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ABSTRACT

Most third-generation sequencing (TGS) processing tools rely on multiple sequence alignment
(MSA) methods to manage sequencing errors. Despite the broad range of MSA approaches
available, a limited selection of implementations are commonly used in practice for this type of
application, and no comprehensive comparative assessment of existing tools has been under-
taken to date. In this context, we have developed an automatic pipeline, named MSA Limit,
designed to facilitate the execution and evaluation of diverse MSA methods across a spectrum
of conditions representative of TGS reads. MSA Limit offers insights into alignment accuracy,
time efficiency, and memory utilization. It serves as a valuable resource for both users and
developers, aiding in the assessment of algorithmic performance and assisting users in se-
lecting the most appropriate tool for their specific experimental settings. Through a series of
experiments using real and simulated data, we demonstrate the value of such exploration. Our
findings reveal that in certain scenarios, popular methods may not consistently exhibit optimal
efficiency and that the choice of the most effective method varies depending on factors such as
sequencing depth, genome characteristics, and read error patterns. MSA Limit is open source
is freely available at gitlab.cristal.univ-lille.fr/crohmer/msa-limit and all
presented results and necessary information to reproduce the experiments are available at
gitlab.cristal.univ-lille.fr/crohmer/msa-limit
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1 INTRODUCTION

Over the past two decades, DNA sequencing has revolutionized biological research. Tech-
nologies like Illumina, representative of second-generation sequencing (SGS), have not only
made sequencing cost-effective but also increased throughput, broadening access to genomic
information. However, the technology continues to evolve, with third-generation sequencing
technologies (TGS) addressing key limitations of SGS. One major advantage of TGS is the
generation of significantly longer reads—ranging from 104 to 105 nucleotides, even reaching into
the megabase range. This performance surpasses that of the SGS, which can only read up to 300
nucleotides (Belser et al., 2018; Miga et al., 2020; Hotaling et al., 2021). These extended reads
span a majority of genomic repeats, leading to higher-quality genome assembly. Additionally,
TGS employs amplification-free protocols that eliminate the GC bias inherent in SGS, thereby
offering a more representative genomic profile (Chen et al., 2013; Lan et al., 2015; Browne et al.,
2020). However, TGS are not without challenges. They can introduce a high level of noise
and primarily suffer from insertion and deletion errors, ranging from 5 to 15% (Delahaye and
Nicolas, 2021), as opposed to the mainly substitution-based errors at lower frequencies (from
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1% to 0.1%) in SGS (Stoler and Nekrutenko, 2021).
Current computational tools attempt to manage this noise by leveraging redundancy to sift

through erroneous bases and accurately represent genomes. One common approach involves
multiple sequence alignment (MSA), a task known for its computational complexity (Wang and
Jiang, 1994; Elias, 2006) and a very rich literature addressing this issue in practice. Various
strategies exist to construct MSAs from TGS data, including the selection of a ”backbone” read
as a reference (Au et al., 2012; Hackl et al., 2014; Goodwin et al., 2015), or the use of more
robust but computationally intense methods based on partial order graphs (Lee et al., 2002),
which was originally introduced to align sets of homologous genes or proteins.

The first application of partial order graphs to TGS reads can be traced back to PBDAGCON,
the error correction module of HGAP (Chin et al., 2013). This trend has then been adopted
by numerous tools, some of which directly use the POA (Lee et al., 2002) program, such as
Nanocorrect (Loman et al., 2015), while others, like PBDAGCON Chin et al. (2013), provide
their own implementation of partial order graphs for assembly (Koren et al., 2017; Chin et al.,
2016; Xiao et al., 2017) and for correction/polishing (Kundu et al., 2019; Ruan and Li, 2020;
Bao et al., 2019; Miyamoto et al., 2014; Ye and Ma, 2016; Morisse et al., 2021). Recently,
RACON (Vaser et al., 2017) implemented a faster version of POA based on SIMD, called SPOA,
to enhance correction and polishing. RACON has been extensively used to improve numerous
published genomes and is integrated into other tools, such as Unicycler (Wick et al., 2017) and
Raven (Vaser and Šikić, 2021). Another SIMD implementation of POA dedicated to long reads
is available in abPOA (Gao et al., 2020). Moreover, some of these techniques are even used
as part of the read sequencing process. For example, Pacific Bioscience High Fidelity Reads
(HiFi) (Wenger et al., 2019) are generated by sequencing a region multiple times and creating a
consensus sequence using methods similar to Sparc (Ye and Ma, 2016).

