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Abstract 

Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the 
olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information 
carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons 
in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Odorant 
mixtures of increasing complexity evoked progressively denser OSN activity, yet cortical feedback activity 
was of similar sparsity for all stimuli. Representations of complex mixtures were similar in OSNs but were 
decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibited a 
sigmoidal relationship, cortical axonal responses were complex and non-monotonic, which could be explained 
by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage 
olfactory circuits have access to both local feedforward signals and global, efficiently formatted information 
about odor scenes through cortical feedback. 
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Introduction 

Volatile odorants are sensed by olfactory sensory neurons (OSNs) in the main olfactory epithelium of 
mammals (Buck and Axel, 1991). Each OSN expresses only one odorant receptor (OR) type out of a large 
ensemble but can sense many ligands with different sensitivities (Malnic et al., 1999; Araneda et al., 2000). 
The large number of receptor types with broad selectivity is thought to underlie the combinatorial capacity of 
the olfactory system to sense a substantial number of odors in the natural world. Axons of OSNs expressing 
the same OR converge on glomeruli in the olfactory bulb (OB) (Ressler et al., 1994; Vassar et al., 1994; 
Mombaerts et al., 1996). This convergence is likely to help in signal averaging, and postsynaptic projection 
neurons called mitral/tufted (M/T) cells receive focused excitatory inputs from single glomeruli (Wachowiak 
and Shipley, 2006; Wilson and Mainen 2006). A complex network in the OB, which includes many types of 
inhibitory interneurons (Burton 2017), transforms the incoming odorant information before it is sent to 
downstream brain regions, including the piriform cortex (PC). An intriguing feature of the early olfactory 
system is the dense axonal feedback projections from olfactory cortical areas to the OB, which brings 
processed cortical information back to the earlier stages (Boyd et al., 2012; Markopoulos et al., 2012; Otazu 
et al., 2015; Pressler and Strowbridge, 2017). It is not fully clear how the feedforward information from the 
nose and feedback from the cortex interact in the OB. 

The elaborate and often hierarchical organization of sensory systems is widely thought to help achieve 
efficient coding of information (Attneave 1954; Barlow 1961; Atick 1992). One way in which brains are thought 
to achieve efficient coding is by making responses of a neural population uncorrelated and of similar sparsity 
for a wide range of stimuli (Barlow 1961; Atick 1992; Bishop, 1995; Olshausen and Field, 1996; Vinje and 
Gallant 2000; Smith and Lewicki 2006). In the olfactory system, the repertoire of ORs is fixed in the genome 
and their responses to odorant stimuli may be inefficient - for example, certain odorants may activate many 
receptors and others may activate very few (Lin et al., 2006; Fletcher et al., 2009; Saito et al., 2009; Zak et 
al., 2020). To make the representation more efficient, circuits in different brain regions, including the OB and 
the PC may perform computations such as normalization or whitening (Wanner and Friedrich, 2020; Banerjee 
et al., 2015; Bolding and Franks 2017; Pashkovski et al., 2020). While circuits in the OB are likely to achieve 
some of the computational goals (Cleland and Linster, 2005), the PC is better situated for more global 
associations. 

Principal cells in the PC integrate information from multiple glomerular channels in the OB, conveyed 
by M/T cells (Haberly and Price, 1977; Apicella et al., 2010; Sosulski et al., 2011). This information is then 
reformatted through recurrent excitatory and inhibitory circuitry in the PC, presumably to aid odorant 
perception. For example, the fraction of neurons in the PC responding to different monomolecular odorants 
is relatively constant (Stettler and Axel, 2009; Miura et al., 2012; Bolding and Franks, 2017; Iurilli and Datta, 
2017), even though these odorants could activate very different densities of OSNs. Similarly, different 
concentrations of a given odorant activate a similar fraction of PC neurons (Stettler and Axel, 2009; Roland 
et al., 2017, Bolding and Franks, 2017, Bolding and Franks, 2018). Correlations in the representation of 
monomolecular odorants are also restructured in the PC (Pashkovski et al., 2020). 

While previous studies point to normalization of olfactory responses in the PC (Penker et al., 2020), 
several key features remain unknown. For instance, even though the olfactory environment consists of a 
complex mixture of chemicals, we currently lack an understanding of how cortical neurons represent realistic 
odorant mixtures, which elicit complex interactions even in the OSNs (Rospars et al., 2008; Inagaki et al., 
2020; Xu et al., 2020; Zak et al., 2020; Adefuin et al., 2022). Importantly, in the context of feedback, it is 
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unclear which of the different computations ascribed to the PC, related to odorant identity (Kadoshia and 
Wilson, 2006; Bolding and Franks, 2017), quality (Howard et al., 2009), attention (Zelano et al., 2005), and 
predictive coding (Zelano et al., 2011), are conveyed back to the OB. 

In this study, we make use of a diverse set of olfactory stimuli to ask how their neural representation 
is transformed from the OSNs to feedback from the PC to the OB. We imaged the activity of mouse OSNs in 
the olfactory epithelium in response to pure odorants, as well as a wide variety of mixtures of odorants 
containing up to 12 components. We also imaged OSN responses to variations in odorant concentration over 
4 orders of magnitude. We measured how expanding sensory input influences the activity of PC feedback by 
imaging its axonal projections to the OB. Our results reveal that cortical feedback axons bring back strongly 
normalized and decorrelated information about diverse odorant mixtures and concentrations to the OB, which 
can be combined with feedforward signals to influence M/T cell responses.  

 

 

 

Table 1. Odorant information 
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Figure 1. Viral expression of fluorescence indicators in the anterior PC. 

A. Circuit schematic of cortico-bulbar connectivity. B. AAV9.GCaMP6f was injected bilaterally at two sites in the anterior
region of the PC. C. Example coronal section of a mouse used in subsequent experiments GCaMP6f expression is
targeted to the PC, scale bar = 1000 μm. D. GCaMP6f expression in cortical projections to the OB. The red bar denotes
the typical imaging depth for in vivo experiments, scale bar = 100 μm. Right, the normalized fluorescence intensity in
each layer of the OB. Olfactory nerve layer (ONL), glomerular layer (GL), external plexiform layer (EPL), mitral cell
layer (MCL), and granule cell layer (GCL). E. Left, example image of GCaMP6f resting fluorescence of a typical imaging
field, scale bar = 20 μm. F. Responses to four selected odorants mapped onto ROI segments. G. Temporal modulation
of GCaMP6f responses in four selected ROIs from each of the four odorants in part F. Response polarity is conserved
across different stimuli. The red vertical shaded area denotes odorant delivery time. The dashed box indicates the
response averaging window for subsequent analyses. H. Responses of each of the 341 boutons in the imaging field
above to the same four odorants. Left, boutons are sorted by spatial location in the imaging field, right, traces are
sorted by their mean response amplitude. The vertical dashed line denotes the odorant onset and the horizontal red
bars above are the odorant duration.
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Results 

Odorant tuning profiles of cortical projections to the OB 

Principal neurons in the PC integrate inputs from multiple glomeruli (Figure 1A) and can respond to 
odorant stimulation with either an increase or decrease in activity relative to their baseline activity (Otazu et 
al., 2015; Roland et al., 2017; Bolding and Franks, 2017). We began our study by systematically measuring 
the responses of cortical feedback axons in the OB of awake mice to a panel of monomolecular odorants. 

A cocktail of two viruses was injected into the anterior portion of the PC (see Methods) to drive the 
expression of the calcium indicator GCaMP6f (Figure 1B) and the fluorescent marker tdTomato (see 
Supplemental Figure 1), which was used to identify regions containing infected projections and for motion 
artifacts compensation. A post hoc analysis revealed dense indicator expression in the somata of neurons in 
layer 2/3 of the PC (Figure 1C), as well as their axonal projections in the granule cell layer of the OB (Figure 
1D). Projections could also be observed to reach the glomerular layer of the OB, although at lower densities. 

In living mice imaged through cranial windows, we observed dense indicator expression at the 
interface between the external plexiform and granule cell layers (Figure 1E). To measure functional 
responses, we selected a standardized odorant panel that has previously been used in our laboratory for both 
behavioral and physiological studies (Rokni et al., 2014; Zak et al., 2020) (Table 1). Odorants were delivered 
in a pseudorandom order and the evoked responses were measured in individual axonal boutons by 
generating ROI masks from spatiotemporal correlograms (Pnevmatikakis 2018; Giovannucci et al., 2019; 
Figure 1F). Within individual imaging fields, enhanced and suppressed bouton responses were spatially 
distributed throughout the area imaged and their response kinetics varied by odorant identity (Figure 1F-H).  

