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Motivation: Spatially resolved transcriptomics has enabled the
study of expression of genes within tissues while retaining their
spatial identity. The lack of single-cell resolution for most of the
current high-throughput spatial transcriptomics technologies
led to the development of in-silico methods, to disentangle
the spatial profiles of individual cell-types. However, most
current approaches ignore useful information from associated
imaging data that can help to better resolve cell-types or spatial
domains.
Results: We present CellPie, a fast, reference-free topic mod-
elling method, based on joint non-negative matrix factorisation
between spatial RNA transcripts and histological or molecular
imaging features. This synergy of the two modalities can lead to
improved single-cell deconvolution and spatial clustering. We
assessed CellPie in two different tissues and imaging settings,
showing an improved accuracy against published deconvolution
and clustering methods. In addition, in terms of computational
efficiency, CellPie outperforms all tested deconvolution methods
by at least two orders of magnitude, without the use of GPUs.
Availability:https://github.com/ManchesterBioinference/CellPie
Contact: sokratia.georgaka@manchester.ac.uk

Spatial transcriptomics | Joint non-negative matrix factorisation | data inte-
gration | deconvolution

Introduction
In multi-cellular organisms, tissues are complex systems
composed of millions of cells, which constitute the building
blocks of whole organs. Within tissues, cells vary in type and
activity, and their development and function are influenced
by interactions with their surroundings. Therefore, dissect-
ing spatial cellular organisation and heterogeneity within the
tissue is important for understanding normal tissue function,
as well as disease, which often have spatial origins (1).
Cutting-edge technologies, such as single-cell RNA se-
quencing (scRNA-seq), achieve high-throughput and high-
resolution gene expression profiles, which provide us with a
powerful insight into the characterisation of the heterogeneity
at the transcriptomic level (2, 3). However, due to tissue dis-
sociation, these methods are unable to retain the spatial con-
text of the molecules within the tissue. Array-based spatially
resolved transcriptomics methods, such as spatial transcrip-
tomics (ST) (4), which is commercially available as Visium

by 10x Genomics, and Slide-seq (5) (Slide-seq V2), allow for
molecular profiling while retaining the spatial information of
the tissue, at different resolution (6, 7). The barcoded Slide-
seq beads (‘pucks’) provide near single-cell spatial resolution
of 10µm while Visium barcoded spots come with a coarser
resolution of 55µm. This means that, depending on the tissue
density, each bead/spot is capturing 2− 3 cells for Slide-seq
or around 10 cells for Visium.
Disentangling the spatial cell-type composition of each bar-
coded spot is a key computational challenge in spatial tran-
scriptomics data analysis. Current deconvolution meth-
ods are divided between reference-based and reference-free
methods. Reference-based deconvolution methods, such
as cell2location (8), stereoscope (9), SPOTlight (10) and
DestVI (11) require single-cell data, ideally from the same
tissue, which is not always available. Alternatively there
are reference-free deconvolution methods such as stDecon-
volve (12).
Another important limitation of both reference-based and
reference-free deconvolution methods is that they solely rely
on spot-level gene expression count data, failing to take into
account any morphological image features already available
through paired histology images. These image-derived fea-
tures could lead to more accurate deconvolution estimates. A
recent Bayesian deconvolution method, GIST (13), attempts
to incorporate a cell-type specific informative image-derived
prior of specific cell-type abundance estimates. However,
GIST does not explicitly use morphological image features
extracted from paired histopathology hematoxylin and eosin
(H&E) images. Moreover, the computational burden of the
aforementioned methods is typically high and in some in-
stances GPUs are essential.
To address these limitations, we present CellPie, a flexi-
ble and fast reference-free deconvolution tool based on un-
supervised multi-modal Non-negative Matrix Factorisation
(NMF). NMF-based methods have become popular in the
single-cell genomics field because they can be used to dis-
cover interpretable sparse features from high-dimensional
data. NMF has previously been applied to ST data via a spa-
tially aware model with a Gaussian process prior over the
factors in (14, 15).
CellPie jointly models spatial molecular data and paired his-
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tological or molecular imaging features, in a simple and com-
putationally efficient way. The output of CellPie is a spatial
map of spot-wise cell-type abundances (topics) and topic-
specific feature (gene) scores which can be used for topic
annotation and downstream analysis (see Fig. 1).
We evaluated the ability of CellPie to provide a spatial map
of cell-types in a coronal section of an adult mouse brain
as well as in a human invasive prostate carcinoma sample
from Visium platform. Moreover, in the second validation,
we demonstrate that by clustering the inferred topic vectors
(cell-type proportions) from CellPie, we achieve more pre-
cise spatial clusters compared to other established clustering
methods.

