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                                               ABSTRACT 

Studying gene regulatory networks associated with cancer provides valuable insights for therapeutic 

purposes, given that cancer is fundamentally a genetic disease. However, as the number of genes in 

the system increases, the complexity arising from the interconnections between network 

components grows exponentially. In this study, using Boolean logic to adjust the existing 

relationships between network components has facilitated simplifying the modeling process, 

enabling the generation of attractors that represent cell phenotypes based on breast cancer RNA-seq 

data. A key therapeutic objective is to guide cells, through targeted interventions, to transition from 

the current cancer attractor to a physiologically distinct attractor unrelated to cancer. To achieve 

this, we developed a computational method that identifies network nodes whose inhibition can 

facilitate the desired transition from one tumor attractor to another associated with apoptosis, 

leveraging transcriptomic data from cell lines. To validate the model, we utilized previously 

published in vitro experiments where the downregulation of specific proteins resulted in cell growth 

arrest and death of a breast cancer cell line. The method proposed in this manuscript combines 

diverse data sources, conducts structural network analysis, and incorporates relevant biological 

knowledge on apoptosis in cancer cells. This comprehensive approach aims to identify potential 

targets of significance for personalized medicine. 

 

Keywords: Boolean networks, systems biology of cancer, gene regulatory network analysis, 
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                                                     INTRODUCTION 

 

Cancer is a disease characterized primarily by uncontrolled cellular proliferation. This dysregulation 

disrupts normal cellular homeostasis, leading to the emergence of distinctive traits known as 

"hallmarks of cancer," which are common across different tumor types [1]. Carcinomas, a type of 

epithelial cell tumor, account for approximately 85% of all cancers and can affect various tissues in 

the human body. When these tumors occur in glandular tissue, they are specifically referred to as 

adenocarcinomas. Breast cancer falls into the category of adenocarcinomas. It is the most prevalent 

neoplastic condition affecting women, with a global incidence of approximately 2,261,419 new 

cases and 684,996 deaths in 2020 [2]. 

In addition, treating this pathology gives rise to harmful adverse effects in patients. For instance, a 

study identified 38 distinct negative symptoms categorized into five groups that resulted from 

chemotherapy administration [3]. Therefore, developing new intervention strategies that can 

enhance therapies and minimize their unwanted side effects is crucial. We propose using a Boolean 

modeling approach for breast cancer to address this need. Cancer is a genetic disease with 

multifaceted ramifications [4]. Cancer cells' DNA undergoes numerous alterations due to the 

oncogenic process, including single-base pair mutations, indels, and epigenetic modifications. 

Cancer occurrence leads to network modifications, where the pathways involved are frequently 

intertwined to generate processes characteristic of tumor dynamics and progression [5-7]. 

Epigenetic changes and alterations in gene regulatory networks [8] provide an opportunity for 

modeling cancer attractors [9]. This study builds upon a previous analysis [10] of attractors 

identified within a gene regulatory network based on breast cancer data. Specifically, by 

incorporating a novel set of genes associated with apoptosis into the Boolean network, we identified 

new attractors resulting from target inactivation. This modeling enabled our gene model to 

transition towards a cell death phenotype, as observed in corresponding in vitro experiments [11]. 

This paper presents an algorithm that optimizes the selection of network elements capable of 

inducing trajectories between attractors in the epigenetic landscape. Additionally, we have 

introduced an indicator that quantifies the network's response when inducing a trajectory from a 

malignant state to an apoptosis state through direct intervention on its vertices. We incorporated a 

set of genes representing the apoptosis process into the gene regulatory network associated with 

breast malignancy to achieve this. By manipulating the activation or inhibition state of each gene in 

this group, we assessed the effectiveness of network perturbations in transitioning the phenotype 

from malignancy to apoptosis. We calibrated the network based on (i) the typical gene expression 

level observed in the malignant attractor and (ii) the genes to be inhibited for inducing apoptosis in 

a malignant cell line, as determined from in vitro experiments. To validate the system dynamics, we 

compared the results with the in vitro experiment [11], where five genes were silenced to induce the 

death of a breast cancer cell line. This experimental data was used to evaluate the network's 

behavior upon the permanent silencing of specific targets. 

We confirmed that the network structure derived from the interactome could drive the malignant 

attractor toward apoptosis by selectively silencing the same network vertices as those targeted in the 

in vitro experiment. The capacity of our model to replicate the conditions conducive to malignant 

cell death observed in vitro enabled us to optimize the selection of targets for transitioning the 

system dynamics from the malignant attractor to the apoptosis state. This optimization process 

involved utilizing specific analysis techniques to examine the network structure, enabling us to 
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identify the vertices whose inhibition could mimic and enhance the outcomes achieved in the in 

vitro experiment. 

 

                                                 MATERIALS  AND METHODS 

 

The various stages involved in conducting this research are briefly outlined in Figure 1. 

 

 

 
 

Fig. 1: Steps for Boolean network construction and dynamic simulation. 

 

1                             NETWORK CONSTRUCTION 

 

We initiated our study using a gene regulation network established in a previous publication [10]. 

Breast cancer RNA-seq data guided the selection of network nodes, and the chosen genes were 

linked to their respective hallmarks using the MSigDB repository. Notably, the two crucial 

hallmarks of cancer, namely "UNLIMITED REPLICATIVE POTENTIAL" and "EVASION OF 

CELL DEATH," were well-represented in the dataset. We introduced an additional set of 28 genes 

to supplement the initial network consisting of 103 genes [10] to enlarge the network. Twenty-five 

incorporated nodes were for apoptosis-associated genes, exerting either inducing or inhibitory 

effects on this cellular process. Alongside these 25 novel vertices, two existing vertices from the 

previous study assume a crucial role in cellular apoptosis as constituents of the apoptotic cascade. 

Collectively, we refer to these 27 genes as apoptosis-related genes. This network enlargement was 

imperative to facilitate the modeling of the transition from the malignant state to the apoptosis one, 

which was induced by network perturbations through targeted inactivation of specific vertices. 