In our characterization of odorant tuning profiles of cortical feedback, we collected data from 832 
boutons in nine imaging fields from six mice. Exemplar odorant response characteristics are shown in Figure 
1. For all bouton-odorant pairs that were significantly stimulus-modulated, response polarities were typically
conserved over the odorant panel (Figure 2A). Individual bouton responses were generally either enhanced
or suppressed across the odorant panel, and a smaller fraction showed mixed responses (37.5% enhanced,
38.0% suppressed, 24.5% mixed). These proportions are significantly different from chance, which would be
6.5 ± 0.6% enhanced, 11.7 ± 0.3% suppressed and 81.3 ± 1.0% mixed, if odor-bouton responses are
independently drawn from the distribution shown in Figure 2B (see Methods; deviations are 99% confidence
intervals). Our findings are consistent with other studies which report that response polarity is conserved
between stimuli within the PC and descending axons terminating within the OB (Otazu et al., 2015; Bolding
and Franks, 2017; Roland et al., 2017).

Most boutons did not respond to any particular stimulus (72.2 ± 1.3% unresponsive, n = 16 odorants; 
Figure 2B). However, of the boutons that were odorant-modulated, suppressed responses were more frequent 
than enhanced responses (15.4 ± 0.9% suppressed vs. 12.4 ± 0.9% enhanced, n = 16 odorants, P = 0.038, 
sign-rank test; Figure 2B). We next considered the tuning widths of individual boutons by estimating the 
number of effective odorants, that is, those that generated a response significantly above or below baseline 
activity (see Methods). Boutons that were suppressed by odorant stimulation were more broadly tuned than 
those that were enhanced (3.9 ± 0.2 effective odorants for suppressed boutons and 3.2 ± 0.2 effective odorants 
for enhanced boutons; n = 16 odorants; P = 0.009; rank sum test; Figure 2C).  
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Suppressed boutons responded more strongly to odorant stimulation than enhanced boutons (0.67 ± 
0.01 z-score for enhanced boutons, n = 1652 bouton-odorant pairs; 0.71 ± 0.01 z-score for suppressed 
boutons, n = 2046 bouton-odorant pairs; P < 0.001; Kolmogorov-Smirnov test; Figure 2D); however, when 
considering each odorant, the average population responses of enhanced boutons were similar to suppressed 
boutons (P = 0.39; Kruskal-Wallace test; Figure 2E). In both suppressed and enhanced boutons there was a 
significant positive relationship between the fraction of activated elements and their mean activity (r = 0.81 for 
suppressed boutons P < 0.001; r = 0.57 for enhanced boutons, P = 0.021; Figure 2F). Overall, in response 
to a monomolecular odorant, cortical feedback axons exhibited a balanced profile of activation and 
suppression that was statistically similar for all stimuli. 

Cortical feedback boutons are more broadly tuned than individual feedforward input to the OB 

To estimate the relative sparsity of bouton responses, we compared their properties to those of OSNs 
using the same odorant panel. In OMP-GCaMP3 mice, we used a bone-thinning procedure to gain optical 
access to individual OSNs within the olfactory epithelium (Figure 3A; Inagaki et al., 2020; Zak et al., 2020; 
Zak, 2022). We then delivered the same 16 odorants as we did for experiments imaging feedback projections 
to the OB. 

Figure 2. Odorant tuning properties of cortical projections to the OB. 

A. Odorant tuning profiles of 50 randomly selected boutons selected from all imaging fields. Boutons are sorted by
their mean response amplitude across all odorants. B. Fraction of responding boutons for each odorant. C.
Distributions of effective odorants for boutons that showed net enhanced (3.2 ± 0.1 odorants) or suppressed (3.9 ±
0.2 odorants) responses (n = 16 odorants; P = 0.009; rank sum test). D. Cumulative distributions of all stimulus-
modulated responses at all odorants for enhanced and suppressed boutons (P < 0.001; Kolmogorov-Smirnov test).
E. Mean response of all significantly modulated boutons separated by response polarity for each odorant (p = 0.39;
Kruskal-Wallace test), error bars represent standard error of the mean (s.e.m). F. Scatter plot of the relationship
between response density (bouton fraction) and the mean response amplitude for each odorant separated by
response polarity (r = 0.81 for suppressed boutons P < 0.001; r = 0.57 for enhanced boutons, P = 0.021).
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Cortical neurons are expected to be more broadly tuned than sensory cells given the convergent circuit 
architecture of bulbar inputs to the PC (Apicella et al., 2010; Davison and Ehlers, 2011; Vicente and Mainen, 
2011). Our data, which makes use of the same odorants to stimulate both OSNs and cortical projections to 
the OB indeed supports this expectation. We found that OSNs responded to 3.15 ± 0.15 odorants in our panel, 
while feedback projections responded to 4.45 ± 0.13 odorants (n = 377 OSNs, 832 boutons; P < 0.001; rank-
sum test)). However, somewhat unexpectedly, cortical projections are on average only sensitive to only ~1.5 
more odorants out of 16, far less than the estimated convergence of ~200 glomeruli per cortical neuron 
(Vicente and Mainen, 201; Sheppard, 2004). 

To visualize the selectivity of individual OSNs and boutons to each of the stimuli we first rank-ordered 
the absolute value of responses to all 16 odorants and normalized them to the largest response (mean 
responses across all odorants, OSNs = 0.26 ± 0.06, boutons = 0.38 ± 0.07; Comparison of ranked 
distributions, P < 0.001; sign rank test; Figure 3B). Measurements of lifetime sparseness (see Methods) also 
indicated an increased turning breadth in cortical projections compared to OSNs (mean lifetime sparseness, 
0.46 ± 0.004 in OSNs and 0.65 ± 0.002 in boutons; P < 0.001; Kolmogorov-Smirnov test; Figure 
3D). However, when normalized, uniformly weak responses across a population could conflate relative 
population activities. To address this, we also measured population sparseness. Using this metric we found 
that bouton responses were indeed denser than in OSNs (0.49 ± 0.01 boutons, 0.37 ± 0.04 OSNs; P = 0.013; 
sign rank test; n = 16 odorants Figure 3C,E), and these measurements were consistent across trials using 
the same odorants (Figure 3G).  

The responses of boutons to odorants were measured in awake mice, but OSN responses were 
acquired in anesthetized mice. To compare these two populations under similar conditions, we anesthetized 
animals with a cocktail of ketamine and xylazine and measured cortical feedback responses to the same 
panel of odorants (Supplemental Figure 2). Under anesthetized conditions, feedback boutons were similarly 
tuned compared to awake animals, but the density of responses per odorant was reduced (Supplemental 
Figure 2D-F). Despite the decreased density of response in anesthetized animals, we did not observe a 
systematic relationship between odorant tuning in anesthetized boutons and OSNs (Supplemental Figure 
2F,J).  

We next estimated the representational similarity (see Methods) between pairs of odorants in our 
panel for OSNs and cortical boutons in the OB. In OSNs, a subset of the odorants showed similarity with other 
odorants in the panel and relationships could be determined using hierarchical clustering of odorant-odorant 
correlations (Figure 3H, left). The odorant representations were well-preserved between trials of the same 
odorant (0.78 ± 0.03 mean correlation in OSNs; n = 16 odorants; Figure 3I). However, in cortical projections, 
odorant responses in awake mice were more variable between trials (0.53 ± 0.02 mean correlation P < 0.001, 
sign rank test; Figure 3I), and the pairwise odorant relationships determined from OSNs did not map onto 
bouton pairwise odorant similarities (boutons to OSNs r = -0.03; P = 0.59; Figure 3J). Interestingly, in 
anesthetized animals, we found a restructuring of odorant-odorant relationships and decreased trial variability 
(Supplemental Figure 2H,J), yet there was no apparent relationship to representations in OSNs. The 
increased representational similarity between odorants in anesthetized animals could be due to reduced 
effective inhibition in the recurrent circuitry in the OB or the PC (Rinberg et al., 2006; Kato et al., 2012; Bolding 
and Franks, 2020). These data indicate cortical feedback axons are more broadly tuned to monomolecular 
odorants than OSNs, but have significantly decorrelated patterns of responses to different odorants than 
OSNs. 
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Figure 3. Odorant representations in feedforward and feedback pathways to the OB. 