The widespread adoption of partial order graphs in TGS tools raises an interesting question:
Could alternative MSA methods also be effective for TGS data alignment? We address this
gap through a two-fold contribution: Firstly, we introduce MSA Limit, an automated toolkit
designed to benchmark various MSA tools on TGS datasets against a reference sequence. Built
on Snakemake (Köster and Rahmann, 2012) and Conda (Grüning et al., 2018) environments,
MSA Limit offers a user-friendly, easily installable, and flexible framework. A detailed descrip-
tion of the pipeline can be found in Section 2. Secondly, we present an extensive set of datasets
and benchmark a range of MSA tools. These datasets span bacterial, yeast, and human genomes
and serve as a comparative baseline for a selection of widely-used MSA tools from various
backgrounds: MUSCLE (Edgar, 2004), T-Coffee (Notredame et al., 2000), MAFFT (Katoh et al.,
2002), Clustal Omega (Sievers and Higgins, 2014), KALIGN (Lassmann and Sonnhammer,
2005), KALIGN3 (Lassmann, 2020), POA (Lee et al., 2002), SPOA (Vaser et al., 2017) and
abPOA (Gao et al., 2020). This benchmarking analysis is discussed in Section 3.

2 THE MSA LIMIT PIPELINE OVERVIEW

2.1 Overview of the Strategy
The primary goal of MSA Limit is to provide an automated protocol to evaluate MSA tools
on TGS reads. Our investigation focuses on the influence of three critical factors on alignment
quality and computational efficiency:

• sequencing error profile, encompassing error rate and error types,

• length of the aligned sequences,

• sequencing depth.
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Figure 1. Global overview of the MSA Limit pipeline.

Detailed descriptions of these three factors follow.

2.1.1 Sequencing Error Profile
The error profile is determined by dataset selection. It includes various error types such as
insertions, deletions, and substitutions present at different rate.

2.1.2 Length of Aligned Sequences
The aligned sequence length is constrained by read length and also depends on the read processing
strategy. For example, tools like CONSENT (Morisse et al., 2021) and ELECTOR (Marchet
et al., 2020) employ spliting strategies to focus on smaller subsequences, affecting the length of
the actual MSA inputs.

2.1.3 Sequencing Depth
We explore sequencing depth values ranging from 10x to 200x, covering a wide array of exper-
imental designs and applications. Generally, guidelines advise against low-depth sequencing
below 20x. Indeed, using a Poisson distribution to model sequencing depth, we estimate that
with 20x depth, several bases would be missed from a gigabase-sized genome (Hozza et al.,
2015). As a result, most assemblers designate their comfort zone between 30x and 60x1. We also
examine higher sequencing depths of 100x and 200x to determine whether increased information
from more sequences leads to improved alignments and to assess the ability of MSA tools to
handle such large data.

1https://canu.readthedocs.io/en/latest/quick-start.html

3/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.03.560796doi: bioRxiv preprint 

https://canu.readthedocs.io/en/latest/quick-start.html
https://doi.org/10.1101/2023.10.03.560796
http://creativecommons.org/licenses/by/4.0/


Figure 2. Visual representation of the pipeline.

2.2 Pipeline Inputs
The MSA Limit pipeline necessitates a set of TGS reads and a reference sequence for input. The
reference sequence acts as the ground truth for MSA quality evaluation. It is not involved in
MSA construction.

2.3 Pipeline Steps
By default, the pipeline conducts various experiments using different region sizes and sequencing
depths. Each experiment is distinctly identified by a genomic region, sequencing depth, and the
MSA tool in use. The comprehensive process comprises the following seven steps. A bird eye
view of the pipeline steps is displayed in Figure 1 completed with a more detailed depiction in
Figure 2, along with the Snakemake workflow in Figure 3 to help the reader.

1. Read Alignment: Align the complete set of reads against the reference genome using
minimap2 (Li, 2018), with preset options based on the nature of the reads (ONT, PacBio).
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Figure 3. Rule graph of the Snakemake pipeline comparing various MSA tools.

2. Starting Position Selection: Select starting positions for genomic regions. By default, 10
random positions are chosen.

3. Genomic Region Construction: For each starting position, construct genomic regions of
varying lengths. By default, MSA Limit constructs regions with sizes of 100, 200, 500,
1,000, 2,000, 5,000, and 10,000 bases.
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4. Read Selection: For each region, select a set of reads that satisfy the desired sequencing
depth.

5. MSA Construction: For each available MSA tools, compute the MSA from each selection
of reads.

6. Consensus Sequence Creation: Derive a consensus sequence from each MSA. The
precise definition of the consensus sequence is provided in subsection 2.4.

7. MSA Evaluation: Evaluate the MSA by computing a serie of metrics from the consensus
sequence aligned to the reference sequence. Those metrics are described in subsection 2.5.

2.4 Constructing Consensus Sequences
For each MSA, a consensus sequence is built, using the DNA IUPAC code. The method considers
each column of the MSA independently and applies a selection procedure to determine which
IUPAC character represents the column based on the most frequent characters present in the
column. This procedure relies on a threshold parameter, indicating the minimal appearance
rate for a nucleotide to be included in the consensus sequence. If the most frequent character
is a gap, we retain the gap to represent the column in the consensus sequence. Otherwise, we
consider possible nucleotides (A, C, G, T) in descending order of frequency. If the most prevalent
nucleotide rate exceeds the threshold, we choose this nucleotide for the consensus. If not, we
consider the cumulative rate of the first and second nucleotides. If this rate is above the threshold,
we select the corresponding IUPAC character. We continue this process by adding the subsequent
nucleotide until the threshold is reached. Note that when selecting the next nucleotide, if there is
a tie (i.e., the two following nucleotides have the same occurrence), both nucleotides are added to
avoid order bias. We display several examples of consensus sequences using different thresholds
in Figure 4.

