 5B). 
Models collectively had slightly larger “RFA” to “CFA” across-region weights (Fig. 5C). 
However, repeating fits while constraining across-region weights to be balanced on average 
(“symmetric”) yielded very good fits, with only a 14% average increase in fit error (Fig. 5D). Most 
strikingly, the total amount of across-region input from each region, measured as the product of 
across-region weights and the activity of corresponding “presynaptic” neurons, was not higher for 
“RFA” to “CFA” connections, both for unconstrained and symmetric model instances (Fig. 5E). 
The across-region input was actually larger on average in the opposite direction, regardless of the 
time window over which the input was summed. We also observed that the “RFA” network, which 
was more robust to the silencing of across-region input, had a higher average strength of within-
region inhibitory connections (Fig. 5F). These results indicate that asymmetric reciprocal influence 
can emerge in these networks from local recurrent connectivity and the activity dynamics they 
engender. 
 
 

 

Fig. 5. Network modeling of RFA and CFA activity. (A) Model schematic. (B) Illustration of 
fit quality for one instance of the model with unconstrained weights of across-region synapses. In 
(B) and (D), cyan bars show the epochs of simulated inactivation. (C) Distribution of synaptic 
weights for all across-region connections from all instances of the unconstrained model. In (C),(E), 
and (F), box plots show the minimum, 1st, 2nd, and 3rd quartile, and maximum values. (D) 
Illustration of fit quality for one instance of the model with across-region weights constrained to 
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be equal in each direction on average. (E) Distributions of summed across-region input (weights 
x activity) in each direction over different simulation epochs, for all instances of both the 
unconstrained and symmetric model types. (F) Distributions of within-region excitatory (Excit) 
and inhibitory (Inhib) synaptic weights, for all instances of both the unconstrained and symmetric 
model types. 
 
 
Discussion  
Our network modeling suggests an explanation for the decoupling between functional influence 
and firing pattern we observe: functional hierarchy can be determined by the robustness of local 
circuits to loss of input, rather than asymmetric across-region input. These results highlight the 
dual determinants of hierarchy among brain regions: the balance of across-region input and the 
relative dependence of regions on that input. Though classical descriptions emphasized the former, 
contemporary recognition of the prominence of local recurrence and of the activity dynamics it 
engenders underscore the latter. Imagine a scenario in which inactivation of either region had 
symmetric effects on the other, indicating a lack of functional hierarchy. This could result if across-
region input was imbalanced, but the dependence of each region on that input was also imbalanced, 
such that the effects offset. Here local circuit dynamics would substantially determine hierarchy. 
Our findings thus call into question previous interpretations of earlier rising activity in premotor 
cortex as reflecting a hierarchy mediated by feedforward influence (9, 19, 29, 37). Though our 
results show RFA has a stronger direct influence on CFA than vice versa, this may not depend on 
the earlier rising activity in RFA, but instead on differing robustness to input loss.  
 
It is commonly assumed that feedforward influence between regions will create predictive 
relationships between the activity patterns in the upstream and downstream regions. However, we 
have found that this does not hold on the scale of neuronal populations in the motor cortex during 
reaching in mice. Certain analyses of activity in premotor and primary motor cortices have 
described highly similar firing patterns (32, 52, 53), similarities in preparatory activity (54), and 
symmetry of modeled reciprocal input (31). Our results show that these observations do not 
contradict notions of motor cortical hierarchy. Differences in firing patterns between premotor and 
primary motor cortices could reflect not hierarchy, but differences in functional roles (22). For 
example, premotor cortex may exhibit more and earlier preparatory activity because the 
components of movement it drives demand more and earlier preparation. 
 
Our findings comport with recent theoretical results suggesting that local circuit dynamics can be 
the primary determinant of firing patterns in the presence of substantial across-region input (40, 
41). Across-region connections may instead function to coordinate firing patterns across regions 
or modulate higher-order firing pattern features, like their autocorrelation (55). Firing patterns 
themselves may be defined primarily by other constraints, such as the need to generate appropriate 
motor output patterns. The propagation of local activity in the service of this systemic pattern 
generation could be another constraint, as a number of recent observations suggest that local circuit 
dynamics govern motor cortical firing (56, 57) to some extent (58). Our results underscore the 
recognized need (40) for developing theory about across-region interactions. 
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Materials and Methods 
Experimental Animals 
All experiments and procedures were performed according to NIH guidelines and approved by the 
Institutional Animal Care and Use Committee of Northwestern University. A total of 26 adult male 
mice were used, including those in early experimental stages to establish methodology. Strain 
details and number of animals in each group are as follows: 21 VGAT-ChR2-EYFP line 8 mice 
(B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories stock #014548); and 5 
C57BL/6J mice (Jackson Laboratories stock #000664). All mice used in experiments were 
individually housed under a 12 hr light/dark cycle. At the time of the measurements reported, 
animals were 17-22 weeks old. Animals weighed approximately 23-28 g. All animals were being 
used in scientific experiments for the first time. This includes no previous exposure to 
pharmacological substances or altered diets. 
 
Directional Reaching Task 
We modified a recently published directional reaching task (42). Head-fixed male mice were 
trained to reach to one of four spouts to grab a water reward they could then bring to their mouth 
and ingest. Mice initiate trials by placing their right hand on a rung (during training) or relaxing 
their forelimb muscles (during neural recording) for a period randomly chosen for each trial 
between one and three seconds (rest period). One of four LED lights in front of the mouse 
illuminates at trial onset, the location of which corresponds to the randomly-selected spout location 
where water will be dispensed on the given trial (Fig. 1A). If the forelimb remains at rest for the 
duration of the rest period, a 4 kHz tone (‘Go’ cue) sounds for 100 ms, a water droplet is dispensed, 
and the mouse is free to reach out and grasp it. If the mice move their forelimb before the rest 
period ends, a 400 Hz buzzer sounds for 50 ms, the LED turns off, and a 200 ms delay must pass 
before another trial can be initiated. If the water droplet is not retrieved within 1 second (response 
period), it is removed by a suction tube immediately beneath the dispensation spout and the buzzer 
sounds. If mice reach to the correct spout, a 2 s consume period is imposed before a subsequent 
trial can be initiated. If the mice reach to the incorrect spout first, the buzzer sounds for 50 ms. 
 