A. Top, example images of GCaMP3 expressing OSNs in the olfactory epithelium, scale bar = 20 μm. Bottom,
GCaMP6f expressing cortical projections to the OB, scale bar = 20 μm. B. Normalized and ranked responses to 16
odorants in OSNs (black; n = 377) and cortical projections to the OB (blue, n = 832). Each tuning curve is
independently sorted and ranked. Gray lines represent individual ROIs and thick colored lines represent the mean of
all ROIs. C. Normalized and ranked responses of each OSN and cortical bouton for each of the 16 odorants. Gray
lines represent individual odorants and thick colored lines represent the mean of all odorants. D. Left, Distributions of
lifetime sparseness measured in OSNs (black) and cortical projections (blue). Right, mean lifetime sparseness was
measured in OSNs and cortical projections. Error bars represent s.e.m. E. Left, population sparseness for each of 16
odorants sorted to OSN values. Right, mean population sparseness for all odorants. Error bars represent s.e.m. F.
Scatter plot of the relationship between OSN population sparseness and bouton population sparseness. G. Mean
population sparseness for each of three trials. Error bars represent s.e.m. H. Odorant-odorant correlations in OSNs
and boutons. Individual odorants are bounded by white lines and each odorant contains three trials. Hierarchical
clustering was used to group similar odorants in OSNs and the clusters were then used to group datasets in boutons,
see Supplemental Figure 2 for odorant labels. I. Variability within trials of the same odorants in OSNs and boutons.
The horizontal red bar denotes the mean and the vertical red bars represent s.e.m. J. Scatter plot of the relationship
between odorant-odorant correlations in OSNs and boutons. *** denotes P < 0.001.
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Responses to complex odorant mixtures are normalized in the PC 

The density of OSN activation can be systematically varied by delivering mixtures of monomolecular 
odorants with an increasing number of components (Zak et al 2020). We devised a panel of 84 mixtures 
derived from the 16 monomolecular odorants that were used earlier in our study (see Supplemental Table 
1). The mixtures varied in complexity, contained 2, 4, 8, or 12 unique components, and were delivered to mice 
in pseudorandom order. 

In OSNs, the activity and density of responses scaled, on average, with the number of odorant 
components within a mixture (Figure 4Ai,Bi). However, despite a general increase in OSN activity with 
mixture complexity, the relationship is sublinear such that progressive increases in mixture complexity lead 
to increases in OSN activity at a diminishing rate (Mathis et al., 2016; Xu et al., 2020; Zak et al., 2020). We 
also identified a subpopulation of OSNs that responded to odorant mixtures with decreases in activity (Inagaki 
et al., 2020; Figure 4Ai, right) and included these responses in our subsequent analyses when deviations 
from baseline activity met the inclusion criteria (see Methods).  

We delivered the same panel of odorant mixtures to awake mice (three animals, five imaging fields), 
in the same order while imaging cortical projections to the OB. The mixture response distributions measured 
in the cortical feedback boutons had no relationship to the number of components in an odorant mixture and 
the mean activity of all activated boutons was similar at each mixture size (Figure 4Aii-Bii). We next 
visualized the selectivity of individual OSNs and boutons to the range of mixture stimuli (Figure 4C). For each 
element, we rank-ordered the absolute value of responses to all 100 stimuli and normalized them to the largest 
response. The rank-ordered bouton responses were sparser than those of OSNs (Figure 4C; comparison of 
mean distributions, P < 0.001; sign rank test). The width of these "tuning curves" can also be characterized 
by measuring the lifetime sparseness (Figure 4D). The lifetime sparseness of OSNs was strongly related to 
the mixture size – OSNs responded to more mixtures of a particular size as the size increased (P < 0.001, 
one-way ANOVA). While bouton lifetime sparseness did not scale with the number of components in a given 
mixture and was constant regardless of mixture size (Figure 4D, right). 

We next considered the population responses for each odorant mixture by rank-ordering them for each 
of the 100 mixture stimuli. While there was no difference between feedback boutons and OSNs in the ranked 
mean activity of all of the mixtures (Figure 4E; Comparison of mean distributions, P = 0.22 Kolmogorov-
Smirnov test), the distributions of individual odorant mixtures differed, with OSNs being more variable than 
boutons. To estimate the spread of the mixture activity distributions, we measured its difference from the 
mean curve for each odorant mixture, averaging over the entire curve. Using this distance metric, we found 
that the population tuning for the 100 stimuli was significantly variable for OSNs, but was highly similar for 
boutons (Figure 4E; OSN distance = 0.11 ± 0.01, bouton distance = 0.03 ± 0.002 in boutons; P < 0.001; 
Kolmogorov-Smirnov test).  The stimulus tuning of each OSN or bouton can also be calculated by measuring 
population sparseness. For each of the mixture sizes, the mean population sparseness of OSNs and boutons 
were similar (Figure 4F), yet when considering all mixtures OSNs had more variance in the sparsity of their 
responses (P < 0.001; F-test). Together, these data indicate that diverse stimuli that elicit highly divergent 
response sparsity in the OSNs are strongly equalized in cortical feedback axons.  
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Representational similarity for mixture stimuli 

We next compared the representational similarity of odorant mixtures in feedforward and feedback 
inputs to the OB. In OSNs, the responses to mixtures became more similar as the number of odorants in a 
mixture increased (Figure 5A), while in feedback projections, the representational similarity did not vary 
systematically with the mixture size (Figure 5B). For each mixture, we then compared the relationship of 
pairwise mixture-mixture correlations between boutons and OSNs. Although there was a significant 
relationship between correlations found between OSNs and boutons, the slope of the regression was shallow 
and reflected the relatively narrower range of mixture-mixture correlations found in boutons (r = 0.12; P < 
0.001; Figure 5C). 

Figure 4. Odorant mixtures are normalized by the PC. 

Ai-ii. Left, distributions of OSN or bouton responses to odorant mixtures of increasing size. Grayscale shade 
corresponds to the mixture size. Right, Example GCaMP responses of OSNs and boutons show enhanced or 
suppressed responses to odorant mixtures. Traces are averages of all significant responses of a given mixture size. 
Grayscale shade corresponds to the distributions on the left. The horizontal red bar indicates odorant delivery. Bi-ii. 
Mean activity at each mixture complexity in OSNs or boutons. Ci-ii. Normalized and ranked responses of 100 odorant 
mixtures in OSNs (black; n = 475) and cortical projections in awake mice (blue, n = 784). Each tuning curve is 
independently sorted and ranked. Gray lines represent individual ROIs and thick colored lines represent the mean of 
all ROIs. D. Left, Distributions of lifetime sparseness for each group of mixtures of a given size. Right, summary data 
of mean lifetime sparseness at each mixture size. Error bars represent s.e.m. E. Normalized and ranked responses 
of each OSN and bouton for each of the 100 mixtures. Gray lines represent individual odorant mixtures and thick 
colored lines represent the mean of all mixtures. F. Population sparseness for each mixture of a given size. The 
horizontal red bar denotes the mean and the vertical red bars represent s.e.m. 
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To be certain that we did not introduce a sampling bias to our analysis by selecting an uneven number 
of boutons from different axons, we also analyzed non-contiguous ROIs from each imaging field (See 
Methods). Our results did not change when we considered axon segments rather than boutons, and the 
representational similarity did not vary with the mixture size (Supplementary Figure 3). Furthermore, boutons 
are small structures and comprise fewer pixels than OSNs. To address the possibility that the small number 
of pixels sampled from each bouton obscured relationships between odorant mixtures, we subsampled OSN 
ROIs to match boutons (Supplementary Figure 4). Even when a single pixel was drawn from each OSN 
ROI, the structure in the mixture-mixture relationships remained, indicating the differences between OSNs 
and boutons are not due to the size of the analyzed regions. 

For the two largest mixture sizes, we then compared the representational similarity in OSNs and 
feedback projections between highly overlapping mixtures, those that shared >= 75% of their components, 
and other mixtures that had < 75% overlap. In OSNs, mixtures that shared >= 75% of their components had 
on average more similar representations than mixtures that shared fewer components (0.77 ± 0.01 mean 
correlation when mixture overlap >= 75%, n = 152 mixture pairs 0.63 ± 0.01 mean correlation when mixture 
overlap < 75, n = 228 mixture pairs; P < 0.001, Kolmogorov-Smirnov test; Figure 5Di). In contrast, there was 
no difference in the mean correlation in cortical projections when mixtures contained greater or less than 75% 
overlap (0.48 ± 0.01 mean correlation when mixture overlap >= 75%, 0.46 ± 0.01 mean correlation when 
mixture overlap < 75; P = 0.06, Kolmogorov-Smirnov test; Figure 5Dii). These results indicate the 
representations of different mixtures become equally distinct from each other in cortical feedback, 
independent of mixture complexity. 

Figure 5. Representations of odorant mixtures in 
OSNs and the PC. 

