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Abstract 
 
Amino acid insertions and deletions (indels) are an abundant class of genetic variants. 
However, compared to substitutions, the effects of indels are not well understood and poorly 
predicted.  Here we address this shortcoming by performing deep indel mutagenesis (DIM) 
of structurally diverse proteins. Indel tolerance is strikingly different to substitution tolerance 
and varies extensively both between different proteins and within different regions of the 
same protein. Although state of the art variant effect predictors perform poorly on indels, we 
show that both experimentally-measured and computationally-predicted substitution scores 
can be repurposed as good indel variant effect predictors by incorporating information on 
protein secondary structures. Quantifying the effects of indels on protein-protein interactions 
reveals that insertions can be an important class of gain-of-function variants. Our results 
provide an overview of the impact of indels on proteins and a method to predict their effects 
genome-wide. 
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Introduction 
 

Short insertions and deletions (indels) of amino acids are an abundant source of 
genetic variation1–4. Indels are more challenging to accurately genotype than substitutions5 
and their effects have been much less comprehensively experimentally evaluated6–11 making 
it difficult to evaluate how well their impact is computationally predicted.  Indeed, many of the 
most popular variant effect prediction (VEP) algorithms do not even return scores for 
indels10. 

 

Indels are a fundamentally different type of perturbation to substitutions. Whereas 
substitutions are ‘side chain mutations’, indels are ‘backbone mutations’ that can have a 
much more severe effect on structure, stability and function12–15. The most frequent indels in 
natural genomes are change in copy count (CCC) variants16 where one or more nucleotides 
are repeated or deleted due to polymerase slippage during DNA replication17,18.  
 

Massively parallel DNA synthesis-selection-sequencing experiments - also called 
deep mutational scanning (DMS) or multiplex assays of variant effect effects (MAVEs) - 
provide a great opportunity to quantify the effects of indels on proteins at scale in order to 
better understand their effects and to evaluate and develop computational methods for indel 
variant effect prediction6–11. Here we apply this approach to quantify the impact of diverse 
indels on the stability of structurally diverse proteins.  

 
We find that deletions and insertions are more detrimental than substitutions and that 

the site of insertion is more important than the aa inserted. Whereas substitutions are better 
tolerated on the surface of proteins and most detrimental in their hydrophobic cores, this is 
less true for insertions or deletions. In general, indels are better tolerated in protein termini 
than in secondary structure elements, but tolerance varies extensively both between 
different proteins and within different regions of the same protein.  We find that widely used 
variant effect predictors do not perform well for predicting indel tolerance, but we also show 
that both experimentally-measured and computationally-predicted substitution scores can be 
augmented to provide very good genome-scale prediction of aa indel variant effects. Finally, 
by quantifying protein binding at scale, we find that insertions more frequently generate gain-
of-function molecular phenotypes than deletions or substitutions. 
 
 
Results 
 
Deep Indel Mutagenesis of in vivo protein abundance 
To better understand and predict the impact of insertions and deletions on proteins, we 
performed deep indel mutagenesis (DIM) to quantify the impact of 5,624 indels on the 
cellular abundance of nine structurally diverse protein domains.  For each protein, we 
designed a library of variants covering all sequential deletions of 1 to 3 aa, all change in 
copy count (CCC) insertions that repeat 1-3 aa, and all 3 nt out-of-frame deletions that 
remove an aa and substitute an aa in a single event (delSubs) (Fig. 1a). We quantified the 
effect of each variant on the cellular abundance of each protein using a highly-validated 
protein fragment complementation assay (PCA),  abundancePCA (aPCA), that quantifies 
protein abundance over three orders of magnitude19–21. All transformation-selection-
sequencing experiments were performed in triplicate and were highly reproducible 
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(Extended Data Fig. 1a, Pearson’s r=0.920-0.927). aPCA substitution, deletion and insertion 
scores were also highly correlated with independent measurements of protein stability (Fig. 
1b, Extended Data Fig. 1b)11,22.  
 
Patterns of indel tolerance vary between and within proteins   
Our systematic data reveals that all nine proteins are highly intolerant of aa deletions, with 
68.8% of 1aa deletions strongly reducing abundance (variants within 1 standard deviation of 
the deleterious mode, Extended Data Fig. 1c).  In general, 1aa insertions are slightly better 
tolerated, with 62.1% strongly reducing abundance (Extended Data Fig. 1c).  However, 
insertion tolerance varies across proteins: insertions are much better tolerated than deletions 
in six of the nine proteins, whereas in FBP11-FF1 they are only slightly better tolerated and 
they are very detrimental in two proteins, GRB2-SH3 and CKS1 (Fig. 1b).   
 
The relative tolerance to insertion and deletion also varies within each protein, with regions 
similarly tolerant to insertion and deletion, regions more tolerant to deletion, and regions 
more tolerant to insertion (Fig. 1b).  For example, insertions and deletions are similarly 
tolerated in helix 2 of BL17-NTL9 but deletions are much less detrimental than insertions in 
helix 1 of the same protein. In CSPA-CSD, insertions and deletions are similarly well-
tolerated in loop 3, whereas in loop 1 insertions are more detrimental than deletions, and in 
loops 2 and 4 deletions are more detrimental than insertions (Fig. 1b).  
 
In general, multi-aa deletions are more detrimental than single-aa deletions (Fig.1c), 
whereas multi-aa insertions are not more detrimental than single-aa insertions (Fig. 1c).  
However, again this varies quantitatively across proteins as well as in different regions of the 
same protein (Fig. 1b).  For example, in CI2A-PIN1 multi-aa indels are tolerated similarly to 
single indels across the entire domain, while in BL17-NTL9 longer indels are more 
detrimental in certain regions (Fig. 1b). In contrast, in CSPB-CSD double insertions from the 
middle of loop 1 to the beginning of strand 2 are less detrimental than single and triple 
insertions in the same region whereas in the rest of the protein single and multi-aa indels 
have similar effects, with insertions of all lengths being well-tolerated and deletions of all 
lengths being deleterious (Fig. 1b). 
 