Figure 4. Consensus sequence examples with thresholds at 70% and 90%.

2.5 Pipeline Outputs and Evaluation Metrics
Post-execution of a MSA Limit run, numerous outputs are generated for detailed analysis,
including:

• Identity rate: The ratio of positions where the two sequences have strictly identical
characters, divided by the consensus size.
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• Ambiguous character rate: The ratio of positions in the consensus sequence where
multiple characters are possible (any characters other than A, C, G, T, or gap).

• Match rate: The ratio of positions where the two IUPAC codes share a potential nucleotide
character. For instance, Y and S match because both can represent C, but R and Y do not
match.

• Error rate: Non-matching characters are considered as errors.

• Consensus size: The length of the consensus sequence.

This set of metrics is computed by comparing the consensus sequence to the reference sequence.
This is done by pairwise sequence alignement using Exonerate (Slater and Birney, 2005) in
the exact global alignment mode. Additionally, summary files providing mean and standard
deviations of the metrics across different genomic region starting positions are furnished.

3 BENCHMARKING WITH MSA LIMIT

3.1 Selection of MSA Tools
We benchmarked a diverse set of MSA tools chosen based on their widespread use and comple-
mentarity.

Progressive Alignment Methods: These tools initially compute pairwise alignments, which
are then progressively merged into a final MSA following a guide tree. The methods differ in
pairwise alignment computation, clustering algorithms, and guide tree sequence incorporation.
We selected the following tools for this category:

• Clustal Omega: A global sequence aligner using fast hierarchical clustering.

• KALIGN and KALIGN3: Tools that blend local matches into global alignment.

• POA, SPOA, and abPOA: Programs utilizing directed acyclic graphs for intermediate
MSAs.

Iterative Methods: Initiating from a rudimentary MSA, these tools iteratively refine it. Selected
tools are:

• MUSCLE: Employs k-mer counting, progressive alignment, and tree-dependent refine-
ment.

• MAFFT: Uses the fast Fourier transform (FFT) for quick homologous segment detection.

Consistency Check methods: Tools like T-Coffee precompute both local and global align-
ments for consistency checks before guide tree construction.

3.2 Construction of Datasets
3.2.1 Simulated Datasets
For precision over reference and error profiles, we used simulated datasets created via PB-
SIM2 (Ono et al., 2021), utilizing the E. coli K-12 strain as the reference (GenBank accession
GCA 000005845.2). The datasets are named by their error types: DEL (deletions only), INS
(insertions only), SUB (substitutions only), and MIX. The MIX datasets contain a proportion of
23% substitutions, 31% insertions, and 46% deletions following an ONT error model. For each
of these four error types, DEL, INS, SUB and MIX, we generated eight datasets showcasing
different error rates, 1, 2, 5, 10, 15, 20, 25, and 30%, giving a total number of 32 datasets.
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3.2.2 Real Datasets
We handpicked real datasets based on three criteria: a reliable reference sequence, sequencing
depth exceeding 100x, and diverse estimated sequencing error rates. The reference sequence’s
credibility is pivotal, as a perfect sequence is elusive. To minimize discrepancies, we chose
genomes derived from the same individual. When such a genome was not available, we required
that complementary reads from alternative sequencing technologies, (Illumina or HiFi) were
available for the same individual and assembled those reads to produce a reference genome.

For each dataset, we estimated the sequencing error rate by aligning the ONT reads on the
reference genome using minimap2. Ths list is avaibale in Table 1

Reference Error Rate Depth
E. coli HiFi Custom HiFi Assembly 17.28% 200x
E. coli Illumina Custom Illumina Assembly 16.36% 650x
BMB Yeast Custom Illumina Assembly 10.8% 110x
Human T2T-CHM13v2.0 6.6% 120x

Table 1. Real datasets employed.

E. coli HiFi Derived from the ENA’s SAMN13901561 sample, we accessed both ONT
(SRR12801740) and HiFi (SRR11434954) reads. The Hifiasm assembler (Cheng et al., 2021)
was utilized for reference genome creation from the HiFi reads, yielding a 17.28% sequencing
error rate for the ONT reads against this reference sequence.

E. coli Illumina This dataset originates from ENA’s sample SAMN10604456 for the strain
CFSAN027350, and provides both ONT (SRR8335315) and Illumina (SRR8333590) reads. A
custom SPAdes assembly was generated from the Illumina reads to build the reference genome.
The sequencing error rate for ONT reads is estimated to be 16.36%.

BMB Yeast This dataset utilized the Illumina sequencing ERR1308675 and ONT sequencing
ERR4352154. The reference genome was constructed from Illumina reads with SPAdes, resulting
in an estimated 10.8% sequencing error rate for the ONT reads.