Apparatus 
The training apparatus was housed inside a sound attenuating chamber (H10-24TA, Coulbourn). 
Head-fixed mice were positioned within a 3D printed enclosure with sections removed to allow 
fixation of the mouse’s headplate to a headplate holder and to allow the right hand access to the 
rung and spouts. Enclosures also had a second rung for the left (non-reaching) hand and a divider 
below the mouse’s chest that extended in front of the mouse to prevent the left hand from gaining 
access to the spouts. The waterspouts (blunted 21G needles) were positioned in front of the mouse 
on its right side in a diamond configuration. The waterspouts were 6 mm apart vertically and 
horizontally. Suction tubes (blunted 21G needles) that were 1.5 mm shorter were attached below 
each spout. The spouts were secured by a 3D printed holder and their position was adjusted using 
a three-axis manual micromanipulator (UMM-3C, Narishige). The spouts and suction tubes were 
connected to solenoid valves (161T012, Neptune Research) through flexible tubing (EW-06422-
01, Cole-Parmer).  

Waterspout and rung touches were detected with capacitive touch sensors (AT42QT1011, 
SparkFun) during training. Capacitive touch sensors could not be used during neural recording 
since they cause electrical artifacts. Thus during neural recording, spout touches were detected 
with an infrared beam sensor (FT-KS40 and FX-502, Panasonic) and right forelimb muscle activity 
measured with EMG electrodes was used to initiate trials. Mice initiated trials by reducing muscle 
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activity below a threshold set so that any limb movement during the rest period would cause a 
threshold crossing and abort the trial. The buzzer was also removed during neural recording. 
           Experimental control was performed using the Arduino Due. Four speakers and an Arduino 
Uno were used to play the reward tone. Four green LEDs (1.8 mm diameter) were secured by an 
LED holder in a diamond configuration at 10 mm apart vertically and 20 mm apart horizontally. 
The LEDs were positioned approximately 10 mm away from the front of the mouse’s eyes and at 
the same height. 
 
Training 
Under anesthesia induced with isoflurane (1%–3%; Covetrus), mice were outfitted with 3D printed 
head plates (24 x 20 x 5mm) affixed to the skull using dental cement (Metabond, Parkell). 
Headplates had an open center that enabled subsequent access to the skull, which was covered 
with dental cement. During headplate implantation, the position of bregma relative to marks on 
either side of the headplate was measured to facilitate the positioning of craniotomies during later 
surgeries, or the skull was covered with clear cement to maintain the visibility of bregma. 
           After recovery from headplate implantation surgery, mice were placed on a water schedule 
in which they received 1 mL of water per day. At least 4 days after the start of the water schedule, 
mice were acclimated to handling by the experimenter and head-fixation using a modification of 
established procedures (59). After a day of acclimation to handling, mice were acclimated to head-
fixation and the reaching task over 1-4 daily sessions during which they were head-fixed in the 
reaching apparatus and provided water rewards. 

During acclimation, the water droplets were dispensed from all 4 spouts at random 
intervals (5.5-6 s). The four spouts were placed in front of the mouth and all spouts dispensed a 5 
uL water droplet signaled with the reward tone. The four LEDs all turned on while the water was 
being presented. The water droplets were automatically removed by suction at the end of the 
interval regardless of whether the mouse collected it or not. Mice freely licked the waterspouts and 
quickly learned the association between sound and reward. Once this was learned, the waterspouts 
were moved to a lower right position that allowed easy access for the right hand. Mice 
spontaneously performed reach-to-grasp movements to collect and consume the water droplets by 
licking their hand. Almost all mice completely switched to the reaching behavior during the first 
or second session. 

Following acclimation, mice underwent a daily 60 min training session to learn to initiate 
trials by touching the rung and to associate the location of the illuminated LED with the waterspout 
location where reward would be dispensed. To encourage mice to reach to all four spout locations, 
the probability of each spout being selected for water dispensation on a given trial was computed 
based on the percentage of successful reaches to the given spout for past trials during the given 
session. Probabilities were inversely proportional to success rates. In addition, two task parameters 
were adaptively changed during training sessions to shape mouse performance: the rest period was 
gradually lengthened (starting from 0.1 s), and the response period during which the water was 
available was shortened (starting from 10 s). Over 7 to 18 daily training sessions, mice learned to 
associate the illuminated LED location with the spout location, to wait during increasingly long 
rest periods, and to reach within increasingly short response periods. The rest period gradually 
became longer until mice were able to wait for more than 2 s. The response period adaptively 
changed until they were able to reach within 1 s.  

For some mice, upon reaching these behavioral thresholds, neural recordings were 
performed during subsequent training sessions (n = 3 mice, total of 10 recording sessions). For 
another cohort of mice, once they met these conditions, recordings were performed during 
subsequent sessions using an experimental control script that did not adaptively update task 
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parameters. In this script, the probability of each spout being selected for water dispensation did 
not vary, the rest period randomly changed between 1 and 3 s in 0.2 s increments, and the response 
period was fixed at 1 s (n = 3 mice, total of 11 recording sessions). These data were analyzed 
separately but eventually combined because there was no substantive difference in the results. 

 
EMG Recording 
EMG electrodes were fabricated for forelimb muscle recording using established procedures (45, 
60). Briefly, each set consisted of four pairs of electrodes, each consisting of two 0.001’’ braided 
steel wires (793200, A-M Systems) knotted together. On one wire of each pair, insulation was 
removed from 1 to 1.5 mm away from the knot; on the other, insulation was removed from 2 to 
2.5 mm away from the knot. The ends of the wires on the opposite side of the knot were soldered 
to an 8-pin miniature connector (33AC2364, Newark). Different lengths of wire were left between 
the knot and the connector depending on the muscle a given pair of electrodes would be implanted 
within: 3.5 cm for upper forelimb muscles and 4.5 cm for lower forelimb muscles. The ends of 
wires with bared regions had their tips stripped of insulation and then were twisted together and 
crimped inside of a 27-gauge needle that facilitated insertion into muscle.  

Mice were chronically implanted with EMG electrodes during the surgery in which 
headplates were attached as described previously (45, 61). Insertions targeted the biceps (elbow 
flexor), triceps (elbow extensor), extensor carpi radialis (wrist extensor) and palmaris longus (wrist 
flexor). As discussed previously, while our methods produce isolated recordings from antagonist 
muscle pairs, we cannot exclude the possibility that EMG recordings are influenced by the activity 
of nearby synergist muscles, since our methods do not readily allow for simultaneous recordings 
from synergist muscles in the mouse forelimb. 
           Recordings were amplified and bandpass filtered (1-75,000 Hz) using a differential 
amplifier (C3313, Intan technologies). Data was digitized and acquired at 30 kHz using the 
RHD2000 USB interface board and RHD USB interface GUI software (Intan technologies). 
Suprathreshold activity of any muscle was detected in this software to indicate forelimb 
movement. Typical thresholds were 150-500 uV.  
 
