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Abstract 22 

 23 

Bistability in spinal motoneurons supports tonic spike activity in the absence of excitatory 24 

drive. Earlier work in adult preparations suggested that smaller motoneurons innervating slow 25 

antigravity muscle fibers are more likely to generate bistability for postural maintenance. 26 

However, whether large motoneurons innervating fast-fatigable muscle fibers display bistability 27 

related to postural tone is still controversial. To address this, we examined the relationship 28 

between soma size and bistability in lumbar ventrolateral -motoneurons of ChAT-GFP and Hb9-29 

GFP mice across different developmental stages: neonatal (P2-P7), young (P7-P14) and mature 30 

(P21-P25). We found that as neuron size increases, the prevalence of bistability rises. Smaller -31 

motoneurons lack bistability, while larger fast -motoneurons (MMP-9+/Hb9+) with a soma area 32 

≥ 400µm2 exhibit significantly higher bistability. Ionic currents associated with bistability, 33 

including the persistent Nav1.6 current, thermosensitive Trpm5 Ca2+-activated Na+ current and 34 

the slowly inactivating Kv1.2 current, also scale with cell size. Serotonin evokes full bistability in 35 

large motoneurons with partial bistable properties, but not in small motoneurons. Our study 36 

provides important insights into the neural mechanisms underlying bistability and how 37 

motoneuron size dictates this process. 38 
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New and Noteworthy 44 

Bistability is not a common feature of all mouse spinal motoneurons.  It is absent in small, slow 45 

motoneurons but present in most large, fast motoneurons.  This difference results from 46 

differential expression of ionic currents that enable bistability, which are highly expressed in large 47 

motoneurons but small or absent in small motoneurons.  These results support a possible role 48 

for fast motoneurons in maintenance of tonic posture in addition to their known roles in fast 49 

movements. 50 

 51 
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INTRODUCTION 53 

 54 

Spinal motoneurons not only transmit central commands for movement to muscles but 55 

also shape motor output and muscle contraction through nonlinear firing properties (1). One such 56 

property is bistability, where the motoneuron can switch between silent and active states, 57 

depending on synaptic input or current injection. Originally detected as plateau potentials in 58 

invertebrate neurons (2-9), bistability was soon found in vertebrates (10), specifically in spinal 59 

motoneurons (11-16). While often induced by neuromodulators such as serotonin (13, 15-17), 60 

bistability can also arise when motoneurons are depolarized to near threshold and recorded 61 

under natural ionic and temperature conditions (18, 19).  62 

The active state in bistable motoneurons is mainly mediated by slow ionic currents 63 

including persistent Cav1.3 (13-16) and Nav1.6 current (20, 21) Trpm5-mediated Ca2-activated 64 

Na+ current (18, 19, 22). Drawing from a series of our previous investigations, we can summarize 65 

the process as follows: The initial depolarization, caused by the slow inactivation of Kv1.2 66 

potassium channels (23), activates the persistent Nav1.6 current leading to spiking activity 67 

(Drouillas et al., submitted). This then prompts Ca2+ entry through the recruitment of Cav1.3 68 

channels, initiating a Ca2+-induced Ca2+-released process  (18). This process ultimately activates 69 

thermosensitive Trpm5 channels, which are the primary source of the plateau depolarization to 70 

sustain repetitive firing (19).  Other currents such as the HCN-type hyperpolarization-activated 71 

inward current, Ih (24, 25) and reduction of calcium-activated outward currents (17, 24) are also 72 

involved in different neurons. 73 
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Despite extensive studies, it remains unclear whether all motoneurons exhibit bistability. 74 

In decerebrate cats, small motoneurons characterized by slow conduction velocities and low 75 

activation thresholds, appear to have more pronounced bistability than large ones (15, 16). This 76 

observation suggests that motoneurons innervating slow (S) or fast fatigue-resistant (FR) muscle 77 

fibers show higher bistability than those linked to fast fatigable (FF) muscle fibers. Notably, S 78 

motoneurons, primarily associated with postural adjustments and slow movements, are believed 79 

to use their bistability for efficient postural maintenance, ensuring minimal energy expenditure 80 

(15, 16, 26). 81 

To further investigate the size distribution of bistability, we conducted a study on 82 

genetically labeled -motoneurons in young mice (postnatal day (P) 1-25). Unlike the cat 83 

studies(15, 16), we found that the largest -motoneurons showed stronger bistable firing 84 

properties, while the smallest neurons were rarely bistable. There was a strong correlation 85 

between bistability and the amplitudes of the ionic currents known to support it. Motoneurons 86 

with intermediate sizes often showed partial bistability, which could be converted to full 87 

bistability by serotonin. These unexpected results lead to a reappraisal of the role of larger 88 

motoneurons in bistability and postural control. 89 

 90 

 91 

 92 

 93 

 94 
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MATERIALS AND METHODS 96 

 97 

Animals and preparation 98 

Hb9-GFP mice were kindly provided by B. Pettmann and Jackson Laboratories (strain 005029).  99 

ChAT-Cre mice were obtained from Jackson Laboratories (strain 007902) and crossed to Rosa-26-100 

floxed GFP mice.  Cornell:  All animal protocols were approved by the Cornell Institutional Animal 101 

Use and Care Committee and were in accordance with NIH guidelines. Marseille: All animal care 102 

and use conformed to French regulations (Décret 2010-118) and were approved by the local 103 

ethics committee (Comité d’Ethique en Neurosciences INT-Marseille, CE71 Nb A1301404, 104 

authorization Nb 2018110819197361).  Animals were housed on a 12 hr day/night cycle with ad 105 

libitum access to water and food.  The room temperature was maintained between 20 and 21C. 106 

