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ParLcipants 
During experiment 2, thirty parLcipants were recruited in total. They ran overlapping 
subsets of the condiLons. They were naïve as to the experimental condiLons and 
hypotheses and did not parLcipate in previous experiments. However, the demands of 
the experiment turned out to require experienced psychophysics parLcipants who could 
perform the tasks with the stability required. Specifically, five expert parLcipants 
parLcipated in all four condiLons (Age: 19-66). The pupil data presented are based on five 
expert parLcipants who were run in all condiLons. The number of parLcipants remains 
too low for staLsLcal tests. For this reason, we present results with descripLve staLsLcs 
to describe paVerns in the data. These staLsLcs can be used for future experiments to 
perform power analyses and to determine appropriate sample and recruitment sizes.  
 
Results 
 
CondiLon 1 
Figure 14A shows the PLR when the disk, outside and above the blind spot, was blue vs. 
when it was “black,” with black equaLng to no sLmulus, given a black background—for 
which the display image remains blank and transparent. When the disk was blue, on 
average, the pupil constricted by around 5% (mean size=94.99%, SEM=3.28%, N=5). When 
the disk was “black” (i.e., no sLmulus), the pupil showed liVle change (mean=99.19%, 
SEM=1.4%, N=5), aligning with expectaLons and literature. 
 

 
CondiLon 2 
Figure 15A shows the PLR when the disk was blue vs. when it was red (643nm, outside the 
range of melanopsin acLvity). When the disk was blue, the pupil again constricted around 
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5% (mean=95.3%, SEM=2.89%, N=5) When the disk was red, the pupil showed liVle 
change (mean=100.5%, SEM=2.18%, N=5). This is consistent with expectaLons, where 
melanopsin would respond to blue but not to red light.  
 
Analogous results can be seen, in these same condiLons, when looking at the PIPR to the 
visible control locaLon in condiLon 1 (Figure 14). Figure 14B shows the PIPR in response 
to the disk shown within the blind spot, blue vs. “black.” Aper the offset of a blue disk, the 
pupil dilated, on average, 4.95% beyond the baseline size (mean=104.95%, SEM=2.55%, 
N=5). Aper a “black disk” (i.e., no sLmulus) there was liVle change (mean 100.17%, 
SEM=2.42%, N=5).  
 
For presentaLons within the blind spot (condiLon 2), the PIPR was similar for the red 
(643nm) and blue (445nm) sLmuli (Figure 15B). Aper offset of the blue disk, the pupil 
dilated on average 3.81% (mean=103.81%, SEM=2.05%, N=5). These measurements aper 
the red sLmulus were iniLally surprising. Aper offset, the pupil dilated, on average, 2.84% 
(mean=102,84%, SEM 1.86%, N=5). We had not expected red sLmuli to have any effect 
inside the blind spot. Even more mysterious, we were seeing a post-sLmulus dilaLon, even 
though the pupil had not constricted in response to the red sLmulus turning on.  
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Upon closer examinaLon of the raw data, however, we discovered that this dilaLon was 
not actually due to the red sLmulus, but in fact was the conLnued dilaLon from the offset 
of the blue sLmulus from the previous trial. Figure 12 shows the conLnuous traces of pupil 
size through a series of trials. Red and Blue sLmuli alternate in this experiment, and their 
traces are overlaid. Blue traces reflect the paVern described above, where there is pupil 
constricLon during sLmulaLon, and dilaLon aper sLmulus offset. The trace conLnues to 
rise even 60 seconds aper the sLmulus offset, when the next (red) sLmulus is set to begin. 
The red traces, meanwhile, conLnually rise through the whole trial. Lining up the traces 
end-to-end, it is apparent that the rising red traces are just the conLnuaLon of the rise 
sLll occurring at the end of the blue traces.  Looking back through Gamlin (2007), on which 
we based our design, they indicated that parLcipants maintained fixaLon for 16-30 
seconds aper sLmulus offset, but did not explicitly say when the next trial would start. It 
would seem that their duraLon of required recovery must have exceeded the duraLon of 
intertrial interval that we used.  This is suggested by other literature, wherein extremely 
prolonged recovery periods were used, with some studies leaving as much as 7 minutes 
of inter-trial interval to allow for recovery (Joyce et al., 2015). 
 