Materials and methods
Joint Non-negative Matrix Factorisation. CellPie em-
ploys a scalable NMF-based topic modelling approach,
which offers an unsupervised joint, low-dimensional repre-
sentation of multiple modalities. Our approach builds on ef-
ficient single matrix factorisation scheme proposed in (16)
which has been recently developed for joint factorisation
of multi-omics data (intNMF (17)). Here, we adapt the
method to jointly factorise spatial gene expression and his-
tology/molecular imaging data. Compared to other decom-
position methods, such as Principal Component Analysis
(PCA) (18), the element-wise non-negativity constraint of
NMF allows for an easier and more intuitive interpretation
of the resulting lower rank factors.
The joint factorisation problem for spatial gene expression
and image features data is formulated (as in intNMF) as fol-
lows:
Given two non-negative input matrices Yrna ∈ R+

m×n and
Yimg ∈ R+

m×f where m is the number of spatial locations
(spots), n is the number of genes and f the number of image
features, building on the intNMF formulation, CellPie seeks
for a common non-negative matrix W ∈ R+

m×k and two
individual non-negative Hrna ∈R+

k×n and Himg ∈R+
k×f

matrices, such that:

Yrna ≈WHrna,

Yimg ≈WHimg, (1)

for gene expression counts and image feature data respec-
tively. k <m,n,f is an integer number, which represents the
number of topics and must be specified a priori.
In CellPie, each spot in the gene expression matrix is nor-
malised by the total counts over all genes.
The factors W , Hrna and Himg are calculated by solving the
following optimisation problem:

min
W,Hrna,Himg

α‖Yrna−WHrna‖2F +(2−α)‖Yimg−WHimg‖2F ,

s.t. W,Hrna,Himg ≥ 0 , (2)

where the parameter α assigns a weight to the cost function
of each modality (default is set to 1.0 so that each modality
is equally weighted) and ‖·‖F is the Frobenius norm. The

above non-convex optimisation problem is reduced to an al-
ternating pair of convex optimisations through iterative up-
dates. The accelerated hierarchical least squares (acc-HALS)
algorithm (16) is adapted to jointly factorise two matrices,
see (17) for details.
The image-based features (Yimg) are extracted from H&E
or molecule-based (e.g. immunofluorescence) images using
Squidpy (19). Squidpy offers a variety of functions for im-
age feature extraction, including summary, histogram and
texture. Specifically, image features are calculated for each
spatial location (Visium spot) resulting in am×f feature ma-
trix. CellPie by default uses histogram features for the joint
factorisation, however there is an option for a user-defined
matrix of image features. Spot-level pixel intensity features
(bin-counts) are calculated for each image channel, over the
whole image range, reflecting both the tissue architecture as
well as cell abundances (see overview of CellPie approach in
Fig. 1).

Model Selection. To help the user selecting a representa-
tive number of topics, k, CellPie implements model selection
based on the elbow/knee point of the loss as function of topic
number (using the “Kneedle" algorithm) (20). However, it is
worth pointing out that prior biological knowledge of the tis-
sue is always advantageous and, for optimal results, the rank,
k, should be selected in conjunction with this prior knowl-
edge (if available).

Initialisation. Due to the iterative nature of the intNMF al-
gorithm, initialisation of the W ,Hrna and Himg factors is re-
quired. Good initial values are essential to guarantee a suc-
cessful NMF decomposition. Various initialisation methods
have been proposed for NMF, including random and non-
random strategies. Using random initialisation can lead to
convergence at local minima, making it essential to perform
multiple restarts to find the best initialisation. An effective,
non-random strategy, proposed in (21), is the Non-negative
Double Singular Value Decomposition (NNDSVD). This al-
gorithm uses two Singular Value Decomposition (SVD) pro-
cesses and has been demonstrated to rapidly reduce the ap-
proximation error. CellPie uses NNDSVD as the default ini-
tialisation method. Initialisation methods based on cluster-
ing (k-means, Fuzzy C-means or Hierarchical) are also im-
plemented in CellPie although, similar to random initiali-
sation methods, clustering methods usually require multiple
restarts.

