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Summary: 30 
   31 
Despite decades of intense genetic, biochemical, and evolutionary characterizations of bacterial 32 
promoters, we lack the ability to identify or predict transcriptional activities of promoters using 33 
primary sequence. Even in simple, well-characterized organisms such as E. coli there is little 34 
agreement on the number, location, and strength of promoters. We use a genomically-encoded 35 
massively parallel reporter assay to perform the first full characterization of autonomous 36 
promoter activity across the E. coli genome. We measure promoter activity of >300,000 37 
sequences spanning the entire genome and map 2,228 promoters active in rich media. 38 
Surprisingly, 944 of these promoters were found within intragenic sequences and are associated 39 
with conciliatory sequence adaptations by both the protein-coding regions and overlapping RNAP 40 
binding sites. Furthermore, we perform a scanning mutagenesis of 2,057 promoters to uncover 41 
sequence elements regulating promoter activity, revealing 3,317 novel regulatory elements. 42 
Finally, we show that despite these large datasets and modern machine learning algorithms, 43 
predicting endogenous promoter activity from primary sequence is still challenging. 44 
 45 
 46 
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Introduction 47 
 48 
In 1961, François Jacob and Jacques Monod outlined the concept of the bacterial promoter 49 
derived from an accumulation of genetic and biochemical studies of metabolic regulation in 50 
Escherichia coli1. Bacterial promoters have since become a foundation for understanding 51 
molecular biology and gene regulation, with countless studies probing their genetic, evolutionary, 52 
structural, thermodynamic and kinetic properties2–5. Several model promoters such as the lac, trp, 53 
and phage promoters have been the subject of in-depth mechanistic  studies for how RNA 54 
polymerase (RNAP) recognizes promoter sequences, as well as the stepwise process to initiate 55 
transcription6–8. In addition, many transcription factors have been described in similar detail, 56 
revealing the processes through which these proteins modulate the behavior of RNAP and activity 57 
of the promoter4,9–11. The majority of the binding motifs for these transcription factors have been 58 
studied at high resolution using modern methods12–15. In short, the myriad components that 59 
define E. coli promoter function have been extensively cataloged and characterized, establishing 60 
them as one of the most well-understood systems in molecular biology. 61 
 62 
Despite this extensive knowledge, we still cannot answer many simple and fundamental 63 
questions about E. coli promoters. For example, how many active promoters exist in E. coli at a 64 
given growth condition? To what extent is promoter regulation responsible for protein level 65 
remodeling during environmental changes? Given a sequence, can we predict whether a promoter 66 
is encoded within it as well as its strength and/or regulation? Answers to these questions remain 67 
difficult for many reasons. Although the consensus sequences for RNAP recognition motifs have 68 
been known for decades, a simple search of the genome based on these motifs yields many false 69 
positives. In fact, within a region, there are often sequences closer to the RNAP recognition motifs 70 
than the actual functional promoter16,17. Experimental efforts to identify promoters using 5’ RNA-71 
Seq have found tens of thousands of putative transcription start sites (TSSs) that presumably 72 
mark sites with functional promoter activity, however, there is little overlap between studies18,19. 73 
Furthermore, although many E. coli promoters have been verified with strong biochemical 74 
evidence20, identifying the cis-regulatory elements responsible for their activity is challenging. As 75 
a consequence, roughly two-thirds of the 2,565 reported E. coli operons do not contain any 76 
transcription factor binding site annotations20,21. Finally, aside from a handful of thoroughly-77 
studied promoter sequences, we are still unable to quantitatively predict the activity or behavior 78 
of promoters in the context of sequence perturbations such as moving, mutating, or removing 79 
transcription factor binding sites. 80 
 81 
There are several confounding factors which make it difficult to accurately gauge if a sequence 82 
can confer promoter activity. First, recent work has shown that promoter activity varies depending 83 
on location in the genome due to factors such as variance in chromosomal copy number22–24, the 84 
distribution of transcription factors within a cell25,26, and chromatin accessibility27–29 masking the 85 
effects of cis-regulatory elements. Efforts to normalize these effects have utilized reporters on 86 
high copy number plasmids that can saturate endogenous transcriptional machinery30. Second, 87 
inferring promoter strength from endogenous transcript production is problematic because these 88 
transcripts often contain sequences that alter their processing and stability independent of the 89 
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promoter sequence31,32. Third, multiple promoters within close proximity, whether co-directional 90 