Optogenetic Inactivation 
After VGAT-ChR2-EYFP mice reached proficiency after several days of training on the 
directional reaching task, dental cement above the skull was removed and a 2-2.5 mm diameter 
craniotomy was made above the left CFA or RFA. A thin layer of Kwik-Sil (WPI) was applied 
over the dura and a 4 mm diameter #1 thickness cover glass (64-0724, Warner Instruments) was 
placed on the Kwik-Sil before it cured. The gap between the skull and the cover glass was then 
sealed with dental cement around the circumference of the glass. A small 0.5 mm diameter 
craniotomy was then opened over the other region for recording. 

During subsequent behavioral sessions, a 400 um core, 0.39 NA optical patch cable 
(FT400EMT, Thorlabs) terminating in a 2.5 mm ceramic ferrule was attached to a 
micromanipulator (SM-25A, Narishige). We set the cable at a certain distance above the surface 
of the brain for each session using a micromanipulator to ensure that the cone of light emanating 
from the cable would project a spot of light 1.5 mm in diameter onto the surface of the brain. A 
Neuropixel probe was inserted into the open craniotomy and recordings were performed as 
described in the next section, except the agarose and paraffin were omitted to avoid covering the 
window above the other region. To attenuate firing throughout motor cortical layers, we used a 
450 nm laser (MDL-III-450-200mW, Opto Engine LLC) to apply 50 ms pulses of light at an 
intensity of 9 mW/mm2 to the brain surface. To inactivate the motor cortex near the outset of 
reaching, the light pulse was triggered when either the biceps or triceps EMG signal reached a 
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threshold set to reflect activation above baseline inactivity (usually 100-500 uV). Light was 
applied during a random 50% of the trials on which the stimulation conditions were met. 
Unstimulated trials were used as controls. 
 
Neural Recording 
Acute recordings using two Neuropixel 1.0 probes (Imec) were performed as mice performed the 
reaching task. To expose the recording area, dental cement above the skull was removed and a 2 
mm diameter craniotomy was made over CFA and a 1 mm diameter was made over RFA. The 
exposed brain tissue was sealed with silicone elastomer (DentSilicone-V, Shofu or Kwik-Cast, 
World Precision Instruments). A stainless-steel screw (U-1415-01, Hirosugi-Keiki) was implanted 
above the contralateral cortex as a ground. The large tip electrode on the shank of Neuropixels was 
used as a reference. Before recording, the animal was head-fixed, the silicone elastomer was 
removed, and the Neuropixels were slowly inserted at an inclination of 30° in the  coronal plane 
and 15° in the parasagittal plane using fine micromanipulators (SM-25A, Narishige). For CFA, 
probes were inserted between 1 to 2 mm lateral and 0.5 rostral to 0.5 mm caudal of bregma. For 
RFA, probes were inserted 0.35 to 1.35 mm lateral and 1.75 to 2.75 mm rostral of bregma. Once 
the probes were in place, the brain surface was covered by agarose gel (2% agarose-HGT, Nacalai 
Tesque) and a mixture of liquid and solid paraffin, to minimize the vibration of the brain. Data 
was acquired at 30 kHz using the PXIe Acquisition Module (Imec) and SpikeGLX software 
(Janelia Research Campus). 
 
Quantification And Statistical Analysis 
All analysis was completed in MATLAB versions R2021b or later (MathWorks). 
 
EMG Processing and Analysis 
With certain exceptions discussed below, EMG measurements were downsampled to 1 kHz, high-
pass filtered at 250 Hz, rectified, and convolved with a Gaussian having a 10 ms standard 
deviation.  
 
EMG During Optogenetic Inactivation 
Before EMG trial averages were analyzed, outliers were removed. The total Euclidean distance 
between muscle time series segments from -50 ms to 0 ms before light/trial onset, summed across 
muscles, was computed (MATLAB function ‘pdist2’). Control and inactivation trials were 
combined for each muscle. The distances were then averaged across trials. A threshold was set one 
standard deviation above the mean. Trials above this threshold were excluded and were not used 
in subsequent EMG analyses. 

The absolute difference between control and inactivation trials was calculated using the 
difference between the means for EMG time series for each muscle. The fractional changes in the 
time series were corrected for the difference expected by chance due to the use of separate sets of 
trials, estimated as follows. On 1000 different iterations, we divided the control trials into random 
halves and similarly calculated an absolute difference time series using the two halves. The mean 
absolute difference time series across these 1000 iterations was computed, and this mean was 
subtracted from the absolute difference time series computed with the actual data. Lastly, we 
subtracted the mean value across the 20 ms preceding light/trial onset time from the resulting time 
series.  
 
Identification of Reach Initiation using EMG 
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Muscle activity measured from EMG recordings was used to determine the time of reach onset. 
For this analysis, EMG across all recorded muscles was summed to obtain a single trace 
representing overall muscle activity. Reach epochs were first identified using the reward tone and 
port beam break sensor traces to find trials where the animal successfully obtained the water 
droplet. As the animal’s reaching strategy could trigger an additional beam break at an incorrect 
port, successful reaches were defined as instances when the beam break at the correct port occurred 
within 50 ms of the first beam break at any port. As the rest period prior to the reward tone is at 
least 1 s in duration, the EMG baseline for each reaching trial was found by computing the average 
summed EMG between -500 ms and -100 ms relative to the reward tone. A global standard 
deviation from baseline during quiescence (no muscle activation) was identified by calculating the 
standard deviation of an arbitrarily selected quiescent period identified in the recording. A lower 
threshold for each trial is set to the EMG baseline plus 7 times the global standard deviation. The 
upper threshold is set to the 30th percentile EMG value across epochs from reward tone to beam 
break for all successful trials. The reach onset time was defined as the lower threshold crossing 
immediately preceding the first upper threshold crossing after the tone. The double threshold 
algorithm was used because on some trials, EMG would first go above and then return below the 
lower threshold before the reach, likely from a twitch or other involuntary reaction to the reward 
tone. Trials in which the EMG never crossed the upper threshold were excluded from further 
analysis. 
 