Datasets. Most deconvolution methods use synthetic ST
data for validation, as the ground-truth is known for this
data. However, it is not obvious how to generate realis-
tic synthetic ST data with paired with synthetic image fea-
tures, as required in this context. Therefore, to assess the
performance of CellPie, two benchmarking cases are consid-
ered. In the first instance, we use a publicly available 10x
Visium adult mouse brain dataset with immunofluorescence
(IF) staining. This dataset was chosen because the IF stain-
ing of neuronal and glial cells, can serve as ground-truth, fa-
cilitating quantitative comparison among various published
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Fig. 1. Graphical overview of CellPie method. CellPie takes as input spatial gene expression counts (spots by genes) and paired histological or immunofluorescence image
features (spots by features) matrices. These two modalities are jointly factorised using joint non-negative matrix factorisation, resulting to three matrices: a shared spots by
topics matrix, containing topic (cell-type associated) proportions and two individual matrices, a gene loading and an image loading matrix.

deconvolution methods. The second validation uses another
publicly available 10x Genomics Visium dataset of human
invasive prostate carcinoma. In this case, the ground-truth is
established through annotations by a pathologist. We evalu-
ate the capability of CellPie to find topics that resemble the
areas annotated by the pathologist and to pinpoint topic spe-
cific marker genes.

Parameter settings for competing methods.
stDeconvolve is a reference-free deconvolution method
based on latent Dirichlet allocation (LDA). We execute stDe-
convolve with the default parameters: ‘cleancounts’ with
min.lib.size 100 and min.reads 10, ‘restrictCorpus’ with re-
moveAbove 1, removeBelow 0.05 and nTopOD 1000. Then
we ran the fitLDA and optLDA function with 17 topics. Fi-
nally, we filtered out cell-types using the ‘getBetaTheta’ with
perc.filt 0.01 and betaScale 1000. Since stDeconvolve is a
reference-free deconvolution method, similarly to CellPie,
we seek the inferred topics that best correlate with the avail-
able ground-truth.
Stereoscope is a reference-based deconvolution method
which uses probabilistic inference based on negative bino-
mial distribution to infer cell-type proportions. We ran Stere-
oscope on GPUs with the default settings:‘max_epochs’ 100
for ‘RNAStereoscope’ and ‘max_epochs’ 2000 for ‘Spatial-
Stereoscope’ functions.
Cell2Location is another reference-based spatial method
based on a Bayesian model where absolute and relative
abundances of cell-types are estimated by linearly decom-
posing the spatial gene expression matrix into a set of
pre-estimated single-cell signatures. We first computed
the average gene expression in the single-cell reference
dataset (signature) using ‘compute_cluster_averages’ func-
tion. Then we ran Cell2Location using GPUs with the fol-
lowing settings: ‘N_cells_per_location’ 10, detection_alpha
20, max_epochs 2000, ‘train_size’ 1. We extracted the
‘q05_cell_abundance_w_sf’ abundances.

To estimate the Spearman correlation between the ground-
truth and the inferred proportions, for both Stereoscope and
Cell2Location we aggregated all the neuronal and glial sub-
type proportions/abundances into one neuronal and one glial
proportion/abundance data-frame.
SpaGCN (22) is a spatial transcriptomics downstream anal-
ysis tool which uses a graph convolutional network to inte-
grate gene expression, spatial information and histology. We
used SpaGCN for clustering in theinvasive prostate carci-
noma dataset. We executed SpaGCN with the default set-
tings: For the adjacent matrix, s = 1 and b = 49. Hyper-
parameter p = 0.5, ‘search_l’ function with start 0.01, end
1000, top 0.01 and max_run 100. For clustering, we used
n_clusters 5 based on which the recommended res is 0.3.
stLearn (23) is another tool for spatial transcriptomics
downstream analysis which integrates spatial location, im-
age and gene expression information using graph-based
clustering. We used stLearn for clustering of the inva-
sive prostate carcinoma dataset. We ran stLearn’s pre-
processing, tilling and clustering analysis with all the argu-
ments following the ‘stSME clustering’ tutorial provided in
stlearn.readthedocs.io.

