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Abstract5

The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming6

infected, can fundamentally alter disease dynamics and public health responses, for example, by changing7

the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve8

herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially9

early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in10

susceptibility given contact by using contact tracing data, which is typically collected early in the course of an11

outbreak. This approach provides the capability, given sufficient data, to estimate and account for the effects12

of this heterogeneity before they become apparent during an epidemic. It additionally provides the capability13

to analyze the wealth of contact tracing data available for previous epidemics and estimate heterogeneity14

in susceptibility for disease systems in which it has never been estimated previously. The premise of our15

approach is that highly susceptible individuals become infected more often than less susceptible individuals,16

and so individuals not infected after appearing in contact networks should be less susceptible than average.17

This change in susceptibility can be detected and quantified when individuals show up in a second contact18

network after not being infected in the first. To develop our method, we simulated contact tracing data from19

artificial populations with known levels of heterogeneity in susceptibility according to underlying discrete20

or continuous distributions of susceptibilities. We analyzed this data to determine the parameter space21

under which we are able to detect heterogeneity and the accuracy with which we are able to estimate it.22

We found that our power to detect heterogeneity increases with larger sample sizes, greater heterogeneity,23

and intermediate fractions of contacts becoming infected in the discrete case or greater fractions of contacts24

becoming infected in the continuous case. We also found that we are able to reliably estimate heterogeneity25

and disease dynamics. Ultimately, this means that contact tracing data alone is sufficient to detect and26

quantify heterogeneity in susceptibility.27

1. Introduction28

At the outset of an epidemic, public health responses depend on estimates of the final epidemic size, the29

peak number of cases, the timing of the peak, and the herd immunity threshold. Compartmental models such30

as the susceptible-infected-recovered (SIR) model are commonly used to model infectious disease dynamics31

and predict outcomes, but there are limitations to this approach (Keeling and Danon, 2009; Roberts et al.,32

2015; Tolles and Luong, 2020; Dhar, 2020). Namely, SIR models tend to oversimplify the complexity of33

disease dynamics, resulting in discrepancies between the model predictions and epidemic data (Keeling and34

Danon, 2009). One of the simplifying assumptions of the standard SIR model is that all host individuals are35

the same. However, this is often false: individuals can be heterogeneous in many ways (Woolhouse et al.,36

1997; VanderWaal and Ezenwa, 2016) including with regard to their likelihood of becoming infected, hereafter37

referred to as heterogeneity in susceptibility (Dwyer et al., 1997).38

Heterogeneity in susceptibility can have a large impact on infectious disease dynamics (Dwyer et al.,39

1997; Gomes et al., 2014; Langwig et al., 2017; Gomes et al., 2022). Increased amounts of heterogeneity in40

susceptibility result in a lower peak number of cases, different timing of the peak, smaller final epidemic41

size, and lower herd immunity thresholds (Aguas et al., 2020; Gomes et al., 2022; Montalbán et al., 2022).42

As a result, disease control programs (Anderson and May, 1984) and epidemiological models (Dwyer et al.,43

1997; Langwig et al., 2017; King et al., 2018; Gomes et al., 2019) may need to account for heterogeneity in44
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susceptibility if they are to be optimally useful. Accurate early predictions of disease dynamics could give45

policy makers critical information to make decisions, but heterogeneity in susceptibility is notoriously difficult46

to measure (Elderd et al., 2008). Moreover, the effects of heterogeneity in susceptibility are typically small47

during the earliest phases of epidemics and only become apparent later, making it even more challenging to48

estimate heterogeneity in susceptibility in real time and account for its effects. It would therefore be useful to49

develop new methods for quantifying the degree of heterogeneity in host susceptibility early in epidemics.50

Existing methods to quantify heterogeneity in susceptibility are not adequate for estimation in real time51

because they rely on using data that is either collected later in epidemics or that typically cannot be collected52

due to ethical or logistical constraints. Dwyer et al. (1997), Ben-Ami et al. (2010), and Langwig et al. (2017)53

used laboratory dose-response and field transmission experiments to estimate heterogeneity in susceptibility,54

but these experimental methods are not feasible for application in real time or for human epidemics in55

general due to time constraints and ethical concerns. Gomes et al. (2019) compared disease incidence across56

municipalities in several countries to construct Lorenz curves and fit susceptibility risk distributions, but57

this method requires a substantial amount of data that would not be available early in an epidemic. Smith58

et al. (2005) and Corder et al. (2020) used morbidity data to fit models and estimate heterogeneity, but this59

method cannot be used until later in an epidemic when there is sufficient data to fit curves. Gomes et al.60

(2022) also used curve fitting with mortality data that could be implemented once at least four months of61

data were available, but their method is heavily dependent on the underlying model and assumptions. With62

the recent increased interest in real-time estimation, Anderson et al. (2023) developed a method to estimate63

within-household heterogeneity in susceptibility, but this is not the same as the population-level heterogeneity64

that drives population-level disease dynamics. Here we develop a novel method to identify and quantify65

host heterogeneity in susceptibility using contact tracing data, which can be collected early in an epidemic.66

Contact tracing is often performed to mitigate the spread of pathogens that are otherwise difficult to control67

(Eames and Keeling, 2003; Hossain et al., 2022), and therefore, our method should not require the collection68

of any data beyond that which would already be collected for other purposes.69

Contact tracing typically takes one of two forms: forward and backward. Forward contact tracing attempts70

to find all the contacts of an infected person to whom the disease could transmit. This is done by identifying71

infected individuals and all their known contacts. The contacts are then quarantined and monitored for72

disease. For any contact that is infected, the process is repeated with their contacts. Backward contact73

tracing attempts to identify the contact of an infected person from whom the disease transmitted. In practice,74

both methods can be employed simultaneously in an effort to maximize the effectiveness of contact tracing75

efforts (Bradshaw et al., 2021), and the data on infected individuals and their contacts are typically recorded.76