or opposing, can affect each other’s strength and resulting transcription through mechanisms 91 
such as RNAP collisions and antisense RNA33–36. Finally, not all sequences that initiate RNA 92 
transcription are capable of producing mature and translatable RNA37.  93 

 94 
Here we investigated promoter regulation in E. coli using a massively-parallel reporter assay 95 
(MPRA) designed to isolate promoter activity from other confounding factors influencing genetic 96 
regulation38. We measured promoter activity at 17,189 reported TSSs and found that a majority 97 
are not autonomous promoter sequences capable of gene transcription. We then measured 98 
promoter activity of 321,123 sheared genomic fragments spanning both strands of the E. coli 99 
genome (8.5x coverage) to elucidate the promoter landscape in rich and minimal media. We then 100 
systematically tiled these regions to precisely map promoter boundaries, revealing many regions 101 
with multiple promoters in close proximity, as well as many antisense promoters within genes 102 
that shape both codon usage and transcription levels. To characterize sequence motifs encoding 103 
promoter activity, we performed systematic mutagenesis of 2,057 active promoters and identified 104 
cis-regulatory elements affecting promoter activity. With this approach, we characterized the 105 
regulatory effects of 568 transcription factor binding sites reported by RegulonDB as well as 2,583 106 
novel sites, thereby providing functionally annotated profiles for promoters driving expression in 107 
rich LB media for 1,158 of the 2,565 operons in E. coli. Lastly, we trained several machine learning 108 
models on these datasets to better understand the features that may be used to classify E. coli 109 
promoter sequences and quantitatively predict promoter function from sequence.  110 

 111 
Results  112 
 113 
Functional characterization of 17,635 previously reported E. coli promoters reveals many are 114 
transcriptionally inactive 115 
 116 
We first sought to validate promoters and TSSs identified by several genome-wide studies. We 117 
assembled previously reported TSSs from three sources: the RegulonDB E. coli database20 (8,486 118 
TSSs), a directional RNA-Seq study by Wanner et. al18 (2,123 TSSs), and a RNA-Seq study by 119 
Thomason et. al19 (14,868 TSSs). These three sources identify 23,798 unique TSSs active during 120 
log-phase growth in rich media with little agreement regarding the location of TSSs between 121 
studies and only 93 exact matches shared between all three (Figure 1A). Even when we collapsed 122 
clusters of TSSs within 20 bp of each other to the most upstream TSS to minimize redundancy, 123 
17,635 unique TSSs remained. These TSSs are likely some combination of true promoters and 124 
false positives due to RNA processing, transcriptional noise, or experimental and computational 125 
artifacts.  126 

 127 
To see if these TSS regions could drive gene expression of a transcriptional reporter, we used a 128 
genomic MPRA we developed38 to quantitatively measure the autonomous promoter activity of 129 
17,635 TSSs (Figure 1B). This system allows for single integration of large reporter libraries into 130 
a defined locus. The promoter activity reporter is insulated by multiple transcriptional terminators 131 
and the reporter transcript contains a RiboJ ribozyme sequence upstream of the RBS that 132 
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standardizes the transcript produced. For each TSS, we synthesized oligonucleotides spanning 133 
120 bp upstream to 30 bp downstream of the TSS, which encodes the majority of promoter 134 
activity driving expression at a given TSS39. We included 96 well-characterized promoters from 135 
the BioBricks registry 40 designed to span a wide range of expression levels to serve as positive 136 
controls. We also included 500 negative controls that were selected 150 bp sequences from the 137 
E. coli genome. Our criteria for selecting these sequences was that they are more than 200 bp 138 
from any TSS reported in the aforementioned studies. We engineered these 18,222 unique 139 
sequences to express a uniquely barcoded sfGFP transcript and subsequently integrated this 140 
pooled library of reporter constructs into the nth-ydgR intergenic locus within the E. coli 141 
chromosomal terminus using a recombination-mediated cassette exchange system41. We 142 
determined promoter activity levels by performing targeted amplicon sequencing of the barcoded 143 
sfGFP transcripts to quantify RNA-seq levels of each barcode normalized to their DNA-seq 144 
abundances, and precisely measured expression for 97.5% (17,767/18,222) of TSSs in this library 145 
(Figure 1C) with an average of 69.5 barcodes measured per library member (Figure S1A). 146 
Expression measurements were consistent between replicates which were separately barcoded, 147 
cloned, and quantified (R2 = 0.919, p < 2.2 x 10-16) (Figure S1B). To call a TSS active we set a 148 
threshold of at least greater than two standard deviations above the median of the negative 149 
control distribution and normalized the data such that the threshold value was set to 1 (Figure 150 
1D). Among the 17,635 original TSSs, we confidently quantified 17,189 (97.4%) and identified 151 
2,670 exhibiting expression levels above our experimentally determined threshold (Figure 1E). 152 