Considering the entire dataset, single aa insertions predict the effects of single aa deletions 
reasonably well (Pearson’s r=0.473, Extended Data Fig. 1d), but the effects of double and 
triple aa insertions are less well correlated with the effects of double and triple aa deletions 
(double: r=0.268; triple: r=0.146; Extended Data Fig. 1e and 1f)).  Indeed, while single 
insertions predict the tolerance to longer insertions (r=0.718 and r=0.726 for 2 and 3 aa 
insertions; Extended Data Fig. 1g and 1h),  double and triple deletion tolerance is less 
correlated with single deletion tolerance at the same position (r=0.617 and r=0.409 for 2 and 
3 aa deletions; Extended Data Fig. 1i and 1j). 
 
Thus, in general, deletions are more detrimental than insertions, multi-aa deletions are more 
detrimental than 1 aa deletions, multi-aa insertions are tolerated similarly to 1aa insertions, 
and deletion and insertion tolerance are related.  However, these relationships vary between 
different proteins and between different regions within the same protein. 
 
Comparing the impact of insertions, deletions and substitutions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.06.561180doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561180
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

For two of the proteins, PSD95-PDZ3 and GRB2-SH3, in addition to the CCC insertion 
repeats, we also quantified the effects of all 20 aa insertions at every position.  For the same 
proteins we also measured the effects of all 19 aa substitutions at every site, allowing us to 
directly compare the effects of inserting and substituting to the same residues.   
 
For PSD95-PDZ3, which has a typical moderate insertion tolerance (Fig. 2a), the average 
effect of substitutions predicts reasonably well the effect of deleting the residue (r=0.534, 
Fig. 2b) as well as CCC insertions after (r=0.441, Fig. 2b) and before (r=0.313, Extended 
Data Fig. 2a) the site. For GRB2-SH3, which is unusually intolerant of insertions (Fig. 2a), 
substitution tolerance is reasonably predictive of CCC insertions after the substitution site 
(r=0.392) but much less predictive of the tolerance for insertions before a site (r=0.057 
[p=0.693], Extended Data Fig. 2a) and deletion tolerance (r=0.194 [p=0.173], Fig. 2b). 
Across 175 protein domains with in vitro fold stability measurements of indels and 
substitutions11, substitution tolerance predicts Ala insertion tolerance similarly well after 
(mode r=0.281) and before a residue (r=0.240) and better predicts 1 aa deletion tolerance 
(mode r=0.459, Fig. 2c and Extended Data Fig. 2b).   
 
Interestingly, substitution tolerance is a better predictor of insertion and deletion tolerance in 
loops than in secondary structure elements (mode r=0.576 and r=0.546 for insertions and 
deletions in loops, mode r=0.082 and r=0.326 for insertions and deletions in secondary 
structure elements, Fig. 2c). That substitution tolerance predicts indel tolerance reasonably 
well - and variably so in different protein regions - suggests a strategy for predicting indel 
variant effects (see below).  
 
Insertions of different amino acids 
Although CCC insertions are by far the most frequent aa insertions in natural genomes16, 
experimentally we can insert any aa at any position. Substitutions to different aa often have 
strikingly different effects at the same residue (Fig. 2a and Extended Data Fig. 2d). Such 
variation is also seen for insertions, although it is quantitatively less important, with a lower 
standard deviation of variant effects at most positions (Fig. 2d). However, this again varies 
across sites, with insertions to different aa having very different effects at some positions 
(Fig. 2e). For example, at positions 4 and 15 in GRB2-SH3 and positions 14 and 20 in 
PSD95-PDZ3 insertions have a wide range of effects. At other sites most insertions are 
tolerated and only particular aa are detrimental. Examples include positions 17 and 53 in 
GRB2-SH3 and positions 3 and 39 in PSD95-PDZ3 (Fig. 2e).   
 
Considering all sites, there is a reasonable correlation between the average effect across all 
residues of inserting an aa and substituting to the same aa in both proteins (r=0.530 and 
r=0.598 for GRB2-SH3 and PSD95-PDZ3, respectively, Fig. 2f). In GRB2-SH3, for example, 
insertions to Lys, Gly and Cys are highly tolerated as are substitutions to Lys and Cys but 
not substitutions to Gly (Fig. 2f). However, the tolerance to insertion of different aa varies 
between the two proteins, between secondary structure elements and loops within the same 
protein, and between residues within each structural element (Fig. 2e, Extended Data Fig. 
2e). 
 
DelSubs 
Out of frame 3nt deletions can cause a more complicated protein sequence change where 
one aa is deleted and the next aa is substituted.  We refer to these variants as ‘delSubs’.  An 
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important example of a pathogenic delSub is the F508del variant in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene, which is the most frequent cause of 
cystic fibrosis23 .  
 
To better understand delSubs, we quantified the effects of 325 across the nine structurally 
diverse proteins. Our data shows that the effects of delSubs correlate well with the effects of 
deletions of the same residues (r=0.729, Fig. 2g), showing that delSub tolerance is 
predominantly driven by deletion tolerance. However, for a subset of sites where deletions 
are tolerated, delSubs are detrimental.  At these sites, which constitute ~8% of delSubs, the 
additional substitution results in destabilisation of the protein (Fig. 2g).  
 