When done thoroughly, contact tracing data provide information about the infection status of individuals77

that have been in contact with an infected individual. As we will explain, when contact tracing data tracks78

specific individuals through multiple exposure events, it can be used to quantify heterogeneity in susceptibility79

given contact through the method that we develop here.80

Our method uses the fact that average susceptibility decreases over time in a population with heterogeneity81

in susceptibility (Fig 1). This is because individuals with high susceptibility are more likely to be infected than82

individuals with low susceptibility for a given exposure level. Individuals that show up in a second contact83

tracing network, after not being infected in the first, should therefore have a lower risk of infection than84

individuals that show up in a network for the first time. In the rest of the paper, we establish our method and85

analyze its effectiveness for two cases: a population with two discrete susceptibility levels and a population86

with continuous variation in susceptibility. Notably, the selection of these two cases is arbitrary, and our87

method is flexible enough that it could be employed for any distribution of heterogeneity in susceptibility.88

2. Methods and Results89

Our method to detect and quantify heterogeneity in susceptibility exploits the change in average suscep-90

tibility over multiple exposure events that would be expected to occur if a population had heterogeneity91

in susceptibility (Fig 1). Given contact with an infectious individual, individuals with high susceptibility92

are more likely to be infected than those with low susceptibility. This creates a selection process in which93

susceptibility should on average decline in a heterogeneous host population following each exposure event.94

This change in average susceptibility provides a way to identify and estimate the level of heterogeneity early95

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560944
http://creativecommons.org/licenses/by/4.0/


Figure 1: Average susceptibility decreases over exposure events in a heterogeneous population. The figure depicts individuals
infected and not infected over two exposure events in a heterogeneous population with more susceptible (red) and less susceptible
(blue) individuals. The pie charts show the composition of the not infected population. Average susceptibility in the not infected
population decreases after each exposure event as the more susceptible individuals are primarily infected. Note that if the
population lacked heterogeneity in susceptibility, all individuals would be either red or blue, and thus, susceptibility would not
change.

in an epidemic despite the seemingly small effects of heterogeneity at the beginning of epidemics. Notably, no96

change in average susceptibility should occur in a population that lacks heterogeneity in susceptibility.97

This method employs contact tracing data. With contact tracing data, there are multiple contact networks98

that are each composed of an infected individual and the known contacts the infected individual had during99

their infectious period. This means each contact network is a set of exposure events where contacts are100

exposed to a pathogen and have a chance of being infected. In order for our method to work, there must101

be individuals that show up in at least two separate contact networks such that they are exposed but not102

infected in the first of these networks. At the start of the second exposure event, these individuals would103

have been previously exposed but not infected (henceforth called focal individuals). This contact network104

must also contain naive contacts: individuals that have not been previously exposed to the pathogen. The105

basis of our method is to compare the fraction of naive individuals and focal individuals that become infected106

in the second contact network; if there is no heterogeneity in susceptibility, focal individuals should have the107

same susceptibility as naive individuals, whereas if there is heterogeneity in susceptibility, focal individuals108

should on average be less susceptible than naive individuals. This difference in susceptibility arises due to the109

selection process for infection of more susceptible individuals (Fig 1).110

To compute the number of naive and focal individuals infected, there must be data on which specific111

individuals are infected and which individuals are showing up in a contact network for a second time, which112

would be available for example if individuals were identifiable between contact networks. There must also113

be a sufficient sample size to detect heterogeneity in susceptibility. Here we explore the effects of sample114

size, level of heterogeneity, and infection probability on our ability to detect and quantify heterogeneity in115

susceptibility.116

We apply this method to two underlying models describing the distribution of individuals’ susceptibilities.117

In one underlying model (discrete case), it is assumed that the population is composed of two host types118

where each host type has a different susceptibility or probability of being infected given contact. Discrete119

susceptibility types might be expected when heterogeneity in susceptibility is predominantly accounted for by120

a small number of factors that create groups in the population with distinct susceptibilities. For example,121

genetic polymorphisms could be selected for that increase resistance to a pathogen, resulting in populations122

containing a mixture of individuals with and without the mutation such as was seen for HIV (Huang et al.,123

1996). Likewise, prior exposure, whether natural or vaccine-induced, to a pathogen or related pathogen124
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could create more resistant subpopulations such as with milkmaids not developing smallpox after contracting125

cowpox (Barquet and Domingo, 1997). Behaviors like handwashing and mask wearing (Larson, 1999; Van der126

Sande et al., 2008) or host nutritional status (Chandra, 1979) could also produce approximately binary127

outcomes for susceptibility to infection.128

In the other underlying model (continuous case), it is assumed that the population is composed of hosts129

with a continuous range of susceptibilities such that each host’s probability of being infected given contact130

is unique. This situation might be expected when there is a complex combination of factors dictating131

heterogeneity in susceptibility or when the cause of heterogeneity is a trait that continuously varies across132

individuals. For instance, variability in gene expression, which could be affected by epigenetics, copy number133

variations, and sequence polymorphisms, is associated with disease susceptibility (Li et al., 2010). In addition,134

some of the factors that lead to discrete variation in susceptibility could also have a continuous effect such135

as the degree of cleanliness achieved by handwashing (Larson, 1999) or continuous variation in nutrients.136

Beyond a complex combination of factors, there could also be situations where a continuously varying trait137

like body mass (Dobner and Kaser, 2018) or the level of antibodies induced in an immune response (Plotkin,138

2008) explains the heterogeneity in susceptibility in the population.139

2.1. Methods140

Our method is comprised of two parts: detecting heterogeneity in susceptibility and quantifying it if141

present. The former is a hypothesis testing problem, and the latter is a parameter estimation problem. For142

the detection of heterogeneity, we test the hypothesis that there is heterogeneity in susceptibility against the143

null hypothesis that there is homogeneity in susceptibility.144

2.1.1. Detection of heterogeneity in susceptibility145

We consider F contact networks that each contain Ni − 1 naive individuals and one focal individual146

where i is the set of contact networks. For simplicity, we assume Ni are equal for all i and thus drop the147

subscript. Note that this assumption can be easily relaxed. We therefore have a total of F (N − 1) naive148

individuals and F focal individuals. We first compute the fractions of naive, focal, and total individuals149

infected. The fractions of naive and focal individuals infected are estimates for the probability of a naive150

or focal individual being infected (pn and pf respectively). The fraction of total individuals infected is an151

estimate for the average probability of being infected (p̄). We then calculate the log-likelihood of the data152