Notably, this number of active promoters is more consistent with the number of operons 153 
identified using long-read sequencing to characterize full-length E. coli transcripts42,43. Amongst 154 
these 2,670 confirmed promoters, we recovered expression data for many well-known promoters 155 
and three of the strongest corresponded to the 16S and 23S polycistronic operon, the most highly 156 
expressed operon in the E. coli genome44. 157 
 158 
To confirm whether our set of negative controls were truly depleted of promoter activity, we tested 159 
a set of 936 completely random 150 bp nucleotide sequences and compared the expression 160 
levels to our negative controls (Figure S2). Despite overall low mean levels of expression 161 
(Random sequences: 0.115, Negative controls: 0.036), 2.35% of random promoters drove 162 
expression higher than our negative threshold whereas only 0.851% of negative controls 163 
exceeded this threshold. A recent study found that 4/40 (10%) random 103 bp sequences 164 
exhibited promoter activity45 and suggests the frequency of promoter-like activity in overall 165 
sequence space is seemingly very high. These results demonstrate that the negative controls 166 
used in our assay are depleted in promoter activity, even compared to completely random 167 
sequences, and implies that there is negative selection for spurious promoter activity across 168 
certain regions of the E. coli genome. 169 
 170 
Chromosomal-position specific effects are consistent across diverse promoter sequences 171 
 172 
Several recent studies have shown that promoter expression levels can be highly variable 173 
between genomic locations25,27,28. However, these studies have primarily focused on individual 174 
promoters in multiple locations, leaving uncertainty regarding whether these effects are 175 
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promoter-specific or represent a more widespread phenomenon impacting any promoter at a 176 
given position. To study these chromosomal position effects across a wide range of promoters, 177 
we integrated the entire TSS promoter library in both left and right chromosomal midreplichores 178 
and compared expression measurements between these positions and the E. coli chromosomal 179 
terminus (Figure S1C). Promoter measurements remained highly consistent between locations, 180 
although the two midreplichore positions exhibited slightly higher concordance with each other 181 
(r = 0.97, p < 2.2 x 10-16), than either midreplichore to the terminus (r = 0.95, p < 2.2 x 10-16). Positive 182 
control sequences, which do not contain regulatory elements in addition to the RNAP binding 183 
sites, were highly correlated between all locations. We conclude that overall, diverse promoters 184 
exhibit similar relative expression levels across genome-positions, although the absolute 185 
expression may vary. 186 
 187 
Inactive TSS-associated promoters are enriched for -10 but not -35 σ70 binding motifs 188 
 189 
A majority of E. coli promoters are regulated by the housekeeping sigma factor σ7046, and thus 190 
we expected that active promoters would be enriched for the canonical σ70 motifs. Promoters of 191 
the σ70 family are well known for containing two hexamer motifs, the -10 and -35 motifs, which 192 
recruit RNAP and are named after their position relative to the TSS. We used a σ70 position-weight 193 
matrix (PWM)16 to analyze whether active TSS promoters were enriched for these motifs. 194 
Although both active and inactive TSS-associated promoters were enriched for the canonical -10 195 
motif compared to our negative controls (active: p < 2.2 x 10-16, inactive: p = 6.2 x 10-8), we found 196 
the -35 scores of inactive promoters were generally no greater than negative controls (p = 0.33) 197 
(Figure 1F). Conversely, active TSS-associated promoters contained significantly higher -35 198 
scores than negative controls (p = 1.4 x 10-8) or inactive TSS-associated promoters (p < 2.2 x 10-199 
16). We conclude that inactive TSS-associated promoters lack -35 elements but may become 200 
active in growth conditions where additional transcription factors mobilize and facilitate RNAP 201 
positioning in the absence of a -35 motif. 202 
 203 
Genome-wide Identification of E. coli promoters  204 
 205 
Despite functionally screening 17,635 previously implicated TSS regions, we encountered 206 
instances where essential operon promoters remained unidentified, suggesting that there were 207 
still undiscovered promoters within the genome. For instance, despite screening several reported 208 
TSS regions upstream of the essential yrbA-murA operon, none exhibited expression greater than 209 
our activity threshold. To comprehensively detect all promoters, we cloned, barcoded, and 210 
measured the transcriptional activity in LB of 321,123 sheared genomic fragments ranging 211 
between 200 and 300 bp (median = 244 bp), providing ~8.5x coverage per strand of the E. coli 212 
genome (Figure 2A, Figure S3A, Figure S3B). We averaged the expression of fragments 213 
overlapping each nucleotide position to achieve highly replicable values of strand-specific 214 
promoter activity at single-nucleotide resolution (Figure S3C). This data may be viewed using our 215 
online tool (https://ecolipromoterdb.com), revealing defined regions of promoter activity across 216 