Structural determinants of indel tolerance 
The quantification of thousands of insertion, deletion and substitution variants across diverse 
protein folds provides an opportunity to better understand how their effects relate to 
structure. Consistent with many previous experimental7,10 and computational analyses15,24 , 
we find that substitutions in the hydrophobic cores of proteins are much more detrimental 
than substitutions in solvent exposed surface residues (correlation with relative solvent-
accessible surface area,  rSASA, r=0.645, r=0.756 for GRB2-SH3, PSD95-PDZ3 and mode 
r=0.682 for in vitro fold stabilities of 178 domains, Fig. 3a-b). However, solvent accessibility 
is a less good predictor of deletion (r=0.151 [p=0.290], r=0.487, mode r=0.388) and insertion 
(r=0.0246 [p=0.863], r=0.288, mode r=0.144) tolerance (Fig. 3b). Patterns of substitution and 
indel tolerance also differ with respect to secondary structure and location in a protein. In 
alpha-helices, substitution tolerance follows the 3-4 aa structural periodicity of helices, 
consistent with substitutions of side chains on the same face of a helix having more similar 
effects (Fig. 3c). Similarly, in beta-strands, substitutions in every second aa have more 
similar effects, consistent with their side chains being on the same face of a strand (Fig. 3d). 
Neither of these periodicities in variant effects is observed for insertions or deletions (Fig. 
3c/d, lower panels). Moreover, insertions and deletions are well tolerated in the N- and C-
termini of proteins (termini defined as the sequence before or after the first or last secondary 
structure element, respectively) but are more detrimental than substitutions in loops, helices, 
and strands (Fig. 3e). Indel tolerance also varies more than substitution tolerance depending 
upon the length of secondary structure elements and the identity of the structural element 
before and after that in which the mutation occurs (Extended Data Fig. 3c-e). In protein 
termini, insertions and deletions are more detrimental close to the start or end of secondary 
structures (Extended Data Fig. 3b). 
 
In summary, unlike substitution tolerance, indel tolerance does not relate strongly to the 
periodicity of secondary structure elements and the solvent exposure of side chains. Rather, 
multiple features seem potentially important, including: i) the secondary structure element in 
which the indel is located, ii) the length of that element, iii) the neighbouring environment of 
the element, and iv) the exact residue.  Some or all of these features may therefore be 
useful variables for indel variant effect prediction.  
 
Evaluating indel variant effect prediction 
We next evaluated how well computational variant effect prediction (VEP) methods predict 
the effects of indels.  We evaluated the performance of two widely used VEPs, CADD25 and 
PROVEAN26, as many other widely-used methods do not return scores for indels (Extended 
Data Table 1). CADD only provides predictions for human proteins and its performance is 
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reasonable for substitutions (mode r=0.389, Fig. 4a) but poor for insertions (mode r=-0.068) 
and deletions (mode r=-0.026, Fig. 4a)  In contrast, PROVEAN performs better for insertions 
(mode r=0.440) and deletions (mode r=0.299) than for substitutions (r=0.267, Fig. 4a), but 
the performance varies extensively across proteins (interquartile range from r=0.250 to 
r=0.582 for insertions and r=0.259 to 0.570 for deletions). Interestingly CADD and 
PROVEAN predictions correlate well for substitutions (r=0.402, Extended Data Fig. 4a) but 
not for insertions (r=0.0831) and deletions (r=0.164, Extended Data Fig 4b).   
 
Accurate indel variant effect prediction  
We next explored whether a range of relatively simple models could be used to predict the 
effects of indels on fold stability. The experimentally measured average substitution scores 
provide reasonably good prediction of the effects of deletions (model 1, mode r=0.464 for 
1aa deletions, evaluated by leave-one-protein-out cross validation, Fig. 4c) but less good 
prediction for insertions (mode r=0.240 for Ala insertions) (Fig. 4d). The identity of the aa at 
each residue is not a good predictor of indel tolerance (model 2, Fig. 4 c/d).  A regression 
model using only secondary structure information (model 3) is quite a good predictor of both 
deletion (mode r=0.550) and insertion (mode r=0.561) tolerance (Fig. 4 c/d).  The secondary 
structure features used in model 3 include the secondary structure element in which the 
indel occurs, its length, the position of the indel within the element and the identity of the 
neighbouring secondary structure elements (see Methods).  Better performance for both 
insertions and deletions is obtained when using secondary structure information and the 
mean substitution score per position (model 5, mode r=0.617 and r=0.613, for deletions and 
insertions; adding information about the starting aa did not improve performance, model 4, 
Fig. 4 c/d). 
 
Repurposing substitution variant effect predictors for indels 
We next explored whether we could replace the experimentally-measured substitution 
scores with computationally-predicted scores. State-of-the-art deep learning methods are 
showing increasingly good performance for predicting substitution variant effects27–32 . We 
evaluated two methods: ESM1v, an unsupervised large language model29 , and DDMut, a 
deep neural network trained specifically to predict stability changes32. Not unexpectedly, we 
found that DDMut provides better prediction for the effects of substitutions on stability 
changes (mode r=0.567 for ESM1v, r=0.664 for DDmut across 181 domains, Fig. 4a). We 
therefore tested how well the DDMut substitution scores could replace the experimental 
substitution scores in our regression models. Predictive performance using the DDmut 
substitution scores alone is lower than when using the experimental substitution scores 
(model 1p, r=0.259 and r=0.156 for deletions and insertions, Fig. 4c/d). However, combining 
these scores with secondary structure information results in good predictive performance 
(model 5p, median r=0.613 and r=0.616), similar to the performance when using 
experimental substitution scores (model 5, median r=0.617 and r=0.613).   
 
The coefficients of the best performing models (models 5 and 5p) highlight the experimental 
and computational substitution scores as key predictors of destabilisation (Extended Data 
Fig. 4c and 4d). Additional features include indels within or in structural elements connected 
to alpha helices and strands and indels in termini residues adjacent to secondary structures. 
Features predicting stabilisation involve indels at the protein's ends and in loops or termini, 
particularly those distant from the initial or final secondary structure element. 
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We conclude that the combination of either experimentally-measured or computationally-
predicted substitution scores with secondary structure information provides good prediction 
of the effects of indels across 178 different proteins. 
  