Reaching Trial Exclusion 
Due to the presence of successful reaching trials with outlying muscle activity traces, certain 
exclusionary criteria were implemented to curate a collection of reaching trials to be utilized for 
subsequent analysis. Reach duration was calculated by subtracting the reach onset time from the 
beam break time. Successful trials in which the reach duration was longer than the mean duration 
of all successful trials in the given session plus 3 times the standard deviation were flagged for 
exclusion. Reaction time was calculated by subtracting the reward time (solenoid command pulse 
onset) from the reach onset time. Successful trials in which the reach onset was less than -50 ms 
were flagged. Negative reaction times were possible in sessions where a fixed rest period was used 
because the animal was able to predict the reward tone. Ramp time was calculated by subtracting 
the reach onset time from the second threshold crossing time. Successful trials in which the ramp 
time was longer than the mean ramp time for all successful trials in that session plus 3 times the 
standard deviation were flagged. Finally, successful trials in which the standard deviation of the 
trial’s individual EMG baseline was greater than the mean baseline standard deviation for all 
successful trials in that session plus 3 times the standard deviation were flagged. The final set of 
qualifying successful trials for each session was obtained by removing any flagged trials. 
 
Spike Sorting and Unit Curation 
Putative spikes were detected and sorted with Kilosort3 (62) using default parameters. Sorting was 
improved (i.e. single unit yield was increased) by excluding pathological channels before sorting. 
These channels were identified using abnormalities in high frequency components. The fast 
Fourier transform (MATLAB function ‘fft’) was computed for each channel and the weights over 
the interval from 300 to 1000 Hz were summed. We observed that the magnitude of this sum varied 
smoothly across channels, with the exception of certain channels which were characterized by 
much larger, outlier values. After median subtracting over a window of 10 channels, pathological 
channels were identified using a threshold of the median plus or minus 3 times the standard 
deviation. Channels identified in this manner for exclusion were consistent across recordings for  
the same probe. We excluded between 5 and 10 channels per session.  
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Single units identified by Kilosort3 were further curated by removing those with abnormal 
refractory violations. Inter-spike intervals (ISIs) were calculated by taking the autocorrelation of 
the spike trains binned at 0.1 ms. A test statistic was generated by summing ISI frequencies from 
0.3 to 1.0 ms and normalizing by the summed ISI frequencies between 10 and 50 ms to account 
for overall firing rate. Units with a test statistic greater than 0.18 were excluded from any further 
analysis. This threshold is based on the frequency of violations expected in a sorted unit resulting 
from two neurons having Poisson spiking and with one of the units accounting for 90% of the 
spikes. 

Depths of sorted units were analyzed to identify cortical cells. CFA has a thickness of 
approximately ~1500 μm, and RFA has a thickness of ~1800 μm. For both CFA and RFA 
recordings, the depth of the most superior unit was used as an approximation for the cortical 
surface. Units within 1500 μm of this superior unit were considered cortical cells and subsequently 
analyzed.  

Firing rates were estimated at each ms during recordings by summing Gaussians with a 10 
ms standard deviation centered on each spike time.  

Putative pyramidal cells were identified based on waveform width. Widths for each unit 
were calculated by finding the trough-to-peak duration of the assigned waveform template. A 
histogram of waveform widths collected across all dual-probe recording sessions exhibited a 
bimodal distribution that could be well approximated by the sum of two gaussians. Using this 
model, we defined a width threshold that permits a 5% misclassification rate where tails of the 
fitted gaussians fall above or below threshold (45). A threshold of 0.417 ms was defined as the 
difference between wide-waveform and narrow-waveform cells. 

Units were also classified based on whether their peak or trough had a greater magnitude. 
This was determined by analyzing the assigned waveform template and determining whether the 
maximum absolute value was originally positive or negative.  
 
Optogenetic Inactivation Effects on Firing Patterns 
For analysis of optogenetic inactivation effects, outlier trial exclusion was done differently since 
the activity perturbation may affect trial outcome. This exclusion was done by combining both 
inactivation and control trials for each neuron. We determined the distance between firing rates 
over the 20 ms before laser/trial onset between all the trials (MATLAB function ‘pdist2’) under 
the assumption that before reach initiation, the firing rate series for each neuron should look 
similar. These distances were then averaged across neurons for each trial. A threshold was set at 
the mean of these distances plus a quarter of the standard deviation. Trials falling above this 
threshold were excluded. 

Trial-averaged neuronal firing rates for control and inactivation trials were baseline 
subtracted by subtracting the mean firing rate from -20 to 0 ms before light/trial onset from the 
entire time series for each neuron. Across-animal trial averages were calculated using the same 
number of neurons from each animal to prevent animals with more recorded neurons from 
dominating the averages. We first found which mouse of the three similarly inactivated had the 
lowest number of recorded neurons, n, and used the n highest firing rate neurons from the other 
mice.  

The absolute difference between inactivated and control trials was calculated for individual 
neurons and averaged across similarly-inactivated animals for comparison. We subtracted the 
control trial average from the inactivation trial average for each neuron, and then took the absolute 
value. The averages again used the same number of neurons from each of the three mice based on 
whichever had the least amount recorded. The resulting average difference time series for RFA- 
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and CFA-inactivated mice were baseline corrected by subtracting the mean change from -20 to 0 
ms before laser/trial onset from the entire time series.   

To verify that Channelrhodopsin2 (ChR2) stimulation of inhibitory interneurons only 
occurred in the target region and did not spread to the recorded region, we modified SALT (63), a 
method developed to detect light-responsive neurons in a statistically-based, unsupervised manner. 
A window size of 5 ms was used for baseline and test epochs and the analysis used a time resolution 
of 1 ms. In order to ensure that the resulting p-values followed a uniform distribution from 0 to 1 
under the null hypothesis of no direct light effect, a random sample from the Jansen-Shannon 
divergence values obtained from the post-stimulus firing patterns was used for comparison to an 
empirical null distribution based on firing during non-stimulus epochs. This step replaced the step 
in the original algorithm where the median of the Jansen-Shannon divergence values was taken, 
which did not yield a uniform p-value distribution under the null hypothesis. For each recording 
session, a p-value was computed for the firing of each narrow-waveform neuron following light 
onset, where a low p-value indicates a neuron more likely to directly respond to light. For our 
purposes, the approximately uniform distributions of p-values we observed (Fig. S3A-D) 
demonstrate general conformance to the null hypothesis of no direct ChR2 activation in the 
recorded region.  
 