Protein-protein interactions were acquired from the IntAct interactome (IntAct database, version 

updated in December 2017) to establish the network connections between genes. The specific file 

used for obtaining the interactions was retrieved from the FTP link 
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ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact-micluster.txt, accessed on January 11, 

2018. The directionality of the connections and their regulatory nature (activation or inhibition) 

were determined by consulting the Metacore database [12]. To verify the network's validity in 

replicating a tested biological scenario in vitro, our system was configured to reproduce the 

outcomes documented by Tilli et al. [11]. Their experimental study demonstrated cell death in a 

cancer cell line (MDA-MB-231) by inhibiting five genes using RNA interference. To achieve this 

objective, we retrieved the RNA-seq data of two distinct cell lines, namely MCF10A and MDA-

MB-231, from the Gene Expression Omnibus (GEO) repository available at 

https://www.ncbi.nlm.nih.gov/gds/. MDA-MB-231 is a malignant cell line derived from triple-

negative breast cancer, while MCF10A served as the non-tumoral control in this study. For 

MCF10A, we obtained the following RNA-seq datasets: SRR2149928, SRR2149929, 

SRR2149930, SRR2870783, and SRR2872995. Regarding MDA-MB-231, we acquired the RNA-

seq datasets: ERR493677, ERR493680 (corresponding to the body portion), and ERR493678, 

ERR493679 (corresponding to the protrusion portion) of the cells. 

Based on information obtained from the GEO repository, the cells were cultured on a polycarbonate 

transwell filter with 3-micrometer pores, allowing the formation of protrusions through the pores for 

2 hours. Subsequently, the cells underwent a washing step, and both sides of the filter were lysed to 

extract RNA for further analysis. Through this protocol, the cells were fractionated into two distinct 

fractions: protrusion and body types. In the subsequent analysis, we employed a binary approach to 

categorize the up-regulated genes observed in each MDA-MB-231 RNA-seq dataset (both body and 

protrusion) compared to every MCF10A RNA-seq dataset. This approach introduced variability 

into the experiment and facilitated the assessment of system robustness. 

To ensure the convergence of our network model with scale-free networks, which is characteristic 

of cell signaling pathways [19], we examined the degree distribution of the network vertices. To 

evaluate the network's structure, we compared its degree distribution with that of random graphs 

[27], Watts and Strogatz small-world networks [28], and scale-free networks [19], all generated 

with the same number of vertices. To facilitate this comparison, we utilized the complementary 

cumulative distribution function (CCDF) as defined by equation 1. The CCDF provides the 

probability (F) of a vertex having a connectivity degree equal to or greater than a specified value. 

By analyzing these distributions, we could determine the degree of alignment between our network 

and these reference models. 

 

                            
                                                                                   

 

   2                        BOOLEAN MODEL CONSTRUCTION 

After constructing our model's directed graph, we established the conditions necessary for its 

dynamic simulation by defining the transfer functions that govern the system's evolution at discrete 

time intervals. The objective was to guide the dynamic behavior of the network elements in a 

manner that faithfully replicated the observed conditions from the in vitro experiment conducted by 

Tilli et al. [11]. By incorporating these specific conditions, we aimed to ensure the accurate 

representation of the experimental findings within our model's dynamic framework. In systems 

biology, accurately deducing the interaction rules of a network poses a significant challenge. To 

address this complexity, we employed Boolean nested canalizing functions [13], where the function 

is influenced by the specific order in which variables are organized. A Boolean function is 
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considered canalizing if a single input can solely determine the output. In cases where this input 

does not play the canalizing role, the other inputs are deemed responsible for fulfilling this function. 

By adopting the hierarchical structure of transfer functions, achieved through nested canalizing 

functions, we aimed to capture the behavior of biological systems more effectively [14,15]. 

Furthermore, many network nodes exhibited a substantial number of inputs, emphasizing the need 

for a robust modeling approach. In this scenario, using nested canalizing functions offers increased 

system stability [16], which is crucial in managing the inherent noise observed in biological 

systems. 

The utilization of nested canalizing functions and the need to align the model with biological facts 

enabled us to manually establish the transfer rules for each gene [16,17]. Opportunely, Harris et al. 

[18] demonstrated that a significant portion of the gene updating rules fell under canalizing 

functions. Considering these considerations, we determined the number of inputs for the Boolean 

functions, as defined in Equation 2. 

 

                                                                                      

 

Considering a set of Boolean variables               , the input was defined as essential (see 

equation 3) if the condition of equation 3 was satisfied. 

 

                                                                                  (3) 

 

The essential inputs were defined as canalizing if there were values            that satisfied 

equation 4 for all remaining combinations of variables         where x is a canalizing input value, 

and xi is a canalized value.  

 

                                                                                                  

 

A function with   essential input is defined as nested if it is z-times canalized with         

canalizing inputs and         canalizing values, to which correspond the canalized value 

       . 

Nested canalizing functions are an extension of the canalizing function formalism [13], in which the 

order of the inputs is considered to assign the canalizing role. In addition, canalizing functions can 

be nested if it is possible to set them with   inputs and     Boolean operators AND (∧  or OR (⋁  

with a priority proceeding from left to right. Thus, defining     ∧ ⋁}), we have equation 5. 

 

                                                                                                      

 

In the implementation phase of this report, each input of the function was coupled to a single logical 

operator, which can be an ∧  and  or an ⋁  or . In light of these rules, the transfer functions of the 

network have been implemented according to Equation 6 

 

                      ⋁  ⋁  ⋁   ∧     ∧     ∧    ∧                                        
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where       is the n
th

 node of the network,    ,        ,    represents the number of nodes with 

activation function on       , and   ,        ,   is the number of nodes with inhibition 

function on      . To create suitable conditions for the network to reproduce the results obtained 

in the in vitro experiment [11], we applied some changes to the general scheme of the nested 

canalizing functions illustrated above in the nodes representing the TP53, HIF1A, RELA, NFKB1, 

HDAC1, STAT3, BCL2, CASP3, and BRCA1 genes as shown in equations 7 to 11 where some input 

variables with activation or inhibition roles on nodec ceased to be independent of the other elements 

of the function and assume a cumulative role for the final result, which the other nodes cannot 

replace. 