Insertions generate gain-of-function molecular phenotypes 
Destabilisation is likely to be the most frequent mechanism by which missense variants 
cause disease33–37. However, proteins normally have diverse molecular activities beyond 
folding that can also be affected by mutation and disease mechanisms. Moreover, an 
important subset of disease variants have gain-of-function mechanisms38. We therefore also 
quantified the effects of substitutions, insertions and deletions on a biophysical activity 
beyond fold stability, focussing on protein binding, which is a molecular function important for 
nearly all proteins. Using a highly-validated quantitative protein-protein interaction selection 
assay20,21,39, Fig. 5a), we quantified the effects of all aa substitutions and diverse insertions 
and deletions on the binding of GRB2-SH3 and PSD95-PDZ3 to their respective ligands, 
GRB2-associated binding protein 2 (GAB2) and CRIPT (Fig. 5c). 
 
In both proteins, many insertions and deletions strongly reduce binding to their ligands, 
consistent with their effects on fold stability (Fig. 5b,d,e). Most strikingly, however, a large 
number of 1 aa insertions in PSD95-PDZ3 have gain-of-function phenotypes, strongly 
increasing its binding to the CRIPT ligand (Fig. 5c,d). These insertions are nearly all in loops 
1 and 2 of the protein (Fig. 5c,f). A subset of multi-aa insertions also increase binding 
(Extended Data Fig. 5b). Insertions in these loops have a much stronger gain-of-function 
molecular phenotypes than substitutions (Fig. 5c). Loop 1 constitutes the carboxylate-
binding loop, directly involved in peptide recognition and forming the binding site groove for 
CRIPT together with strand 2 and helix 241. The second loop connects strand 2 and 3, which 
both contain ligand-contacting residues41. The insertions in these loops that increase binding 
have only a mild effect on the abundance of PSD95-PDZ3 (Fig. 2a) 
 
Thus, although insertions and deletions - like substitutions - primarily have loss-of-function 
molecular phenotypes, insertions in two loops of PSD95-PDZ3 cause strong gain-of-function 
phenotypes.    
 
 
Discussion 
Here we have used deep indel mutagenesis to quantify, understand and learn how to predict 
the effects of insertions and deletions in proteins.  Indels and substitutions are fundamentally 
different changes to proteins, and this is reflected in their different patterns of tolerance. Our 
data show that tolerance varies both between different proteins and different regions of the 
same protein, as does the relative tolerance to insertion and deletion.   
 
Despite this apparent complexity, we have also shown that it is possible to predict the effects 
on indels using relatively simple models that combine experimentally-measured or 
computationally-predicted substitution scores with information about the secondary structure 
of a protein. State-of-the-art substitution variant effect predictors can thus be augmented and 
repurposed as good indel predictors, which is important given the larger training and 
evaluation datasets currently available and being produced for substitutions43,44. These 
models are deliberately simple and interpretable, and it is likely that machine learning 
approaches will further improve performance.  
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Finally, we have presented evidence that insertions can be an important source of gain-of-
function molecular phenotypes, which are particularly challenging variants to identify and 
predict across diseases38.   
 
The expansion of deep indel mutagenesis to additional proteins and to additional molecular 
and cellular phenotypes is an important goal for future work. Large experimental indel 
mutagenesis will provide training and evaluation data for computational models for different 
protein properties and reference atlases to guide the interpretation of clinical variants.  
Large-scale indel mutagenesis and models to predict the effects of indels are, moreover, 
likely to be important for protein engineering, providing access to gain-of-function and 
change-of-function phenotypes that are difficult to access through substitutions alone.  
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Materials and methods 
 
Deep Indel mutagenesis library design  
We designed the mutational libraries using sequences listed in Extended Data Table 2 as 
the wildtype templates. For GRB2-SH3 and PSD95-PDZ3 we designed i) 1-3 aa 
neighbouring deletions ii) 1-3 aa neighbouring CCC insertions iii) out-of-frame 3nt deletions 
resulting in delSubs iv) 15x synonymous mutations prioritising >1nt changes v) all possible 
19 substitutions at each position using most abundant yeast-codons 
(https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4932) and prioritising >1nt 
changes in the substituted codons  vi) all possible 20 aa insertions at each position vii) 1-3 
aa repeats of each aa in the template sequence viii) 2aa insertions of Cys and viv) 2x 
insertions of Ala. For the remaining 7 protein domains, we included i-iv into the mutational 
design. The 5’ and 3’ prime adapters were added to each protein for amplification and 
cloning purposes and adjusted to each wild type (wt) template length, with final adapters 
ranging from 20-42nt. The library was ordered at Twist Biosciences as a pooled oligo library 
with final lengths of single stranded oligos ranging from 149-250nt. The Twist pool was 
resuspended in water to the concentration of 1 ng/uL and the 3 sub pools 1) GRB2-SH3 2) 
PSD95-PDZ3 and 3) 7 domains were separated by PCR amplification of 14 cycles, using 
primers listed in Extended Data Table 3 and using 10ng of the Twist pool as template in 
each reaction. The 3 library pools were purified by an ExoSAPII (NEB) reaction to remove 
single-stranded DNA and further by column purification (MiniElute Gel Extraction Kit, 
QIAGEN).   
 