Results
Coronal section of mouse brain with IF staining. To
benchmark the performance of CellPie against other pub-
lished deconvolution methods (reference-free and reference-
based), a publicly available 10x Genomics Visium dataset of
a coronal section of an adult mouse brain was used (24). Im-
munofluorescence staining was performed on the tissue sec-
tion, against anti-NeuN and GFAP antibodies (and DAPI),
which represent neuronal and glial specific protein mark-
ers, respectively (Fig. 2A). To derive an independent ground-
truth, spot-wise average pixel intensity values were extracted
for each of the three channels in the immunofluorescence im-
age (Fig. 2B, Fig. 2C), using squidpy.
To emphasize the significance of integrating imaging fea-
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Fig. 2. Validation of CellPie using Mouse brain ST data and IF staining, (A) Immunofluorescence image of adult mouse brain coronal section (24), stained with NeuN,
GFAP and DAPI. (B) Model selection based on the elbow point of the loss function, where the optimal number of topic found to be k = 13. (C) Spearman correlation
between CellPie and ground-truth for glial and neuronal cell-types, for a range of modality weights (α = 0.0,0.4,1.0,1.6,2.0). (D)Left: Spearman correlation between the
ground-truth and the deconvolved proportions of stDeconvolve, Cell2Location, CellPie, and Stereoscope, for glia. Right: The same but for neurons. The results reported for
CellPie correspond to weight α= 0.4, based on the correlations values in (C). (E) Left: Intensity values extracted using the GFAP channel of the immunofluorescence image
to serve as a ground-truth of glial cell-types and proportions of glial cell-types as estimated using CellPie. Right: Similar but for neuronal cell-types, using the NeuN channel
as ground-truth.

tures, we executed CellPie with k= 13 topics over a range of
weights (α = 0,0.4,1.0,1.6,2.0), with α = 0 corresponding
to image only and α= 2 RNA only. These topics aim at dis-
cerning various glial and neuronal sub-types, such as astro-
cytes, oligodendocytes, microglial, excitatory and inhibitory
neurons and more (supp Fig. 1). For a comprehensive analy-
sis, we aggregated all topics corresponding to glial and neu-
ronal cell-types. This was achieved by combining those top-
ics that demonstrated the highest Spearman correlation in re-
lation to the ground-truth (Fig. 2B,Fig. 2C).
Fig. 2D shows a comparison between CellPie and other pub-
lished deconvolution methods, for a range of CellPie im-
age/gene expression weights. When equal modality weight is
used (α= 1), CellPie achieves the best performance amongst
the deconvolution methods benchmarked in this study for
both neuronal (Spearman correlation 0.82) and glial (Spear-
man correlation 0.78) cell-types. In the standard single
modality NMF limit (α = 2) where only spatial transcrip-
tomics data are considered, the Spearman correlation is re-
duced to 0.68 and 0.55 for neurons and glia, respectively.
Figure 3A illustrates the topics that are most correlated
with glial (topics deconv_2 and deconv_4 ) and neuronal
cell-types (topics deconv_3, deconv_7). Among CellPie’s
outputs is a gene loading matrix, of dimension topics by
genes, with a score representing importance of the genes

within each topic. This matrix, in conjunction with a single-
cell mouse brain cell signature dataset (8) are input into
the scanpy.tl.score_genes function from the Scanpy pack-
age (25, 26) (with default parameters). This function re-
quires the input of marker genes. To find marker genes for
the cell-types present in the mouse brain single-cell dataset,
we perform differential gene expression using the ‘Wilcoxon’
method. The output is a ranking of cell-types with an as-
sociated score (the difference of the mean expression of a
set of genes and the mean expression of the signature genes)
that could be utilised for topic interpretation and downstream
analysis. A heatmap of the ranked cell-types for all the top-
ics that are correlated to glia and neurons is shown in Fig.
2B. The expressed cell-types are in keeping with their corre-
sponding topics.
In order to verify whether the topics obtained in the mouse
brain have biological significance, we used the top 100
marker genes of each topic (CellPie’s gene loading matrix)
to perform GO enrichment analysis. The results were con-
sistent with our expectations for cell-type distribution. For
example, in Topic 5 and Topic 7, the enriched terms pre-
dominantly focus on biological processes related to aerobic
respiration and energy metabolism (Fig. 2C). This aligns
with the stronger dependency of neurons on aerobic respira-
tion, as previous studies have shown that about eighty per-
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Fig. 3. Analysis of CellPie’s gene loading factors. (A) Top scored cell types of the topics used to synthesize the neuronal topic. The scoring has been estimated using a
single-cell reference dataset from a coronal mouse brain section in conjunction with the gene list in CellPie’s gene loading. (B) Similar as in (A) but for glia topics.