Homo sapiens We collected ONT data from the T2T consortium (Nurk et al., 2022), and used
the T2T-CHM13v2.0 reference genome. ONT reads attained a 6.6% sequencing error rate.

3.3 General behaviour of all MSA tools
In our initial experiments, we utilized the nine MSA tools described in Subsection 3.1 and
the four real datasets referenced in Subsection 3.2, namely E .coli Hifi, E. coli Illumina, BMB
yeast, and Human. We assessed a broad range of genomic region sizes: 100, 200, 500, 1000,
2000, 5000, and 10,000 bases. Additionally, we varied sequencing depths: 10x, 20x, 30x,
45x, 50x, 60x, 100x, 150x, 200x. For each dataset, we took 10 random regions. A total of
22,680 experiments were conducted. Comprehensive results can be found in the data repository
gitlab.cristal.univ-lille.fr/crohmer/msa-limit, while a concise summary
is provided in Table 2.

Of the nine MSA tools we tested, seven (abPOA, KALIGN, KALIGN3, MAFFT, MUSCLE,
POA, and SPOA) processed all datasets effectively. Clustal Omega and T-Coffee were the excep-
tions. Although Clustal Omega is known for its accuracy with sequences that are evolutionarily
related (Sievers and Higgins, 2014), it underperformed in our long-read alignments. It struggled
with managing insertions, deletions, and often introduced spurious gaps, likely because of its
”Once a gap, always a gap” paradigm. On the other hand, while T-Coffee produced high-quality
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Ecoli-Hifi Ecoli-Illumina BMB yeast Human
Consensus sequence identity rate
abPOA 95.2 ▷ 97.9 95.8 ▷ 97.4 98.8 ▷ 99.7 99.6 ▷ 99.9
clustal o 83.9 ▷ 89.7 84.8 ▷ 91.2 92.4 ▷ 96.2 95.1 ▷ 98.6
KALIGN 93.6 ▷ 98.7 92.9 ▷ 97.8 97.8 ▷ 99.7 99.6 ▷ 100
KALIGN3 90.1 ▷ 98.6 90.7 ▷ 97.4 96.8 ▷ 99.7 99.4 ▷ 99.9
MAFFT 93.1 ▷ 98.9 94.2 ▷ 98.4 98.2 ▷ 99.8 99.5 ▷ 100
MUSCLE 95.5 ▷ 98.6 95.3 ▷ 97.8 98.7 ▷ 99.6 99.7 ▷ 99.9
POA 93.7 ▷ 97.0 96.1 ▷ 97.1 98.9 ▷ 99.6 99.7 ▷ 99.9
SPOA 95.2 ▷ 98.6 95.9 ▷ 98.0 98.9 ▷ 99.8 99.6 ▷ 99.9
T-Coffee 96.2 ▷ 99.3 95.7 ▷ 98.3 99.1 ▷ 99.9 99.7 ▷ 100.0
Computation time (in seconds)
abPOA 0.0 ▷ 0.7 0.0 ▷ 0.6 0.0 ▷ 0.5 0.0 ▷ 0.6
clustal o 0.4 ▷ 89.7 0.4 ▷ 82 0.4 ▷ 129.2 0.3 ▷ 100.9
KALIGN 0.0 ▷ 3.4 0.0 ▷ 3.1 0.0 ▷ 3.5 0.0 ▷ 3.3
KALIGN3 0.1 ▷ 5.4 0.1 ▷ 5.3 0.1 ▷ 6 0.1 ▷ 5.9
MAFFT 0.3 ▷ 8.7 0.2 ▷ 8.5 0.2 ▷ 9.2 0.2 ▷ 8.5
MUSCLE 0.4 ▷ 173.3 0.3 ▷ 171.1 0.3 ▷ 122.6 0.3 ▷ 70.9
POA 0.1 ▷ 44.7 0.1 ▷ 24.3 0.1 ▷ 19.8 0.1 ▷ 15.4
SPOA 0.0 ▷ 2.1 0.0 ▷ 1.8 0.0 ▷ 1.7 0.0 ▷ 1.6
T-Coffee 1.3 ▷ 8102.9 12.9 ▷ 7479.5 13.5 ▷ 8114.3 13.5 ▷ 8114.3
Memory usage (in MB)
abPOA 3.3 ▷ 41.3 3.2 ▷ 15.9 3.1 ▷ 34.5 3.6 ▷ 34.6
clustal o 6.0 ▷ 78.0 5.9 ▷ 75.5 5.9 ▷ 76.0 5.8 ▷ 74.7
KALIGN 1.8 ▷ 3.5 1.8 ▷ 3.5 1.8 ▷ 3.4 2.2 ▷ 3.8
KALIGN3 4.2 ▷ 8.8 4.2 ▷ 7.8 4.1 ▷ 7.6 4.4 ▷ 8.2
MAFFT 21.9 ▷ 37.1 21.8 ▷ 36.9 21.9 ▷ 35.6 22.9 ▷ 37.5
MUSCLE 77.0 ▷ 69.8 7.6 ▷ 71.1 7.7 ▷ 71.8 17.6 ▷ 71.5
POA 2.4 ▷ 12.2 2.4 ▷ 11.3 2.4 ▷ 11.2 3.8 ▷ 13.5
SPOA 8.3 ▷ 42.3 8.8 ▷ 38.2 8.0 ▷ 37.3 8.6 ▷ 38.0
T-Coffee 46.5 ▷ 347.7 46.3 ▷ 442.2 113.2 ▷ 424.5 107.9 ▷ 355.6