Variant library construction 
We used generic abundance- and bindingPCA plasmids20,21 to construct the 3 sub libraries. 
GRB2-SH3 and PSD95-PDZ3 libraries were cloned into their respective aPCA plasmids 
pGJJ046 and pGJJ068 (N-terminal DHFR tag20) using Gibson assembly. The 7 domain 
library was cloned into the pGJJ162 plasmid (C-terminal DHFR tag21). The backbones for 
the Gibson reaction for GRB2-SH3 and PSD95-PDZ3 library assembly (aPCA plasmids) 
were first linearized using primers listed in Extended Data Table 3 and next treated with 
Dpn1 (NEB) restriction enzyme to remove the circular plasmid template. Next the correct 
sizes of the linearized backbones were isolated using gel electrophoresis and later purified 
using QIAquick Gel Extraction Kit (QIAGEN). For the library of 7 domains, the pGJJ162 
backbone was linearised by digestion with restriction enzymes NheI and HindIII (NEB) for 
the Gibson reaction. We used 100ng of the linearized vectors and 9.4ng, 9.28ng and 
11.23ng of the purified double-stranded libraries (GRB2-SH3, PSD95-PDZ3 and 7 domains) 
for each gibson reaction of 20 uL. The gibson reaction (in-house prepared enzyme mix) was 
incubated at 50C for one hour, then desalted by dialysis using membrane filters for 1 hour, 
concentrated to 3X by SpeedVac (Thermo Scientific) and transformed into NEB 10β High-
efficiency Electrocompetent E. coli cells according to the manufacturer’s protocol. Cells were 
allowed to recover in SOC medium (NEB 10β Stable Outgrowth Medium) for 1 hour and later 
transferred to 100 mL of LB medium with ampicillin overnight. 100 mL of each saturated E. 
coli culture were harvested next morning to extract the plasmid library using the QIAfilter 
Plasmid Midi Kit (QIAGEN). Finally, after verifying correct assembly sanger sequencing 
(Eurofins), the GRB2-SH3 and PSD95-PDZ3 libraries were digested out of the aPCA 
plasmids using NheI and HindIII for re-assembly of the bPCA library. The bPCA library was 
assembled overnight by temperature-cycle ligation using T4 ligase (New England Biolabs) 
according to the manufacturer’s protocol, 67 fmol of backbone and 200 fmol of insert in a 
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33.3 uL reaction. As backbones for GRB2-SH3 and PSD95-PDZ3 library inserts,  we used 
the pGJJ034 and pGJJ072 plasmids with GAB2 and CRIPT ligands fused N-terminally to 
DHFR12, as described in our previous study20. The ligation was desalted by dialysis, 
concentrated 3X, transformed into NEB 10β High-efficiency Electrocompetent E. coli cells, 
and purified from E. coli using the QIAfilter Plasmid Midi Kit  as described above.The 
coverage of variants after each transformation reaction was estimated to be >20x. 
 
AbundancePCA and BindingPCA selections 
aPCA and bPCA methotrexate selection were performed as described in our previous 
studies20,21. The high-efficiency yeast transformation protocol was scaled to 100 mL based 
on the targeted number of transformants of each library and each biological replicate was 
transformed into cells grown from independent colonies of BY4741 yeast strain 
(https://www.yeastgenome.org/strain/by4741). In total we completed 5 methotrexate 
selection assays of 3 replicates each, 3 aPCA for GRB2-SH3, PSD95-PDZ3 and the 7 
domain library, and 2 bPCA for GRB2-SH3 and PSD95-PDZ3 libraries. The pre-selection 
medium used was SC-URA/ADE and the selection medium was SC-URA/ADE + 200ug/mL 
Methotrexate (BioShop Canada Inc., Canada). Harvested input and output cells were 
pelleted, washed with water and stored at -20C until the DNA extraction step.   
 
DNA extractions and plasmid quantification 
The DNA extraction protocol was used as described in our previous study20,21. We extracted 
DNA from a 50mL harvested selection input and output cultures at OD600nm~1.6. Plasmid 
concentrations in the total DNA extract (that also contained yeast genomic DNA) were 
quantified by qPCR using the oligo pair 6 (Extended Data Table 3), that binds to the ori 
region of the plasmids. 
 
Sequencing library preparation 
Sequencing library preparation was done as described in our previous study20,21.We 
performed 2 consecutive PCR reactions for each sample. The first PCR (PCR1) is used to 
amplify the amplicons for sequencing, to add a part of the illumina sequencing adaptors to 
the amplicon and to increase nucleotide complexity for the sequencing reaction by 
introducing frame-shift bases between the adapters and the sequencing region of interest. 
PCR1 frame-shifting (fs) oligos for each of the sub libraries are listed in Extended Data Table 
3. The second PCR (PCR2) is used to add the remainder of the illumina adaptor and to add 
demulitplexing indexes. All samples, except the GRB2-SH3 bPCA, were dual-indexed using 
differing barcode indexes both for the forward (5’ P5 Illumina adapter) and reverse oligos (3’ 
P7 Illumina adapter). The GRB2-SH3 bPCA library was single-indexed using a constant 
forward oligo  (3’ P7 Illumina adapter) and alternating reverse oligos (3’ P7 Illumina adapter). 
The demulitplexing primers used for PCR2 are listed in Extended Data Table 4. The 
amplicon library pools were isolated based on size by gel electrophoresis using a 2% 
agarose gel and then purified using QIAEX II Gel Extraction Kit (QIAGEN) and using 30uL of 
QIAEX II beads for each sample. The purified amplicons were subjected to Illumina 150bp 
paired-end NextSeq 2000 sequencing at the CRG Genomics Core Facility.   
 
Sequence data processing 
FastQ files from paired-end sequencing of all aPCA and bPCA experiments were processed 
with DiMSum45 v1.2.11 using default settings with minor adjustments: 
https://github.com/lehner-lab/DiMSum. Due to low read coverage, following samples were 
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re-sequenced:  GRB2-SH3 bPCA input replicate 3, output replicate 1 and 2. Outputs from 
the second run of sequencing were added as technical replicates in the Experimental Design 
File when running DimSum for the GRB2-SH3 bPCA experiment. Variant counts associated 
with all samples (output from DiMSum stage 4) were filtered using a custom script to retain 
only the programmed variants (Variant Identity File). FastQ files were processed with 
DiMSum separately for the GRB2-SH3 and PSD95-PDZ3 aPCA and bPCA samples and in 
bulk for the remaining 7 domains. For the 7 domains, we also supplied the Synonym 
Sequence File listing all wt sequences, to retrieve the synonymous variants for all 7 
domains. 
 