 107 

Mice were cryoanaesthetized (P2-P7) or anaesthetized (P8-P25) with intraperitoneal injection of 108 

a mixture of ketamine/xylazine (100mg/kg and 10 mg/kg, respectively). They were then 109 

decapitated, eviscerated and the spinal cord removed by laminectomy, and placed in ice cold (1-110 

2) aCSF containing (in mM): 252 sucrose, 3 KCl, 1.25 KH2PO4, 4 MgSO4, 0.2 CaCl2, 26 NaHCO3, 25 111 

D-glucose, pH 7.4, bubbled with 95% O2 and 5% CO2. The meninges were removed and the 112 

posterior cord (L3-S5) imbedded in agarose. The same solution was used for slicing. 325-350µm 113 

sections were prepared from the L4-L5 region and transferred to recording aCSF containing (in 114 

mM): 120 NaCl, 3 KCl, 1.25 NaH2PO4, 1.3 MgSO4, 1.2 CaCl2, 25 NaHCO3, 20 D-glucose, pH 7.4, 32-115 

34°C. In most experiments (P1-P14), blockers of fast synaptic transmission (CNQX and D,L-AP5 or 116 

kynurenic acid, strychnine, and bicuculline) were added in the aCSF to minimize synaptic 117 
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contributions to bistability.  To isolate the persistent Na+ currents (INaP) during voltage-clamp 118 

experiments we used a modified aCSF containing (in mM): 100 NaCl, 3 KCl, 1.25 NaH2PO4, 1.3 119 

MgSO4, 3.6 MgCl2, 1.2 CaCl2, 25 NaHCO3, 40 D-glucose, 10 TEA-Cl and 0.1 CdCl2.  120 

 121 

Mature mice (P21-25) were treated as the younger mice, except that the cord was sliced in an ice 122 

cold slicing solution (1-2) containing (in mM): 130 K-gluconate, 15 KCl, 0.05 EGTA, 20 HEPES, 25 123 

D-glucose, 3 kynurenic acid, and pH 7.4 with NAOH (27).  After a resting period of 30-60 min, 124 

slices were transferred to the recording chamber and superfused with recording aCSF at 32°C (28) 125 

without addition of fast synaptic transmission blockers. 126 

 127 

 128 

Electrophysiological methods 129 

 130 

Hb9-GFP and ChAT-CFP neurons were visualized in the ventrolateral region of lamina IX in L4-L5 131 

slices. Whole-cell patch-clamp recordings were made using electrodes (2-6M) pulled from 132 

borosilicate glass capillaries (1.5 mm OD, 1.12 mm ID; World Precision Instruments).  They were 133 

filled with a pipette solution containing (in mM): 140 K+-gluconate, 5 NaCl, 2 MgCl2, 10 HEPES, 0.5 134 

EGTA, 2 ATP, 0.4 GTP, pH 7.3. Patch clamp recordings were made using a Multiclamp 700B 135 

amplifier driven by PClamp 10 software (Molecular Devices).  Recordings were digitized on-line 136 

and filtered at 10 kHz (Digidata 1322A or 1440A, Molecular Devices). Pipette and neuronal 137 

capacitive currents were canceled, and, after breakthrough, series access resistance was 138 
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compensated and monitored.  The recording was allowed to stabilize for at least 2 min after 139 

establishing whole-cell access before recording was started.  140 

 141 

Drug list 142 

 143 

All solutions were oxygenated with 95% O2/5% CO2. All salt compounds, as well as 144 

tetraethylammonium chloride (TEA; #T2265), Triphenylphosphine oxide (TPPO; #T84603), 145 

Serotonin creatinine sulfate monohydrate (5-HT; #H7752), 6-Cyano-7-nitroquinoxaline-2,3-dione 146 

(CNQX, #5.04914), D-(-)-2-Amino-5-phosphonopentanoic Acid (DL-AP5 ; #165304), strychnine 147 

(#S0532), bicuculline (#5.05875) , Kynurenic Acid (#K3375) and Amphotericin B (#A4888) were 148 

obtained from Sigma-Aldrich. Tetrodotoxin (TTX; #1078) was obtained from Tocris Bioscience. 149 

 150 

Immunohistochemistry: Spinal cords from 10-12-day-old Hb9-GFP mice were removed and fixed 151 

for 5-6 h in 4% paraformaldehyde (PFA) prepared in phosphate buffer saline (PBS), then rinsed in 152 

PBS and cryoprotected overnight in 20% sucrose-PBS at 4°C. Spinal cords were frozen in OCT 153 

medium (Tissue Tek), and 30 μm cryosections were collected from the L4-L5 segments. After 154 

washing in PBS 3×5 min, the slides were incubated for 1 h in a blocking solution (BSA 1%, Normal 155 

Donkey Serum 3% in PBS) with 0.2% triton X-100 and for 12 h at 4 °C in a humidified chamber 156 

with the primary antibody: mouse-anti-NeuN (Neuronal Nuclei, Sigma-Aldrich MAB377) or goat-157 

anti-MMP-9 (Matrix metallopeptidase 9, Sigma-Aldrich M9570). Both antibodies were diluted in 158 

the blocking solution with 0.2% Triton X-100 (1:1000 and 1:500 for anti-NeuN and anti-MMP-9, 159 

respectively). Slides were washed 3×5 min in PBS and incubated for 2 h with an Alexa Fluor® Plus 160 
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555- conjugated secondary antibody (Invitrogen A32816) diluted in the blocking solution. After 3 161 

washes of 5 min in PBS, they were mounted with a gelatinous aqueous medium. Images were 162 

acquired using a confocal microscope (LSM700, Zeiss) equipped with a 40x oil objective and 163 

processed with the Zen software (Zeiss). 164 

 165 

Analysis and statistics 166 

 167 

Electrophysiological data were analyzed with Clampfit 10 software (Molecular Devices).  Only cells 168 

with a stable membrane potential below -60 mV, stable access resistance, and action potential 169 

amplitude larger than 60 mV were analyzed. Reported membrane potentials were not corrected 170 

for liquid junction potentials. Statistical analysis was carried out mainly using GraphPad Prism and 171 