cent of energy is consumed by neurons to maintain action
potentials (27). This may suggest that the regions associated
with these topics contain many active neurons. The forma-
tion and maintenance of synapses depend on interactions be-
tween neurons and glial cells (28). Topic 8 includes terms
such as “Signal Release From Synapse” and “Neurotransmit-
ter Secretion” implying the presence of a substantial number
of synaptic structures in the corresponding locations. Topic
2 is enriched in terms related to “Myelination” and “Neuron
Projection Development”, Topic 3 is associated with Calcium
signaling, and Topic 4 contains terms related to synaptic plas-
ticity, aerobic respiration, and biosynthetic processes, which
is consistent with the role of the glia cells in the formation
and establishment of neuronal axons (28).
CellPie’s computational efficiency is an important feature.
On a Macbook Pro with 2.3GHz Quad-Core Intel Core i7
and 16GB memory, the joint NMF executed in only 23s for
this dataset. This performance facilitates rapid, GPU-free de-
convolution, while it provides flexibility for repeated model
assessments.

Human prostate cancer data: CellPie topics separate
Gleason 3 and Gleason 4 score regions. For our sec-
ond validation, we use another publicly available 10x Vi-
sium data, this time derived from a human prostate sample
with adenocarcinoma (29). 10x Genomics supplies a paired
H&E image (Fig. 4A) that has been annotated by a pathol-
ogist. However, to achieve finer granularity of the invasive
carcinoma region, we re-annotated the image (Fig. 4B). Con-
sequently, the entire tumour region was annotated using the
Gleason scoring system, labelled as Gleason 3 and Gleason

4. This enables us to evaluate if CellPie can identify topics
that correspond to these specific Gleason areas.
While image evaluation using IF is relatively straightforward
as the extraction of information is done by considering flu-
orescence intensities, H&E images require the interpretation
of colour and tissue morphology. In prostate, two main lin-
eages that are biologically and architecturally different can
be seen: the stromal compartment and the epithelial compart-
ment. The stroma is composed of fibroblasts, smooth muscle,
nerves, and blood vessels in diverse proportions (30, 31).
Prostate carcinoma arises from the glandular epithelial com-
partment and, unlike other organs, is not graded by individual
cells differentiation but mainly by its architectural features
using the Gleason grading, from 1 to 5. Due to poor re-
producibility and lack of biological support, Gleason 1 and
2 are not reported anymore. Gleason 3 cancers comprise
the most differentiated adenocarcinoma, consisting of dis-
crete glandular units with varying sizes and shapes (32). In-
dividual tumor acini have smooth, typically circular edges
and intact basement membranes. In contrast, Gleason 4 can-
cers are composed of poorly formed glandular units with
indistinct borders, fused glands, and irregularly infiltrating
stroma (32, 33). Intuitively, Gleason 4 tumors exhibit higher
degrees of differentiation, increased cancer progression, and
therefore stronger prognostic correlations.
The optimal number of topics, based on model selection, was
found to be k = 11 (Fig. 4C, supp. Fig. 3). In addition,
CellPie was executed across a range of modality weights α
spanning from 0 (image only) to 2 (RNA only). For each
specific modality weight, we compared the resulting top-
ics against the pathologist’s annotated regions (ground-truth).
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Fig. 4. Validation of CellPie on human prostate cancer data, (A) H&E image of human prostate tissue with adenocarcinoma (FFPE) obtained from 10x Genomics (29). (B)
H&E image overlaid with pathologist annotations. (C) Model selection, where the optimal number of topics found to be k = 11. (D) Evaluation of CellPie’s topic discovery
accuracy against pathologist’s ground-truth across a range of different modality weights, using Fowlkes Mallows, Adjusted Rand Index and Adjusted Mutual Info scores. (D)
CellPie’s topics, clustered using k-means algorithm with n= 5 clusters. (F) Crosstab heatmap showing similarity between pathologist’s annotated regions and the clusters in
(E).