A. Correlation matrices of mixture-mixture
relationships in OSNs (Ai) and boutons (Aii).
Hierarchical clustering was used to group mixtures
at each mixture size using OSNs. The clusters
were then used to sort the bouton dataset. Bottom,
Correlation matrices were obtained from three
independent trials, showing similarity to the mean
of all trials above. B. Plot of the mean correlation
of all mixtures of a given complexity. Data from
individual trials are plotted as shaded lines. Error
bars represent s.e.m. C. Scatter plot of the
relationship between mixture-mixture correlations
in OSNs and boutons for each mixture size. D.
Mixtures were divided into two groups based on
mixture overlap using a threshold of 75%. Di. The
OSN population activity was more correlated when
mixtures shared >= 75% (P < 0.001, Kolmogorov-
Smirnov test) Dii. In boutons, no difference was
observed (P = 0.06, Kolmogorov-Smirnov test).
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Nonmonotonic representations of odorant concentration in PC neurons 

The activity of sensory cells at the periphery typically scales with stimulus intensity (Rospars et al., 
2000; Wen et al., 2009; Teng et al., 2019). To corroborate this expectation, we imaged OSNs both at their 
somata in the OE and their axon terminals in the glomerular layer of the OB (Figure 6Ai) in response to 
increasing odorant concentrations (see Table 1, index 4 for odorant properties; Supplementary Figure 5 for 
additional odorant). In OSNs, population activity scaled with odorant concentration (Figure 6Bi). Furthermore, 
as the odorant concentration increased, representations of the odorants became more similar at adjacent 
concentrations, approaching the similarity of responses between trials at the same concentration (Figure 
6Ci,D). 

How do cortical projections to the OB respond to the same odorants at increasing concentrations? 
There is clear evidence of concentration invariance in neurons in the PC (Roland et al., 2017; Bolding and 
Franks, 2018), but, whether this invariance is reflected in back projections to the OB has not been investigated 
using a sufficiently large concentration range that is adequately sampled with intermediate points (some 
earlier studies used less than 2-fold changes in concentrations). We repeated the same experiment using 
nearly identical odorant concentrations while imaging cortical feedback activity in the OB (Figure 6Aii-Cii). 

Bouton responses to increasing odorant concentrations could not be fitted with a sigmoidal function 
and lacked characteristic monotonic responses that were observed in OSNs (Figure 6Ai vs. 6Aii). At the 
population level, these response properties are consistent with concentration-invariant odorant coding in the 
PC. However, many individual boutons displayed a clear preference for select and non-overlapping ranges 
of concentrations (Figure 6Aii, right). Therefore, the information inherited from the PC in the OB may on 
average reflect concentration invariance, yet, at a more granular level, the PC may provide information on 
select concentrations. This observation substantiates other studies of odorant-concentration coding in 
feedback projections to the OB which found that non-monotonic concentration dependence was prevalent 
(Otazu et al., 2015).   

Like in the OSNs, the representational similarity of odorants measured in boutons increased as a 
function of concentration (Figure 6Cii). However, trial-to-trial variability within a concentration block was 
greater in boutons than in OSNs (Figure 6D, left). The increase in similarity between trials at high 
concentrations could reflect an increasing number of active cells. In the OSNs, the proportion of active cells, 
measured through population sparseness, had a strong relationship to odorant concentration and plateaued 
at the highest concentrations (Figure 6E). However, the proportion of activated boutons did not scale with 
odorant concentration and was similar regardless of odorant concentration (0.50 ± 0.03 mean population 
sparseness in boutons, 0.18 ± 0.05 mean population sparseness in OSNs; n = 8 concentrations; P = 0.008; 
sign rank test). We then considered the tuning of each bouton or OSN to the discrete points on the 
concentration axis. On average, boutons were more widely tuned, as measured by lifetime sparseness, than 
were OSNs. While some OSNs displayed broad tuning, within the range of tuning seen for cortical boutons, 
another population was more selective and responded to only a single or few concentration points at the 
highest end of the concentration range (Figure 6F; 0.69 ± 0.01 mean lifetime sparseness in boutons, n = 
1125; 0.51 ± 0.01 mean lifetime sparseness in OSNs; n = 1185; P < 0.001; Kolmogorov-Smirnov test). Our 
data indicate that cortical feedback axons bring complex, non-monotonic information to the OB with increasing 
concentration of individual odors. 
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Integrated activity-dependent inhibition explains non-monotonic concentration dependence in the PC. 

What accounts for the non-monotonic concentration dependence observed in the cortical projections 
to the OB? To answer this question, we developed a minimal model of bulb-to-cortex circuit elements that 
incorporated global, activity-dependent inhibition within the PC (Bekkers and Suzuki, 2013) that can account 
for our experimental observations (Figure 7A). 

Figure 6. Odorant responses in cortical projections to the OB are nonmonotonic. 

Ai. Left, odorant concentration responses were measured in OSN somata in the OE and their axon terminals within 
the glomerular layer. Error expressed as s.e.m on individual data points and shaded 95% confidence interval for the 
sigmoidal fit. Right, four example OSN responses. Aii. Left, odorant concentration responses were measured in cortical 
boutons in the OB. Four traces show subsamples selected from 200 boutons each. Data were fitted with an Akima 
piecewise cubic Hermite interpolation. The shaded area represents the confidence interval. Right, four examples of 
individual bouton responses. B. Distributions of OSN (Bi) and bouton (Bii) responses to increasing odorant 
concentration. Color shade corresponds to the odorant concentration. C. Correlation matrix of odorant responses (each 
pixel is the pairwise correlation of the corresponding row and column elements) to increasing odorant concentration in 
OSNs (Ci) and boutons (Cii). White lines bound concentrations and each concentration block contains four trials. D. 
Left, OSN, and bouton correlations between trials at the same odorant concentration trials. Right, OSN and bouton 
correlations across concentrations. E. Left, population sparseness at each odorant concentration. Right, summary data 
of mean population sparseness for all concentrations. Error bars represent s.e.m. F. Left, Distributions of lifetime 
sparseness measured for all concentrations. Right, summary data of mean lifetime sparseness. Error bars represent 
s.e.m. ** denotes P < 0.01, *** denotes P < 0.001.
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Specifically, we consider a sigmoidal dose-response model for the OSNs where an odorant binds to 
different OSN types with a broad range of affinities and upon binding activates a sparse subset of these OSNs 
(Figure 7B). The response from olfactory sensory neurons is transformed linearly to the PC via the mitral cell 
population. This assumption about mitral cells is reasonable since published data indicate that mitral cell 
responses are gain-modulated by circuits in the OB, but still exhibit monotonic responses to increasing 
concentrations of odor stimuli (Banerjee et al., 2015). Our PC model consists of two populations of cells: one 
population that receives excitatory input from the OB and projects back to the OB, and a second population 
of inhibitory interneurons that mediate global, non-specific inhibition. Inhibitory activity of the latter population 
is triggered when the summed activity of the former population exceeds a threshold. Below this threshold, the 
activity of the principal cells (and by extension, the feedback axons) increases monotonically with 
concentration until global inhibition kicks in, at which point their activity decreases (Figure 7C). At sufficiently 
high concentrations, the excitatory input overcomes the inhibition, which leads to a second monotonic phase. 
Note that even though the dose-response curves of individual cells are non-monotonic, the delay before 
inhibition acts implies that response latency decreases monotonically with concentration (Figure 7D), as 
observed empirically (Bolding and Franks, 2017).  

Figure 7. A model of bulbo-cortial connectivity produces non-monotonic concentration dependence in cortical 
neurons. 

A. Model schematic including sparse expansion from the OB to the PC and global, non-specific inhibition within the
PC. B. The response of olfactory sensory neurons is monotonic with odorant concentration, as empirically observed
in Figure 6. Each black line represents the activity of an individual OSN C. The activity of the feedback axons
increases monotonically with concentration until global inhibition is activated, at which point axon activity decreases,
then recovers. See Figure 6Aii. Solid and dashed blue lines show dose-response curves for five representative
cortical neurons in models with identical and heterogeneous inhibitory interneurons respectively (see Methods for
details on interneuron activity). Solid and dashed black lines show the average dose-response curves across all
cortical neurons for these two models. D. The response latency (in units of the membrane time constant) of cortical
neurons decreases monotonically with concentration despite the non-monotonic dependence on odorant
concentration.
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Discussion 

The OB receives dense axonal input not only from the sensory periphery but also cortical and 
associational areas of the brain. The stimulus tuning and response properties of peripheral input to the OB 
have been extensively described; however, less progress has been made on descending inputs to the OB, 
and how they reflect the integrative and convergent architecture of the OB to PC circuitry. In our study, we 
systematically probed the tuning properties of cortical projections to the OB to understand how expanding 
sensory inputs are processed by the PC and represented in its descending inputs to the OB. We changed the 
density of OSN activity in two different ways - cumulative recruitment with increasing concentration, and a 
more randomized increase with increased mixture complexity. We find that cortical axons bring back 
information to the OB that is highly equalized over a wide variety of stimuli, complementing the highly 
unbalanced input activity conveyed from the nose. 