Matlab (MathWorks) software. Fisher’s exact test, two-tailed paired and unpaired t-tests were 172 

used as needed; p values <0.05 were considered significant. Each statistical test is indicated in the 173 

figure legends. In the figures, data are presented as mean  SEM for the histograms. Median and 174 

quartiles are represented in each violin plot.  175 

 176 

  177 
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RESULTS 178 

 179 

Large ventrolateral spinal neurons are fast -motoneurons 180 

 181 

Motoneurons in the ventrolateral spinal cord were initially identified by their expression 182 

of choline acetyltransferase (ChAT) in ChAT-GFP mice. We found a number of labeled neurons of 183 

many sizes (data not shown); these include both -motoneurons driving extrafusal muscle fibers 184 

and smaller -motoneurons innervating intrafusal muscles that regulate muscle spindles’ 185 

responsiveness to stretch. These motoneuron subtypes can be distinguished by differential 186 

expression of a number of proteins.  While the transcription factor Hb9 is a marker for both - 187 

and  -motoneuron in Hb9-nls-LacZ animals (29), only -motoneurons express strong GFP labeling 188 

in the Hb9-GFP mice (29). We thus used Hb9-GFP mice to identify -motoneurons in the L4-L5 189 

ventrolateral spinal cord, preferentially linked to extensor muscles, from postnatal day 1 (P1) to 190 

P25.   191 

The transcription factor NeuN is commonly used to distinguish neurons from glial cells. In 192 

the spinal cord, -motoneurons strongly express NeuN, whereas -motoneurons either lack 193 

expression or exhibit weak expression in 2/3 and 1/3 of cases, respectively (30). We examined co-194 

expression of Hb9-GFP and NeuN immunolabeling and, regardless of age, we found that a 195 

significant majority of ventrolateral Hb9-GFP-labeled neurons exhibit strong NeuN labeling (98%, 196 

n = 144 cells), indicating they are likely α-motoneurons (Fig. 1A, B1). We observed a 197 

preponderance of small labeled α-motoneurons during P4-6 (n = 571 neurons; Fig. 1B2) and P8-198 

10 (n = 425 neurons; Fig. 1B2), with 80.5% and 79.6% respectively having a maximal cross 199 
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sectional area of 400 µm2 or less. The percentage of large α-motoneurons increases with age (29, 200 

30), and by P12, only 50.4% of them remained under 400µm2 (n = 388 neurons; Fig. 1B2).  201 

-motoneurons can be subdivided functionally into three classes based on size and the 202 

muscle type they innervate: large fast-fatigable (FF), medium fast fatigue-resistant (FR), and small 203 

slow (S) [reviewed by (31)].  Only FF motoneurons express the marker matrix metalloproteinase-204 

9 (MMP-9) (32, 33).  Our observations confirmed that larger motoneurons co-expressed Hb9-GFP 205 

and MMP-9, while the smaller ones did not (Fig. 1 C1-C4).  The mean cross-sectional area of MMP-206 

9-negative neurons was 280 ± 12 µm2, while that of MMP-9-positive neurons was 907 ± 26 µm2 207 

(P<0.001, n = 288; Fig. 1C2). As suggested by earlier work (29), most of the motoneurons under 208 

400µm2 are HB-9+/MMP-9- (86.75%) while those over 400µm2 are HB-9+/MMP-9+ (99.2%; Fig. 209 

1C3, C4). Single cell RT-PCR measurements further validated this distinction, where the larger 210 

neurons synthesized RNA for MMP-9 (n= 6 cells) while the smaller neurons or glial cells did not 211 

(data not shown), indicating larger neurons as FF motoneurons and smaller ones as S or FR 212 

motoneurons . Markers to selectively identify FR motoneurons in slice recordings performed ex 213 

vivo are currently unavailable. 214 

 215 

Features of bistable motoneurons 216 

We previously showed that under experimental conditions mimicking natural in vivo 217 

conditions, many motoneurons exhibit bistability in the absence of added neuromodulators. This 218 

is achieved by maintaining in vivo calcium concentrations (1.2 mM) (34) and keeping the 219 

preparation temperature above 30C (18, 19, 35, 36). Four distinct features characterize bistable 220 

motoneurons (Fig. 2): 1) self-sustained firing triggered by a brief (2 sec) excitation when the 221 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.559784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.559784


motoneuron is pre-depolarized near the spike threshold (Fig. 2A1); 2) a slow afterdepolarization 222 

(sADP) following the current step if the motoneuron is not pre-depolarized sufficiently to trigger 223 

the self-sustained firing (Fig. 2A1); 3) negative hysteresis during slow triangular current ramp 224 

injections, where spiking stops at lower currents than where it began (Fig. 2A2); 4) a slowly 225 

depolarizing potential causing delayed spiking acceleration in response to a near-threshold 226 

depolarizing step (Fig. 2A3). We assigned each features one point, with fully bistable 227 

motoneurons scoring 4 points. To be considered bistable, the motoneuron must score at least 3 228 

points, including the presence of a self-sustained firing and sADP, and either negative hysteresis 229 

or delayed firing.  230 

Many motoneurons did not express any of the bistability criteria, scoring 0. They typically 231 

showed a decelerating firing rate during the 2 sec depolarizing pulse, leading to a post-step 232 

afterhyperpolarization (Fig. 2B1). Their activity during ramp current injections showed positive 233 

hysteresis, where spiking ceases at higher current values than where it started (Fig. 2B2). They 234 

also began spiking immediately during a suprathreshold long step, with a continuous firing 235 

deceleration (Fig. 2B3). Some motoneurons, despite having one scoring feature, lacked self-236 

sustained firing and were also considered as non-bistable. A significant number of motoneurons 237 

also displayed intermediate characteristics, scoring 2. The vast majority of them (90 %) were not 238 

bistable, lacking self-sustained spiking, but meeting two other criteria. This shows that bistability 239 

is not an all-or none property, but can manifest with somewhat different properties. 240 