The Dimsum output  “...fitness_replicates.RData” files containing the fitness and fitness error 
estimates were used for further data analysis. After calling the substitution, indel and 
synonymous variants for each protein, we next normalised the data for each protein 
separately. To determine the lower limit for normalisation, we applied the Chernoff mode 
estimator (using the mlv{modeest} function) to identify the mode of the lower peak in the 
bimodal distribution of all variant effects.This value was subtracted from the DimSum 
“fitness” value resulting in “norm_fitness”. The “norm_fitness” of each variant was then 
divided by the weighted mean of the synonymous variants, resulting in “scaled_fitness”. For 
one of the proteins, VIL1-HP, we used the “Vieu” mode estimator of the mlv{modeest} 
function, due to non-overlapping deleterious modes of insertions and deletions.  We 
normalised the replicate errors by dividing the DimSum fitness sigma with the square root of 
the weighted mean of synonymous variants. Indel variants with >6 and 0 output counts were 
added back into the working dataframe from the “...variant_data_merge.RData” file, as 
DimSum eliminates everything with 0 counts in the output. These variants were only CKS1 
mutants (34 out of 432) and were assigned “scaled_fitness” of 0 as they are thought to be 
completely deleterious for protein abundance. For all variants, we tested if changes in 
abundance were significant from the weighted mean of the synonymous variants by 
calculating z-stats with a two-tailed test and using Bonferroni multiple testing correction. The 
highly deleterious CKS1 variants with 0 counts in the DiMSum output were not marked as 
significant changes.  
 
In vitro fold stability data 
In vitro fold stability data from Tsuboyama et al.11 was downloaded from 
https://zenodo.org/record/7992926. The downloaded files used for further analysis were 
“Tsuboyama2023_Dataset2_Dataset3_20230416.csv” containing the inferred deltaG and 
ddG scores for all substitution and indel variants and the “AlphaFold_model_PDBs “ folder 
containing the pdb files for all assayed domains. For our analysis, we inverted the sign of the 
inferred “ddG_ML” by multiplying it with -1. Additionally, we filtered the original data frame, 
retaining only the natural protein domains and domains with scores for all mutation types 
(substitutions, single deletions and alanine insertions) resulting in a final selection of 181 
protein domains.  
 
Secondary structure features 
Secondary structure assignments were made using STRIDE46 using the stride{bio3d} R 
function. The secondary structure alignment was simplified from 6 categories ("AlphaHelix," 
"310Helix," "Strand," "Turn," "Coil," "Bridge") by merging annotations for "Turn," "Coil," and 
"Bridge" into a single category called "loop". Furthermore, we annotated the N- and C-termini 
as the sequence of amino acids prior to or immediately after the first residue of the first/last 
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secondary structure element (“AlphaHelix”, “310Helix” and “Strand”). Next, we realigned 
every secondary structure element using the relative solvent accessibility score calculated 
using PyMol47 v.2.3.5. For each structure element (“AlphaHelix”, “310Helix”, “Strand” and 
“loop”) we first found the median position based on the element length and set the position 0 
to the most buried residue (based on the rSASA score) +1/-1 from the median length. 
Residues towards the n-terminal of the secondary structure element were annotated in 
negative, descending order (-1, -2, -3 etc) while the residues towards the c-terminal were 
annotated in ascending order (1, 2, 3 etc). For the N- and C-termini, we annotated the first 
position immediately prior to or after the secondary structure as position -1/+1. For N-termini 
we annotated the rest of the positions in negative, descending order while for the C-termini 
the positions were annotated in an ascending order.   
 
Variant effect prediction 
CADD25 was run on the human subset of the domains from Tsuboyama et al. 11. The 
chromosomal coordinates of each aa sequence were manually annotated using the UCSC 
Genome Browser48 (https://genome.ucsc.edu/index.html) and the VCF files containing all 
substitutions and single indels coordinates together with the reference- and alternative 
sequences submitted through the CADD web interface at 
https://cadd.gs.washington.edu/score. PROVEAN26 predictions were run locally using 
version 1.1.5, available for download at: https://www.jcvi.org/research/provean#downloads. 
For the PROVEAN input we used the wildtype aa sequences from the Tsuboyama et. al. 
dataset from which we encoded all possible substitutions and single indels.  
ESM1v29 (https://github.com/facebookresearch/esm) was run with minor modifications to the 
code (predict.py) to allow execution on a CPU with a pytorch installation without CUDA 
support. DDMut32 was run using the Application Programming Interface (API) with further 
instructions available at https://biosig.lab.uq.edu.au/ddmut/api. We encoded all possible 
substitutions using wildtype aa-sequences from the Tsuboyama et. al. dataset. The pdb files 
used for the DDMut submission were those provided for the Tsuboyama et al. dataset at 
https://zenodo.org/record/7992926. 
 