(numbers of individuals infected) under each hypothesis as a sum of the log-likelihoods for the number of153

each type of individual infected where154

Lhom = ln [P (xn|F (N − 1), p̄)] + ln [P (xf |F, p̄)] (1)

Lhet = ln [P (xn|F (N − 1), pn)] + ln [P (xf |F, pf )] . (2)

Lhom is the log-likelihood of the data under the null hypothesis that there is homogeneity in susceptibility,155

so we assume all individuals have the same probability of being infected, regardless of their number of156

exposures to the pathogen (pn = pf = p̄). Lhet is the log-likelihood under the alternative hypothesis that157

there is heterogeneity in susceptibility, so we assume naive and focal individuals have different probabilities158

of being infected due to the infection selection process that occurs when heterogeneity is present (pn 6= pf ).159

These log-likelihoods are calculated identically regardless of whether the heterogeneity is discrete or continuous.160

P (x|n, p) is the probability of observing x individuals infected out of n individuals exposed with probability p of161

being infected and is distributed according to a binomial distribution. The number of naive individuals infected162

has distribution Binom(n = F (N − 1), pn), and the number of focal individuals infected has distribution163

Binom(n = F, pf ). xn and xf are the numbers of naive and focal individuals infected respectively where164

xn ∈ [0, F (N − 1)] and xf ∈ [0, F ]. pn, pf and p̄ are estimated from the data as pn = xn

F (N−1) , pf =
xf

F , and165

p̄ =
xf+xn

FN . The log-likelihoods of the data under each hypothesis were compared using a likelihood ratio test166

with one degree of freedom and significance level α = 0.05.167

Here, we simulated data to test our method. To do so, we first set parameters dictating the sample size168

and heterogeneity present in the population. Then, we simulated initial exposure events with N individuals169
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in each network and kept uninfected individuals as our focal individuals. For each focal individual, we then170

simulated a second exposure event with that focal individual and N − 1 naive individuals. The susceptibilities171

of the naive individuals were drawn randomly from the same heterogeneity distribution set for the starting172

population. We recorded the fraction of each type of individual (i.e. focal or naive) infected in the second173

exposure events and calculated the log-likelihood of the simulated data under our two hypotheses. Then, we174

compared the hypotheses with a likelihood ratio test. We ran 1, 000 simulations for each set of parameters to175

determine our statistical power to detect heterogeneity in susceptibility with that parameter combination.176

All simulations and data analysis were performed in R version 4.0.3 (R Core Team, 2020).177

For the discrete case, we simulated data using two types of individuals (denoted A and B), but we note178

that the aforementioned factors could potentially be combined to result in more than two distinct groupings,179

and similar methods could be applied for these situations. At the beginning of each simulation, we set the180

probability of being infected for each type of individual, pA and pB , where pA ∈ [0, 1] and pB ∈ [0, pA]. We181

also set the fraction of the starting population that is type A (fA) where fA ∈ [0, 1]. All three parameters pA,182

pB , and fA affect the level of heterogeneity in susceptibility in the population.183

We later calculated the coefficient of variation of the risk of being infected for this discrete case (Cd) and184

the expected fraction of naive individuals infected (Ed) from pA, pB , and fA to better summarize the results.185

The risks of being infected for type A and B individuals, rA and rB respectively, are shown below. These186

equations are derived from the formula for the probability of being infected pi = 1− e−ri , i = A,B.187

rA = − ln (1− pA) (3)

rB = − ln (1− pB) (4)

The coefficient of variation is defined as the standard deviation divided by the mean. Hence, Cd is the188

standard deviation of risk divided by the mean risk (Supplementary information S1) and is given by189

Cd =
(rA − rB)

√
fA(1− fA)

rAfA + rB(1− fA)
(5)

Ed is the same as the mean probability of being infected p̄, which is given by

Ed = p̄ = pAfA + pB(1− fA) (6)

We additionally defined the sample size for the simulation by setting the number of individuals in each190

exposure group N and the number of focal individuals F . For our simulations, we used N = 5 and F = 50 or191

200.192

For the continuous case, in contrast to the discrete case just discussed, each individual in the population193

has a different risk of being infected. Here, we assume that individuals’ risks for being infected follow194

a gamma distribution, but as in the discrete case, other distributions could be used. We chose to use a195

gamma distribution for illustration purposes because it is flexible and has been used to model heterogeneous196

populations previously (Dwyer et al., 1997; Langwig et al., 2017).197

At the beginning of each simulation, we set the parameters k and θ, respectively the shape and scale198

of the gamma distribution, that dictate the risk distribution where k, θ > 0. For ease of interpretation, we199

present our results with respect to the coefficient of variation of risk for continuous variation Cc and expected200

fraction of naive individuals infected Ec. As in the discrete case, the risk ri for the ith individual being201

infected is related to the probability of being infected such that pi = 1− e−ri and thus202

ri = − ln (1− pi). (7)

As it is gamma distributed, the risk distribution has standard deviation σ = θ
√
k and mean µ = kθ. So,203

Cc can be simplified to204

Cc =
1√
k

(8)

Ec is the same as the mean probability of being infected p̄ and is derived in Dwyer et al. (1997) as205

Ec = p̄ = 1− St
S0

= 1− (1 + θ)
−k

(9)
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where S0 and St are the number of susceptible individuals at the beginning and end of an exposure round206

respectively.207

We additionally defined the sample size for the simulation by setting the number of individuals in each208

exposure group N and the number of focal individuals F . As in the discrete case, we use N = 5 and F = 50209

or 200.210

We tested the ability of our method to detect heterogeneity in susceptibility for each potential combination211

of fA, F , Cd ∈ [0, 3] with step size 0.02, and Ed ∈ [0.02, 0.98] with step size 0.02 in the discrete case and212

F , Cc ∈ [0, 3] with step size 0.02, and Ec ∈ [0.02, 0.98] with step size 0.02 in the continuous case. This was213

done for 1, 000 simulations to compute the statistical power of the method. We did not simulate Ed = 0, 1 or214

Ec = 0, 1 because such values preclude heterogeneity in susceptibility. We examined Cd, Cc ∈ [0, 3] because215

this captures most of the range of published values for the coefficient of variation of risk we could find: 0.0007216

to 3.33 (Dwyer et al., 1997, 2000; Smith et al., 2005; Ben-Ami et al., 2008; Elderd et al., 2008; Ben-Ami et al.,217