 241 

Effects of size and age on bistability 242 
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As previously described, bistability in motoneurons can emerge early in development (18). 243 

Fig. 2C1 shows the average bistability scores of Hb9-GFP+ -motoneurons during the initial 244 

postnatal month, comparing small neurons (<400µm2) to large neurons (>400µm2). Small 245 

motoneurons consistently showed minimal bistability scores across all developmental ages (Fig. 246 

2C1), rising up to a mean of 1.14 ± 0.31 by P9-14, then nearly vanishing by early adulthood (P21-247 

25). Only 9 out 81 small cells (<400 µm2) showed bistability (scores 3-4) at any age, with 55% 248 

appearing after P9. In contrast, large motoneurons (>400 µm2) exhibited increasing bistability, 249 

reaching near maximal levels around P9 with a mean score of 3.24 ± 0.28. Remarkably, 83% (n = 250 

24) of these large motoneurons exhibited high bistability scores (3-4) from P9, with all displaying 251 

bistability by P21-25 (n = 7).  Note that the bistability scores of large motoneurons are significantly 252 

higher compared to small ones across all ages (P<0.001, n=199). 253 

These data underscore the pivotal role of motoneuron soma size in shaping the 254 

emergence of bistability in young mice. Fig. 2C2 shows the bistability score distribution by size 255 

across all ages. As described above, the large majority of small neurons (<400 µm2) were not 256 

bistable, averaging a score of 0.67 ± 0.13 (n = 81); only 11 % achieved scores of 3-4. In contrast, 257 

larger neurons (>400 µm2) consistently had high bistability scores (mean 2.54±0.13, n = 118; 258 

P<0.001), with the largest (>800µm2) being the most bistable (mean 3.06 ± 0.17, n = 44) with 75% 259 

scoring 3-4. Intermediate size neurons (400-800 µm2) show largely a mixture of bistable and 260 

intermediate bistability scores (mean 2.32 ± 0.17; n = 78). A clear gradient emerges: as neuron 261 

size increases, the proportion of bistable neurons rises, while the proportion of non-bistable cells 262 

decreases, especially above 400 µm2. The intermediate scores of 2 (not shown) fluctuate with 263 

size, perhaps reflecting maturational intermediates over time. 264 
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Similar results collected from ChAT-GFP mice reinforce the size-dependent nature of 265 

bistable properties (Fig 2C3). Before P7, small motoneurons (<400 µm2) showed no bistability, 266 

with an average score of 0.56 ± 0.38, n = 9.  In contrast, larger neurons (>400µm2) showed higher 267 

bistability (score 2.1 ± 0.42, n = 16; p = 0.02). As a control measure, we used the amphotericin B 268 

perforated patch method (28) to record bistability from HB9-GFP neurons, avoiding the dialysis 269 

of neuronal contents. This method reaffirmed the trend of increasing bistability with -270 

motoneuron size (n = 26; data not shown). 271 

 272 

Currents associated with bistability 273 

Several ionic currents have been demonstrated to support the active state during 274 

bistability. These include a persistent inward current (PIC) that may comprise both sodium and 275 

calcium components (16, 21, 37, 38), a thermosensitive Trpm5 calcium-activated inward current 276 

(19), and a slow inactivation of the Kv1.2 potassium current (23).  277 

We measured the PIC by delivering a slow ramp depolarization in voltage clamp (Fig. 3A). 278 

The PIC amplitude was measured at the inward peak from the extrapolated passive component 279 

at the same voltage (See Fig. 3A). The PIC amplitude was very small or absent in small Hb9-GFP+ 280 

motoneurons (<400µm2: 33 ± 14 pA , n = 17; Fig. 3B), but much larger in large motoneurons (165 281 

± 35 pA, n = 24; p = 0.014), with its amplitude correlating positively with cell size without any 282 

change in the activation threshold (Fig. 3C). Moreover, the amplitude of the PIC was also found 283 

to be proportional to the bistability score (Fig. 3D).  Specifically, non-bistable neurons (scores 0-284 

1) had small to absent PICs (mean 11.7 ± 5.01 pA; n = 15, 9 with no PIC), whereas bistable neurons 285 

(scores 3-4), especially those that are fully bistable (score 4), exhibited a dramatic rise in the PIC 286 
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amplitude (mean 198 ± 34 pA, n = 22, P < 0.001, 0 with no PIC). This increase in PIC with bistability 287 

was not merely a reflection of the greater surface area of the bigger neurons that express more 288 

channels, as the PIC density (corrected for cell area) was much smaller in non-bistable neurons 289 

(scores 0-1; 0.035 ± 0.07 pA/µm2, n=19) compared to  bistable neurons (scores 3-4; 0.289 ± 0.22 290 

pA/µm2, n = 21; p< 4x10-5). These findings highlight the strong association between PICs and 291 

bistability in large -motoneurons and the absence or low amplitude of PICs in smaller non-292 

bistable neurons.  293 

To further understand the contribution of the sodium component of PICs in bistability, we 294 

added 10 mM TEA-Cl and 100 µM CdCl2 to the recording ACSF (39). Large -motoneurons 295 

displayed a more pronounced persistent sodium current (INaP; Fig. 3E).  Although the 296 

motoneuron size did not influence the INaP threshold activation, both the peak amplitude and 297 

density of INaP were significantly greater in large -motoneurons (>400 µm2, 1126 ± 160 pA &  298 