 

                                    ⋁  ⋁   ⋁   ∧      ∧      ⋁    ⋁               (7) 

 

                        ∧    ⋁   ⋁   ∧      ∧     ⋁    ⋁                   (8) 

 

                         ∧    ⋁       ∧     ⋁   ⋁    ⋁                     (9) 

 

                         ∧    ⋁    ⋁           (10) 

 

                                    ⋁  ⋁   ⋁   ∧     ⋁   ⋁   ⋁          (11) 

 

After defining the constituent elements of the gene regulation network and analyzing its structure, 

the subsequent task was determining the appropriate mathematical formalism for the system's 

dynamic analysis. We opted to employ a directed graph model based on Boolean logic. Boolean 

network modeling represents one of the simplest methods for dynamic modeling while offering the 

advantage of reliably providing insights into system dynamics. 

In this context, we considered a Boolean variable, denoted as B, which takes on the value of True 

(1) or False (0) depending on whether a particular gene is up-regulated or not in the RNA-seq data 

of the MDA-MB-231 (malignant) cell line compared to the MCF10A (control) cell line. 

Consequently, for the n vertices within our network, we can express this relationship using equation 

12. 

 

                                                                                                                        

 

When time is represented as a discrete scalar value, the states of the network can be depicted as a 

vector with its components being the vertices of the network (equation 13).  

 

 

                                                                                                                             

The trajectories of the system within the state space are then contingent upon the Boolean functions 

associated with the n vertices of the network (equation 14). 
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In this report, we used a synchronous update mode for the network vertices, wherein all vertices are 

updated simultaneously. While an asynchronous update mode may align better with biological 

realism, the choice of update mode is not crucial given the computational and conceptual 

advantages of synchronous updates and the enhanced system stability achieved through the 

utilization of nested canalized transfer functions [21]. In the synchronous update mode, the system's 

progress occurs in consecutive temporal states (equation 15). 

 

                   
     

           
    

    ∧  ∧      
    

                                                                    

 

The goal of Boolean modeling is to identify the attractors expressed by the dynamics of the system. 

Attractors are stable gene activity patterns that represent the long-term behavior of the Boolean 

network and are interpreted as a specific cellular phenotype.  

Attractors in a Boolean system can be subdivided into different classes. Examples are fixed-point 

attractors, characterized by a single state of the system (i.e., the Boolean configuration of network 

nodes) that persists indefinitely, and cyclic attractors, characterized by a sequence of states that 

repeat periodically. Each attractor is matched with a specific basin of attraction, composed of all the 

system states for which it represents the stable state at the end of their dynamic evolution. 

 

 

3                                        MODEL VALIDATION    

 

Initially, we compared MDA-MB-231 RNA-seq samples (two from the body and two from the 

protrusion) and each corresponding MCF10A sample. To achieve this, we employed the Reads per 

kilobase of transcript per Million reads mapped (RPKM) normalization process, as outlined in Pires 

et al. [20], to normalize the read counts of the twenty paired RNA-seq samples. Subsequently, we 

subtracted each normalized value of the MCF10A RNA-seq sample from the corresponding MDA-

MB-231 data. For positive values (indicating up-regulated genes in the malignant state), we applied 

a logarithmic transformation based on equation 12, utilizing the pipeline described by Pires et al. 

[20]. 

 

                                        y = x*Log2(x+1)                                                                    (16) 

 

The procedure involved in this pipeline consists of classifying genes as up-regulated based on 

whether the logarithmic transformation of their differential expression surpasses a critical threshold. 

To determine this critical value, a Python script was employed to fit a Gaussian curve with a 95% 

confidence level to the data for a p-value of 0.025 (for more details, refer to Pires et al., 2021). In 

each of the twenty comparisons between MBA-MD-231 and MCF10A, genes that were identified 

as up-regulated through this process were assigned a value of "1", while the remaining genes were 

assigned a value of "0" (Supplementary Table S1). 
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Input : V nodes of the Boolean network; N cell lines with body-fraction MDA-MD 231 RNA-Seq values 

(     ; M cell lines with RNA-Seq values MDA-MD 231 of protrusion fraction (     ; C cell lines of 

MCF10A type RNA-Seq values (      ; 

 

 

Output : Boolean values of RNA-Seq 

 

1 for all n   N  do 

2    for all v   V  do 

3                         
      

 

                 
 

4 for all m   M do 

5    for all v   V  do                                                                                      

6                        
      

 

                 
                                             

7 for all c   C do 

8    for all v   V  do 

9                        
      

 

                 
 

10                                                                                                

11 for all v   V do                                                                             

12    for all n,m   (N, M) do 

13          for all c    C  do 

14                                          

15                                          

16                                                     
    

17                                                     
    

18  

19  

20 P-value ← 0.025                                                                           

21  for all n,m   (N, M) do 

22        for all c    C  do 

23                          

24                                   

25                                          

26                                                                                                           

27                   
 

       
  

 

 
 
      

 
  

 

28                  
 

       
  

 

 
 
      

 
  

 

29                                      

30                                    

31                                                   

32                                                  

 

                    Block  1 

Apply the process of RPKM for 

RNA-seq normalization for all 

genes in the network. MDA-MD 

231 body (lines 1-3), MDA-MD 231 

protrusion (lines 4-6), MCF10A 

(lines 7-9). 

 

 

 

              Block  2 

Subtract each normalized value 

of MCF10A RNA-seq from that 

of each MDA-MB-231 (lines 

11-15), both for body (line 14) 

and protrusion (line 15). A log 

transform is applied (body type 

line 16, Protrusion line 17)   

           BLOCK  3 

For each of the groups formed 

by all the nodes of the network 

obtained in BLOCK 2, we 

established the threshold (line 

20), for both  cellular lines  

                  Block  3 

For each of the groups formed 

by all the nodes of the network 

obtained in BLOCK 2, we 

established the threshold (line 

20), for both  cellular lines  

For body and protrusion lines we 

obtained the average (lines 23-

24), standard deviation (lines 25-

26), normal distribution (lines 

27-28), cumulative distribution 

function (lines 29-30), critical 

threshold value  through the 

inverse of cumulative 

distribution function (lines 31- 

32). 
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33     

34 for all v   V do                                                                 

35    for all n,m   (N, M) do 

36          for all c    C  do 

37             if                              

38                                    

39                   else: 

40                                   

41             if                             

42                                   

43                  else: 

      44                                    

                                     

                         

Fig. 2: Procedure used for binarization of RNA-seq values. BLOCK 1:  normalization of RNA-seq 

values. BLOCK 2:  subtraction of each normalized value of MCF10A RNA-seq from each value of 

MDA-MB-231data and log transformation application. BLOCK 3: determination of the threshold 

value for which to attribute a specific Boolean value. BLOCK 4: attribution of a  Boolean value 

based on the critical value. 