Model design 
For the deletion and insertion prediction models we used multiple linear regression with 
lasso regularisation without interaction terms, which allowed us to fit a simple linear model to 
the data while encouraging sparsity of the predictive features by shrinking some regression 
coefficients to zero. The predictive features (dummy-) encoded for the models 1-5 were: 
“resid”, “simple_struc”, “structure_before”, “structure_after”, “align_to_centre”, 
“align_to_centre_termini”, “length”, “ddG_ML_subs” and “ddMut”. The “resid” had 20 levels 
which described the wildtype aa of the deletion position or the wildtype position before the 
inserted aa. The 5 levels of secondary structure elements (“AlphaHelix”, “Strand”, “310Helix”, 
“loop” and “termini”) were encoded by “simple_struc”. The “structure_before” and 
“structure_after” encoded the structural element immediately before or after the current 
element and had 6 levels (“start”/”end”, “ntermini”/”ctermini”, “loop”, “Strand”, “AlphaHelix”, 
“310Helix”). The re-aligned position of each secondary structure element was encoded by 
“align_to_centre” and was simplified to 9 levels describing the position 0, the 1st, 2nd and 
3rd position prior to or after 0, while the rest of the residues were labelled as “>4+” or “-4<”. 
The same strategy was applied for simplifying the encoding of termini positions in 
“align_to_centre_termini”. For the “length” we encoded simplified length of each secondary 
structure element described by 3 levels, “short”, “medium” and “long”,  which was based on 
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the frequency of the the element lengths across the Tsuboyama et al. dataset and adapted 
to each secondary structure element individually. Finally, we used the mean inferred ddG of 
substitutions/residue, “ddG_ML_subs”, as a predictive feature for the model 5 and “ddMut”, 
the mean predicted ddG of stability for 19 substitutions/residue for model 5p. The models 
were evaluated using leave-one-out cross-validation where the model was trained on all-
except-one domain, and evaluated on that held-out domain. For each individual model, using 
R, we first determined the optimal regularisation parameter (lambda) by cross-validation 
using the cv.glmnet{glmnet} function with lasso penalty (alpha=1). Here we also calculated 
the best lambda value, representing the optimal regularisation strength that minimises 
overfitting while maintaining model performance. The best-fitting model was trained on all-
except-one domain using the glmnet{glmnet} function with the selected optimal lambda from 
the previous step. Finally, the model performance was tested on the held-out domain. 
Therefore, in conclusion, the deletion and insertion predictors were tested 181 times for each 
domain. The final figures contain evaluations of the models for 178 domains as we filtered 
for >3 data points when calculating the correlation coefficients.  
 
Data availability 
All DNA sequencing data have been deposited in the Gene Expression Omnibus under the 
accession number GSE244096. All scaled fitness measurements for i) aPCA, ii) aPCA of 
selected substitution mutants for the in vitro ddG validation, iii) bPCA as well as iv) the 
processed Tsuboyama et al. data for indels and mean substitutions/residue and v) all single 
substitutions are available as Extended Data files 1-5 respectively. 
 
Code availability 
Source code used to perform all analyses and to reproduce all figures in this work is 
available at: https://github.com/lehner-lab/deep_indel_mutagenesis. 
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Figure legends 
 
Figure 1. Deep indel mutagenesis of diverse protein domains. a. Library design 
including single and multi-aa indels, delSubs and single aa substitutions. b. Deep indel 
mutagenesis overview for each of the 9 domains. For each domain we show: i) correlation 
between in vitro measured ddG stability and the aPCA scores of selected substitution 
mutants. Selection of mutants was based on available in vitro ddG scores in Protherm22 ii) 
density distributions of effects for 1-3 aa CCC insertions (blue), 1-3 aa deletions (green) and 
single substitutions (purple); black line: weighted mean of the synonymous mutants; red line: 
mode of the deleterious distribution iii) domain structures coloured by the mean effects of 1-3 
aa deletions and CCC insertions iv) heat maps of protein abundance effects of all mutation 
types with significant changes in abundance (Bonferroni multiple testing correction of z-stats 
in a two-tailed test) marked with “*” v) effects of 1 aa deletions (green) and 1 aa CCC 
insertions (blue) across the domain length with the plot background colour-coded by 
secondary structure elements; white: loop/termini; blue: strand; red: helix (lower panel). c. 
Variation in indel deleteriousness across 1-3 aa indel lengths. P-values were calculated 
using Wilcox two-sided t-test with multiple testing adjustment (Bonferroni).   
 
 
Figure 2. Substitutions and insertions to different aa. a. Heatmaps of 19 single aa 
substitutions, 20 aa insertions, 1-3 aa insertion repeats and 1-3 aa deletion effects on protein 
abundance. Changes in abundance significant from the weighted mean of the synonymous 
variants are marked with “*” (Bonferroni multiple testing correction of z-stats in a two-tailed 
test); y-axis: identity, type or length of mutation; x-axis: mutated position- and the aa 
sequence of the domain. The x-axis is coloured by a secondary structure element; black: 
termini/loop; red: helix; blue: strand residues. b. Scatter plots of 1 aa deletion or 1 aa CCC 
insertion versus effects of mean substitution/residue with Pearson’s correlations. c. 
Correlations of indel and substitution effects for 175 domains with >3 scores from 
Tsuboyama et al., and correlation between mutational types within secondary structure 
regions (black) and loops (white).  d. Variation of substitution (purple) and insertion (blue) 
effects per position as standard deviation of effects/residue. e. Protein abundance scores of 
20 aa insertions at each position; blue dot: insertions of alanine f. Scatter plots of mean 
insertion and mean substitution scores/aa identity with Pearson’s correlations. g. Scatter plot 
of 1 aa deletions and 1 aa delSub abundance scores and the Pearson’s correlation 
coefficient.  
 