4.84 ± 0.46 pA/pF,  n = 11) compared to small motoneurons (<400 µm2, 221 ± 33 pA & 2.38 ± 0.35 299 

pA/pF,  n = 10) (Fig. 3F-H; P < 0.001). These findings highlight the significant contribution of INaP 300 

in bistability from large -motoneurons and its diminished presence in smaller, non-bistable 301 

neurons.  302 

A calcium-activated inward current, mediated by Trpm5 channels, has been recognized as 303 

pivotal in sustaining the plateau depolarization underlying the tonically firing active state in 304 

bistable neurons (19). To measure the effect of this current, we induced a strong 2-sec 305 

depolarization in the presence of tetrodotoxin (TTX, 1 µM) and tetraethylammonium-chloride 306 

(TEA, 10 mM) to minimize sodium and potassium currents. This depolarization was large enough 307 

to elicit a series of slow calcium-driven spikes to fully activate Trpm5. Subsequently, we measured 308 
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the resulting afterdepolarization (sADP; Fig. 4A), which slowly declined as the Trpm5 current 309 

decayed (19). Notably, the sADP was partially blocked by Triphenylphosphine oxide (TPPO, 50 µM 310 

Fig. 4A), a known Trpm5 channels blocker (19, 40). The residual sADP appears to predominantly 311 

arise from channels that are not yet identified (see discussion in (19)).  Thus, to accurately 312 

estimate the Trpm5 component of the sADP, we subtracted the sADP measured in TPPO from the 313 

total sADP.  The resulting Trpm5 sADP was only detectable in one of 15 smaller neurons (<400 314 

µm2: 0.2 ± 0.24 mV, n = 15), but was evident in most of the larger neurons (>400 µm2: 4.9 ± 1.83 315 

mV, n = 9; p = 0.0017; Fig. 4A-B). Neurons with lower bistability scores (scores 0-1) lacked Trpm5 316 

sADP (n=10), but this current was present in most bistable neurons (scores 3-4: 4.6 ± 1.68 mV, n 317 

= 10; p = 0.0108; Fig. 4C). The larger Trpm5 sADP in more bistable currents does not simply 318 

represent the larger size (and surface area) of these neurons; when corrected for area, the Trpm5 319 

ADP density was absent in non-bistable neurons (scores 0-1, 0.0 mV/µm2, n = 10) but present in 320 

more bistable neurons (scores 3-4, 7.7µV/µm2, n = 10; p = 0.014). We isolated the Trpm5 calcium-321 

activated inward current in response to a 2 sec depolarizing voltage step in presence of TTX (1µM) 322 

and TEA (10mM) (Fig.4D). We confirmed that the Trpm5 inward current amplitude and density 323 

are significantly bigger in large -motoneurons (>400 µm2, 324 ± 51.73 pA &  2.7 ± 0.49 pA/pF, n 324 

= 8) compared to the small ones (<400 µm2, 26 ± 4.33 pA &  0.7 ± 0.39 pA/pF, n = 3) (Fig. 4E-F; 325 

P<0.05). Thus, the calcium-activated inward current mediated by Trpm5 channels (19) appears 326 

associated with bistability in large -motoneurons, but is low or absent in smaller non-bistable 327 

neurons.  328 

We further assessed the Kv1.2 potassium current, whose slow inactivation delays the 329 

initiation and acceleration of firing of bistable neurons during long current steps (23). This was 330 
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measured in voltage clamp as the amplitude of the inward current over a 7 sec step, measured 331 

after inactivation of the transient potassium current, in presence of TTX (1µM) and TEA (10mM) 332 

(Fig. 4G). Again, the amplitude of the Kv1.2 current scaled with cell size. Smaller -motoneurons 333 

(<400 µm2) had a lower current amplitude (52.5 ± 16.8 pA; n = 16) than the larger neurons (135.6 334 

± 27.7 pA, n = 23; P < 0.02; Fig. 4H). Moreover, these smaller motoneurons has a lower current 335 

density (2.19 ± 0.33 pA/pF; n = 3) compared to larger motoneurons (3.61 ± 0.35 pA/pF, n = 7; P < 336 

0.05; Fig. 4 I).  337 

All together, our findings highlight that INaP, the Trpm5 mediated calcium-activated 338 

inward current, and the slow inactivating Kv1 current are pivotal indicators of bistability in large 339 

-motoneurons. 340 

 341 

Serotonin evokes bistability only in larger, partially bistable neurons 342 

We found that bistability is not strictly binary, as many -motoneurons displayed some, 343 

but not all, of the defining features described above, especially the absence of persistent firing 344 

after the brief depolarization. It has been known for many years that neuromodulators such as 345 

serotonin (5-HT) can evoke bistability in -motoneurons which show only partial bistable 346 

properties (14, 17, 24, 41).   347 

We analyzed the effects of 10 µM 5-HT on -motoneurons (n = 52) that had bistability 348 

scores below 4 and lacked the self-sustained spiking. Fig. 5A shows an example of an -349 

motoneuron that, under control conditions (i.e. recording aCSF), did not show acceleration of 350 

spiking during a 2-sec strong depolarization, and only showed a modest sADP at the end of the 351 

depolarization. Seven minutes after application of 5-HT, this motoneuron demonstrated 352 
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accelerating spiking during the current step, and self-sustained spiking activity after the end of 353 

the step. This activity was terminated only by a hyperpolarizing step, indicating that the neuron 354 

became fully bistable only in the presence of 5-HT. Fig. 5B shows the ability of 5-HT to evoke 355 

bistability in -motoneurons of different sizes. Notably, small -motoneurons (< 400µm2; n = 19) 356 

remained non-bistable even with 5-HT. In contrast, larger neurons exhibited the potential for a 357 

bistable transition upon 5-HT exposure, and this ability increased with cell size. Specifically, of 358 

non-bistable -motoneurons of intermediate size (400-800µm2), 25% switched to full bistability 359 

with 5-HT (n = 28). Of the few larger -motoneurons (> 800µm2) which were not initially bistable, 360 