The PC is thought to create associative representations of the olfactory world and combine it with non-
sensory information (Calu et al, 2007; Howard et al., 2009; Wiegand et al, 2011; Wilson and Sullivan, 2011 
Poo et al., 2022). Circuits in the PC are likely to help normalize activity, creating equalized representations of 
diverse olfactory stimuli. Such normalization might also lead to concentration invariant representations, at 
least when firing rate metrics are used (Bolding and Franks, 2018). It has not been clear what information 
computed in the PC is passed on to the OB via feedback axons. Previous studies using monomolecular 
odorants that have imaged cortical axons have noted that the signals are broad and spatially non-local (Boyd 
et al., 2012; Otazu et al., 2015). Differences in activity in different brain states have also been reported, with 
larger odor-evoked responses in awake animals compared to anesthetized ones (Boyd et al., 2012). 
Intriguingly, task learning also appears to alter the activity patterns in cortical feedback (Wu et al., 2020; Chen 
et al., 2022; Trejo et al., 2023). Reducing the activity in cortical axons results in increased similarity of 
representations in mitral cells to different odors, suggesting that cortical axons ordinarily serve to decorrelate 
representations (Otazu et al., 2015; Chae et al., 2022). In this current study, we used a diverse set of odorants 
and created complex mixtures to mimic natural stimuli. By recording the responses of both OSNs and cortical 
feedback axons to the same set of diverse stimuli, we were able to directly compare their representations.     

Selectivity and variability of cortical feedback activity 

We first characterized the odorant tuning of sensory neurons at the periphery and feedback projections 
to the OB, using a panel of monomolecular odorants. Consistent with the circuit architecture expansion from 
the OB to the PC we found that cortical feedback projections were more broadly tuned to monomolecular 
odorants than sensory inputs to the OB. Interestingly, however, for complex mixture stimuli, cortical boutons 
were on average more selective than OSNs (see below). This arises because complex mixtures with many 
components activate OSNs densely (despite widespread antagonistic interactions), but the responses of 
cortical boutons have similar sparsity for a wide range of stimuli. This feature means that the choice of stimuli 
could be important for comparing the responses of OSNs and PC neurons or axons - monomolecular 
odorants, which are widely used in experiments, may not be representative of the wide range of response 
densities that natural mixtures may evoke.   

A key feature of cortical responses we observed is the significant trial-to-trial variability. Our imaging 
procedures necessitated a smaller number of repeats than those used in electrophysiological studies, but our 
estimates of variability match those reported previously for cell bodies of PC neurons (Bolding and Franks, 
2017; Nagappan and Franks, 2021, Roland et al., 2017; Srinivasan et al 2023). This higher variability was not 
just due to waking conditions, since cortical bouton responses in anesthetized mice were also more variable 
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than OSN responses (Supplementary Figure 2). It remains unclear whether variability in stimulus encoding 
is a feature of cortical responsiveness to odorant stimuli, especially since this will be communicated back to 
the OB through descending projections. A recent study, which compared data from mammalian and insect 
third-order neurons, has proposed that stochasticity in responses may increase discriminability across odorant 
stimuli (Srinivasan et al 2023). 

Representational similarity of odors in cortical feedback axons 

A widely proposed computational principle for many neural circuits and brain regions is that of pattern 
separation or pattern decorrelation (Leutgeb et al., 2007; McHugh et al., 2007; Sahay et al., 2011; Gschwend 
et al., 2015; Wilson 2009; Cayco-Gajic and Silver, 2019). In the olfactory system, this concept is applied in 
the context of decreasing the similarity of representations of distinct stimuli to allow for easier and more 
efficient decoding (Gschwend et al., 2015; Friedrich and Wiechert, 2014; Wilson, 2009). Odors activate 
overlapping sets of OSNs, and the similarity of their sensory representation is governed by the ligand-receptor 
binding properties, which depend partly on the physicochemical features of the ligands (Saito et al., 2009). 
The dispersed, unstructured projections from the OB to the PC will decrease the similarity of stimulus 
representations, but theoretical analysis predicts that some similarity can be preserved even when projections 
are random (Babadi and Sompolinski, 2014; Schaffer et al., 2018). That is, pairs of odors that are highly 
similar will have more similar representations in the PC than pairs of dissimilar odors. There is experimental 
evidence for this prediction, with a recent study reporting a relation between pairwise similarity in OB outputs 
and PC neurons (Pashkovski et al., 2020). However, it remains unclear how much pattern separation can still 
occur in the cortex, perhaps through experience and learning (Chapuis and Wilson, 2012). 

The relatively large number of unique stimuli generated in our study using mixtures afforded a wide 
range of representational similarities in the OSNs. Remarkably, the pairwise similarities observed in cortical 
boutons were only slightly related to the similarities in the inputs to the brain (in fact, there was no relation at 
all for monomolecular odorants). This finding suggests that representations in feedback axons are altered 
much more than what might be predicted by feedforward random projections from OB to PC (Babadi and 
Sompolinski, 2014). For example, non-random associative connectivity within the PC (Haberly, 2001) could 
decorrelate signals further, removing any remaining correlations predicted theoretically. In addition, cortical 
connectivity, either through experience or developmental biases, could build additional correlations absent in 
the OB representation or selectively attenuate certain correlations (Pashkovskii et al., 2020). Our findings are 
also corroborated by recent work in insect brains, in which the similarity of representation in the output from 
the antennal lobe is not preserved in the mushroom body; instead, the representational similarity in the 
mushroom body seems to reflect covariances of odorant presence in natural odorant sources (Yang et al., 
2023). While our data point to overall decorrelation, they do not address whether specific correlations are 
selectively enriched or built-in cortical feedback axons. 

Our data also offer new insights into the computations underlying decorrelation of responses in the 
OB. Inhibiting feedback from the olfactory cortex has been shown to increase correlations in the 
representation of different monomolecular odors, suggesting that ordinarily, the activity of cortical feedback 
will serve to decorrelate representations (Otazu et al., 2015; Chae et al., 2022). Similarly, activation of raphe 
axons also decreases representational similarity (Kapoor et al., 2016). The general inference from these 
studies, even if implicit, is that feedback information is global and distributed and the selective recruitment of 
inhibition in the OB results in sparsening and decorrelation of M/T cell responses. Our data indicate that the 
feedback information is already significantly reformatted and decorrelated, which may reduce the demand for 
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more specific circuitry in the OB. Related experimental work in zebrafish, and some theoretical ideas 
developed from it, suggest that decorrelation cannot be accomplished by global rescaling and instead requires 
more structured connectivity (Wiechert et al., 2010; Friedrich and Wiechert, 2014). Cortical feedback axons 
carrying sparser decorrelated information, along with their plastic synapses (Gao and Strowbridge, 2009; 
Nissant et al., 2009), may facilitate pattern decorrelation in the OB.  

Olfactory cortical feedback axons carry normalized activity 

Our understanding of sensory encoding in the visual system has benefited greatly from the use of natural 
stimuli. The advances include explanations of the shape of receptive fields in early visual areas as arising 
from the statistics of natural images (Olshausen and Field, 1996) and sparse, decorrelated responses in the 
visual cortex elicited by natural images (Vinje and Gallant, 2000). Similar experiments in the olfactory system 
have been rare, in part because of the difficulty in presenting natural stimuli in a controlled and reliable 
manner. In one step towards more naturalistic stimuli, we used diverse mixtures of commonly used odorants. 
Since these stimuli will span a range of covariances, it allowed us to test whether cortical representation has 
signatures of transformations expected from efficient coding.  

Several features we observed support the idea of a more efficient representation of mixture stimuli in 
cortical feedback. First, population responses of cortical boutons were equalized for different stimuli. While 
the fraction of OSNs responding increased with mixture complexity, this fraction remained nearly constant in 
cortical boutons (Figure 5D), significantly extending earlier work using monomolecular odorants or binary 
odorant mixtures and recording in the PC (Roland et al., 2017; Bolding and Franks 2017; Stettler and Axel, 
2009). Recordings from anesthetized mice have indicated that responses of individual PC neurons to odor 
mixtures can be described by a normalization model, where increasing input density gets progressively more 
attenuated (Penker et al., 2020). In our studies, the activity generated by complex mixtures of odorants was 
massively normalized in cortical feedback axons arriving in the OB. This is in stark contrast to OSNs, where 
the density of activity increases with the progressive complexity of stimulus mixtures encountered, even 
though this increase is highly non-linear due to antagonistic interactions (Zak 2020; Xu et al., 2020; Pfister et 
al., 2020). It is likely that the circuit architecture in the PC with its feedforward and recurrent inhibition, serves 
to normalize and equalize responses.  