 

Using the BooleanNet library [22], we analyzed the binary values of each MDA-MB-231 RNA-seq 

normalized data in conjunction with the corresponding genes from every MCF10A sample within 

our network (Supplementary Table S2). Our objective was to identify the attractors generated 

through the dynamic evolution of the network. The presence of the 27 apoptosis-related genes in the 

attractors of this initial configuration served as a reference point for evaluating the impact of 

subsequent network modifications (Figure 3). 

 

 
 

Fig. 3: Structure of the gene regulation network under study. The blue color indicates the five target 

genes, CSNK2B, HSP90AB1, TK1, VIM, YWHAB, which were inhibited in the in vitro experiment 

of Tilli et al. [11]. The dark green nodes represent the apoptosis-related genes. The nodes in light 

                  Block  4 

Each of the values detected 

(lines 34-36) from the difference 

of RNA-seq values (lines 16-17) 

is compared with the specific 

threshold of a given group (lines 

37-41). If this value is greater 

than the threshold is assigned 1 

(lines 38-42), otherwise it’s 

assigned the Boolean value 0  

(lines 40-44). 
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green exemplify the rest of the network genes. There is no vertex inhibition in this network 

representation. 

. 

Subsequently, we conducted simulations to replicate the conditions of the in vitro experiment 

performed by Tilli et al. [11], where the MDA-MB-231 cancer cell line's death was induced through 

transient inhibition of TK1, VIM, YWHAB, CSNK2B, and HSP90AB1 genes using siRNA 

interference. For the sake of clarity, we will, below, refer to these five targets as bench targets. To 

emulate this in vitro experiment, we permanently inhibited the vertices corresponding to these 

bench targets in the dynamic evolution of the network, as shown in Figure 4. 

 

 
 

Fig. 4:   The five bench targets (blue nodes) were set to zero (inhibition) for network dynamics 

simulation. 

 

Figure 4 compares the activation or inhibition of the 27 apoptotic genes and their involvement in the 

attractors after inhibiting the five bench targets in the original network depicted in Figure 3. This 

comparison allowed us to evaluate the functional agreement between our model and the in vitro 

experiment conducted by Tilli et al. [11]. Furthermore, TP53 was permanently inhibited throughout 

the network simulation since mutations render it ineffective as a tumor suppressor in MDA-MB-231 

[41]. 

 

4                        OPTIMIZING THE NUMBER OF TARGETS 

Based on the in vitro induction of cell death in MDA-MB-231 through the silencing of CSNK2B, 

HSP90AB1, TK1, VIM, and YWHAB [11], and considering our understanding of the key 27 

apoptosis-related genes, we present a methodology to identify genes capable of driving cancer cells 

towards programmed cell death. 

To maximize the presence of the 27 apoptosis-related genes within the apoptosis attractor, with 

genes promoting apoptosis being activated and genes inhibiting it being deactivated, our objective 

was to identify the most effective target genes within the network structure. To achieve this, we 

examined the network's modularity based on the connectivity of its vertices. The Clauset-Newman-

Moore greedy modularity maximization algorithm [23] was used to identify the modular structure, 

considering the network as undirected. Modularity was calculated using equation 17, where c 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.05.10.540187doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.540187
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

represents communities, Lc denotes the number of links within a community,   is the resolution 

parameter, and    is the sum of degrees within the community. 

 

 

                                                  
  

           
    

                                                                                                                                                                            

 

In the initial stage of the algorithm, each node is assigned to its own cluster, forming a partition. 

The algorithm then proceeds iteratively, merging pairs of clusters to increase modularity. The initial 

modularity value is negative, representing a singleton cluster, and gradually increases until reaching 

a positive peak, corresponding to the optimal solution found by the algorithm. Eventually, the 

modularity value returns to zero when all nodes are in the same community. In a backward process, 

the algorithm identifies the partition corresponding to the peak value. The implementation of this 

algorithm utilized the NetworkX Python library [24]. After detecting the communities in the 

network, we examined whether the 27 apoptosis-related genes were grouped or dispersed among 

these identified modules, with the possibility of forming a single community by the algorithm's 

criteria. This approach has previously been implemented in [25], where a modularized network was 

used to map drug targets for cancer and identify modules that were the focus of therapeutic action. 

Due to the observed clustering of apoptosis-related genes in the network structure, we searched 

nodes that could be bridges among these apoptosis-related clusters and the five bench targets. 

Identifying these bridge nodes could potentially shorten the path for target genes to replicate the 

outcomes of the in vitro experiment. To accomplish this, we employed the Dijkstra algorithm using 

the NetworkX library in Python [24] to find the shortest path between each of the five bench targets 

(CSNK2B, HSP90AB1, TK1, VIM, YWHAB) and every apoptosis-related gene. 

A similar approach was adopted by George et al. [26], wherein intermediate genes along the 

shortest path were identified as potential therapeutic targets. These genes were then ranked based on 

the number of shortest paths in which they were involved. 