60% became fully bistable with 5-HT (n = 5; P < 0.001). It’s noteworthy that the majority of 361 

neurons transitioning to bistability with 5-HT already expressed an sADP before 5-HT addition, as 362 

illustrated in Fig. 5A. Thus, 5-HT is able to evoke full bistability in a subset of neurons already 363 

leaning towards a bistable state, but cannot evoke bistability in smaller or less bistable neurons.  364 

 365 

  366 
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DISCUSSION 367 

 368 

Our study reveals a size-based gradient in the bistable ability of -motoneurons. 369 

Specifically, the likelihood of -motoneurons being bistable increases with the cell body cross-370 

sectional area. The currents, Trpm5 and INaP, which promote the active state during bistability, 371 

and Kv1, whose inactivation helps to initiate sustained firing, are more pronounced in larger -372 

motoneurons. Conversely, these currents are low or absent in smaller -motoneurons. These 373 

findings highlight the importance of motoneuron size in driving bistability. 374 

Research on bistability has primarily focused on larger -motoneurons, identified by their 375 

ventrolateral location or by retrograde stimulation from ventral nerves (18, 31). This might have 376 

led to a failure to record the properties of smaller -motoneurons. Neurons recorded in this study 377 

are motoneurons, as evidenced by their ventrolateral location and the expression of ChAT and 378 

Hb9 markers (Fig. 1A-B). Furthermore, they are −motoneurons since -motoneurons either do 379 

not express NeuN or express it only weakly (30), and do not express GFP in Hb9-GFP mice (29, 380 

30). Finally, virtually all of the neurons larger than 400µm2 also expressed MMP-9, indicative of 381 

fast -motoneurons (32, 33). While there are no markers available to differentiate between the 382 

fast fatigue-resistant (FR) and fast fatigable (FF) -motoneurons, we conclude that the largest 383 

neurons are FF. The smallest neurons are presumably slow (S) -motoneurons. However, size 384 

alone is not a reliable indicator to separate these classes (42-44). 385 

Electrophysiologically, large fast -motoneurons differ from small slow -motoneurons by 386 

exhibiting a delayed and accelerated firing during prolonged stimulation (31, 43, 45). Our 387 

experiments confirm this observation, as near-threshold current steps resulted in a slow 388 
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depolarization in larger -motoneurons leading to delayed firing acceleration (Fig. 2). In contrast, 389 

smaller -motoneurons fired immediately upon reaching spike threshold followed by a spike 390 

frequency deceleration (31, 33). The depolarization and spike delay in large fast -motoneurons 391 

were attributed to the slow inactivation of a Kv1 current (23, 33).  392 

We now add bistability as a predominant property of large fast -motoneurons in young 393 

mice. Over 75% of neurons over 800µm2 showed bistability, while only ~10% of neurons less than 394 

400 µm2 were bistable. Consistent with this, a large majority of fast -motoneurons showed 395 

negative hysteresis during triangular ramp steps, where the derecruitment current was lower 396 

than the recruitment current, while far fewer of the slow -motoneurons displayed negative 397 

hysteresis (33) (Fig. 2). The frequency of bistability in large -motoneurons increased during the 398 

first weeks of postnatal development, as previously described (18); (Fig. 2C1). By P21, all large -399 

motoneurons were fully bistable, while smaller neurons continued to lack bistability features. 400 

The distinct firing behaviors observed between large and small -motoneurons can be 401 

attributed to a specific set of ionic currents that are more highly expressed in large fast -402 

motoneurons compared to small slow -motoneurons. One key contributor is the activation of 403 

slow persistent inward currents (PICs), which may be carried by calcium or sodium. This activation 404 

has been linked to negative hysteresis and bistability (15, 16, 19). Expression of the PIC increases 405 

with the size of the -motoneurons (Fig. 3B), and with the bistability score (Fig. 3D). Furthermore, 406 

our observations demonstrate the relationship between the size of the -motoneurons and the 407 

sodium component of PICs (INaP) (Fig. 3E-H). Recently, the thermosensitive Trpm5 current has 408 

been identified as a calcium-activated sodium current driving the plateau potential in bistable 409 

mouse -motoneurons (19).  We found that the Trpm5-evoked afterdepolarization was present 410 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.559784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.559784


in virtually all large bistable -motoneurons, but not detectable in small non-bistable -411 

motoneurons (Fig. 4A-C).  Finally, the slowly inactivating Kv1.2-mediated current responsible for 412 

the delayed firing acceleration in large motoneurons (23) (Fig. 2), is less expressed in smaller 413 

motoneurons (Fig. 4G-I).  Interestingly, this current positively correlates with the degree of 414 

bistability (Fig. 4G-I). It is likely, that the slow inactivation of Kv1 will shift the balance of currents 415 

towards depolarization, and will help to sustain continued firing in the bistable state. In sum, the 416 

lack of sufficient expression of these three pivotal currents renders small -motoneurons non-417 

bistable. In contrast, large -motoneurons, which robustly express these currents, are bistable.  418 

Note that there may be some duplication of effort in these currents. Indeed, among neurons that 419 

showed continued bistable firing, 20% either did not show a marked negative hysteresis during 420 

ramps, or did not show a delayed firing acceleration.  This suggest that bistability might not 421 

require the full spectrum of these currents. 422 

 Bistability in -motoneurons was observed in early experiments only in the presence of 423 

neuromodulators (14-16, 46). However, we have revealed inherent bistability in many -424 

motoneurons, provided the recording temperature is sufficiently high (above 30C) (18), to 425 

unmask the thermosensitive Trpm5 current responsible for the plateau potential (19). In our 426 

preparations, some -motoneurons expressed intermediate properties and were not fully 427 

bistable under these conditions.  Addition of 5-HT evoked full bistability in many of these neurons 428 