A second signature of efficient coding is that the responses of individual cortical boutons were sparser 
than the responses of OSNs to the panel of 84 mixtures. Interestingly, when responses to single odorants are 
compared, cortical boutons appear to be denser. This feature might be simply due to the particular choice of 
odorants, and our ability to image only a small fraction of the entire OSN repertoire. Natural environments 
with mixtures of many odors are likely better approximated by our complex mixture stimuli, and those 
conditions will lead to sparsening of representations in cortical feedback axons.  

Nonmonotonic representations of odorant concentration in the feedback axons 

In contrast to the use of odorant mixtures, where antagonism contributes to the non-linear scaling of 
activity in sensory inputs, increasing odorant concentrations provides a mechanism to scale the activity of 
OSNs independent of antagonistic interactions. As concentration increases, the same population of OSNs is 
increasingly activated and new OSNs are recruited (Rubin and Katz, 1999) This contrasts with mixture 
stimulation, where more components can activate more OSNs, but without necessarily creating a gradual 
monotonic increase in the activity of OSNs.  
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A steady monotonic increase in the number and activity of OSNs as concentration increases might be 
predicted to result in increased activity of some cells in the PC. Previous studies have used the fraction of 
activated cells in the PC to argue for concentration invariant normalization, with a slight dependence on 
concentration (Roland et al., 2017; Bolding and Franks, 2018). In our study, we see that individual cortical 
boutons show strong non-monotonic dependence on odorant concentration (which cannot be construed as 
concentration invariant), even if the overall population response may be flatter. We also find that bouton 
representations of odorants increase in similarity with concentration. While this was hinted at in earlier studies 
(Otazu et al., 2015; Bolding and Franks, 2018), a systematic analysis has been lacking, as is a circuit-based 
explanation for such an observation. 

We propose a simple cortical circuit model with activity-dependent global feedback inhibition that can 
explain the non-monotonic dependence of cortical activity on concentration. This model is meant to be a 
plausible explanation, and including more biological realism in the future can allow more features of the data 
to be explained - for example, different concentrations at which distinct cortical neurons can exhibit maximal 
responses, as well as a more gradual decline in response amplitudes at mid-range of concentrations. A caveat 
in our interpretation is that earlier work has noted that M/T cells in the OB can also exhibit non-monotonic 
concentration dependence (Chae et al., 2022). However, this phenomenon is likely to be due to the influence 
of cortical feedback, since inactivating it linearized M/T cell responses (Chae et al., 2022 Figure S8F). The 
effect is much stronger and more widespread in cortical boutons than in M/T cells, suggesting that this feature 
is not just simply inherited by PC neurons from the OB.   

Limitations of our study 

Our study has some limitations. First, all the functional measurements reported are from calcium 
indicators, which can mainly track slow variations in activity and cannot easily reveal timing or latency 
measures faster than ~100ms. However, a mitigating factor is that previous work has shown that average 
spike counts (or firing rate) carry much of the information in the PC (Miura et al 2012; Bolding and Franks, 
2017). A second limitation, resulting from the design of the study, is that we imaged a subpopulation of PC 
neurons, only those with feedback projections to the OB. It is possible that other principal neurons in the PC 
have different properties. Previous work has shown that only deeper layer neurons send projections to the 
OB, and the superficial semilunar cells lack feedback projections (Mazo et al., 2017, Diodato et al., 2016). A 
recent study (Nagappan and Franks, 2021) indicated that semilunar and principal cells have many common 
properties, with only subtle differences in response tuning - therefore, our results are likely to generalize to 
other principal cells in PC. A third caveat is that the axonal and bouton activity could be influenced by local 
bulbar circuitry and may not faithfully represent somatic activity in PC neurons. For example, GABAb receptor-
mediated presynaptic inhibition may suppress calcium responses locally (Mazo et al., 2016). Nevertheless, 
the net activity of cortical boutons, even if influenced by the bulbar environment, reflects the consequences 
for the postsynaptic targets within the OB and therefore functionally relevant. Finally, in this study, we 
examined responses in anesthetized as well as awake mice, but with no behavioral outcomes required. It is 
possible that task learning and engagement change response properties since mice are likely to be in a more 
attentive state (Fuentes et al., 2008; Wu et al., 2020; Trejo et al., 2023). It is unlikely, however, that OSN 
responses are very different, except for being modified by sniff dynamics. 

Conclusion 

The interaction between bottom-up and top-down information streams in the olfactory system is likely 
to aid in interpreting complex sensory scenes. Naturalistic odor environments contain dozens or more unique 
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odorants that must all be simultaneously parsed. Our studies demonstrate that cortical feedback maintains 
sparse odorant representations despite progressively dense sensory inputs, as likely to be encountered in 
natural environments. Whether sparse encoding, a hallmark of efficient neural processes, is maintained in 
cortical feedback as stimuli are assigned categorical relevance remains to be explored. Future studies using 
similar odorant delivery paradigms could explore how and if odorant representations in cortical projections 
are reformatted by learning and association. 

Methods 

Experimental model and subject details 

Adult (> 8 weeks) C57Bl/6J or OMP-GCaMP3 mice of both sexes were used in this study. Mice were 
acquired from the Jackson Laboratory (C57Bl/6J) or breeding stocks at Harvard University (OMP-GCaMP3) 
and maintained within Harvard University’s Biological Research Infrastructure for the duration of the study. 
All animals were between 20 and 30 g before surgery and singly housed following any surgical procedure. 
Animals were between three and six months old at the time of the experiments. All mice used in this study 
were housed in an inverted 12-hour light cycle at 22 ± 1 ºC at 30-70% humidity and fed ad libitum. All the 
experiments were performed in accordance with the guidelines set by the National Institutes of Health and 
approved by the Institutional Animal Care and Use Committee at Harvard University. 

Viral injections 

All viruses used in this study were acquired from Addgene. AAV9.CAG.GCaMP6f.WPRE.SV40 
(Addgene ID: 100836-AAV9) and AAV1-CAG-tdTomato (Addgene ID: 59462-AAV1). The two viruses were 
mixed in equal proportions prior to injection. Mice were anesthetized with an intraperitoneal injection of 
ketamine and xylazine (100 and 10 mg/kg, respectively) and the eyes were covered with petroleum jelly to 
keep them hydrated. Body temperature was maintained at 37 ºC by a heating pad. The scalp was shaved 
and then opened with a scalpel blade. Two burr holes were then drilled above the anterior piriform cortex in 
each hemisphere. The coordinates for each of the injection sites are +1.2 or 1.6 mm AP relative to the 
intersection of the inferior cerebral vein and superior sagittal sinus, +2.8 mm ML relative to the intersection of 
the inferior cerebral vein and superior sagittal sinus, and -3.6 or -3.2 mm DV from the brain surface. Viruses 
were infused at a rate of 40 nL/min for a total volume of 200 nL at each site from a 33-gauge beveled-tip 
needle (Hamilton). The scalp was then closed with dissolvable sutures. Buprenorphine SR-Lab (1.0 mg/kg) 
was administered subcutaneously, and the mice were allowed to recover for at least two weeks before any 
additional procedures. 

Confocal imaging 

Mice were deeply anesthetized with a ketamine/xylazine mixture and transcardially perfused with 20 
mL of PBS (pH 7.4) first, followed by 30-50 mL of 4% paraformaldehyde in 0.1 M phosphate-buffered saline 
(pH 7.4). Brains were removed and cut into 70 μm-thick sagittal sections using a vibratome (Leica). Slices 
were then washed and mounted for confocal imaging with DAPI mounting media and imaged with a confocal 
microscope (LSM 710 or 880, Zeiss). 