Utilizing the knowledge gained from the in vitro experiment, which demonstrated that inhibiting the 

five bench targets resulted in cell death of MDA-MB-231, we sought alternative vertices that, when 

inhibited, would activate the maximum number of genes within the apoptosis group. To accomplish 

this, we aimed to identify the smallest set of vertices that shared the common property of being 

involved in at least one shortest path between each of the five genes (CSNK2B, HSP90AB1, TK1, 

VIM, YWHAB) as starting nodes and any apoptosis-related gene as the final node (Figure 5). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.05.10.540187doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.540187
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 
 

Fig.5: Pseudocode of target vertex determination in shortest paths. Lines 1-6 (block 1): Detection of 

the shortest paths via Python networkX library between the five bench targets and the apoptosis-

related genes. Lines 7-11 (block 2): Creation of a list for each bench target gene containing the 

nodes detected by the algorithm on every shortest path. Line 12-17 (block 3): Insertion in the list of 

new targets of the genes present in the largest number of lists of the previous step. The asymptotic 

complexity of the algorithm is    a                       . 

 

The methodology outlined in Figure 5 enabled us to identify novel target genes that can potentially 

influence the configuration of the apoptosis-related group. By "configuration," we refer to both the 

count of activated apoptosis-related genes that can induce apoptosis and the consistency of this 

count across the RNA-seq comparisons conducted in this study. 

To evaluate the impact of deactivating the newly identified target vertices using the shortest path 

strategy on the configuration of the apoptosis-related group, we examined the activation or 

inhibition status of the apoptosis-related genes across the twenty analyzed comparisons (ten for the 

body and ten for the protrusion, representing the two fractions of MDA-MB-231). This approach 
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enabled us to compare the effects of inhibiting the new targets within the shortest paths to those 

obtained by inhibiting the original five bench targets. 

 

                                                         RESULTS 

 

     1                               GENE REGULATORY NETWORK 

 

The breast cancer regulatory network utilized in this study consists of the genes employed in a 

previous report for the computation of Boolean attractors [10], which were further expanded by the 

inclusion of 25 additional genes (Fig. 6). These 25 genes, along with the two genes already present 

in the initial network, play a key role in the cellular apoptosis process. 

 

 
 

Fig 6: Breast cancer gene regulatory network used in this report. Twenty-five red nodes and the 

three blue nodes, not part of the apoptosis group, are the new vertices added to the network used in 

the previous report (yellow nodes). In the group of twenty-seven red genes related to apoptosis, two 

(BAX and BCL2L1) were already present in our earlier work network. 

 

The network depicted in Figure 6 consists of 131 nodes and 494 edges. The system's dynamics are 

governed by Boolean transfer functions, where each node can act as either an activator or an 

inhibitor on the other nodes to which it is connected (Supplementary Table S3). The nature of 
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these interactions was deduced using a dedicated software [12], which also facilitated the 

integration of the genes from the apoptosis-related group into the pre-existing network. 

 

  2                  STRUCTURAL ANALYSIS OF THE NETWORK 

 

We examined the structural features of the network by comparing it to well-known canonical 

network types. This comparison involved analyzing the degree distribution and comparing it to 

three distinct network types commonly described in the literature: The Erdos-Renyi network [27], 

the Watts-Strogatz network [28], and the Barabasi-Albert network [19]. 

 

 

Fig. 7: Convergence of our model with three canonical networks. Log-log plot of Erdos and Renvi 

(blue line), Watts and Strogatz (orange line), and scale-free networks (green line) networks 

compared to the experimental network of this study (red). 

 

By analyzing the plot presented in Figure 7, which depicts the complementary cumulative 

distribution function, we observed a striking resemblance between the network utilized in this study 

and the network model characterized by a power-law degree distribution. This finding aligns with 

the observations made by Albert et al. [19], who noted that power-law distributions are commonly 

observed in various real networks, including those describing intricate biological systems like the 

network employed in our analysis. 

 

3                              ATTRACTOR ANALYSIS 

 

Upon examining the gene regulation network depicted in Figure 3, specifically in its unaltered state 

without any vertex inhibition, we observed that the percentage of genes satisfying the requisite 

conditions for transitioning from the malignant state to apoptosis was 29.6% for body samples and 

14.8% for protrusion samples. This finding indicates an unfavorable configuration for the cell 

apoptosis process, as only two genes from the Bcl-2 family demonstrated a pro-apoptosis role. 

Moreover, the fact that crucial genes such as CASP3, CASP6, and CASP7, which play a 
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fundamental role in the intrinsic apoptosis pathway, were inactive further supported the 

unsuitability of the configuration. Additionally, XIAP and DIABLO, which serve as inhibitors of 

CASP9 and the IAP family, failed to meet the necessary conditions for initiating an apoptosis 

process, as illustrated in Figure 8. 

 

 
 

Fig. 8: Configuration of the apoptosis-related genes in the attractors of the twenty comparisons of 

two MDA-MB-231 sample types, body, and protrusion. The seven genes indicated in red favor a 

pro-apoptotic mechanism if the gene is inhibited. On the other hand, the 20 genes displayed in black 

favor apoptosis if genes are activated (Supplementary Table 1). The DAXX gene is an exception, 

for which we did not find any characterization of its pro-apoptosis state in the literature. T (for True 

or activation), F (for False or inhibition), and X (for a continuous alternation between T and F) 

represent the boolean value of the 27 apoptosis-related genes within the detected attractors. T, F, 

and X background colors indicate if there are matches between the detected state and the ideal one 

of the corresponding genes for apoptosis induction. The green background means correspondence, 

while the orange one indicates a divergence.  

 

To replicate the outcomes described in Tilli et al. [11], we conducted in silico the inhibition of the 

five bench targets known to induce cell death in the MDA-MB-231 cell line in vitro. In the body 

samples, the percentages of genes in the apoptosis attractors that assume the state of inhibition or 
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activation supporting cell death were 74.1% and 55.6% in the comparisons 1 to 6 and  7 to 10, 

respectively. As for the protrusion samples, we found that 41% of the genes in the apoptosis 

phenotype state were observed in comparisons 1 to 6, while in comparisons 7 to 10, the percentage 

rose to 74%. These results are depicted in Figure 9. 

 

Comparing these results with those presented in Figure 8 (obtained without any gene inactivation in 

the network), there is a noticeable difference in both quantitative and qualitative aspects. 