This comparison was achieved by performing k-means clus-
tering on the topic proportions, setting the number of clusters
to 5. To assess the performance, we employed three perfor-
mance metrics: Fowlkes-Mallows, Adjusted Rand Index and
Mutual Information scores, as illustrated in Fig. 4D. Accord-
ing to this figure, peak performance is observed at a modality
weight of α= 1.7. However, a decline in accuracy is seen at
α = 2.0. This latter weight is equivalent to the standard sin-
gle NMF considering only the spatial tramscriptomics data.
This highlights the significance of the joint modelling of both
image features and transcriptomics data.
Fig. 4C shows the relationship between the ground-truth and
the k-means clustering of CellPie’s topics (Fig. 4B), using
a normalised crosstab heatmap. According to the heatmap,
cluster 0 is mostly associated with the Gleason 3 region,
while the Gleason 4 region is linked to cluster 3. Cluster 1 is
a combination of the Connective tissue, Vascular and Neural
regions. Cluster 2 is mainly connected to the Normal glands
and Neural areas, while cluster 4 depicts Immune cells, PIN
and vascular regions.
We compared the clustering results of CellPie using
both the optimal weight (α = 1.7 - kmeans_CellPie_int)
and the equivalent to single NMF weight (α = 2.0 -
kmeans_CellPie_0). There results were then benchmarked
against the k-means clustering on gene expression data
(within the PCA space, with 50 components) and against two
published spatial transcriptomics-specific clustering meth-
ods, namely, SpaGCN and stLearn. A qualitative comparison

is shown in Fig. 4D and Fig. 5A, where CellPie, stlearn and
k-means capture both the connective tissue and normal glands
areas, while in SpaGCN, these areas are shown as a mixture.
stlearn is the only one which captures the nerve area as an
individual cluster. However, when it comes to distinguishing
between the Gleason 3 and Gleason 4 areas, none of the es-
tablished methods are effective. In constrast, CellPie depicts
these tumour regions as two separate, distinct clusters.
Figure 5B presents the Adjusted Rand Index (ARI) for the
methods previously mentioned, offering a comparison of
their overall clustering accuracy. stlearn exhibits better per-
formance compared to CellPie in terms of ARI. However,
when narrowing the focus to just the Gleason 3 and Gleason
4 areas, CellPie outperforms all the other methods (Fig. 5C),
based on the precision metric. This is defined as the number
of spots correctly predicted as Gleason 3 or Gleason 4 by the
method over the total number of spots predicted as being in
the union of Gleason 3 and Gleason 4.
To further annotate the topics with cell-types, we interro-
gate the CellPie’s gene loading matrix in conjunction with
a modified cell signature obtained from (34), with the
addition of markers for B-cells (35) and neurons (using
scanpy.tl.score_genes function). In Fig. 6B and Fig. 6C, the
topic interpretation of the 10x visium invasive prostate can-
cer is shown. For example, topics deconv_0, deconv_2 and
deconv_6 were in keeping with the epithelia compartment
based on their score. Deconv_0 represents the glandular area
of the prostate covering both benign (luminal epithelial - LE)
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Fig. 5. Validation of CellPie on human prostate cancer data, (A) Comparison of CellPie’s topics, clustered using k-means algorithm, against other published clustering
methods. The images correspond to: first row: pathologist’s ground truth, CellPie with α = 1.7, CellPie with only gene expression data (α = 2), second row: kmeans
clustering of row spatial transcriptomics counts data, SpaGCN clusters and stLearn clusters. (B) Adjusted Rand Index (ARI) for the methods in (A). (C) Precision metric for
the Gleason 3 and Gleason 4 regions, defined as the number of spots correctly identified as Gleason 3 or Gleason 4 by CellPie and other methods, over the total number of
spots identified as Gleason 3/Gleason 4 by the method.

and malignant (tumour) area, with high expression of KLK2,
KLK3 and ACPP, genes associated with prostate glandular
epithelium marker. The top 3 genes in deconv_2 (MSMB,
ACPP and AZGP1 usually expressed in benign glandular tis-
sue) and deconv_6 (PLA2G2A, SPON2, KLK2 and KLK3
usually expressed in prostate cancer) showed that the separa-
tion between benign and malignant tissue respectively were
indeed in keeping with the pathologist’s annotation. Within
the stromal compartment, we showed that smooth muscle
cells corresponded with deconv_1. This is in keeping with the
high gene expression of MYL9, ACTG2, ACTA2 and TAGLN,
all involved in muscle contraction.