2010; Pessoa et al., 2014; Langwig et al., 2017; King et al., 2018; Gomes et al., 2019; Corder et al., 2020;218

Gomes et al., 2022).219

2.1.2. Quantification of heterogeneity in susceptibility220

Given the detection of heterogeneity in susceptibility, the next question is whether that heterogeneity will221

substantially impact disease dynamics. To determine whether it will, we need to ask whether contact tracing222

data is sufficient to estimate the parameters of SIR models that include heterogeneity in susceptibility and223

whether those parameter estimates accurately capture disease dynamics. To do so, we fit the parameters of224

our underlying risk distributions using simulated contact tracing data as above. Parameter values used to225

simulate the contact tracing data for the discrete and continuous heterogeneity cases are provided in Table 1.226

We generated posterior distributions for both models using Metropolis-Hastings MCMC. In the discrete227

case, our MCMC chain had length 30,000,000 with a burn-in of 15,000,000 and thinning interval 1,500. For228

all three parameters, we used flat priors and uniform proposal distributions. Our proposal distributions229

were pA ∼ Unif(0, 1), pB ∼ Unif(0, pA), and fA ∼ Unif(0, 1). There is not a simple, analytic likelihood230

function for the likelihood of the data given a proposed parameter set, so the likelihood was estimated by231

simulation with Approximate Bayesian Computation (ABC), where the likelihood estimate was determined232

by comparing the fraction of simulations that provided results that were within a pre-specified error tolerance233

of the actual data (Beaumont et al., 2002). To do so, we ran 100 simulations of the number of focal and naive234

individuals infected across F contact networks for a proposed parameter set. We then calculated the fraction235

of simulations where the number of individuals infected was within a 1% error tolerance of the number236

infected in the true data. Note that our results are fairly insensitive to this error tolerance (Supplementary237

information S4). This simulation was done separately for focal and naive individuals. We then computed238

the overall log-likelihood as a sum of the logs of those fractions. We assessed convergence of the chains by239

visually inspecting the resulting trace plots and marginal posterior distributions for each parameter. In240

the continuous case, our MCMC chain had length 600,000 with a burn-in of 200,000 and thinning interval241

100. We used an exponential prior Exp(2) for k because known values of Cc suggest that k is likely to be242

small (Dwyer et al., 1997, 2000; Smith et al., 2005; Ben-Ami et al., 2008; Elderd et al., 2008; Ben-Ami et al.,243

2010; Pessoa et al., 2014; Langwig et al., 2017; King et al., 2018; Gomes et al., 2019; Corder et al., 2020;244

Gomes et al., 2022). We used a flat prior for θ for all values [0, inf) and a multivariate lognormal proposal245

distribution (k, θ) ∼ MLogNorm(µ =
(

0
0

)
,Σ =

(
0.01 −0.008

−0.008 0.05

)
). We assessed convergence of the chains by246

visually inspecting the resulting trace plots and marginal posterior distributions for each parameter (Kennedy247

et al., 2015).248

We then used these parameter estimates to generate SIR dynamics. Notably, the system of differential249

equations describing the discrete and continuous cases differ. For the discrete case, we implemented the250

following system of ordinary differential equations:251

dSA
dt

= −βASAI (10)

dSB
dt

= −βBSBI (11)

dI

dt
= (βASA + βBSB)I − γI (12)
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SA and SB are the susceptible individuals of types A and B, and I is the infected individuals where I252

includes infected A and infected B individuals such that I = IA + IB . At the start of each SIR simulation, we253

determine the fraction of the population to allocate as A and B from fA. We also set the basic reproduction254

number R0,d = β̄(S0+I0)
γ = (pAfA+pB(1−fA))c(S0+I0)

γ at an assumed “true” value where β̄ is the average255

transmission rate and S0 + I0 is the population size. R0,d is often a reasonably well approximated value,256

and it does not change with heterogeneity in susceptibility as initial average susceptibility remains the same257

regardless of heterogeneity (Hébert-Dufresne et al., 2020; Shaw and Kennedy, 2021). βA and βB are the258

transmission rates for types A and B respectively and were calculated as βA = pAc and βB = pBc where c is259

the contact rate. Note that c was calculated from R0,d. γ is the recovery rate and was kept constant between260

the types of individuals at an assumed “true” value.261

For the continuous case, we implemented the following system of ordinary differential equations derived in262

Elderd et al. (2008):263

dS

dt
= −βSI

(
S

S0

)Cc
2

(13)

dI

dt
= βSI

(
S

S0

)Cc
2

− γI (14)

S is the number of susceptible individuals where S0 is the number of susceptible individuals at the264

beginning of the simulation, and I is the number of infected individuals. At the start of each simulation,265

we set the basic reproduction number R0,c = p̄c(S0+I0)
γ at an assumed ”true” value where p̄ is the average266

probability of being infected, c is the contact rate, S0 + I0 is the population size, and γ is the recovery rate.267

p̄ is computed from the sampled parameters as p̄ = 1 − (1 + θ)−k, c was calculated from R0,c, and γ was268

fixed at an assumed “true” value. β is the transmission rate and was calculated as β = p̄c.269

For each case, we randomly sampled 1, 000 parameter sets from the posterior distribution to run SIR270

model simulations, and we compared this to the dynamics generated by the “true” parameter set used to271

generate our contact tracing data. Using these simulations, we determined 95% central credible intervals for272

the SIR dynamics for each model by finding the 2.5% and 97.5% percentiles of the 1,000 simulated dynamics273

at each time point over the epidemic. For our SIR simulations, we set R0,d = R0,c = 3, S0 = 20, 000, I0 = 10,274

and γ = 0.1.275

Table 1: The 95% CIs, medians, and true values for parameters estimated from MCMC in the discrete and continuous cases
with F = 1000 and N = 5.