Quantitatively, the percentages of genes aligned with the apoptosis state in the attractors are 

significantly higher, indicating a certain degree of representation of the in vitro experiment within 

the model. Qualitatively, the presence of the apoptotic state in the Bcl-2 and Caspase families and 

DIABLO and XIAP supports the expected outcomes of the bench experiment in the body 1-6 and 

protrusion 7-10 comparisons. However, in the body 7-10 and protrusion 1-6 comparisons, this 

alignment is only partially observed due to discrepancies in the RNA-seq profiles of the MCF10A 

cell lines used in these particular comparisons. 

 

 

 

Fig. 9: Attractors obtained by inhibiting the five bench targets: CSNK2B, HSP90AB1, TK1, VIM, 

and YWHAB. Columns BODY 1-6 and 7-10 refer to the ten body samples, while columns 

PROTRUSION 1-6 and 7-10 refer to the ten protrusion ones. 

 

4                           NETWORK MODULARITY ANALYSIS   
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The network modularity analysis revealed that the apoptosis-related genes tended to form distinct 

clusters with clear functional characteristics. This observation is depicted in Figure 10, where the 

two different groups of apoptosis-related genes are illustrated. 

 

 
 

Fig. 10: Network modularization process through the Clauset-Newman-More algorithm with the 

number of components of the apoptosis group in each of the seven modules. Groups 3 and 5, 

highlighted in green, indicate the groups belonging to the same modules relevant to the cell 

apoptosis process (mainly Caspases and Bcl-2 families) [29]. 

 

The majority of apoptosis-related genes, approximately 92.5%, are found in Groups 3 and 5. Group 

3 comprises the complete Caspases, XIAP, and DIABLO group, while Group 5 includes the entire 

Bcl-2 family. The modular distribution of these genes, as depicted in Supplementary Table S4, 

demonstrates their tendency to cluster together. This characteristic is of great significance in the 

methodology employed in this study as it enables the utilization of a relatively small number of 

target vertices to activate these genes. 

 

                              

   5                              SHORTEST PATH EVALUATION 

 

By examining the shortest path connecting the five bench targets with the apoptosis-related genes, 

we identified three genes present in at least one of these paths, namely HIF1A, XIAP, and BCL2. 

Since XIAP and BCL2 are part of the apoptosis group, which serves as an indicator of the network's 

state, and they also serve as the final nodes in the shortest paths, we did not evaluate the effects of 

inhibiting these genes on the apoptosis attractor. However, since HIF1A is not a member of the 

apoptosis group, we replaced XIAP and BCL2 with their respective input nodes, STAT5A and 

BRCA1 (Figure 11). 
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Fig. 11: Process of new target identification by the shortest search. Panel A: HIF1A, XIAP, and 

BCL2 are present in at least one of the 27 shortest paths. From these three genes, only HIF1A did 

not belong to the apoptosis-related group. Panel B: STA5A and BRCA1 represent the only input 

genes of XIAP and BCL2. Thus, HIF1A, STAT5A, and BRCA1 were the optimized target nodes 

detected within the shortest paths between the five bench targets and the 27 apoptosis-related genes. 

These three vertices were excellent candidates to complete the new set of optimized target genes 

that trigger the network within the apoptosis state. 

 

6                            OPTIMIZING THE NUMBER OF TARGETS 

 

Identifying the vertices with the highest centrality between the five bench targets and the 27 

apoptosis-related genes allowed us to explore the impact of inhibiting the new targets on the 

apoptosis attractor and propose a novel approach for selecting therapeutic targets. By applying the 

algorithm outlined in Figure 5, we identified STAT5A, BRCA1, and HIF1A as highly central 

vertices. Hence, we targeted the inhibition towards these three genes instead of inhibiting CSNK2B, 

HSP90AB1, TK1, VIM, and YWHAB. Combining these three genes successfully activated the 

apoptosis attractor in all sample comparisons. The outcomes achieved by inhibiting HIF1A, 

STAT5A, and BRCA1 as substitutes for the five bench targets are given in Figure 12. 
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Fig. 12: Activation or inhibition status detected in the 27 genes constituting the apoptosis-related 

group in the attractors of 10 body (1-10) and ten protrusion (1-10) sample comparisons by 

inhibiting HIF1A, STAT5A, and BRCA1 instead of CSNK2B, HSP90AB1, TK1, VIM, and YWHAB. 

 

In Figure 12, we demonstrated the simultaneous induction of cell apoptosis in both body and 

protrusion types for the Bcl-2 and Caspase gene families across all combinations of RNA-seq data. 

Notably, BID, a pro-apoptosis member of the Bcl-2 family, is activated in this simulation. The 

activation of BID plays a crucial role in activating downstream Caspases by directly activating BAX 

and BAK. This activation is absent in simulating the apoptosis attractor using the five bench genes 

(Figure 8). Similar considerations apply to DIABLO, which exhibited inconsistent expression in the 

six RNA-seq protrusion combinations from 1 to 6 (Figure 8). 

Consequently, we simulated the induction of the network into the apoptosis attractor using various 

gene inhibition strategies. By inhibiting the five bench targets, we achieved a configuration 

conducive to apoptosis in a significant portion of the genes within this group (shown in green on the 

graph) (Figure 13). The percentage of genes activated in the apoptosis-related group was notably 

higher (74.1%) compared to scenarios without bench target inhibition (first column). When HIF1A, 

STAT5A, and BRCA1 were selected as targets for inhibition, the proportion of genes activated in the 

apoptosis group further increased (77.8%) and remained consistent regardless of the MDA-MB-231 

fraction or the MCF10A RNA-seq data used to identify the up-regulated genes in MDA-MB-231 

(Figure 13, right column). 
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Based on the findings above, it might be inferred that the transition from sample-specific malignant 

basins of attraction in body and protrusion samples, respectively, occurred towards a unified basin 

of attraction that signified a generalized state of cellular apoptosis, which was achieved by 

inhibiting HIF1A, STAT5A, and BRCA1 (Figure 14). 