Table 2. Preliminary results for a variety of region lengths and sequencing depths, for all MSA
tools and all real datasets. For the consensus sequence identity rate, we considered all possible
combinations of region lengths (100, 200, 500, 1000, 2000, 5000, and 10,000 bases) and
sequencing depths (10x, 20x, 30x, 45x, 50x, 60x, 100x, 150x, 200x), selected 10 regions for
each combination and computed the average identity rate over these 10 regions. For each cell, in
the expression min▷max, min refers to the lower average identity rate and max to the higher
identity rate observed over all combinations. The execution time (in seconds) and the memory
usage (in MB) are computed for 10 regions of length 200 bases and sequencing depth 10x (min)
and 10 regions of length 1000 bases and sequencing depth 100x (max).
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MSA results, it was notably resource-intensive, being slower and consuming significant memory.
We were not able to run it on larger datasets, such as those with sequencing depth 150x or 200x.
Therefore, for large regions or deep sequencing, T-Coffee was not feasible. Given the minor
accuracy improvement and significant computational cost, its utility is limited for reads datasets.
Moving forward, our analysis omitted Clustal Omega and T-Coffee, focusing on the seven other
tools, which are more efficient.

3.4 Evaluation of MSA Quality
We provide a more detailed analysis into the remaining seven MSA tools’ performance across
100 dataset windows, as opposed to the 10 windows used in previous experiments.

Human (estimated error rate: 6%) BMB yeast (estimated error rate: 11%)

E. coli Illumina (estimated error rate: 16%) E. coli Hifi (estimated error rate: 17%)

Figure 5. Effect of region size on the consensus sequence identity rate for Human, BMB yeast,
E. coli Illumina, and E. coli HiFi datasets. Each dataset is evaluated over 100 distinct regions
with 100x depth. The X-axis represents region length (in bases) while the Y-axis indicates the
identity percentage between the consensus and reference sequences. Mean identity percentages
and standard deviations are depicted.

Influence of Genomic Region Size. In Figure 5, it was observed that genomic region size,
spanning from 100 to 10,000 bases, had a negligible impact on consensus identity rate across all
sequencing depths, deviating by less than 1%. As a result, the following experiments determined
the region size at 500 bases, unless stated otherwise.
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Human (estimated error rate:6%) BMB yeast (estimated error rate:11%)

E. coli Illumina (estimated error rate:16%) E. coli HiFi (estimated error rate:17%)

Figure 6. Effect of sequencing depth on the consensus sequence identity rate for Human, BMB
yeast, E. coli Illumina, and E. coli HiFi datasets. Each dataset is evaluated over 100 distinct
regions of size 500. The X-axis represents the sequencing depth, while the Y-axis indicates the
identity percentage between the consensus and reference sequences. The figures display the
mean consensus identity rate along with the standard deviation.

Influence of the sequencing depth. Figure 6 illustrates the correlation between consensus
identity rate and sequencing depth. The human dataset, characterized by its low error rate,
showed only minor discrepancies between tools. In contrast, all other datasets, whose sequencing
error rate is above 10%, exhibited distinct variability in tool performance.

Although there’s a general trend indicating that greater depth improves results, this isn’t
always the case. The data suggests that after achieving a depth of approximately 50x, further
enhancements in most tools become stagnant. Surprisingly, tools like the POA family and
MUSCLE sometimes underperform at increased depths. On the other hand, KALIGN, KALIGN3,
and MAFFT consistently show improvement. For example, for Hifi E. coli datasets that exceed
50x depth, most tools stabilize within a 97.5% to 98.5% identity range. However, POA stands
out, dropping below 96% at these depths. It’s worth noting that while POA and SPOA perform
exceptionally well at lower depths, KALIGN and MAFFT achieve their best results at higher
depths. Such variations highlight that the choice of the optimal tool largely depends on the
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specific depth context. The considerable standard deviation, approximately 2% in most instances,
emphasizes the significant fluctuation in accuracy depending on region selection. The same
observations hold for Illumina E. coli and BMB yeast.

Influence of the sequencing error profile. Understanding the error rates impact is essential
since it can vary a lot accross employed technologies and datasets. Figure 6 from the previous
paragraph already indicated that lower error rates yield higher accuracy consensus sequences. We
delve further into this question using simulated data. In Figure 7, we demonstrate how consensus
identity rate varies with sequencing error rate, specifically following a ONT error distribution.
All tools, when tested on simulated data, yielded highly accurate consensus sequences when
the error rate was below 10%. Beyond this threshold, most tools’ accuracies plunged, with
the exception of POA and SPOA that showed resilience against escalating error rates. Our
results validate the selection of POA for processing high error rates, reminiscent of early ONT
sequencings.