Parameter 95% CI Median True

Discrete case

pA [0.437,0.958] 0.599 0.748
pB [0.005,0.172] 0.085 0.125
fA [0.102,0.543] 0.321 0.2
Cd [0.842,1.845] 1.093 1.3
Ed [0.236,0.263] 0.249 0.25

Continuous case

k [0.364,1.024] 0.584 0.592
θ [0.321,1.257] 0.647 0.626
Cc [0.988,1.657] 1.309 1.3
Ec [0.237,0.269] 0.252 0.25

2.2. Results276

2.2.1. Detection of heterogeneity in susceptibility277

Figures 2 and 3 illustrate that the sample size, level of heterogeneity, and fraction of individuals infected278

affect our power to detect heterogeneity in susceptibility. This is because these factors ultimately affect the279

likelihoods used to test for heterogeneity in terms of the difference between the probabilities of infection for280

naive and focal individuals (pn and pf ) and the variability in the likelihood ratio test statistic (Supplementary281

information S3). More precisely, these figures show that as the number of focal individuals F increases282

from 50 to 200, there is greater power to detect lower levels of heterogeneity (lower values of Cd, Cc). This283
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additionally allows for greater power across a wider range of Ed and Ec. This was to be expected because284

higher sample sizes, particularly of the previously exposed, focal individuals, decreases variability in our285

estimates of pn, pf , and p̄. Notably, changing the total number of hosts in each contact network N had very286

little effect on our results (Supplementary information S2).287

The level of heterogeneity in susceptibility present is described by the coefficient of variation of the risk288

distribution Cd or Cc. As Cd and Cc increase, there is more power to detect heterogeneity in susceptibility as289

there is more heterogeneity in the population. In the discrete case, for a given Cd, there is also more power290

to detect heterogeneity as fA approaches 0.5. This is because as fA approaches 0.5, the population is more291

evenly split between the two types of individuals, allowing for a greater difference between pA and pB and,292

therefore, pn and pf .293
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Figure 2: Increased heterogeneity in susceptibility (larger Cd and fA → 0.5), intermediate fractions of individuals infected
(intermediate Ed), and increased sample sizes (larger F ) enhance our power to detect heterogeneity in susceptibility in the
discrete case. The plots show the power to detect heterogeneity in susceptibility in the discrete case across different numbers of
focal individuals F and fraction of the population that is type A and more susceptible fA. The areas above the gray dashed
lines represent parameter space that gives computationally indistinguishable probabilities of infection pA and pB , and therefore
power, to the parameter combination with the same Ed and highest Cd below the line. This occurs because risks of infection
can be changed to increase Cd without bound, whereas probabilities are bounded. N = 5.

Lastly, the impact of the expected fraction of naive individuals infected (Ed, Ec) on power differs between294

the two underlying models. There is greater power to detect heterogeneity when an intermediate fraction295

of individuals is infected in the discrete case and when a greater fraction of individuals is infected in the296

continuous case. In the discrete case, Ed is determined by pA, pB , and fA as per equation 6. The only way297

to have a large fraction of individuals infected is if both pA and pB are large. Hence, when Ed is high, pA298

and pB must both be close to 1. For similar reasons, when Ed is low, pA and pB must both be close to 0.299

Even though the risks rA and rB associated with these values may have varying levels of heterogeneity, the300

individuals themselves will have very similar infection outcomes, making it difficult to detect heterogeneity301

in susceptibility. Therefore, heterogeneity in susceptibility is better detected when an intermediate fraction302

of individuals is infected in the discrete case. In contrast, power increases in the continuous case with303
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Figure 3: Increased heterogeneity in susceptibility (larger Cc), greater fractions of individuals infected (larger Ec), and increased
sample sizes (larger F ) enhance our power to detect heterogeneity in susceptibility in the continuous case. The plots show the
power to detect heterogeneity in susceptibility in the continuous case across different numbers of focal individuals F . N = 5.

greater fractions of individuals infected (larger values of Ec). This is because there is more selection for304

who is infected as more individuals are infected, so the average population susceptibility will decrease more305

drastically, making it easier to detect heterogeneity in susceptibility.306

2.2.2. Quantification of heterogeneity in susceptibility307

We then explored the method’s ability to estimate model parameters as well as predict the associated SIR308

dynamics. We perform this analysis for a particular parameter combination that leads to Cd = Cc = 1.3 and309

Ed = Ec = 0.25. These values were chosen because they represent a biologically realistic scenario based on310

previous literature (Dwyer et al., 1997, 2000; De Serres et al., 2000; Rieder, 2003; Smith et al., 2005; Taylor311

et al., 2007; Ben-Ami et al., 2008; Elderd et al., 2008; Lessler et al., 2009; Ben-Ami et al., 2010; Pessoa et al.,312

2014; Ajelli et al., 2015; Langwig et al., 2017; King et al., 2018; Gomes et al., 2019; Corder et al., 2020; Koh313

et al., 2020; Gomes et al., 2022). In the discrete case, we used Cd and Ed and set fA = 0.2 to calculate the314

true values pA = 0.748 and pB = 0.125. In the continuous case, we used Cc and Ec to calculate the true315

values k = 0.592 and θ = 0.626.316

We determined our 95% CIs for parameter estimation of the underlying parameters with F = 1000 and317

N = 5 to be those shown in Table 1. Note that the true values for pA, pB, and fA as well as for k and θ318

are captured by these intervals. Admittedly, these parameter estimates are somewhat broad. Upon further319

investigation, we found the broad intervals to be due to high correlation in our parameter estimates, indicating320

low identifiability (Fig 4, 5). However, acceptable estimates do not span the entire ranges of the parameters321

and encapsulate the true parameters, so there is some information about their values in the data. As we will322

discuss, this partial identifiability does not hinder us from making precise predictions about the impact of the323

heterogeneity in susceptibility on the disease dynamics.324

Using equations 5, 6, 8, and 9, we calculated and plotted the posterior distributions for Cd and Ed and Cc325

and Ec (Fig 6). With F = 1000 and N = 5, we determined the 95% CIs to be those shown in Table 1, which326

capture the true values. In the discrete case, the range of potential estimates for Cd is somewhat broad, but327

there is a strong ability to accurately and precisely estimate Ed. However, in the continuous case, there is a328

strong ability to accurately and precisely estimate both Cc and Ec. With increasing values of F from 50 to329

5000, estimates for Cc and Ec become more precise.330

We then investigated the SIR dynamics for these parameter sets with different sample sizes (F and N). We331

also investigated the dynamics with different error tolerances allowed for ABC in the discrete case. For both332

underlying models, with N = 5 and F = 50, 200, 1000, or 5000, the true dynamics are captured by the 95%333