CondiLon 3 
 
Here, we found that the green ring caused much higher pupillary responses across the 
board, with high variances. Figure 13 shows the PLR (17A) and PIPR (17B) to these ring 
sLmuli. Green sLmuli with blue inside caused a PLR constricLon of nearly 10% 
(mean=90.18%, SEM=6.05%, N=5), and green sLmuli with red inside more than 16% 
(mean=83.15%, SEM=4.82%, N=5). For PIPR, blue sLmuli caused a dilaLon of nearly 15% 
(mean=114.29%, SEM=4.40%, N=5) and red sLmuli over 16% (mean=116.37%, 
SEM=4.84%, N=5). Numerically, the responses in the red- centered green rings are larger, 
but this is hard to interpret due to the high staLsLcal variance values. 
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It may be that the green component of the sLmuli may have been too strong in these 
condiLons. Its contribuLon may have been too dominant, leading to intense pupillary 
responses that lep no room for further modulaLon by the blue and red blind spot 
components. Both the high values and high variances in pupil response suggest that the 
blue and red components could be washed out. Future experiments could test lower 
intensiLes of green light, which may require hardware modificaLon of the green laser 
channel. 
 
CondiLon 4 
 
Based on Miyamoto and Murakami (2015), we expected that a blue half-moon sLmulus 
on the right side of the blind spot would modulate the pupil response to the green 
sLmulaLon of the right visual field. Unfortunately, we ran into similar issues as with the 
green rings in the previous secLon. With the green field illuminaLon constantly on, the 
addiLon of blue or red moons had minimal effect. Figure 18 shows the PLR and PIPR 
measurements, respecLvely. PLR was minimally affected by blue half-moons 
(mean=99.89%, SEM=2.15%, N=5), and the same for red half-moons (mean=100.28%, 
SEM=2.78%, N=5). Similarly, PIPR effects were minimal for blue (mean=102.94, 
SEM=3.73%, N=5) and red (mean=98.27%, SEM=3.06%, N=5). Here too, it appears that 
the green component of the sLmuli should be tested at a lower level. 
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Experiment 3  -  The inference of implicit visual percep/on arising from the blind spot: 
 
Following the second experiment of data collecLon and analysis, we aimed to idenLfy a 
role of ipRGCs in implicit visual processing. It is known that the eye conLnually moves even 
when a person aVempts to hold a target in their gaze. These deflecLons have been found 
to be biased if the person’s aVenLon is directed covertly in some direcLon. Since 
parLcipants’ gaze was always fixed on the fixaLon cross, we hypothesized that the average 
direcLon of deflecLon away from the cross might indicate a parLcipant’s implicit 
sensiLvity to the presence of a sLmulus that was invisible to their explicit awareness. If 
so, we might expect that eye movements would be biased in the direcLon of the blind 
spot when a sLmulus was displayed there. 
 
ParLcipants 
During experiment 3, gaze posiLon data from 10 parLcipants from experiment 2, 
condiLon 2, were analyzed (Age: 19-66). They were naïve as to the experimental 
condiLons and hypotheses, and did not parLcipate in the previous experiments. 
 
Procedure 
Data were drawn from experiment 2, condiLon 3, throughout which parLcipant were 
instructed to maintain their gaze on the fixaLon cross.  Gaze posiLon was ploVed for 
sLmulus ON vs sLmulus OFF periods.  To remove eccentric jumps in gaze posiLon, we 
omiVed data beyond a threshold of three standard deviaLons away from the fixaLon 
posiLon.  
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Results 
 
Figure 19 highlights data from a sample observer. The fixaLon point is indicated by the red 
cross. For the ten parLcipants, the two columns on the lep show the sampled gaze 
posiLons during sLmulus ON and OFF, respecLvely. Each of these two columns indicates 
the relaLve posiLon of the blind spot to the right of fixaLon. The column on the right 
indicates the average direcLon of off-fixaLon gaze during both sLmulus ON (dark blue) 
and sLmulus OFF (light blue). 
 