OB craniotomy 

A craniotomy was performed to provide optical access to both OB. Mice were first anesthetized with 
an intraperitoneal injection of ketamine and xylazine (100 and 10 mg/kg, respectively), and the eyes were 
covered with petroleum jelly to keep them hydrated. Body temperature was maintained at 37 ºC by a heating 
pad. The scalp was shaved and then opened with a scalpel blade. After thorough cleaning and drying, the 
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cranial bones over the OBs were then removed using a 3 mm diameter biopsy punch (Integra Miltex). The 
surface of the brain was cleared of debris. The surface of the brain was kept moist with artificial cerebrospinal 
fluid containing in mM (125 NaCl, 5 KCl, 10 Glucose, 10 HEPES, 2 CaCl2, and 2 MgSO4 [pH 7.4]) and 
Gelfoam (Patterson Veterinary). Two 3 mm No. 1 glass coverslips (Warner) were glued together with optical 
adhesive (Norland Optical Adhesive 61) and adhered to the edges of the vacated cavity in the skull with 
Vetbond (3M).  The posterior portion of the exposed skull was gently scratched with a blade, and a titanium 
custom-made headplate was glued (Loctite 404 Quick Set Adhesive) on the scratches. C&B-Metabond dental 
cement (Parkell, Inc.) was used to cover the headplate and form a well around the cranial window. After 
surgery, mice were treated with carprofen (6 mg/kg) and buprenorphine SR-Lab (1.0 mg/kg). Animals were 
allowed to recover for at least three days prior to acclimatization in the imaging room. 

Bone thinning over the olfactory epithelium 

OMP-GCaMP3 mice were anesthetized using the same procedure and all pre-surgical methods 
through head plate implantation are the same as the craniotomy. The cranial bones over the olfactory 
epithelium, anterior to the frontonasal suture, and between the internasal and nasal-maxillary sutures were 
thinned with a dental drill and scalpel blade until transparent (Zak et al., 2020; Zak, 2022). The thinned area 
of the skull was then covered with cyanoacrylate adhesive (Loctite 404 Quick Set Adhesive) and a glass 
coverslip was implanted in the adhesive. Dental cement was then used to form a well over the thinned section 
of the skull. All animals were allowed to recover for at least three days before imaging experiments were 
initiated. 

Multiphoton Imaging 

A custom-built two-photon microscope was used for in vivo imaging. Fluorophores were excited and 
imaged with a water immersion objective (20X, 0.95 NA, Olympus) at 920 nm using a Ti:Sapphire laser with 
dispersion compensation (Mai Tai HP, Spectra-Physics). Images were acquired at 16-bit resolution and 4-8 
frames/s. The pixel size was 0.6 μm for OSN somata and axon imaging. Fields of view ranged from 180 × 
180 μm in the epithelium to 720 x 720 μm in the OB. The point-spread function of the microscope was 
measured to be 0.51 × 0.48 × 2.12 μm. Image acquisition and scanning were controlled by custom-written 
software in LabView (National Instruments). Emitted light was routed through two dichroic mirrors (680dcxr, 
Chroma, and FF555- Di02, Semrock) and collected by a photomultiplier tube (R3896, Hamamatsu) using 
filters in the 500–550 nm range (FF01–525/50, Semrock). 

Odor stimulation 

Monomolecular odorants (Sigma or Penta Manufacturing) were used as stimuli and delivered by 
custom-built 16-channel olfactometers controlled by custom-written software in LabView (Zak et al., 2018; 
Albeanu et al., 2018). For most experiments, the initial odorant concentration was 16% (v/v) in mineral oil, 
and further diluted 16 times with air. When using a concentration series, the initial odorant concentration was 
between 0.08% - 80% (v/v) in mineral oil and further diluted 16 times with air and the relative concentration 
was measured by a photoionization detector (PID; Aurora Scientific), then normalized to the largest detected 
signal for each odorant (Supplemental Figure 6). To create mixtures, air-phase dilution was used, and the 
total concentration of each odorant was held constant. For all experiments, the airflow to the animal was held 
constant at 100 mL/min, and odorants were injected into a carrier stream. Odorants were delivered 2–6 times 
each. 
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For experiments characterizing the odor tuning, the odor panel consisted of 1) Ethyl tiglate 2) Allyl tiglate 3) 
Hexyl tiglate 4) Methyl tiglate 5) Isopropyl tiglate 6) Citronellyl tiglate 7) Benzyl tiglate 8) Phenylethyl tiglate 9) 
Ethyl propionate 10) 2-Ethyl hexanal 11) Propyl acetate 12) 4-Allyl anisole 13) Ethyl valerate 14) Citronellal 
15) Isobutyl propionate 16) Allyl butyrate. See Supplementary Figure 7 for PID measurements. For
experiments measuring complex mixture responses in cortical projections and the olfactory epithelium,
odorants 1-16 were used from the panel above. Additional odorant information is available in Table 1 and the
composition of odorant mixtures is found in Supplementary Table 1.

Data analysis 

Images were processed using both custom and available MATLAB (Mathworks) scripts. Motion artifact 
compensation and denoising were done using NoRMcorre (Pnevmatikakis and Giovannucci, 2017). The 
CaImAn CNMF pipeline Field (Giovannucci et al., 2019) was used for bouton, epithelium, and axon imaging 
to select and demix ROIs. ROIs were further filtered by size and shape to remove merged cells. For signals 
obtained from glomeruli in the OB, custom scripts were written to manually select ROI boundaries (Zak et al., 
2018). The mean ΔF/F signal in the 5 s following odorant onset was used for measurements of neural activity 
in all experiments. To account for changes in respiration and anesthesia depth, correlated variability was 
corrected (Mathis et al., 2016). Thresholds for classifying responding ROIs were determined from a noise 
distribution of blank (no odorant) trials from which three standard deviations were used for responses. In each 
dataset, only ROIs with at least one significant odorant response were included for further analysis. 
Representational similarity between stimuli was estimated by calculating the Pearson correlation coefficient 
between population vectors that consisted of all ROIs that satisfied the thresholding criterion.  

The expected fractions of boutons with only enhanced, only suppressed and mixed responses to all 
16 odors were estimated from the overall response statistics obtained in Figure 2B. For each simulated 
bouton, 16 responses were randomly and independently drawn from the observed probability distribution 
(72.2% non-responsive, 12.4% enhanced, and 15.4% suppressed), and were classified as purely enhanced, 
purely suppressed, or mixed. Expected values and variance from 10,000 such simulations were obtained.  

Sparseness measures were calculated as previously reported (Wallace et al., 2017). Population 
sparseness measures the fraction of elements (or cells) that are activated by a given odorant, with values 
near one indicating uniform activity across all elements and values near zero indicating a lack of activity in 
most elements: 

Where: n = the number of elements, ri = the response of element A to odorant j. 

Lifetime sparseness measures the extent to which a given element responds to different odorant 
stimuli. Values near one indicate all odorants uniformly activate a given element and values near zero indicate 
a high degree of odorant selectivity:  
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Where: m = the number of odorants, rj = response of element A to odorant j. 

All statistical comparisons for imaging experiments were made as described in the text for each figure 
and values are given as mean + /− standard error of the mean. 

OB-to-PC model 

We consider a simplified model of connectivity between the OB and PC, which recapitulates the non-
monotonic dose-response curves shown by the cortical neurons. We model the activity of two neuronal 
populations: 𝑁! glomeruli in the OB and 𝑁" cortical neurons that project back to the OB.  

The activity of the bulbar neurons reflects the binding and activation of OSN receptors. The output of 
the 𝑖th glomerulus to an odor at concentration 𝑐 is: 

𝑥#(𝑐) 	= 	 𝜂#
$!%

&		(	$!%
	, 

where 𝜅# is the binding affinity of the odor to the receptors of the OSNs that project to the 𝑖th glomerulus and 
𝜂# is proportional to its corresponding activation efficacy. The logarithms of the binding affinities, 𝑙𝑜𝑔	𝜅#′𝑠, were 
drawn independently and identically distributed (i.i.d) from a normal distribution with mean zero and standard 
deviation 3 so that the affinities spanned approximately three orders of magnitude. The activation efficacies, 
𝜂# ’s, are binary and drawn i.i.d from a Bernoulli distribution with probability 0.2, that is, an odor activates 
approximately 20% of the glomeruli at saturating concentrations.  

The dynamics of cortical activity are determined by bulbar input and global, non-specific inhibition 
through a population of local interneurons. Inhibition from the interneuron turns on when the summed activity 
of the cortical neurons exceeds a certain threshold. The voltage dynamics of the 𝑗th cortical neuron (𝑢)) after 
odor onset is given by: 

𝜏 *+"
*,

=	−𝑢) 	− 	𝑤#-.𝜎(𝛽(𝑣	 −	𝑣,./)) 	+	∑ 𝑊)#𝑥#
0#
#1& , 

where 𝑣 is the voltage of the inhibitory interneuron whose output activity is sigmoidal: 𝜎(𝛽(𝑣	 −	𝑣,./)). This 
neuron (or, equivalently, a population of identical neurons) non-specifically inhibits all the cortical neurons 
with synaptic weight 𝑤#-.. The bulbar input to the cortex is determined by the 𝑁"x 𝑁!sparse random matrix 
𝑊 whose entries are non-zero with probability 0.1 and the non-zero entries are drawn from a positive half-
normal distribution with scale 0.5. This latter number is set so that the input into the cortical neurons at 
saturating concentrations has unit magnitude on average. Note that changing this value does not affect the 
results if 𝑤#-. is concomitantly scaled. A sparse 𝑊 ensures that the bulbar input across the cortical population 
has a broad distribution and thereby produces a distinct cortical representation for each odor. The output 
activity 𝑦) of the cortical neurons is rectified: 𝑦) 	= 	𝑢)(. 𝜏 is an integration timescale, which we expect to be 
on the order of a hundred milliseconds.  