Figure 7. Effect of error rate on the consensus identity rate on a simulated E. coli dataset. The
dataset consists of 100 distinct regions, each of size 500 bases with a depth of 45x. Reads are
generated following the MIX model: 23% substitutions, 31% insertions, and 46% deletions. The
graph illustrates the mean consensus identity rate and standard deviation relative to the imposed
error rate.

Differing TGS techniques exhibit distinct error patterns. Hence, assessing tools against these
errors becomes paramount. In Figure 8, we delve into the consensus identity rate’s response
to varying error types: substitution, insertion, or deletion. The type of error highly influences
the performance of the MSA methods. Substitutions are easier to rectify, but the POA family
struggles with high substitution error rates. Insertion and deletion errors are more challenging,
with deletions being slightly more difficult than insertions.
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3.5 Evaluation of Memory Usage and Execution Time
Influence of the Genomic Region Size. In Subsection 3.4, we observed that the influence
of sequence size on MSA quality is minimal. However, sequence size significantly affects
memory and runtime for most algorithms. Figure 9 illustrates the relationship between mem-
ory consumption, running time, and region size. Our results indicate that certain tools, like
KALIGN3, KALIGN, and MUSCLE, show linear memory growth with increasing sequence
size. In contrast, tools like POA and MAFFT exhibit superlinear growth, while abPOA and
SPOA display quadratic growth. Runtime patterns also vary, with some tools appearing almost
linear (e.g., SPOA, abPOA, KALIGN, KALIGN3) and others showing superlinear growth (e.g.,
MUSCLE, POA, MAFFT). In practical scenarios, we observe significant performance disparities
among the tested tools in terms of both memory usage and CPU time. These observations
confirm the rationale behind previous studies (Morisse et al., 2021; Marchet et al., 2020) that
favored partition strategies for constructing MSA from multiple short sequences over long ones.

Influence of Sequencing Depth. Figure 10 elucidates the impact of sequencing depth on
runtime and memory consumption. Surprisingly, depth has a minimal effect on memory usage
with MUSCLE being notable exceptions whose memory scale linearly. Runtime-wise most tools
behave super linearly according to the available depth, the fastest growth being MUSCLE that
almost scale quadratically.

Influence of Sequencing Error Rate. Figure 11 demonstrates that the error rate marginally
impacts time performance except for POA and MUSCLE where a high error rate can double the
runtime. Memory wise all tools are almost unaffected by the error rate the POA bases methods
that display a linear growth according to the error amount.

3.6 Addressing Diploid Genomes and Heterozygosity
In previous sections, polyploid genomes were not addressed. Our datasets primarily consisted of
haploid genomes, with the Human genome being an exception. Given the low heterozygosity
rate in the Human genome (estimated between 0.1% and 0.5%), our analysis assumed that a
single sequence could adequately represent the reference genome, overlooking allelic variations.

When analyzing heterozygous organisms, relying solely on a single reference sequence
can lead to an overestimation of differences between reads and the reference, especially due to
heterozygous local variations. Some contemporary methods can generate ”polyploid” reference
sequences by distinguishing distinct haplotypes through phasing (Garg et al., 2016). When
multiple haplotypes are available, one approach is to assign each read to a specific haplotype and
execute MSA Limit on each haplotype separately. However, this method is not foolproof. Low
polymorphism regions can be challenging to differentiate, especially with highly noisy reads.
Due to mapability challenges, many reads may be misassigned, skewing the analysis. Fortunately,
a significant portion of haplotype variations, such as SNPs (Single Nucleotide Polymorphisms),
can be easily encoded in a reference sequence using the IUPAC code.

In this section, we explore diploid genomes to determine if MSA tools can effectively process
reads from distinct alleles. For this purpose, we crafted an artificial diploid genome, ensuring
precise knowledge of both haplotypes.

Constructing a Heterozygous Yeast Genome. Inspired by the experiments in the nPhase
paper (Abou Saada et al., 2021), we combined datasets from homozygous diploid strains of
Saccharomyces cerevisiae to simulate heterozygous yeast genomes. To emulate this, we utilized
the BMB strain, introduced another strain (CCN), and combined them to create a ”heterozygous
yeast”. The reference sequences for the diploid genome were crafted by aligning contigs from
both strains using minimap2. The alignments were refined with Exonerate, leading to a consensus
sequence where IUPAC symbols indicate heterozygous polymorphisms between the two alleles.
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Recall
abPOA KALIGN KALIGN3 MAFFT MUSCLE POA SPOA T-Coffee

depth 20 0.72 0.76 0.76 0.80 0.81 0.73 0.69 0.78
depth 50 0.87 0.92 0.92 0.93 0.94 0.88 0.85 0.93
depth 100 0.90 0.96 0.95 0.96 0.93 0.92 0.86 0.97