(Fig. 5). Interestingly, -motoneurons completely lacking baseline bistability characteristics 429 

(bistability score 0) never became bistable with 5-HT. We propose that intermediate -430 

motoneurons express some of the essential currents for bistability, but at lower levels (Fig. 5). 431 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.559784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.559784


The known modulatory actions of 5-HT can then enhance these currents to sustain prolonged 432 

firing in the bistable state. 433 

 434 

Our demonstration of a size principle for bistability contrasts with the groundbreaking 435 

work by Lee and Heckman (15, 16), who studied -motoneurons in adult cats. In their study, they 436 

achieved a full bistability in about one-third of the -motoneurons, which interestingly exhibited 437 

characteristics of smaller motoneurons. There are several potential explanations for the 438 

differences between our findings. First, it is uncertain whether the smallest -motoneurons in 439 

the cat were recorded because of the use of sharp electrode recordings. Consequently, the 440 

bistability in the smallest slow -motoneurons in cats remains unknown. Second, mouse -441 

motoneurons are inherently more excitable than cat -motoneurons, primarily due to their 442 

smaller size (47, 48). Despite this, the PIC amplitude is relatively similar across both species, 443 

suggesting that PIC has a more significant impact on the firing rate in mice.  Third, our 444 

observations were made on mouse -motoneurons during the first 4 weeks of life, while Lee and 445 

Heckman’s experiments were made on adult cats.  However, bistability in the larger neurons 446 

became more pronounced with age in the mouse neurons. In young adult mice (P21-P25) all large 447 

motoneurons exhibited bistability, whereas none of the smaller ones did.  Finally, our results were 448 

made ex vivo from slices in the presence of blockers of fast synaptic transmission (though not at 449 

P21/P25) and mostly without neuromodulators. On the other hand, the cat neurons were 450 

recorded in vivo in the presence of methoxamine to maximize the incidence of bistability.  451 

The role of bistability in spinal -motoneurons remains unclear. It has been recorded 452 

during quiet standing in both rats and cats (49), suggesting a potential significance for postural 453 
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control (15, 16, 26, 41). The Henneman Size Principle (50) posits that smaller -motoneurons, 454 

due to their lower input conductance, are the first to be recruited, potentially playing a role in 455 

maintaining posture. This can be consistent with earlier work in cats, where smaller neurons 456 

showed full bistability and were possibly active during quiet standing (15, 16, 51). However, we 457 

here demonstrate, in younger mice, that small -motoneurons are not bistable. Instead,  458 

bistability increases with the size of motoneurons (Fig. 2).  Ritter et al. (51) provided evidence 459 

that large fast -motoneurons may also be tonically recruited during quiet standing in mice.  An 460 

intriguing study by Bos et al. (19) showed that mice lacking Trpm5 channels in lumbar 461 

motoneurons, exhibited compromised postural control. Given the central role of Trpm5 in 462 

bistable properties of larger -motoneurons (19) (Fig 4), it is possible that fast -motoneurons 463 

may play an important role in postural maintenance. The PIC plays in important role in the 464 

initiation of bistable firing, but is also critical for repetitive firing in -motoneurons (52), and in 465 

synaptic amplification due to their dendritic location (1).  Thus, the currents which together lead 466 

to bistability may individually play multiple roles in motor control in the mouse. These 467 

assumptions should be further investigated in the future using more integrated in vivo 468 

preparations. 469 

 470 

  471 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.559784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.559784


FIGURE LEGENDS 472 

 473 

Figure 1: Identification and size distribution of -motoneurons in the ventrolateral spinal cord 474 

at L4-L5. A: Ventrolateral cord at P12 showing Hb9-GFP (green), NeuN (red) and double labeling 475 

(yellow). Scale bar, 100µm.  B1: The vast majority (~98%) of Hb9-GFP- labeled neurons co-express 476 

NeuN.  B2: Cross-sectional area distribution of Hb9-GFP neurons at P4-P6 (light green), P6-P10 477 

(medium green) and P12 (dark green).  C1: Ventrolateral cord at P12 showing Hb9-GFP (green), 478 

MMP-9 (red) and dual labeling (yellow).  Scale bars, 100µm and 50µm for top and bottom images, 479 

respectively. C2: Size distribution of Hb9-GFP labeled neurons expressing or not expressing MMP-480 

9. C3: Histogram of size distribution of GFP+-MMP-9- (green) or HB9+-MMP-9+ (yellow) neurons.  481 

C4: Double-labeled Hb9-GFP/MMP-9 neurons are predominantly larger than 400 µm2 (yellow, 482 

right) while most Hb9-GFP+ neurons smaller than 400 µm2 do not co-express MMP-9 (green, left). 483 

*** p<0.001 (two-tailed Mann-Whitney test for C2; Fisher’s exact test for C4). Mean ± SEM. 484 

 485 

Figure 2: Bistability score in spinal motoneurons varies by age and size.  A: Fully bistable neuron 486 

(bistability score 4). A1: Baseline depolarization towards spike threshold: a 2-sec suprathreshold 487 

stimulation evokes a prolonged afterdepolarization (ADP: 1 point).  Slightly higher baseline 488 

depolarization followed by a 2 sec stimulation leads to prolonged firing which is only terminated 489 

by hyperpolarizing current step (1 point); trace has been offset down to be more easily seen.  A2:  490 