CIs (Fig 7). Additionally, for F > 200 in the discrete case and for all F in the continuous case, the estimated334

disease dynamics do not overlap those where there is assumed to be no heterogeneity in susceptibility. Hence,335
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Figure 4: Parameter estimates for pA, pB , and fA in the discrete case capture the true values and are highly correlated. The
plots show the correlation in the parameter estimates for a) pA vs. pB , b) pA vs. fA, and c) pB vs. fA with different numbers
of focal individuals F . These are the parameters that determine the distribution of individuals’ susceptibilities in the discrete
case. The red dot represents the true parameters used to generate our simulated data, and the gray dots depict 1, 000 parameter
sets from our posterior distribution for F = 50 (light gray), 200 (medium gray), 1000 (dark gray), and 5000 (black). pA = 0.748,
pB = 0.125, fA = 0.2, and N = 5.
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Figure 5: Parameter estimates for k and θ in the continuous case capture the true values and are highly correlated. This plot
shows the correlation in the parameter estimates for k and θ that determine the gamma distribution of individuals’ susceptibilities
in the continuous case with different numbers of focal individuals F . The red dot represents the true parameters used to generate
our simulated data, and the gray dots depict 1, 000 parameter sets from our posterior distribution for F = 50 (light gray), 200
(medium gray), 1000 (dark gray), and 5000 (black). k = 0.592, θ = 0.626, and N = 5.

despite low identifiability in the parameter estimates, we are able to use this method to make accurate and336

precise predictions about the effect of heterogeneity in susceptibility on disease dynamics. This is because337
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Figure 6: Parameter estimates for the coefficient of variation (Cd, Cc) and expected fraction of naive individuals infected (Ed,
Ec) capture the true values and become more precise with increasing numbers of focal individuals F . The plots show the
parameter estimates for C and E with different numbers of focal individuals F in a) the discrete case and b) the continuous case.
The red dot represents the true parameters used to generate our simulated data, and the gray dots depict 1, 000 parameter sets
from our posterior distribution for F = 50 (light gray), 200 (medium gray), 1000 (dark gray), and 5000 (black). Cd = Cc = 1.3,
Ed = Ec = 0.25, fA = 0.2, and N = 5.

there is interdependence among the parameters (Figs 4, 5), and so, while individual parameters may be only338

partially identifiable, combinations of them can be precisely estimated, leading to relatively precise estimates339

of the level of heterogeneity in susceptibility C and the fraction of naive individuals infected E.340

We found the continuous case provided more accurate and precise predictions of disease dynamics than the341

discrete case, but the 95% CIs narrowed with higher sample sizes in both cases (Fig 7). In the discrete case,342

as F increased, there was a limit to how narrow the 95% CIs became. F > 1000 did not substantially improve343

the predicted dynamics relative to those for F = 1000. Likewise, the number of non-focal individuals had344

relatively little impact on our predicted dynamics, yielding nearly identical results for N = 5 and N = 100345

(Supplementary information S2). In the continuous case, as F increased, the 95% CIs narrowed and converged346

around the true dynamics. With N = 5 versus N = 100, there was not a substantial difference in the 95%347

CIs (Supplementary information S2).348

To assess the accuracy of our ABC method for parameter estimation in the discrete case, we examined349

the SIR dynamics with different error tolerances of 10%, 1%, or 0%. We did so with N = 5 and F = 200 and350

1000. Changing the error tolerance did not substantially impact the precision of the 95% CIs in any of the351

cases explored (Supplementary information S4).352

We also attempted to predict disease dynamics with the wrong underlying model of individuals’ risks353

as it may be unknown which model is correct in a real system. To do so, we generated data under the354

discrete case then predicted SIR dynamics assuming the continuous case and vice versa. Notably, the 95%355

CIs from the incorrectly assumed underlying models did not capture the true dynamics, meaning that caution356

should be taken in ensuring that an accurate model of heterogeneity is assumed before trusting the precise357

disease dynamics that would be expected to arise from a given set of parameter estimates (Supplementary358

information S5). Nevertheless, we stress that the ability to detect the presence of heterogeneity is independent359

of the underlying model and will not be affected by an incorrect model.360
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Figure 7: Predicted SIR dynamics capture the true dynamics and the 95% CIs narrow as the number of focal individuals F
increases. The plots show the predicted SIR dynamics in a) the discrete case and b) the continuous case with different numbers
of focal individuals F . Specifically, the fraction of susceptible individuals S

S0
is shown over the course of an epidemic. Shaded

regions represent 95% CIs determined from 1,000 posterior samples for F = 50 (light gray), 200 (medium gray), 1000 (dark
gray), and 5000 (black). The blue line shows the true dynamics for the parameters used to generate the contact tracing data,
and the red line shows the corresponding dynamics if there is homogeneity in susceptibility. Cd = Cc = 1.3, Ed = Ec = 0.25,
fA = 0.2, and N = 5.

3. Discussion361

As we saw play out during the COVID-19 pandemic, early epidemiological model predictions of disease362

dynamics can be crucial in informing public health policy. There are numerous imperfect assumptions363

made by standard SIR models, and a great deal of work has been aimed at trying to improve such models.364

Heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected given contact,365

can be critically important to disease dynamics (Dwyer et al., 1997; Gomes et al., 2014; Langwig et al.,366

2017; Gomes et al., 2022). However, current methods to estimate this heterogeneity rely on data that is367

collected late in an epidemic or is unable to be collected due to ethical or logistical constraints. Here we368

have developed a method to detect and estimate heterogeneity using contact tracing data which, in theory,369

could allow epidemiologists to incorporate the effects of heterogeneity in susceptibility into their models even370

before the effects of such heterogeneity are observable at the population scale. Using a simulation-based371

approach, we found that contact tracing data alone has enough information to be used to detect and quantify372

heterogeneity in susceptibility. For our method, power to detect heterogeneity increases with larger sample373

sizes and greater heterogeneity present as well as intermediate fractions infected in the discrete case (Ed) and374

high fractions infected in the continuous case (Ec).375

Few studies have estimated heterogeneity in susceptibility in any infectious disease systems. Performing376

a standard literature search, we were able to find 46 estimates of heterogeneity in susceptibility from only377

