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Figure 12

Schematic Diagram of Stimulus Condition 3, Green-ring Across the Boundary of
a Stereotyped Blind Spot
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Participants

During experiment 2, thirty participants were recruited in total. They ran overlapping
subsets of the conditions. They were naive as to the experimental conditions and
hypotheses and did not participate in previous experiments. However, the demands of
the experiment turned out to require experienced psychophysics participants who could
perform the tasks with the stability required. Specifically, five expert participants
participated in all four conditions (Age: 19-66). The pupil data presented are based on five
expert participants who were run in all conditions. The number of participants remains
too low for statistical tests. For this reason, we present results with descriptive statistics
to describe patterns in the data. These statistics can be used for future experiments to
perform power analyses and to determine appropriate sample and recruitment sizes.

Results

Condition 1

Figure 14A shows the PLR when the disk, outside and above the blind spot, was blue vs.
when it was “black,” with black equating to no stimulus, given a black background—for
which the display image remains blank and transparent. When the disk was blue, on
average, the pupil constricted by around 5% (mean size=94.99%, SEM=3.28%, N=5). When
the disk was “black” (i.e., no stimulus), the pupil showed little change (mean=99.19%,
SEM=1.4%, N=5), aligning with expectations and literature.

Figure 14
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Blue bar represents stimulus ON; Black bar represents stimulus OFF. A. Pupillary light reflex (PLR), N = 5. B. Post-illumination
pupillary response (PIPR), N = 5.

Condition 2

Figure 15A shows the PLR when the disk was blue vs. when it was red (643nm, outside the
range of melanopsin activity). When the disk was blue, the pupil again constricted around
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5% (mean=95.3%, SEM=2.89%, N=5) When the disk was red, the pupil showed little
change (mean=100.5%, SEM=2.18%, N=5). This is consistent with expectations, where
melanopsin would respond to blue but not to red light.

Analogous results can be seen, in these same conditions, when looking at the PIPR to the
visible control location in condition 1 (Figure 14). Figure 14B shows the PIPR in response
to the disk shown within the blind spot, blue vs. “black.” After the offset of a blue disk, the
pupil dilated, on average, 4.95% beyond the baseline size (mean=104.95%, SEM=2.55%,
N=5). After a “black disk” (i.e., no stimulus) there was little change (mean 100.17%,
SEM=2.42%, N=5).

For presentations within the blind spot (condition 2), the PIPR was similar for the red
(643nm) and blue (445nm) stimuli (Figure 15B). After offset of the blue disk, the pupil
dilated on average 3.81% (mean=103.81%, SEM=2.05%, N=5). These measurements after
the red stimulus were initially surprising. After offset, the pupil dilated, on average, 2.84%
(mean=102,84%, SEM 1.86%, N=5). We had not expected red stimuli to have any effect
inside the blind spot. Even more mysterious, we were seeing a post-stimulus dilation, even
though the pupil had not constricted in response to the red stimulus turning on.

Figure 15
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A. Pupillary light reflex (PLR), N = 5. B. Post-illumination pupillary response (PIPR), N = 5.
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Figure 16
Full time course of PIPR, in seconds, for one participant and reflecting color of stimulus.

1.4

1.2

Vertical lines mark beginning and end of 30 second ON trials, followed by 60 second OFF periods. Y-axis is pupil size in
proportion to baseline average.

Upon closer examination of the raw data, however, we discovered that this dilation was
not actually due to the red stimulus, but in fact was the continued dilation from the offset
of the blue stimulus from the previous trial. Figure 12 shows the continuous traces of pupil
size through a series of trials. Red and Blue stimuli alternate in this experiment, and their
traces are overlaid. Blue traces reflect the pattern described above, where there is pupil
constriction during stimulation, and dilation after stimulus offset. The trace continues to
rise even 60 seconds after the stimulus offset, when the next (red) stimulus is set to begin.
The red traces, meanwhile, continually rise through the whole trial. Lining up the traces
end-to-end, it is apparent that the rising red traces are just the continuation of the rise
still occurring at the end of the blue traces. Looking back through Gamlin (2007), on which
we based our design, they indicated that participants maintained fixation for 16-30
seconds after stimulus offset, but did not explicitly say when the next trial would start. It
would seem that their duration of required recovery must have exceeded the duration of
intertrial interval that we used. This is suggested by other literature, wherein extremely
prolonged recovery periods were used, with some studies leaving as much as 7 minutes
of inter-trial interval to allow for recovery (Joyce et al., 2015).