Precision
abPOA KALIGN KALIGN3 MAFFT MUSCLE POA SPOA T-Coffee

depth 20 0.34 0.22 0.10 0.18 0.28 0.26 0.35 0.43
depth 50 0.44 0.35 0.19 0.29 0.42 0.30 0.46 0.59
depth 100 0.43 0.43 0.33 0.40 0.45 0.26 0.44 0.64

Table 3. Recall and precision for sequencing depth 20x, 50x and 100x for diploid yeast. For
each MSA tool, the recall is computed as the number of IUPAC symbols in the consensus
sequence corresponding to heterozygous sites, divided by the number of total heterozygous
SNPs (290). The precision is the number of IUPAC symbols in the consensus sequence
corresponding to heterozygous sites divided by the total number of IUPAC symbols in the
consensus sequence.

Experimental Design. We selected 100 windows of length 500 bases, resulting in a total of
290 SNPs between the two alleles. For each window, we ran the MSA tools, generating one
consensus sequence per tool, similar to the approach in section 3. Given the ploidy degree of
two, we set the identity threshold for consensus at 70%, accommodating the sequencing error
rate of the datasets. In this context, IUPAC symbols in the consensus sequences are intended
to represent polymorphisms between the two alleles. We conducted the experiment at three
different sequencing depths: 20x, 50x, and 100x.

Results. Our primary objective was to assess the capability of MSA tools in identifying
heterozygous SNPs from the read set. To evaluate this, we first checked if the 290 heterozygous
SNPs from the reference genome were present in the consensus sequences generated by each
tool. Results are presented in Table 3, detailing recall and precision, and in Figure 12. While
most tools are able to display a high recall that improve with depth (≈ 75% with 20x, ≈ 90%
with 50x, ≈ 93% with 100x), all methods display very low precision with only T-Coffee with
100x able to be above 50%. This confirms the known fact that denovo genotyping from TGS is a
hard problem (Shafin et al., 2021).

4 DISCUSSION
From our experiments, several insights emerge. Foremost, Clustal Omega and T-Coffee appear
to be the least suitable among the tested tools. As expected, the performance of other tools,
namely MAFFT, MUSCLE, KALIGN, KALIGN3, abPOA, SPOA, and POA, enhances as
the sequencing error rate diminishes. These tools exhibit commendable performance with
contemporary sequencing data, especially when error rates are around 5%, as observed in the
recent Human dataset.

A deeper analysis reveals that POA might be superseded by its variants, abPOA or SPOA.
KALIGN3, in comparison to its predecessor KALIGN, seems less compelling. MAFFT emerges
as a balanced choice, while MUSCLE’s performance is offset by its computational demands.
Interestingly, the influence of sequencing depth is not uniform across tools. Tools from the
POA lineage are recommended for datasets with lower depths (10x or 20x), whereas MAFFT,
KALIGN, and KALIGN3 excel with datasets having depths greater than 50x.
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E. coli HiFi (estimated sequencing error rate: 17.28%)

depth Best tool Worst tool T-Coffee
> = < ∆ average ∆ average > = < ∆ average

10 100 0 0 1.76 5.80 0 1 99 -1.32
20 72 11 17 0.52 3.88 0 0 100 -1.29
50 50 32 18 0.14 2.57 0 0 100 -1.08
100 59 13 28 0.16 2.43 0 0 100 -0.93

E. coli Illumina (estimated sequencing error rate: 16.38%)

depth Best tool Worst tool T-Coffee
> = < ∆ average ∆ average > = < ∆ average

10 95 4 1 1.17 6.07 0 0 100 -2.10
20 73 14 13 0.44 4.77 0 0 100 -1.87
50 28 28 44 -0.10 3.34 0 0 100 -2.00
100 18 17 65 -0.23 2.08 0 0 100 -1.83

BMB yeast (estimated sequencing error rate: 10.8%)

depth Best tool Worst tool T-Coffee
> = < ∆ average ∆ average > = < ∆ average

10 51 29 20 0.17 2.06 0 16 84 -0.64
20 8 39 53 -0.13 1.12 0 8 92 -0.68
50 2 39 59 -0.15 0.57 0 14 86 -0.59
100 0 31 55 -0.16 0.62 0 13 73 -0.58

Human (estimated sequencing error rate: 6.6%)

depth Best tool Worst tool T-Coffee
> = < ∆ average ∆ average > = < ∆ average

10 15 72 12 0 0.55 0 63 36 -0.32
20 0 73 26 -0.07 0.39 0 57 42 -0.38
50 0 72 27 -0.09 0.26 0 58 41 -0.32
100 0 72 24 -0.08 0.22 0 61 35 -0.31

Heterozygous yeast

depth Best tool Worst tool T-Coffee
> = < ∆ average ∆ average > = < ∆ average

10 54 24 22 0.18 1.99 0 1 99 -1.08
20 4 26 70 -0.18 1.02 0 0 100 -1.27
50 3 30 67 -0.27 0.57 0 0 100 -1.29
100 4 20 76 -0.30 0.57 0 0 100 -1.19

Table 4. We compare the metaconsensus with the best and worst sequences obtained across
different tools and against T-Coffee at various depths. We present the frequency with which the
metaconsensus exhibits superior (>), equal (=), or inferior (<) identity compared to the
best-performing tool for a given experiment, accompanied by the average difference observed.
Similarly, we report the performance of the metaconsensus in comparison with the
worst-performing tool and T-Coffee.
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In Section 2, we highlighted the inherent limitations of tools when addressing SNPs in
diploid genomes. In such scenarios, no tool provides a comprehensive solution, emphasizing the
need for specialized tools.