To further validate the biological significance of the regions
identified by our method at the molecular level, we utilized
Gene Ontology (GO) analysis for gene identification within
the 11 topics (Fig. 6D).

Topic 6 (deconv_6) specifically exhibits high expression in
Gleason 3 rather than Gleason 4. Apart from genes re-
lated to the androgen receptor (AR) pathway which is en-
riched in the prostatic epithelial cells, it encompasses vari-
ous biological processes associated with differentiation fea-
tures, such as protein translation as well as lipidic metabolism
signal to prostate epithelium. Interestingly, the term “Low-

Density Lipoprotein Particle Remodeling” is consistent with
the recent study which found the interaction of PRSS2 with
a receptor (low-density lipoprotein-related receptor protein
1) stimulated prostate tumour growth and progression (36).
Conversely, Topic 0 (deconv_0), while widely distributed in
cancerous tissues, shows higher expression in Gleason 4. The
enriched genes in this topic, aside from the AR pathway, are
predominantly involved in RNA and protein processing, in-
cluding alternative splicing and protein folding. These two
regulatory processes are widely considered to play crucial
roles in the development of prostate cancer, such as alterna-
tive splicing of AR gene (37) and protein folding facilitated
by HSPs (heatshock proteins) (38), while lacking differenti-
ation characteristics.

Furthermore, in Topic 1 (deconv_1), which exhibits high ex-
pression in connective tissue, the enriched GO terms include
“Homotypic cell-cell adhesion”, “Supramolecular Fiber Or-
ganization”, and “Actin Filament Organization”. These terms
highlight smooth muscle and collagen fibre intra and extra-
cellular organization, which are key components of the con-
nective tissue found in the prostate. Topic 2 (deconv_2),
which shows high expression in adjacent glandular tissue,
lacks enrichment in the AR signaling pathway. Instead, it
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Fig. 6. Biological interpretation of the prostate cancer results: (A) Four of the eleven CellPie topics associated with tumour region (deconv_0, deconv_6), connective tissue
(deconv_1) and normal glands (deconv_2). (B) Top ten marker genes for each of the topics present in (A). (C) Annotation of cell-types present in topics (A) using a single-cell
reference dataset. (D) Gene ontology performed using the top 100 topic related markers for the topics shown in (A).

is enriched in genes related to steroid hormone response and
stress signals regulating cell apoptosis, implying a poten-
tial balance between differentiation and microenvironmental
changes induced by cell-cell communication.

Conclusion

In this paper, we presented CellPie, a method based on a
rapid joint NMF framework. CellPie integrates spatial gene
expression counts data and molecular or histological imaging
features. This integration helps disentangling multi-cellular
spatial transcriptomics data and aids in the identification of
distinct spatial compartments. We evaluated CellPie using
two distinct datasets derived from different species (mouse
and human). These datasets are paired with different imag-
ing settings (IF and H& E), and encompass both healthy and
diseased tissues. We demonstrated that, when benchmarked

for deconvolution, CellPie’s accuracy surpassed that of other
published spatial deconvolution methods. In the application
to human prostate cancer data, CellPie emerged as the sole
method capable of distinguishing between Gleason 3 and
Gleason 4 tumour regions. Moreover, analysis of gene load-
ing matrices for both our benchmark examples were in good
agreement with the available literature. By adjusting the rel-
ative weight of transcriptomics and image data, we showed
how jointly analysing both modalities provides enhanced per-
formance over considering each one in isolation.
CellPie includes image features derived from the high reso-
lution (‘hires’) Visium images, which have a resolution ap-
proximately at 2000× 2000 pixels. There are also images
available with even higher resolutions, e.g. 27000× 25000
pixels. Leveraging these ultra-high resolution images might
potentially lead to a better performance. However, feature ex-
traction from such images using Squidpy proves to be com-
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putationally intense, requiring many hours and memory re-
sources, thus limits CellPie’s performance.
One limitation to note is that CellPie does not explicitly
model the spatial nature of the data, e.g. the neighbourhood
relationships between spots. Hence, a spatially aware ver-
sion of the joint NMF algorithm would be an interesting fu-
ture direction. Furthermore, CellPie amd the intNMF algo-
rithm (17), which CellPie is based on, could be extended to
jointly factorise more than two matrices simultaneously. This
enhancement would allow for integration of several omics
datasets possesing a shared dimension (e.g. spatial pro-
teomics).
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