Condition 3

Here, we found that the green ring caused much higher pupillary responses across the
board, with high variances. Figure 13 shows the PLR (17A) and PIPR (17B) to these ring
stimuli. Green stimuli with blue inside caused a PLR constriction of nearly 10%
(mean=90.18%, SEM=6.05%, N=5), and green stimuli with red inside more than 16%
(mean=83.15%, SEM=4.82%, N=5). For PIPR, blue stimuli caused a dilation of nearly 15%
(mean=114.29%, SEM=4.40%, N=5) and red stimuli over 16% (mean=116.37%,
SEM=4.84%, N=5). Numerically, the responses in the red- centered green rings are larger,
but this is hard to interpret due to the high statistical variance values.
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Figure 17

Stimulus Presentation Inside the Blind Spot, With a Green Ring Across the Boundary of the Blind Spot
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It may be that the green component of the stimuli may have been too strong in these
conditions. Its contribution may have been too dominant, leading to intense pupillary
responses that left no room for further modulation by the blue and red blind spot
components. Both the high values and high variances in pupil response suggest that the
blue and red components could be washed out. Future experiments could test lower
intensities of green light, which may require hardware modification of the green laser
channel.

Condition 4

Based on Miyamoto and Murakami (2015), we expected that a blue half-moon stimulus
on the right side of the blind spot would modulate the pupil response to the green
stimulation of the right visual field. Unfortunately, we ran into similar issues as with the
green rings in the previous section. With the green field illumination constantly on, the
addition of blue or red moons had minimal effect. Figure 18 shows the PLR and PIPR
measurements, respectively. PLR was minimally affected by blue half-moons
(mean=99.89%, SEM=2.15%, N=5), and the same for red half-moons (mean=100.28%,
SEM=2.78%, N=5). Similarly, PIPR effects were minimal for blue (mean=102.94,
SEM=3.73%, N=5) and red (mean=98.27%, SEM=3.06%, N=5). Here too, it appears that
the green component of the stimuli should be tested at a lower level.
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Figure 18
Half-moon stimulus presentation inside the blind spot, with green field outside
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Half-moon stimulus presentation inside the blind spot, with green field presented outside the blind spot, rightward of the
vertical line of the fixation cross. N = 5 for both PLR and PIPR

Experiment 3 - The inference of implicit visual perception arising from the blind spot:

Following the second experiment of data collection and analysis, we aimed to identify a
role of ipRGCs in implicit visual processing. It is known that the eye continually moves even
when a person attempts to hold a target in their gaze. These deflections have been found
to be biased if the person’s attention is directed covertly in some direction. Since
participants’ gaze was always fixed on the fixation cross, we hypothesized that the average
direction of deflection away from the cross might indicate a participant’s implicit
sensitivity to the presence of a stimulus that was invisible to their explicit awareness. If
so, we might expect that eye movements would be biased in the direction of the blind
spot when a stimulus was displayed there.

Participants

During experiment 3, gaze position data from 10 participants from experiment 2,
condition 2, were analyzed (Age: 19-66). They were naive as to the experimental
conditions and hypotheses, and did not participate in the previous experiments.

Procedure

Data were drawn from experiment 2, condition 3, throughout which participant were
instructed to maintain their gaze on the fixation cross. Gaze position was plotted for
stimulus ON vs stimulus OFF periods. To remove eccentric jumps in gaze position, we
omitted data beyond a threshold of three standard deviations away from the fixation
position.
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Results

Figure 19 highlights data from a sample observer. The fixation point is indicated by the red
cross. For the ten participants, the two columns on the left show the sampled gaze
positions during stimulus ON and OFF, respectively. Each of these two columns indicates
the relative position of the blind spot to the right of fixation. The column on the right
indicates the average direction of off-fixation gaze during both stimulus ON (dark blue)
and stimulus OFF (light blue).