Negative hysteresis during ramp stimulation. The current threshold for onset of spiking is higher 491 

than the threshold for offset of spiking (-I; 1 point). A3: A small subthreshold current step leads 492 

to a slow depolarization (trace has been offset down to be more easily seen). A slightly higher 493 
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current step leads to a larger depolarization leading to delayed spike onset and acceleration of 494 

spike frequency during the step (1 point).  B: Completely non-bistable neuron (bistability score 0). 495 

B1: Current steps to near threshold lead to decelerating spike frequency during a 2 sec 496 

suprathreshold pulse, and an afterhyperpolarization at the end of the step (0 point).  B2: Positive 497 

hysteresis during ramp stimulation.  The current threshold for onset of spiking is lower than the 498 

threshold for offset of spiking (+I; 0 point).  B3: A small subthreshold current step does not evoke 499 

a slow depolarization.  A slightly higher current step evokes immediate onset firing with 500 

decelerating spike frequency during the step (0 point).  Size markers: 1 sec, 20 mV. C1: Bistability 501 

score as a function of postnatal age for smaller (<400µm2, blue) and larger (>400µm2, red) Hb9-502 

GFP+ neurons.  C2: Distribution of bistability as a function of neuronal cross-sectional area.  503 

Smaller neurons predominantly have bistability scores of 0-1 (blue) while larger neurons 504 

predominantly have bistability scores of 3-4 (red).  C3: Post-natal (P2/6) motoneurons identified 505 

by expression of ChAT-GFP show similar bistability scores that rise with cross-sectional area (blue 506 

for <400µm2, and red for >400µm2). Size markers: 1 sec, 20 mV. * p<0.05; *** p<0.001 (two-tailed 507 

Mann-Whitney test for C1 and C3; slope comparison of simple linear regressions for C2). Mean ± 508 

SEM. 509 

 510 

Figure 3: Persistent inward current (PIC), in particular its sodium component, is larger in bistable 511 

neurons.  A:  Voltage clamp measure of PIC activation during slow voltage ramp in bistable but 512 

not in non-bistable neuron.  B-C:  PIC amplitude (B), and threshold (C) as a function of cell cross-513 

sectional area of Hb9-GFP+ neurons (blue circles, <400µm2, and red circles, >400µm2).  D:  PIC 514 

amplitude increases with increasing bistability (low and high bistability scores in blue and red, 515 
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respectively). E: Superimposed leak-subtracted sodium persistent current (INaP) recorded from 516 

Hb9-GFP+ motoneurons in the presence of 10 mM TEA and 100µM CdCl2 (area <400µm2 or 517 

>400µm2 for the blue and red trace, respectively) in L4-L5 regions at P9 in response to a slow 518 

ramp depolarization. F-H:  INaP peak amplitude (F), threshold (G) and density (H) as a function of 519 

cell cross-sectional area of Hb9-GFP+ neurons (blue circles , <400µm2, and red circles, >400µm2). 520 

ns, no significance; *p<0,05; ***p<0,001 (two-tailed Mann-Whitney test for B-D and F-H). Median 521 

(solid line) and quartiles (dashed lines) are represented in each violin plot. 522 

 523 

Figure 4:  Trpm5-mediated current and slowly inactivating Kv1 current are signatures of 524 

bistability.  A: Neurons are depolarized for 2 sec in presence of 1µM TTX and 10 mM TEA.  Above 525 

a threshold, large calcium-dependent oscillations are evoked.  In bistable motoneurons (red 526 

trace), these elicit a large, slow afterdepolarization which is partially blocked by 50µM TPPO (black 527 

trace).  Non-bistable neurons (blue trace) do not express this slow afterdepolarization.  B: 528 

Amplitude of the Trpm5-induced, TPPO-resistant afterdepolarization increases with cross-529 

sectional area.  C:  Trpm5-induced, TPPO-resistant afterdepolarization increases with bistability. 530 

D:  TPPO-sensitive Trpm5 current is isolated in response to a voltage step of 2 sec in presence of 531 

1µM TTX and 10 mM TEA. Superimposed traces of Trpm5 isolated current from large (>400µm2, 532 

red) vs small (<400µm2, blue) Hb9-GFP+ motoneurons. E-F: Amplitude (E) and density (F) of the 533 

Trpm5 current increases with cross-sectional area of Hb9-GFP+ neurons (blue circles, <400µm2, 534 

and red circles, >400µm2).  G: Superimposed traces of the slowly inactivating Kv1 current in 535 

bistable (red) and non-bistable (blue) neuron in response to a long depolarizing voltage step in 536 

presence of 1µM TTX and 10 mM TEA. H-I: Amplitude (H) and density (I) of Kv1 current increases 537 
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with cross-sectional area of Hb9-GFP+ neurons (blue circles, <400µm2, and red circles, >400µm2). 538 

*p<0,05; **p<0,01 (two-tailed Mann-Whitney test for B-C, E-F and H-I). Median (solid line) and 539 

quartiles (dashed lines) are represented in each violin plot. 540 

 541 

Figure 5: Induction of full bistability by serotonin.  A: Non-bistable neuron’s response (top, black 542 

trace) to 2 sec depolarizing pulse (bottom). Only a small afterdepolarization is recorded after the 543 

step. During 10µM serotonin (5-HT), this neuron became fully bistable, with continuous firing 544 

(top, red trace) following the 2 sec depolarizing step (bottom).  B:  Not all non-bistable neurons 545 

respond to serotonin.  Smaller neurons (<400 µm2) fail to show full bistability (score 4) with 5-HT.  546 

Over a quarter of intermediate-sized neurons (400-800 µm2) converted to full bistability during 547 

5-HT.  Most large neurons (>800µm2) were already bistable, and 60% of those which were not 548 

fully bistable became bistable during 5-HT. *** p<0.001 (Fisher’s exact test for B).  549 

 550 
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