A pressing question arises: do different tools make errors at unique positions, or are there
universally challenging patterns? If each tool errs differently, a combined approach could
potentially boost accuracy. To investigate this, we developed a ”meta-MSA” using consensus
sequences from various tools. We then compared the accuracy of this ”metaconsensus” with that
of individual tool-specific consensus sequences. As shown in Table 4, the metaconsensus often
outperforms individual tools in certain scenarios. However, it doesn’t consistently emerge as the
top choice. Notably, it excels in datasets with low coverage and high error rates, and consistently
outperforms the least effective tool. This implies that a hybrid approach, drawing on the strengths
of multiple tools, might enhance accuracy in specific situations. Yet, it’s worth noting that the
metaconsensus consistently underperforms compared to Tcoffee. A logical next step would be to
experiment with various tool combinations to pinpoint the most effective strategies for specific
scenarios.

5 CONCLUSION

We introduced a robust pipeline to assess the proficiency of MSA tools in generating accurate
consensus sequences from TGS data. With its user-friendly design, facilitated by Conda and
Snakemake, we envision three straightforward purposes for our tool: benchmarking novel
methods, aiding users and developers in refining or selecting a method best suited to their needs,
optimizing parameters for their chosen methods to fit their data properties.

In addition to this pipeline, we generated a comprehensive benchmark dataset, which allowed
us to unveiled some unexpected results. For instance, the popular SPOA doesn’t always emerge
as the best, especially at higher depths. The optimal tool can vary based on the error profile
and sequencing depth. Our results also confirmed that existing methods struggle to effectively
capture heterozygoty, with a mediocre precision. This could suggest potential enhancements by
tweaking scoring systems or amalgamating multiple techniques.

Our study lays the groundwork for developing sophisticated MSA techniques specifically
designed for TGS traits. Such advancements could reshape tools used for read correction,
assembly refinement, and consensus sequence generation in sequencing devices. Our delve into
heterozygosity indicates that MSA can help differentiate between noise and authentic genomic
bases. It can also retain variants, laying the groundwork for heterozygosity-conscious read
correction or direct TGS data phasing.
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Figure 8. Effect of error type on the consensus identity rate for a simulated E. coli dataset. This
dataset has 100 regions, each 500 bases in size, and a depth of 45x. The types of errors evaluated
are substitutions only (SUB), insertions only (INS), and deletions only (DEL). The graph details
the mean consensus identity rate and its standard deviation relative to the error rate.
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Figure 9. Effect of the region size on memory usage and CPU time for the E. coli HiFi dataset
with 100x depth over 100 distinct regions. The top figure displays the mean maximal memory
usage divided by the region size, the middle figure shows the corresponding CPU time, and the
bottom figure represents the mean CPU time according on a log scale. Standard deviation is
displayed in black. Notably, the memory curves for KALIGN and KALIGN3 overlap.
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Figure 10. Effect of sequencing depth on memory usage (top) and CPU time (borrom) for the
E. coli HiFi dataset across 100 distinct regions of size 500. The mean runtime is displayed for
each sequencing depth on a log scale.
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Figure 11. Effect of sequencing error rate on memory usage (top) and CPU time (bottom) for
MIX simulated E. coli dataset across 100 distinct regions of size 500 with a depth of 45x. The
mean CPU and standard deviation are plotted against the error rate.
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results

***** Threshold 70%

Cover 20 Cover 50 Cover 100

 abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee  abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee  abpoa  kalign kalign3  mafft  muscle  poa  spoa  t-coffee

SNP/correct IUPAC 208 221 219 232 234 212 201 226 252 266 267 271 272 256 246 271 262 278 276 278 271 267 250 280

SNP/ other 82 69 71 58 56 78 89 64 38 24 23 19 18 34 44 19 28 12 14 12 19 23 40 10

Vide 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

Non SNP / IUPAC 400 798 1924 1081 603 605 378 302 322 498 1132 663 377 604 286 189 351 365 565 410 327 760 316 158
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Figure 12. Qualitative performances of the different tools with distinct coverage 20 (left), 50
(middle), 100 (right), and a threshold of 70% for diploid yeast. SNP/correct IUPAC refers to
heterozygous SNPs that are accurately identified in the consensus sequence (true positives),
SNP/other to heterozygous SNPs that are not found in the consensus sequence (false negatives),
and Non SNP/IUPAC to IUPAC characters present in the consensus sequence that do not
correspond to SNPs in the reference genome (false positive).
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