We compared eye posiLon data between ON and OFF states, hypothesizing that implicit 
percepLon of sLmuli within the blind spot might draw a parLcipant’s gaze toward the 
lower right-side of the visual field, the approximate posiLon of the mapped blind spot for 
all parLcipants. This follows a body of work on the effects of both implicit and explicit cues 
on awareness, measuring microsaccades and gaze locaLon (Spering & Carrasco, 2015). 
 
Our results verify that the gaze of fixed-gaze parLcipants is not truly fixed. For example, 
Fig 19 shows clear spread in gaze posiLon. Further, this parLcipant's average gaze 
deflecLon direcLon was not to the lower right, toward the blind spot, but to the upper 
right in both sLmulus ON and OFF periods. Looking across parLcipants, during the 
sLmulus ON condiLon, only two out of the ten parLcipants showed average deviaLons 
oriented to the right and below the horizontal meridian, potenLally toward the blind spot 
(Figure 19). Overall, the eye movement data do not show evidence of aVenLonal influence 
from blind spot sLmulaLon. 
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7. DISCUSSION     
The aim of this study was to establish a method to spaLally confine sLmulaLon of the 
reLna by employing a laser-based reLnal scanning display in psychophysical studies. We 
developed a hardware setup and demonstrated an efficient method for detailed mapping 
of the blind spot. We then ran an iniLal study to invesLgate implicit processing of blind 
spot sLmulaLon, to test the validity of our approach, and to find its advantages and 
disadvantages iteraLvely. 
 
The disadvantage of this method is that it requires the parLcipant to keep his or her head 
sLll for a certain period of Lme. If the parLcipant looks away from the fixaLon point, the 
sLmuli disappear. If their posture ships out of alignment, by even a small degree, the 
sLmuli disappear, or the component colors of the fixaLon cross split. However, from a 
different perspecLve, this disadvantage turned out to be an advantage for enforcing the 
requirement of parLcipant’s sLllness. That is, we were able to turn an important 
disadvantage of the RSD, its sensiLvity to movement, into the useful constraint of gaze-
conLngency. This stability allowed us to derive parLcipants’ subjecLve blind spot maps 
precisely and in a relaLvely short period of Lme.   
 
While the EEG and eye movement analyses did not reveal evidence of implicit processes, 
our measurements of pupil acLvity showed some posiLve evidence especially in the 
longer Lmescale. Similar to Miyamoto and Murakami (2015) and Gamlin (2007), we found 
that blue sLmuli in the blind spot generate PLR and PIPR (Figures 11 and 15). 
Measurements of the red control sLmuli were marred by a cross-trial arLfact. The absence 
of PLR and PIPR to red light appeared to be obscured by slow modulaLons lep over from 
previous trials (Figure 16), but an experiment with extended inter-trial recovery periods 
would be required to confirm this. The two condiLons using green ring and field sLmuli 
presented visual sLmuli that contained green components that were likely too strong, and 
should be repeated at lower intensiLes, in order to detect the effect of ipRGCs inside the 
blind spot which may be subtle. This may require modificaLon of the laser with respect to 
green color wavelengths, as the laser’s intensity climbs parLcularly rapidly through the 
lowest video levels.  
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CONCLUSION     
The ReLnal Scanning Display allows the collecLon of detailed funcLonal maps of the visual 
field and blind spot. It provides an opLcally cleaner way to study human ipRGCs than with 
typical displays, by beVer isolaLng ipRGC funcLons from rods and cones. We replicate 
aspects of previous studies, avoiding scaVering arLfacts and exploring the parameter 
space opLmized for ipRGC acLvity. We successfully demonstrated the methodological 
aspects of applying the device for research. It will be necessary, however, to further test 
and revise sLmulus parameters to make technical improvements aimed at avoiding opLcal 
arLfacts. This will allow us to further assess the device’s uLlity and to fully test the 
hypotheses regarding the biological and funcLonal roles of ipRGCs.  
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