Delayed Latents Across Groups (DLAG) 
The application of DLAG used firing patterns during qualifying successful trials (see above). To 
avoid covariance matrix rank deficiency in fitting DLAG models, we excluded low-firing neurons 
by setting a threshold such that any neuron that spiked fewer times than half the number of trials 
was excluded. For remaining neurons simultaneously recorded in a given session, firing rate 
matrices were assembled for each region, where each element was a given neuron’s firing rate 
average over a 20 ms window. Trials spanned from 200 ms before to 800 ms after reach initiation. 
Matrices were thus N neurons x 50 time bins. The DLAG model was then fit using these matrices 
for each trial. Positive delay values indicated latent variables where CFA led RFA, and a negative 
delay value indicated latent variables where RFA led CFA.  

To probe the robustness of observed results, we varied the numbers of across-region and 
within-region latent variable dimensionalities (i.e. the numbers of latent variables). Models were 
fit to each session’s data with every combination of across-region dimensionalities of 2 to 6 and 
within-region dimensionalities of 2 to 6 in each area; therefore, sessions were eligible only if each 
area had at least 12 remaining neurons (n = 15 sessions). Any across-region latent variable with a 
delay that failed to converge or reached the boundary values of ±200 ms in 10,000 iterations was 
removed from the analysis.  

To test if identified delays were significantly different from zero, bootstrapping was 
performed by sampling 100 trials from the set of existing trials with replacement, as in the 
originally published method (44). A delay was considered statistically significant if less than 5% 
of the bootstrapped samples performed just as well with a model with a 0 ms delay as they did 
with the model with the original calculated delay. Across-region latent variables with non-
significant delays were removed from the analysis.  

For each session, we calculated the proportions of variance captured by across-region 
latents with statistically significant delays. We grouped the latents by the sign of their delays (i.e. 
which region led), and each across-region latent’s variance was defined as the variance captured 
in the lagging region (i.e. the downstream region).  
 
Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS) 
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CCA (MATLAB function ‘canoncorr’) and PLS were performed on matrices comprising the trial 
averaged firing rates for all neurons from an animal, concatenating averages aligned on both reach 
onset and spout contact for reaches to each of the four spouts (i.e. eight trial averages are 
concatenated). Averages spanned from 99 ms before to 100 ms after the alignment point, resulting 
in matrices of size 1600 time points x NCFA neurons and 1600 time points x NRFA neurons for each 
recording session, where NCFA is the number of included neurons from CFA and NRFA is the 
number of included neurons from RFA. We denote these matrices XCFA and XRFA in what follows. 
PCA was performed on these matrices and on average, 25 principal components were able to 
capture 95% of the neural activity variance, and so 25 was chosen as the number of PLS 
components and canonical variables for the subsequent analyses, enabling comparison to PCA 
results. 

To mitigate matrix rank deficiency for CCA, principal component analysis was performed 
on the neural activity matrices and the first 25 principal components were then used for the CCA. 
Since the resulting 25 canonical vectors (CVs) for each data matrix are not necessarily orthogonal, 
they were orthogonalized in order to compute the additional neural activity captured by successive 
CVs, enabling comparisons with principal components. Weighted averages of Pearson correlations 
for all pairs of CVs were computed by weighting the Pearson correlation of each CV pair by the 
average of the additional neural activity variance captured by each corresponding orthogonalized 
CV from the pair. To account for synaptic delay between RFA and CFA, lags were introduced in 
the same way as stated below for the PLS analysis. 

For PLS, the PLS-SVD variant (49) was used. PLS-SVD is done by performing singular 
value decomposition on the cross-covariance matrix XTY which in our case is XRFA

T XCFA, yielding  
 

𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇  =  𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇  ⋅ 𝑋𝑋𝐶𝐶𝑅𝑅𝑅𝑅 
 
where the columns of U define axes in RFA activity space and the columns of V define axes in 
CFA activity space. The matrix S is a diagonal matrix where the nth diagonal element is the 
covariance of RFA activity projected onto the nth column of U and CFA activity projected onto the 
nth column of V. The trace of S can be interpreted as how much total covariation between RFA and 
CFA activity is captured by the PLS components. A necessary additional step is to divide this 
number by the total variance in neural activity in these two matrices in order to normalize by how 
active these brain regions are during the reach and grasp epochs that are being analyzed.  
 

𝑐𝑐 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡(𝑈𝑈) / (𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅  +  𝑣𝑣𝐶𝐶𝑅𝑅𝑅𝑅) 
 

where vRFA and vCFA are the sum of the variances of the rows of XRFA and XCFA respectively. The 
original activity matrices can then be projected onto their respective axes (by XRFA * U for RFA, 
XCFA * V for CFA) to produce time courses in neural activity space such that corresponding pairs 
will maximally covary, i.e. the projection of XRFA onto the kth column of U and XCFA onto the kth 
column of V will have covariance equal to the kth diagonal element of S (Fig. S4). 

PLS-SVD was similarly performed after shifting one activity matrix in time relative to the 
other. This was done by keeping the same XRFA matrix for each animal, but constructing a new 
XCFA matrix. The reach and grasp onset times were shifted by an amount between -30 and 30 ms 
and the trial epochs -99 to 100 ms around each shifted time point were extracted, trial averaged, 
and concatenated just as before. PLS-SVD was then performed and c was recomputed for each lag 
from -30 to 30 for each animal.  
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Firing Pattern Predictivity Measurements 
These measurements were performed on a subset of simultaneously recorded neuron pairs from 
dual probe recordings. Only wide-waveform, putative pyramidal neurons having a maximum 
waveform deflection in the negative direction were used. Average firing rate was calculated for 
each neuron across all qualifying successful trials over the window from 200 ms before to 800 
after reach initiation. The ten thousand neuron pairs with the highest average firing rate products 
across all sessions were identified. Note that pairs only included neurons that belonged to the same 
session, as simultaneous recording was required for the trial-by-trial predictivity analysis 
performed here. 