9 unique systems (Dwyer et al., 1997, 2000; Smith et al., 2005; Ben-Ami et al., 2008; Elderd et al., 2008;378

Ben-Ami et al., 2010; Pessoa et al., 2014; Langwig et al., 2017; King et al., 2018; Gomes et al., 2019; Corder379

et al., 2020; Gomes et al., 2022) with only 6 of those estimates pertaining to 4 human disease systems. While380

this list may not be entirely exhaustive, our method may be useful for expanding the set of systems for381

which heterogeneity in susceptibility can be detected and estimated. To determine whether our method382

is sufficiently powered, we need to know whether the values of the expected fraction infected E and the383

coefficient of variation of risk C are in a parameter space where our method would likely be suitable. Of the384
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estimates for C that we found in the literature, 42 (91%) of them were greater than 0.5 and 21 (46%) were385

greater than or equal to 1.5. With 200 focal individuals (F = 200), fA = 0.5, and C = 1.5, we have at least386

80% power to detect heterogeneity in susceptibility when Ed is between 0.28 and 0.92 or when Ec is between387

0.26 and 0.98. With F = 1000 and C = 1.5, we have at least 80% power when Ed is between 0.18 and 0.98 or388

when Ec is between 0.14 and 0.98 (Figs 2, 3). In studies examining contact tracing data, we found secondary389

attack rates, which provide conservative estimates of E, to often be around 0.2 and sometimes as high as390

0.733 (De Serres et al., 2000; Rieder, 2003; Taylor et al., 2007; Lessler et al., 2009; Ajelli et al., 2015; Koh391

et al., 2020). Our method should therefore be sufficiently powered for many systems.392

The precision in our prediction of SIR dynamics is also affected by the nature of the heterogeneity in393

susceptibility. Our estimates of how heterogeneity affects disease dynamics are less precise when there are394

discrete differences in risk between hosts, as opposed to continuous variation in risk (Fig 7). This is because,395

in addition to Cd and Ed, the fraction of the initial population that is the more susceptible type of individual,396

fA, is critical for determining the trajectory of the epidemic. With the same Cd and Ed, the final epidemic397

size can differ depending on fA (Supplementary information S6). Hence, the need to estimate the additional398

parameter fA in the discrete case with the same data results in wider 95% CIs. However, we can generate399

narrow 95% CIs and more precise parameter estimates in the discrete case if there is prior knowledge of the400

parameters pA, pB , or fA (Supplementary information S7).401

We found that using the correct underlying model is additionally important for accurately predicting402

disease dynamics, but not for the detection of heterogeneity in the first place. The underlying model used403

for parameter estimation should therefore be carefully chosen to reflect prior understanding of the potential404

drivers of heterogeneity in susceptibility in the system. The process for initial detection of heterogeneity in405

susceptibility is the same regardless of the underlying model (Eqs. 1, 2). Therefore, we can reliably detect406

heterogeneity in susceptibility without knowledge of the distribution of individuals’ risks.407

One strength of our method is that it allows for estimation of heterogeneity in susceptibility in real time,408

early in an epidemic with no data other than contact tracing data. Admittedly, the use of this data in real409

time will depend on the speed with which the necessary data can be collected and communicated, but existing410

methods to quantify heterogeneity are not adequate for real time usage even with immediate access to the411

data. Ben-Ami et al. (2010) and Langwig et al. (2017) used experimental dose-response curves to estimate412

heterogeneity in susceptibility, and Dwyer et al. (1997) used a combination of laboratory dose-response413

experiments, field transmission experiments, and models fit to mortality data to investigate heterogeneity.414

Although these experimental methods can provide good estimates of heterogeneity in susceptibility, they415

are not feasible for application in real time or for human epidemics in general due to time constraints and416

ethical concerns. Gomes et al. (2019) compared disease incidence across municipalities in several countries to417

quantify heterogeneity for tuberculosis. This was done by ordering the municipalities by incidence rate and418

plotting the percentage of cumulative tuberculosis cases versus cumulative population to construct Lorenz419

curves and thereby fit susceptibility risk distributions. This method, however, requires a considerable amount420

of data with ten or more years of data used in this study. Smith et al. (2005) and Corder et al. (2020) used421

malaria morbidity data to fit models of malaria and estimate heterogeneity. This method cannot be used until422

later in an epidemic when sufficient data is collected to fit curves. Gomes et al. (2022) also used curve fitting423

with mortality data to estimate heterogeneity in susceptibility for COVID-19. They were able to estimate424

heterogeneity in real time once at least four months of data were available. While our method is in principle425

able to estimate heterogeneity in a similar time frame provided robust contact tracing, we also note that their426

method is heavily dependent on the underlying model and assumptions, and the authors advise not to trust427

the precision of their estimates. In addition, Gomes et al. were unable to disentangle heterogeneity in contact428

rate from heterogeneity in underlying susceptibility. Our method estimates heterogeneity in underlying429

susceptibility, and the remaining heterogeneity in contact rate can be determined from the contact network430

data. Anderson et al. (2023) used household study data to estimate heterogeneity in susceptibility. While431

this method is suitable for use in real time, and can be applied to human infectious diseases, the method432

notably is designed to estimate heterogeneity within households, which is not the same as the population-level433

heterogeneity that drives population-level disease dynamics.434

Our method is unable to precisely estimate the individual parameters that define the risk distributions435

(i.e. pA, pB, fA in the discrete case and k, θ in the continuous case), but our method is able to reliably436

predict disease dynamics. This seeming paradox arises because the disease dynamics depend on combinations437

of parameters rather than individual parameters. Notably, our method is substantially better at estimating438

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560944
http://creativecommons.org/licenses/by/4.0/


the composite parameters describing the coefficient of variation of risk C and the expected fraction of naive439

individuals infected E. Nevertheless, our method does require a substantial amount of data (200 individuals440

showing up in contact networks for a second time). This requirement could be mitigated by pooling contact441

network data from multiple locations in order to more quickly collect sufficient data. It may also be possible442

to combine our method with another, like that of Gomes et al. (2022), to reduce the data required by either443

method.444

There are additionally several considerations to address with regard to working with contact tracing data.445