We compared eye position data between ON and OFF states, hypothesizing that implicit
perception of stimuli within the blind spot might draw a participant’s gaze toward the
lower right-side of the visual field, the approximate position of the mapped blind spot for
all participants. This follows a body of work on the effects of both implicit and explicit cues
on awareness, measuring microsaccades and gaze location (Spering & Carrasco, 2015).

Our results verify that the gaze of fixed-gaze participants is not truly fixed. For example,
Fig 19 shows clear spread in gaze position. Further, this participant's average gaze
deflection direction was not to the lower right, toward the blind spot, but to the upper
right in both stimulus ON and OFF periods. Looking across participants, during the
stimulus ON condition, only two out of the ten participants showed average deviations
oriented to the right and below the horizontal meridian, potentially toward the blind spot
(Figure 19). Overall, the eye movement data do not show evidence of attentional influence
from blind spot stimulation.
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Figure 19

Gaze-position data

Gaze positions during presentation of invisible
disk stimulus within the blind spot
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A. Stimulus-ON for participant 1. B. A radial plot of a single
participant’s within-subject, average, off-fixation gaze angle,
by stimulus presentation condition.

C. Stimulus-ON for all participants. D. Stimulus-OFF for all
participants. E. Radial plot for all participants’ within-
subject, average, off-fixation gaze angle, by stimulus
presentation condition. Data is plotted with respect to the
illustrated fixation cross, and as a function of stimulation ON
and OFF. The participant’s stimulus-state-dependent average
gaze direction is plotted on the far right. N = 10
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7. DISCUSSION

The aim of this study was to establish a method to spatially confine stimulation of the
retina by employing a laser-based retinal scanning display in psychophysical studies. We
developed a hardware setup and demonstrated an efficient method for detailed mapping
of the blind spot. We then ran an initial study to investigate implicit processing of blind
spot stimulation, to test the validity of our approach, and to find its advantages and
disadvantages iteratively.

The disadvantage of this method is that it requires the participant to keep his or her head
still for a certain period of time. If the participant looks away from the fixation point, the
stimuli disappear. If their posture shifts out of alignment, by even a small degree, the
stimuli disappear, or the component colors of the fixation cross split. However, from a
different perspective, this disadvantage turned out to be an advantage for enforcing the
requirement of participant’s stillness. That is, we were able to turn an important
disadvantage of the RSD, its sensitivity to movement, into the useful constraint of gaze-
contingency. This stability allowed us to derive participants’ subjective blind spot maps
precisely and in a relatively short period of time.

While the EEG and eye movement analyses did not reveal evidence of implicit processes,
our measurements of pupil activity showed some positive evidence especially in the
longer timescale. Similar to Miyamoto and Murakami (2015) and Gamlin (2007), we found
that blue stimuli in the blind spot generate PLR and PIPR (Figures 11 and 15).
Measurements of the red control stimuli were marred by a cross-trial artifact. The absence
of PLR and PIPR to red light appeared to be obscured by slow modulations left over from
previous trials (Figure 16), but an experiment with extended inter-trial recovery periods
would be required to confirm this. The two conditions using green ring and field stimuli
presented visual stimuli that contained green components that were likely too strong, and
should be repeated at lower intensities, in order to detect the effect of ipRGCs inside the
blind spot which may be subtle. This may require modification of the laser with respect to
green color wavelengths, as the laser’s intensity climbs particularly rapidly through the
lowest video levels.
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CONCLUSION

The Retinal Scanning Display allows the collection of detailed functional maps of the visual
field and blind spot. It provides an optically cleaner way to study human ipRGCs than with
typical displays, by better isolating ipRGC functions from rods and cones. We replicate
aspects of previous studies, avoiding scattering artifacts and exploring the parameter
space optimized for ipRGC activity. We successfully demonstrated the methodological
aspects of applying the device for research. It will be necessary, however, to further test
and revise stimulus parameters to make technical improvements aimed at avoiding optical
artifacts. This will allow us to further assess the device’s utility and to fully test the
hypotheses regarding the biological and functional roles of ipRGCs.
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