After calculating the firing rate distribution of the CFA and RFA cells belonging to the top 
ten thousand pairs, CFA cells had higher firing than RFA cells on average. Firing pattern prediction 
can be heavily influenced by differences in firing rate, since statistical power can be related to the 
number of spikes observed. Thus, we developed an algorithm to match the distributions of firing 
rates by excluding certain pairs. We first generated histograms of the log firing rate for the CFA 
and RFA cells belonging to the top ten thousand pairs binned at 0.05 log spikes per second. Note 
that the multiplicity of a given neuron in these distributions matched the number of pairs the given 
neuron appeared in. To start the algorithm, a firing rate bin with more CFA cells than RFA cells 
was chosen. We then randomly selected a cell pair that contained a CFA cell from this bin and an 
RFA cell from a firing rate bin which had more RFA cells than CFA cells. To better match the 
firing rate distributions, the high firing rate CFA cell was then replaced with a different CFA cell 
from the same session and firing rate bin as the selected RFA cell. The selection of new CFA cells 
was allowed to occur with replacement. This selection process was repeated until all firing rate 
bins contained the same number of CFA and RFA cells, or when no other cell pairs could be 
created to match the binned firing rate distributions.  

 
Transfer Entropy 
Transfer entropy analysis was performed using a publicly available algorithm (38). This algorithm 
takes the spike trains of two neurons (one source neuron, one target neuron), and compares how 
well the spiking of the target neuron can be predicted when considering its past history as well as 
the past history of the source neuron. The better the source neuron’s past history improves the 
prediction of the target neuron’s spiking activity compared to the source neuron’s own past history 
alone, the higher the transfer entropy (TE) value. In this case, to increase our statistical power, 
rather than using the trial segments used for Granger causality described below, we extracted and 
used spiking during epochs of movement in the following way. First, rectified and filtered EMG 
recordings from the four muscles were summed. Then, a period of approximately one second of 
muscle quiescence was manually identified in this summed time series. A threshold was set at the 
average value over this period plus 7 times the standard deviation over this period, and movement 
epochs were defined as when summed muscle activity surpassed this threshold. To include brief 
reductions in muscle activity that happen during ongoing movement, any epoch of 100 ms or less 
below this threshold was reclassified as movement. Additionally, periods of movement less than 
10 ms were reclassified as non-movement since this was unlikely to reflect meaningful movement. 
The neural activity during these movement epochs was then extracted and concatenated. However, 
when concatenating epochs, the discontinuous skips in time from the end of one epoch to the 
beginning of the next could, although very sparse, cause inaccurate calculations of the transfer 
entropy by counting spikes from one time point as causing spikes at a time point much farther in 
the future. To circumvent this issue, pads of zeros were inserted between each movement epoch 
so that no spikes in one epoch could be calculated as causing spikes in the next movement epoch. 
To calculate transfer entropy, we used TEJ->I(d) from eq. 5 in Ito 2011. We calculated TEJ->I(d) for 
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d = 0,1,2,...,30 ms and took the maximum value as our measurement for the transfer entropy 
between two neurons, the observed TE value. 

In order to determine the significance of the observed TE value for each neuron pair, we 
obtain a corresponding p value by creating empirical null distributions, i.e. TE values expected in 
the absence of coupled firing between the neurons. For each neuron pair, the concatenated spike 
train of the source neuron is circularly permuted (MATLAB function ‘circshift’) by values no less 
than 3 seconds and no more than T-3 seconds (where T is the duration of the concatenated spike 
train) so that any temporal relationship between the two spike trains is extinguished while 
preserving the spiking statistics and firing rate patterns of each individual spike train. After this 
permutation, the TE was measured as before. This process was done 300 times to form a null 
distribution of TE values for each neuron pair and a p value was calculated by taking the fraction 
of null TE values that were higher than the observed TE value.  
 
Granger Causality 
Point-process Granger causality with exogenous temporal modulations (GC; 39), was utilized to 
assess directional bias in the predictivity of neuronal firing between CFA and RFA. Using GC, 
predictive models are generated to fit spiking data of a target neuron using the spiking data from 
the entire neuronal ensemble, both with and without the source neuron. In our conditions, this 
neural ensemble contains neurons from both CFA and RFA. The method yields a test statistic for 
each source-target neuron pair by computing the difference in accuracy of the prediction from 
these two models. The larger difference, the more unique information the source neuron contains 
about the spiking of the target neuron. This test statistic follows a chi-squared distribution, yielding 
p-values for each source-target pair. 

 Binary spike trains for each neuron belonging to the top ten thousand firing rate CFA/RFA 
neuronal pairs were generated. Only spiking data between 200 ms prior to reach initiation and 800 
ms after reach initiation were used. GC was conducted on a per-session basis using a random 
selection of 40 qualifying successful trials (the same for all pairs) to limit computation time. Global 
regression of exogenous temporal modulations were optimized to bins of either 1 ms, 5 ms, 8 ms, 
10 ms, 20 ms, or 25 ms. The duration of spiking history incorporated in the model was fixed at 30 
ms to force all computed test statistics to follow the same chi-square distribution.  

For certain source-target pairs, the model did not converge on the target spiking data within 
tolerance. We removed these pairs from the analysis. Additionally, for some pairs, the model 
would be overfit and predict the target data perfectly. We also removed these pairs from further 
analysis. 

Following these exclusions, we observed a preponderance of pairs with p-values greater 
than 0.95. We found that the firing rate product of these high p-values pairs were heavily skewed 
towards low values (Fig. S6A). These low firing rate pairs likely did not meet the assumptions of 
GC and were removed from further analysis. Following this exclusion, the firing rate distributions 
of RFA and CFA neurons belonging to this final set of neuronal pairs were reanalyzed and found 
not to be appreciably different (Fig. S6B-C). 

The GC algorithm additionally computes the model difference test statistic for all within-
region pairs. Using a subset of these pairs, the predictive power of the CFA and RFA intraregional 
neuronal population was also assessed. GC calculations for both across-region and within-region 
pairs were also repeated using spike trains containing only the 300 ms immediately prior to reach 
initiation. 
 
Convergent Cross Mapping 
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Convergent Cross Mapping (CCM) was implemented using a modified version of MATLAB 
function ‘Sugi’ (64). Here we used the algorithm to quantify how well the activity of the source 
(casual) neuron can be predicted by the historical dynamics of a target (effector) neuron. While 
Transfer Entropy (TE) and Granger Causality (GC) assume the observations underlie a purely 
stochastic system, CCM can uncover casual interactions in a dynamical system with a weak to 
moderate deterministic component and where casual variables do not contain unique information.  

For each pair of source and target neurons, the historical dynamics of the target neuron can 
be represented by a "shadow manifold," where every point on the shadow manifold is constructed 
from time-lagged observations. Intuitively, we can think of nearby points on the shadow manifold 
as having similar dynamics. Thus, if the source neuron has casual interactions with the target 
neuron, then activity of the source neuron at time t can be predicted from a cluster of nearby points 
at time t in the shadow manifold. CCM quantifies these casual interactions by finding the 
correlation coefficient between the predicted source activity calculated using a cluster of nearby 
points in the target manifold at time t and the actual source activity at the same time, a metric 
termed “cross-map skill” (50, 65).  