Perhaps most prominently, contact tracing data tend to be messy and imperfect. Our method as described446

above assumes perfect data. However, our method can be readily modified to account for imperfect data. We447

can imagine multiple ways in which contact tracing data may be imperfect. Some important considerations are448

that: a) individuals may be mislabeled as uninfected when they are infected (false negatives), b) individuals449

may be mislabeled as infected when they are uninfected (false positives), and c) individuals may be missing450

from the contact networks despite being contacts (missing contacts). If there are false negatives, our method451

may overestimate the level of heterogeneity because our estimate of pf may be biased lower. This is because,452

assuming infection confers at least partial immunity, focal individuals that were actually infected previously453

(i.e. false negatives) will be less likely to be infected than focal individuals that were true negatives. To454

counteract this issue, we developed a version of the method that corrects for false negatives by adjusting455

the likelihood calculations for both detecting and estimating heterogeneity. For estimating parameters and456

predicting disease dynamics, adjusting the method to correct for false negatives fixes the issue (Supplementary457

information S8). For detecting heterogeneity in susceptibility, adjusting the likelihood calculation corrects458

for the impact of false negatives except when the expected fraction infected Ed is very close to 1. We do459

not think this will be a major issue as Ed is typically less than 0.5 (De Serres et al., 2000; Rieder, 2003;460

Taylor et al., 2007; Lessler et al., 2009; Ajelli et al., 2015; Koh et al., 2020). If there are false positives, our461

method may underestimate the level of heterogeneity because our estimate of pf may be biased higher. This462

is because a high false positive rate will have a larger impact on making individuals with a low susceptibility463

appear infected than those with a high susceptibility that are more likely to be true positives. Hence, focal464

individuals, which are on average less susceptible, and naive individuals will appear to have more similar465

infection probabilities. However, false positive rates are often small, close to 1-2% (Yang and Rothman,466

2004; Cohen et al., 2020), so this issue is not a huge concern for our method unless false positive rates are467

known to be unusually large. If there are many missing contacts, our method could underestimate the level468

of heterogeneity because our estimate of pn may be biased lower. This is because individuals that we believe469

to be naive but were previously exposed in a first contact network may be less likely to be infected than470

true naive individuals. These missed individuals may have gained immunity through infection or may be on471

average less susceptible through the infection selection process. However, there is a low chance of a missed472

individual from a first contact network showing up in a second contact network that also happens to have473

a focal individual early in an epidemic. So, missing individuals should have only a negligible effect on the474

method’s performance in these early stages. Later on in an epidemic, this source of bias will become more475

important to consider. While we have considered these three ways in which contact tracing data may be476

imperfect, it is highly likely that each set of contact tracing data will have its own set of peculiarities. Note477

that these peculiarities, if known, can readily be accounted for using our ABC method since any process may478

be used for simulation. Known imperfections in the data should therefore not bias estimates although they479

may still reduce power or increase required sample sizes.480

Another important point is that our method assumes no forms of heterogeneity other than heterogeneity481

in susceptibility. One other source of heterogeneity is heterogeneity in transmission (Lloyd-Smith et al., 2005).482

Heterogeneity in transmission is differences between hosts in their likelihood of transmitting a pathogen483

once infected. If this heterogeneity arises due to variation in the number of contacts that individuals have,484

then heterogeneity in transmission poses no problems for our method. It would simply mean that each485

contact network would have a unique value for N . We note that this variation in contact rate is the typical486

mechanism through which heterogeneity in transmission is assumed to act (Lloyd-Smith et al., 2005). However,487

if heterogeneity in transmission arises due to differences between hosts in their likelihood of transmission488

given contact, our method may have less power to detect heterogeneity in susceptibility and may yield less489

precise or faulty conclusions about the disease dynamics (Supplementary information S9). Our method, in its490

existing form, is thus not suitable in these cases. This concern can be partially mitigated by performing a491

goodness of fit test before implementing the method to determine whether there is evidence of heterogeneity492
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in transmission given contact (Supplementary information S9). If there is heterogeneity in transmission,493

then our method should not be used. A next step in developing this method will be to generalize it to allow494

for estimation of heterogeneity in susceptibility even when there is heterogeneity in transmission. This is,495

however, a non-trivial problem because if every individual has a unique force of infection, then the number of496

parameters to estimate grows at the same rate as the number of focal individuals.497

There may additionally be heterogeneity in exposure strength among contacts within a network such498

that individuals experience different forces of infection. This could be due to factors like differences in499

exposure time or type of contact (e.g., contacts that shared a taxi, were at the same party, etc.). This500

added heterogeneity may reduce the power of our method to detect heterogeneity in susceptibility as different501

contact types may provide varying levels of information that our current method disregards. To alleviate502

the potential impact of this heterogeneity, it may be necessary to break apart contact networks into specific503

exposure events and either weigh the type of contact differently or only use equivalent contact types.504

Finally, we note that exposure could change individuals’ susceptibilities. Individuals exposed in a first505

contact network could receive a small dose of the pathogen such that their immune system is stimulated506

without them becoming infected. This could decrease their susceptibility, meaning that some focal individuals507

have lower susceptibilities because they developed immunity, not because they were innately less susceptible508

(Leon and Hawley, 2017). However, this will have the same effect as heterogeneity in susceptibility of slowing509

down the epidemic and could even be considered a form of heterogeneity in susceptibility.510

The earliest practice of tracing diseases dates back to the 1500s when doctors would track the spread of511

syphilis (Cohn, 2018), and the earliest known example of contact tracing dates to 1576 during a bubonic512

plague pandemic (Cohn, 2009). Since then, the practice of contact tracing has spread, and it is now used513

widely, ranging from diseases such as influenza to HIV (De Serres et al., 2000; Rieder, 2003; Taylor et al.,514

2007; Lessler et al., 2009; Ajelli et al., 2015; Koh et al., 2020). Recently, contact tracing data has transitioned515

from paper copies to electronic databases. Regardless, all of these sources of data could be used with our516

method provided they include focal individuals that are identifiable between contact networks, specify which517

individuals are infected, and have a sufficient sample size. Using our method, it should therefore, without518

collecting any new data, be possible to estimate heterogeneity in susceptibility, in various locations and time519

periods, for dozens of disease systems in which it has never been estimated previously.520
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