The inhibitory interneuron receives and sums input from all cortical neurons. The voltage dynamics of 
the inhibitory interneuron is: 

𝜏
𝑑𝑣	
𝑑𝑡

= 	−𝑣	 +	?𝑦)

0$

)1&

 

We set  𝑤#-. = 	1, 𝛽 = 2, 𝑣,./ = 2000,𝑁! 	= 	400, 𝑁" 	= 	5000. 
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To simulate heterogeneous inhibition (Figure 7C), we consider a population of 500 inhibitory 
interneurons in the PC. For each neuron, the three parameters, 𝑤#-. , 	𝛽, and 𝑣,./ ,	were set to the values in 
the single neuron case above and were each scaled by a random factor of, 1	 +	𝜀 where 𝜀 is a normal random 
variable with mean zero and standard deviation 0.2.  

Data Availability 

The data supporting this study’s findings are available from the corresponding author upon reasonable 
request. 
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The code used for analysis and figure generation of this study is available from the corresponding 
author upon reasonable request. 
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Supplemental Figures 

Co-labeled cortical axons in the olfactory bulb. 
Example imaging fields through a cranial window from three live mice. Cortical projections to the OB are labeled with 
GCaMP6f (left) and tdTomato (middle). Merged image at the right. scale bar = 20 μm. 
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Odorant tuning in awake and anesthetized boutons. 
A. Top, example images of GCaMP3 expressing OSNs in the olfactory epithelium, scale bar = 20 μm. Bottom, GCaMP6f
expressing cortical projections to the OB, scale bar = 20 μm. B. Normalized and ranked responses to 16 odorants in
OSNs (black; n = 377), cortical projections in awake mice (blue, n = 832), and in anesthetized mice (orange; n = 1723).
Each tuning curve is independently sorted and ranked. Gray lines represent individual ROIs and thick colored lines
represent the mean of all ROIs. C. Normalized and ranked responses of each OSN, cortical projection in awake mice,
and anesthetized mice for each of the 16 odorants. Gray lines represent individual odorants and thick colored lines
represent the mean of all odorants. D. Left, Distributions of lifetime sparseness measured in OSNs (black), cortical
projections in awake mice (blue), and anesthetized mice (orange). Right, mean lifetime sparseness was measured in
OSNs (black; 0.24 ± 0.01), cortical projections in awake mice (blue; 0.36 ± 0.01), and anesthetized mice (orange; 0.47
± 0.01). P < 0.001, all comparisons; Kolmogorov-Smirnov test. Error bars represent s.e.m. E. Left, population sparseness
for each of 16 odorants sorted to OSN values. Right, mean population sparseness for all odorants, (0.08 ± 0.02 OSNs,
0.02 ± 0.01 awake boutons, 0.11 ± 0.01 anesthetized boutons; P < 0.001; Kruskal-Wallis test). Error bars represent
s.e.m. F. Scatter plot of the relationship between OSN population sparseness and bouton population sparseness in
awake or anesthetized mice (anesthetized boutons to OSNs r = 0.27; P = 0.31; awake boutons to OSNs r = 0.13; P =
0.63). G. Mean population sparseness for each of three trials. Error bars represent s.e.m. H. Odorant-odorant
correlations in OSNs, awake boutons, and anesthetized boutons. Individual odorants are bounded by white lines and
each odorant contains three trials. Hierarchical clustering was used to group similar odorants in OSNs and the clusters
were then used to group datasets in boutons. I. Variability within trials of the same odorants in OSNs and awake or
anesthetized boutons. P < 0.001 Kruskal-Wallis test. The horizontal red bar denotes the mean and the vertical red bars
represent s.e.m. J. Scatter plot of the relationship between odorant-odorant correlations in OSNs and awake or
anesthetized boutons (awake boutons to OSNs r = -0.03; P = 0.59; anesthetized boutons to OSNs r = 0.02; P = 0.78).
K. Decreased correlations in awake boutons are not the product of motion artifacts. Left, distributions of the cosine
similarity between a template image and each frame in an imaging session from six example experiments in awake and
anesthetized preparations. Right, Summary data of all imaging sessions. The horizontal red bar denotes the mean and
the vertical red bars represent s.e.m.
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Odorant mixture correlations in axon segments. 
A. Cortical axons expressing GCaMP6f were imaged in the OB through cranial windows. B. GCaMP6f expressing cortical
projections to the OB. Identified axon segments are labeled in colors. scale bar = 20 μm. C. Distributions of axon segment
responses to odorant mixtures of increasing size. Color shade corresponds to the mixture size. D. Correlation matrix of
mixture-mixture relationships in axon segments. E.  Plot of the mean correlation of all mixtures at each mixture
complexity, axon segments in orange, boutons from Figure 5 in blue. Error bars represent s.e.m. F. Scatter plot of the
relationship between mixture-mixture correlations measured in axon segments and boutons (r = 0.93; P < 0.001).
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Odorant mixture correlations in subsampled OSN regions of interest. 
A. Each OSN's ROI was subsampled to randomly select one, two, four, or eight pixels. Mixture-mixture correlations were
then computed as in Figure 6A. Four example draws are shown for each subsample. B. Each subsample size was
drawn 500 times and the mixture-mixture correlations of each subsample were then compared to the whole-ROI data
(Figure 6A). Distributions of rho values from linear regressions are plotted. For each regression, P < 0.001. A single
pixel from each OSN was sufficient to reproduce the whole-ROI correlation matrix. C. A second subsampling approach
was used to select the one, two, four, or eight most pixels at the whole-ROI left-hand boundary. Mixture-mixture
correlations were then computed. D. Comparison of the subsamples of each size and the whole-ROI mixture-mixture
correlations. E-F. Same as parts C-D using left-hand subsamples.
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Nonmonotonic concentration responses in cortical boutons in response to the odorant  
Isobutyl propionate. 

Ai. Left, odorant concentration responses were measured at OSN somata in the OE and their axon terminals within the 
glomerular layer. Error expressed as s.e.m on individual data points and shaded 95% confidence interval for the 
sigmoidal fit. Right, four example OSN responses. Aii. Left, odorant concentration responses were measured at cortical 
boutons in the OB. Four traces show subsamples selected from 200 boutons each. The data were fitted with an Akima 
piecewise cubic Hermite interpolation. The shaded area represents the confidence interval. Right, four examples of 
individual bouton responses. B. Distributions of OSN (Bi) and bouton (Bii) responses to increasing odorant 
concentration. Color shade corresponds to the odorant concentration. C. Correlation matrix of odorant responses to 
increasing odorant concentration in OSNs (Ci) and boutons (Cii). White lines bound concentrations and each 
concentration contains four trials. D. Left, OSN, and bouton correlations between the same odorant concentration trials. 
Right, OSN and bouton correlations across concentrations. E. Left, population sparseness at each odorant 
concentration. Right, summary data of mean population sparseness for all concentrations. Error bars represent s.e.m. 
F. Left, Distributions of lifetime sparseness measured for all concentrations. Right, summary data of mean lifetime
sparseness. Error bars represent s.e.m. ** denotes P < 0.01, *** denotes P < 0.001.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.09.560787doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.560787
http://creativecommons.org/licenses/by-nc/4.0/


36 

Photoionization detector (PID) traces for odorant concentrations. 
A. PID traces for concentrations of Methyl tiglate (Figure 6) and Isobutyl propionate (Supplemental Figure 5)  at eight
v/v dilutions (see Methods). Odorants were delivered for 2 s. Expanded traces show PID signals at the lowest
concentrations. B. For each v/v dilution, the area under the PID trace was measured and plotted relative to the highest
concentration.
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Photoionization detector (PID) traces for odorants in Table 1 
PID traces of all odorants used in tuning and mixture experiments in black (mean of 5 trials), voltage command to 
olfactometer in red. The molecular shape of each odorant is below the corresponding traces. Scale bar units are volts. 
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Odorant mixture compositions 
Odorant mixture compositions Related to Figures 4 & 5. Odorant component indices are consistent with Table 1. 
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