The preprocessing and trial extraction followed the same steps used for Granger causality 
calculations. Five thousand RFA-CFA neuron pairs were curated by taking the top ten thousand 
pairs described above and excluding the bottom 50% when sorted by lower firing rate of the pair. 
This avoided anomalous results from CCM calculations that seemed to depend on epochs with 
very few or no spikes. Spike trains were then binned at 1 ms and smoothed using a gaussian kernel 
with a sigma of 10 ms. For every neuron pair, 30 trials were randomly sampled from all qualifying 
successful trials to reduce computation time, and shadow manifolds were constructed from the 
previous 500 ms of activity in the target neuron within the same trial. CCM was then applied to 
these 30 trials to calculate a cross map skill value, quantifying the correlation between the time 
series of predicted source activity and the time series of actual source activity. To account for non-
instantaneous interactions between neurons, this process was repeated at time delays up to 30 ms, 
incrementing every 3 ms (i.e. 0, 3ms…, 30 ms), keeping the maximal cross map skill value and its 
associated delay.  

In order to determine whether these observed cross map skill values were significant, an 
empirical null distribution was generated by disrupting the temporal relationship between pairs of 
neurons. For every pair, we repeated the same circular permutation method used with transfer 
entropy (300 permutations), and applied CCM to generate cross-map skill values, making sure to 
use the same 30 trials and optimal time delay used to obtain the actual cross map skill for the given 
pair. P-values for each pair were obtained by counting the fraction of null cross map skill values 
that were greater than the observed cross map skill. 

Applying CCM involved choosing several hyperparameters. E, the embedding dimension 
of the shadow manifold, can be thought of as the number of time lags that optimally captures the 
historical dynamics of the target neuron; if E is set to 4, then each dimension on the shadow 
manifold represents the neurons activity at times [t, t-1 ms, t-2 ms, t-3 ms]. To determine the 
optimal value for E, we applied a simplex projection to each individual neuron in CFA and RFA 
to determine how many lagged dimensions best forecast a neuron’s own future activity (66). This 
optimal embedding dimension for both CFA and RFA neurons was found to be 4. The number of 
nearby neighbors, K, searched for in the target shadow manifold was kept at 5 (E+1). 𝜏𝜏, which 
indicates how many timesteps each shadow manifold dimension is lagged in time [t, t-1*𝜏𝜏 ms, t-
2*𝜏𝜏 ms…], was set to 1.  
 
Network Modeling 
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A recurrent neural network was trained to replicate experimental data. The package PsychRNN 
(67) was used to configure the network architecture, inputs, outputs, training, and simulation in 
the following way. Two neural populations of 500 units each, one representing RFA and the other 
representing CFA, were created with 80% excitatory units and 20% inhibitory units. The 
connection probability between neurons within each region was 5% and additional sparse 
connections were created from excitatory units in each region to neurons in the other region with 
a connection probability of 0.1%; no inhibitory units projected to the opposite region. A subset of 
100 excitatory units from each region were chosen to be the units whose activity was trained to 
reproduce the observed muscle activity traces; these neurons were also stipulated not to have any 
projections to the opposite brain region. The simulated muscle activity output was the weighted 
sum of the activity of these 200 neurons, with weights allowed to vary during training. A second 
subset of 100 excitatory units from each region were chosen to be the units whose activity was 
trained to reproduce the experimental neural activity traces.  

Experimental data used for training all models consisted of averaged neural or muscle 
activity spanning from 50 before to 100 ms after reach onset from successful reaches. Averages 
from one animal were used for each of three conditions (CFA inactivation, RFA inactivation, dual 
recording/no inactivation). However, since animals were used for only one type of experiment, 
training data reflected data from three different animals. 

The simulated summed neural activity for each region was the weighted sum of each set of 
100 neurons, with weights held constant to replicate how experimentally observed averages were 
calculated. To simulate activation of inhibitory interneurons expressing ChR2, all inhibitory units 
in the “inactivated” region also received a “light” signal as input. We modeled the light signal by 
concatenating two sigmoid curves, each with a maximum value of 1, using the following equation: 
 

𝑠𝑠(𝑡𝑡)  = ± 1
(1+𝑒𝑒−𝑘𝑘 ∗ 𝑡𝑡)

  
 
The ± denotes that the sign of the numerator of the two sigmoids varies. The first sigmoid had a 
positive numerator and ramps up from 0 to 1, while the second had a negative numerator so that it 
starts at 1 and decays to 0. The first sigmoid had k set to 0.5 so that the curve started to ramp up 
(surpassing a value of 0.01) at reach onset and reached 0.95 15 ms later. The signal sustained its 
maximum value of 1 until 50 ms after reach onset, and the second sigmoid had k = 1 so that the 
signal had a value < 0.01 5 ms later. All units also received a ‘Go’ signal as input in each of the 
three conditions. The ‘Go’ signal similarly was a sigmoid function that started at a value of 0 and 
had k = 0.3, such that the curve started to ramp up (surpassing a value of 0.01) 40 ms before reach 
onset, reached 0.95 25 ms later, and then sustained its maximum value of 1 for the remainder of 
the trial.  