 

 
 

Fig. 13:  The results detected on the body and protrusion fractions of MDA-MB-231 used in this 

report, respectively. The columns identify which network genes were kept silenced in the dynamic 

simulation of the model. The green color, as opposed to the red one, indicates the percentage of the 

genes of the apoptosis group presenting a stable configuration of activation or inhibition associated 

with the attractor of the apoptosis phenotype. 
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Fig. 14: Boolean description of the transition from two basins of attraction representing the malignant 

cellular state of body and protrusion to a single basin of attraction of the cellular apoptosis state, obtained by 

inhibiting HIF1A, STAT5A, and BRCA1. 

 

                                                      DISCUSSION 

 

As a multifaceted disease, cancer is influenced by numerous factors that cannot be comprehensively 

understood solely through molecular analysis. Consequently, there is a growing inclination to 

integrate molecular data with the dynamic characteristics of biological networks, employing 

computational and mathematical modeling techniques to gain deeper insights into the underlying 

biological mechanisms driving its progression [30]. 

The choice between quantitative and qualitative modeling approaches depends on the nature of the 

available data. Quantitative modeling, which involves ordinary differential equations and requires 

kinetic parameters, becomes challenging and feasible only for gene regulatory networks of limited 

scale [31]. In contrast, qualitative Boolean network modeling provides a viable alternative, allowing 

for relatively straightforward dynamic simulation of complex biological systems [32]. This 

approach proves beneficial in exploring regulatory interactions in protein expression [33] and 

developing strategies for therapeutic interventions [34]. It is also important to note that since the 

model proposed in this work is a Boolean-type model, we implicitly assume that the values of the 

system components are binary and Boolean functions govern their interaction. Such a description of 

the system dynamics, termed qualitative, necessarily implies a loss of the functional detail of the 

system that a quantitative methodology can provide instead. In addition, having chosen a 

synchronous rather than asynchronous network update system, giving preference to the 

deterministic nature of interactions an easy interpretation of results, a rough approximation was 

accepted in the timing mechanisms of the system elements, at the expense of the stochastic nature 

of these interactions. 
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In addition to the documented characteristics, we conducted functional compatibility checks to 

validate the Boolean model used in this study against the results obtained from an in vitro 

experiment [11] involving silencing five genes using siRNA. This experiment induced apoptosis in 

the MDA-MB-231 cell line. Our data show that our system can generate functionally compatible 

outcomes by inhibiting the same genes as in the in vitro experiment. Thus, we successfully 

replicated the behavior of an actual biological system within the Boolean dynamics of the gene 

regulatory network implemented in our research. 

In this study, we utilized a Boolean network that represents a set of up-regulated genes in breast 

cancer to identify attractors corresponding to specific cellular phenotypes. We further assessed the 

compatibility of the Boolean network with an existing biological system by comparing it with an in 

vitro experiment [11]. The assignment of Boolean values to the network nodes followed the 

algorithm depicted in Figure 2. This algorithm facilitated the Booleanization of RNA-seq values 

based on the gene expression variations between malignant and non-malignant cell lines. By 

considering the gene expression differences across different cell lines, we were able to perform 

dynamic simulations of our model on a substantial number of comparisons, yielding valuable 

insights. Indeed, rather than solely relying on a single control for the four malignant samples (two 

body and two protrusion) to Booleanize the RNA-seq values and identify attractors, we expanded 

our approach by incorporating five samples of the non-malignant cell line MCF10A. By 

incorporating these additional samples, we derived gene expression differences that enabled us to 

perform a more comprehensive analysis. This strategy resulted in twenty combinatorial 

comparisons, significantly enhancing the numerical significance of network configurations and 

enabling the application of the procedures outlined in this study. 

Considering cancer phenotype as basins of attraction in the epigenetic landscape [35], this report 

aimed to cause the transition from a basin of attraction of malignant type to that of apoptosis [36] 

through the perturbation of a subset of genes belonging to the network. For this purpose, we 

developed an algorithm (Fig. 5) that optimizes the choice of the network elements to produce a 

transition from one specific phenotype to another.  

The approach of exploring the relationship existing between the results of an in vitro experiment, 

the insertion of a specific group of genes for apoptosis into the system, and the investigation of the 

network structure through the analysis of shortest paths between the five bench targets and the 

apoptosis-related group, represents an innovative strategy for clinical applications to increase 

patient benefit in personalized approaches of cancer therapies.  

Including the apoptosis-related gene group within the network was a reference to evaluate the 

induction of cell death attractors through vertex inhibition. The results obtained in this study, 

depicted in Figure 13, schematically illustrate the effectiveness of this methodology. By inhibiting 

the three genes HIF1A, STAT5A, and BRCA1, we observed a transition in the system dynamics from 

malignant basins of attraction to those associated with cell apoptosis across all analyzed samples. 

The comparison of this result (Figure 12) with that obtained by reproducing the in vitro experiment 

(Figure 9), shows the robustness of the data obtained by applying the procedure of Figure 5. 

Inhibiting the five genes (CSNK2B, HSP90AB1, TK1, VIM, YWHAB) described in Tilli et al. [11] 

promotes a configuration of the 23 apoptosis-related genes conducive to apoptosis. However, the 

quantitative uniformity of this configuration varies among different comparisons. In the body 

sample, lines 1 to 6 exhibited a greater inclination towards apoptosis, whereas lines 7 to 10 in the 

protrusion sample displayed a higher favorability towards apoptosis (Figure 9). Conversely, when 

inhibiting the three genes (HIF1A, STAT5A, BRCA1) as detected through the procedure outlined in 
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Figure 5, a more consistent profile of activated apoptosis-related genes was observed across all 

comparisons (Figure 12). Despite the divergent attractors between the body and protrusion samples, 

the induction of apoptosis by inhibiting HIF1A, STAT5A, and BRCA1 underscores the method's 

robustness.  

According to Figure 11, the target genes identified through the procedure outlined in Figure 5 

should ideally be HIF1A, XIAP, and BCL2, considering our objective of identifying target genes 

capable of activating or inhibiting the 27 apoptosis-related genes, regardless of their specific 

configuration. Consequently, we decided to avoid designating XIAP and BCL2 as targets. One 

possible alternative was substituting them with their respective input nodes, STAT5A and BRCA1, 

which do not belong to the apoptosis group. Therefore, it cannot be ruled out that the combined 

inhibitory effect on the HIF1A, XIAP, and BCL2 genes may significantly induce apoptosis in cancer 

cells. 