Figure 3. Structural determinants of indel and substitution tolerance. a. Scatter plots of 
protein abundance scores for mean substitution/residue (n=52), 1 aa CCC insertion and 1 aa 
deletions versus the relative solvent accessible area (rSASA) with Pearson’s correlation 
coefficients. b. Histogram of Pearson’s correlation coefficients of indel or substitution stability 
ddG and rSASA for the Tsuboyama et al. dataset. c. Patterns of periodicity for substitutions, 
insertions and deletions across helices and d. strands. Number of helices/strands for each 
position is reported above the plot; red/blue line: mean ddG/position. e. Violin plots of 
substitution and indel stability ddG across i) termini ii) loops iii) helices and iv) strands. 
Significant changes are indicated by the p-values obtained through Bonferroni-adjusted 
Wilcox two-sided t-test.  
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Figure 4. Prediction of indel tolerance.  a. Histograms of Pearson’s correlations 
coefficients for observed and predicted tolerance scores of substitutions (purple), insertions 
(blue) and deletions (green) across the domains from Tsuboyama et al.. Prediction accuracy 
of CADD could only be tested on human domains. b. Overview of the predictive features and 
the indel prediction models. c. A regularised (lasso) multiple linear regression model for 
prediction of deletion and d. insertion tolerance. The performance was evaluated as leave-
one-out cross validation and is reported as Pearson’s correlation  between observed and 
predicted scores for 178 domains from Tsuboyama et al..   
 
Figure 5. Insertions generate gain-of-function molecular phenotypes. a. Overview of 
the bPCA selections; no: yeast growth defect; DHF: dihydrofolate; THF: tetrahydrofolate. b. 
Density distributions of 1-3 aa deletion (green), 1-3 aa insertion (blue) and single substitution 
variants (purple); grey: aPCA data. c. Heatmaps of 19 single aa substitutions, 20 aa 
insertions and 1-3 aa deletion effects on protein-protein binding. Changes in binding 
significant from the weighted mean of the synonymous variants are marked with “*” 
(Bonferroni multiple testing correction of z-stats in a two-tailed test); y-axis: identity or length 
of mutation; x-axis: mutated position- and the aa sequence of the domain. The x-axis is 
coloured by a secondary structure element; black: termini/loop; red: helix; blue: strand 
residues; black squares: residues directly involved in the binding interaction. d. Mean 
insertion scores/residue for bPCA (blue) and aPCA (grey); error bars: standard deviation of 
aPCA scores/residue. e. Scatter plots of 19 substitution and 20 insertion effects on protein 
abundance and binding; red: residues in binding surface; blue: residues with rSASA<30; 
green: residues with rSASA>30. f. Structures of domains interacting with their ligands 
coloured by the mean bPCA score of 20 aa insertions/residue.   
 
Extended Data Figure 1. Experimental reproducibility and comparisons of single and 
multi-aa indels. a. Scatter plots showing reproducibility of abundance scores for the 9 
domains. b. Scatter plots showing correlation of aPCA scores and inferred ddG stability 
scores from Tsuboyama et al., for indels across the overlapping 5 domains. Pearson’s 
correlation reported for each domain. The table reports on differences in domain boundaries 
across the experiments; green: deletions; blue: insertions. c. Density distributions of 1 aa 
deletions (green) and 1 aa CCC insertions (blue) aPCA scores for all 9 domains. d-j. Scatter 
plots of 1-3 aa insertion versus deletion aPCA scores (d-f) and single versus multi-aa 
insertion or deletion aPCA scores (g-h, i-j respectively) across the 9 domains. Results are 
reported as scatter plots for all 9 domains and bar plots with Pearson’s correlation 
coefficients for each individual domain.  
 
Extended Data Figure 2. Substitutions and insertions across secondary structure 
elements. a. Scatter plots of correlations between 1 aa CCC insertions before or after the 
substituted residue and the mean substitution aPCA score/residue or single deletion score 
with their corresponding Pearson’s correlation coefficients. b. Histograms of Pearson’s 
correlation coefficients for deletions versus insertions before or after the deleted residue and 
substitutions versus insertions before or after the substituted residue. c. Histograms of 
Pearson’s correlation coefficients for substitutions or deletions versus insertions before the 
substituted/deleted residue across secondary structure and loop residues. d. Protein 
abundance scores of 19 aa substitutions per position; blue dot: substitutions to alanine. e. 
Scatter plots of mean insertion and mean substitution scores per aa identity within loops, 
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strands, 310helices and alpha helices. f-g. Scatter plots of all 19 substitutions versus 19 
insertions after or before the substituted residue.  
 
Extended Data Figure 3. Variability of indel tolerance across secondary structure 
features. a. Histograms of Pearson’s correlation coefficients for ddG of substitutions 
(purple), insertions (blue) and deletions (green) versus relative solvent accessible area 
(rSASA) b. Substitution, insertion and deletion tolerance across short (1-3 aa) and long 
(=>4aa) n- and c-termini. Number of termini/position are indicated above the plots; x-axis: 
realigned termini positions. c.  ddG scores for substitutions, insertions and deletions across 
different helix, strand and loop lengths. d. ddG scores for substitutions, insertions and 
deletions across helix/strands or e. loops classified by the secondary structure before or 
after the element. "start" and "end" denote the ddG of first and last structural elements of the 
domain. 
 
Extended Data Figure 4. Indel variant effect prediction. a. Plots of correlations between 
the predicted PROVEAN and CADD substitution scores. Results are shown as a scatter plot 
and histogram with the per-domain Pearson’s correlation; n=42. b. Scatter plots of the 
correlation between the predicted PROVEAN and CADD insertion and deletion scores and 
the corresponding Pearson’s correlation; n=42 c-d. Top significant coefficients from the 
deletion (c) and insertion (d) predictor models 5 and 5p.  
 
Extended Data Figure 5. Impact of multi-aa insertions and delSubs on protein 
interactions. a-b. Heatmaps of 1-3 aa insertion repeats and delSubs bPCA scores. 
Changes in binding significant from the weighted mean of the synonymous variants are 
marked with “*” (Bonferroni multiple testing correction of z-statistic in a two-tailed test); 
“subID” denotes the identity of the substitution; y-axis: type of mutation; x-axis: mutated 
position and identity of the substitution for delSub. The x-axis is coloured by a secondary 
structure element; black: termini/loop; red: helix; blue: strand residues. 
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