Training consisted of up to 100,000 trials where each was randomly selected to be one of 
the three conditions. For each trial, the output of the muscle output units was measured along with 
the neural activity output, either from the non-inactivated brain region or both regions if the trial 
was a no-inactivation trial. The mean squared error between the model outputs and experimentally 
observed traces was computed and used as input to the cost function, which was minimized as 
model weights were updated. Weights for connections between units within and across regions 
were allowed to update but certain constraints were applied. Positive weights remained positive 
and negative weights remained negative in order to keep the number of excitatory and inhibitory 
units constant. Weights between units that were initialized to be 0 remained 0 throughout training 
to keep the number of connections within and across regions constant. In the symmetric case, an 
additional term was added to the cost function: the absolute value of the difference between the 
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sums of the weights of the across-region connections in each direction (RFA→CFA and 
CFA→RFA). As mentioned previously, output weights from the muscle output units were allowed 
to fluctuate throughout training but output weights from the neural activity output units remained 
fixed. Biases on all units also remained fixed during training.  
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Fig. S1. Forelimb muscle activity and cortical inactivation. (A) Trial-averaged activity of four 
recorded muscles (black) ± SEM (gray, n=176 trials) for one mouse during directional reaching 
towards each of four spouts. Separate averages are aligned on reach onset or spout contact (grasp). 
Vertical scale bar in (A) and (B) reflects standard deviation of Z-scored muscle activity. (B) Mean 
muscle activity ± SEM for trials without (black) or with inactivation (50 ms, cyan bar) of RFA 
(top, magenta) or CFA (bottom, blue) triggered on reach onset. Left image shows the position of 
the light stimulus on RFA and CFA. (C) Mean ± SEM absolute difference between inactivation 
and control trial averages across all recorded muscles (n = 12 from 3 animals) for inactivation (50 
ms, cyan bar) of RFA or CFA. For baseline subtraction, control trials were resampled to estimate 
the baseline difference expected by chance. (D) Absolute difference between inactivation and 
control trials averaged over three epochs after trial/light onset, for individual animals (circles) and 
the mean across animals (black bars).  
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Fig. S2. RFA and CFA activity during directional reaching in mice. (A) For four example 
neurons, spike rasters (top) and binned firing rate (bottom) across all successful reach trials to each 
spout, aligned on reach onset (black arrowheads) and spout contact (Grasp, gray arrowheads). 
Bottom row shows the corresponding time series for the first principal component of muscle 
activity. (B) CFA (blue) and RFA (magenta) activity projected onto their respective first two 
principal components, from the recording involving the neurons shown in (A). (C)-(F) are similar 
to Fig. 1E-H, but include all components identified by DLAG having lags between -200 and 200 
ms, not just those having lags between -100 and 100 ms. (C),(D) Histogram of DLAG component 
lags that were significantly different from zero, either unweighted (C) or weighted (D) by the 
variance each component captures in the lagging region, for all recording sessions together. (E),(F) 
Mean ± SEM fractional activity variance (n = 21 recording sessions) captured in the lagging region 
by DLAG components when the lag was significantly different from zero when varying the within-
region (E) or the across-region (F) dimensionality. 
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Fig. S3. Effects of CFA and RFA inactivation on firing rates in the other region.  (A-D) 
Histograms of p-values from our modified version of SALT for narrow-waveform neurons 
recorded in one session (A,C) or all sessions (B,D) in either CFA (A,B) or RFA (C,D) while 
inactivating the other region. The uniformness of these distributions indicates an absence of 
appreciable violation of the null hypotheses that neurons are not directly activated by light. (E-L) 
Mean firing rate ± SEM for wide-waveform (E-H) or narrow-waveform (I-L) neurons for one 
animal (E,G,I,K) or three animals (F,H,J,L) recorded in CFA (E,F,I,J) or RFA (G,H,K,L) while 
inactivating the other region. Averages combining cells from multiple animals (F,J,H,L) used the 
same number of cells from each animal. (F). The cyan rectangle indicates when the light was 
applied. (M-P) Mean absolute firing rate change ± SEM between control and inactivation trials 
(M,O) and mean absolute firing rate difference between control and inactivation trials averaged 
from light/trial onset to 25, 50, or 100 ms afterwards (N,P) for wide- and narrow-waveform 
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neurons recorded in CFA (M,N) or RFA (O,P) during inactivation of the other region. Black bars 
show mean across animals. 
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Fig. S4. PLS alignment of RFA and CFA activity. (A) For the same animal used in Fig. 3A, four 
PLS components aligned on reach onset or spout contact (grasp) for reaches to each spout. Bottom 
row shows the corresponding time series for the first principal component of muscle activity. (B) 
Mean ± SEM summed covariance of CFA and RFA PLS components computed when lagging 
CFA activity relative to RFA. We found no lag where components exhibit an appreciably greater 
total covariance. (C) Mean ± SEM Pearson correlation of canonical variable pairs computed by 
aligning CFA activity to itself, but lagging one copy relative to the other, for the average over all 
pairs either without (purple) or with weighting each correlation value by the variance captured by 
the given pair (black). (D) Same as (C), but when initially shifting one copy 10 ms relative to the 
other. In this case, we expect the alignment to be maximal at a lag of -10 ms. 
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Fig. S5. Additional plots from firing pattern predictivity calculations. (A),(B) Firing rate 
distribution for CFA (blue) and RFA (magenta) neurons belonging to the 10,000 pairs with the 
highest firing rate product across all 21 recording sessions, before (A) and after (B) applying our 
algorithm for equalizing the firing rate distributions to avoid imparting a directional bias in firing 
pattern prediction calculations. In (A),(B), and (E-H), box plots on top show the minimum, 1st, 
2nd, and 3rd quartiles, and maximum values. (C),(D) P-value distributions from calculations of 
Granger causality and transfer entropy using firing patterns of across-region neuron pairs, but only 
from the 300 ms prior to reach onset. (E-H) Distributions of metric values reflecting the improved 
prediction of target neuron firing using source neuron firing from the 300 ms prior to reach onset 
for across-region neuron pairs, including all pairs (E,F), and those for which the corresponding p-
value fell below a false discovery-corrected threshold (G,H). H is empty because no pairs fell 
below the threshold. 

  
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.23.559136doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.23.559136


31 
 

 

Fig. S6. Further neuron pair exclusion to avoid calculation anomalies. (A) Illustrates the 
calculation of a firing rate product threshold to eliminate an abnormal number of p values near 1. 
We determined that these anomalous values resulted from pairs with lower firing rate products, 
for which statistical assumptions of calculations likely were not met. Trace shows the fraction of 
p values greater than 0.95 at different firing rate product thresholds on the pairs used for Granger 
causality calculations. Red line shows the expected fraction greater than 0.95 based on the p value 
distribution. (B),(C) Firing rate distribution for CFA and RFA neurons included in pairs analyzed 
using Granger causality (B) or convergent cross mapping (C) after FR product threshold exclusion. 
In (B),(C), box plots on top show the minimum, 1st, 2nd, and 3rd quartiles, and maximum values. 
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Movie S1. Water reaching, side view. A side view of a mouse completing a trial of the water 
reaching task. LEDs are hidden behind the water ports from this view angle. 

Movie S2. Water reaching, rear view. A rear view of a mouse completing three trials of the water 
reaching task. LEDs can be seen in the middle of the screen. Graphics indicate when the LED, Go 
cue tone (‘Cue’), and water dispensation (‘Reward’) occur. Rewards are achieved when the mouse 
maintains its hand on the rung for the duration of the rest period. 
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