The role of HIF1A, STAT5, and BRCA1 is well documented in tumors. HIF1A encodes the HIF-1α 

protein, whose level is regulated by hypoxia and other mechanisms, and is part of the heterodimeric 

transcription factor HIF-1. HIF-1α has crucial roles in many tumorigenic processes, such as 

epithelial-mesenchymal transition (EMT), metastasis, cancer cell metabolism, and angiogenesis [44, 

45, 46]. Interestingly, there is a crosstalk between the HIF-1 and p53 pathways to determine cell 

fate depending on hypoxic conditions [47, 48]. Therefore, targeting the HIF-1 signaling in cancer 

can be a promising therapeutic strategy [46]. 

The transcriptional factor STAT5 is a member of the JAK-STAT (Janus kinase/Signal transducer 

and activator of transcription) pathway, which is altered in many tumors. Activated STAT5 

upregulates the expression of genes involved in cell proliferation, invasion, angiogenesis, and the 

inhibition of apoptosis [49]. The exact role of STAT5 in breast cancer is still under debate. The 

STAT5 activation in tumor macrophages by derived factors from breast cancer cells led to the 

expression of anti-tumor immune stimulatory genes [50]. On the other hand, it was shown that 

STAT5a, an isoform of STAT5, could confer resistance to doxorubicin [51] and combined 

PI3K/mTOR and JAK2/STAT5 pathways inhibition induced cell death in triple-negative breast 

cancer [52]. 

BRCA1 is an essential gene in DNA repair and cell cycle regulation. When mutated, the risk of 

developing many cancers significantly increases, especially for breast and ovarian tumors [53]. 

Several studies have shown increased brain metastasis frequency in patients carrying BRCA1 

mutations [54, 55]. Another fundamental role of this gene is the maintenance of genomic stability 

[56]. Therefore, BRCA1 is essential to tissue homeostasis.  

More specifically, several reports have established the relationship between the inhibition of 

HIF1A, STAT5A, and BRCA1 genes and the induction of apoptosis in the MDA-MB-231 cell line. 

In the case of HIF1A, suppressing its expression using siRNA has been shown to inhibit cell growth 

and enhance apoptosis [37]. Inhibition of STAT5A has been correlated with reduced metastasis and 

growth of breast cancer tumor cells [38]. Additionally, the knockdown of STAT5A restores cellular 

sensitivity to TRAIL-induced apoptosis [39]. As for BRCA1, its RNAi-mediated silencing, along 

with miR-342 transfection, has been found to increase the percentage of apoptotic cells [40]. 

Furthermore, BRCA1-depleted MDA-MD-231 cells exhibited heightened susceptibility to 

proteasome inhibitors [42]. Considering the known functions and the consequences of the 

deregulation of these three genes in cell homeostasis, our study underscores the impact of inhibiting 

them on promoting apoptosis induction in the MDA-MB-231 cell line. It is important to note the 

interplay between HIF-1 and p53 pathways to determine cell death under hypoxic conditions [47, 

48]. The inhibition of HIF1A could favor p53 in its apoptotic roles. However, in our model, p53 
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was inactivated since it is mutated in this cell line and not working as a tumor suppressor (41). 

Therefore, other mechanisms need to be investigated more deeply in the future. 

The outcomes presented in this study hinged on the fine-tuning of the transfer functions (eqs. 6-10) 

to align the model with the in vitro experiment [11]. However, the concurrence observed between 

the in vitro results, and the computational simulation indicated a satisfactory level of model 

representativeness, warranting its potential for future optimization and application in therapeutic 

scenarios. Consequently, it becomes feasible to integrate specific experimental findings with 

computational hypotheses formulated to tackle therapeutic challenges associated with cancer. 

It is worth noting that the identified therapeutic targets are the results obtained by running the 

algorithm presented in Figure 5 on the boolean network model constructed and validated by our 

group. The results obtained through their inhibition show that their choice is necessary and 

sufficient to achieve optimization in qualitative  terms of the performance obtained from the in vitro 

experiment taken as a reference in this report. All this does not exclude the possibility of not having 

considered other important therapeutic targets that have emerged in other contexts. 

The main objective of our research was to identify therapeutic targets on which an inhibition action 

is capable of causing a change in the state trajectory of the system, consequently producing a 

change in the system's final target attractor. 

However, the use of  Boolean gene regulatory networks in some research areas, such as 

pharmacogenetics [43], can be challenging in identifying the complicated mechanisms between the 

genome, its products (RNAs and proteins), and the cellular-level response to drugs.  

Because of the complex interactions that exist among molecules involved in a carcinogenic process, 

a perturbation analysis method such as the one we used in our research can be useful in dealing with 

such complexity, proposing specific interventions on the system by guiding and facilitating the 

subsequent choice of  therapy  useful for the purpose. Indeed, once therapeutic targets have been 

identified, there is the possibility of pharmacologically acting on them directly or through signaling 

pathways in which they are involved, through drugs currently in use. 

Another therapeutic possibility of greater complexity is using siRNA molecole encapsulated in 

nanoparticles specific to the identified targets. 

The outcomes presented in this study are derived from the analysis of data obtained from specific 

biological samples. The growing abundance of such information on distinct pathological conditions 

of cancer highlights the versatility of our model in accommodating various configurations of the 

same disease. The positioning of the method developed in this study within personalized medicine 

reflects its capacity to address individualized approaches to cancer treatment. 

 

                                                      

                                                    CONCLUSION 

 

In this research, we implemented a  new computational method for optimizing the number of 

potential targets for breast cancer. We constructed a Boolean Gene Regulatory Network Model of a 

breast cancer tumor and validated it using RNA-seq data from tumoral cell lines. We achieved these 

results by integrating experimental data with those obtained from an extensive literature search in 

Boolean gene regulatory networks, for which the analysis of the corresponding attractors allowed 

the identification of potential therapeutic targets. In future work, we intend to apply our method to 

actual patient data to validate our results in the context of personalized medicine. 
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