the entire E. coli genome (Figure 2B). We classify candidate promoter regions as contiguous 217 
regions of at least 60 bp with promoter activity measurements higher than an empirically derived 218 
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threshold. This threshold was established to maximize recall of previously identified active TSSs 219 
while minimizing the inclusion of inactive TSSs. 220 
 221 
With the chosen threshold, we found 3,477 candidate promoter regions in LB that overlapped 222 
2,293/2,670 (85.8%) active TSSs identified in LB, 3,193/14,493 (22.0%) inactive TSSs, and 47/482 223 
(9.75%) negative controls. Active TSSs not overlapping a candidate promoter region generally 224 
exhibited weak activity, which may indicate that greater sensitivity is achieved through testing of 225 
oligo-array synthesized regions (Figure S3D). In many cases, candidate promoter regions 226 
overlapped multiple TSS-associated promoters, both active and inactive, indicating the potential 227 
for multiple promoters within individual regions (Figure 2B). Overall, we detected strong promoter 228 
activity at active TSSs with little promoter activity at inactive TSS promoters, demonstrating 229 
agreement between these independent methods for capturing genome-wide promoter activity 230 
(Figure 2C).  231 
 232 
Fine mapping of E. coli promoters within transcriptionally active regions 233 
 234 
Our survey of genomic fragments identified candidate regions of promoter activity that were well 235 
above the expected size of typical promoters (Figure S3E)39. To determine if these candidate 236 
regions contained multiple promoters, we constructed a library of 48,379 150 bp oligos that tiled 237 
the entire lengths of the 3,477 promoter regions identified in LB at 10 bp intervals (Figure 2D). For 238 
candidate promoter regions under 150 bp, we synthesized a single oligo encoding the region 239 
without including additional surrounding sequence context. We recovered highly replicable data 240 
for 45,201(93.4%) of these variants with an average of 8 barcodes per variant (Figure S3F, S3G). 241 
Using this approach, we could precisely pinpoint the boundaries of promoters by observing the 242 
specific locations along the promoter region where tiled oligos exhibited changes in expression 243 
levels. (Figure 2E). This analysis revealed that 1,889 of the previously identified promoter regions 244 
contained one or more discrete promoters, including 278 regions containing multiple promoters 245 
(Figure 2F). Notably, the number of promoters within a given region correlated with the size of 246 
the candidate region (Figure S3H) but not necessarily the overall promoter activity of the region 247 
(Figure S3I). In 1,465 candidate regions, no promoters were detected. These regions typically 248 
measured under 150 bp in length, raising the possibility of being false positives or potentially 249 
requiring additional transcription factors beyond the scope of the 150 bp regions assessed. 250 
Altogether, this approach identified 2,228 distinct promoters active in LB. Furthermore, by 251 
determining the overlap of all active oligos tiling a promoter, we were able to infer the minimal 252 
sequence necessary for each promoter. When comparing the sizes of the minimal sequence 253 
necessary for promoter activity, we observed an enrichment for sequences of approximately 40 254 
bp, which is a typical size for σ70 promoters47–49 (Figure 2G). We also observed an enrichment 255 
for 150 bp minimal promoter regions, although these were generally weak indicating that our 256 
resolution is limited when tiling weaker promoters. Overall, we were able to precisely map 257 
boundaries for 2,228 promoters active in LB. Considering non-overlapping active promoters 258 
identified during our TSS screen, we find 2,859 distinct promoters. Amongst these promoters, we 259 
have identified promoters regulating 99 out of 100 randomly sampled essential genes including 260 
the promoter for the essential yrbA-murA operon which was missed in the TSS screen 261 
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(Supplementary Table 1). The missing promoter was for the yjeE gene, which exhibits an atypical 262 
operon structure, wherein the first gene in the operon overlaps a gene encoded in the opposite 263 
direction.  Furthermore, we detected promoter activity in regions 100 bp upstream of 24 of 38 264 
recently described small open reading frames (smORFs) identified by ribosome profiling 50, 265 
indicating that these proteins may be transcriptionally-regulated independently of larger 266 
neighboring genes (Figure S4).  267 
 268 
Intragenic promoters are widespread, often found in the antisense orientation, and alter 269 
transcript levels and codon usage of the genes they are within. 270 
 271 
While promoters are commonly thought of as gene regulatory sequences upstream of transcribed 272 
genes, they can also be found within genes and oriented to transcribe genes in the antisense 273 
direction. We thus sought to explore these atypical promoters and their consequences on the E. 274 
coli genome and transcriptome. Many studies have found pervasive antisense transcription in 275 
prokaryotes 51–54, though there is controversy over the functional relevance and whether they are 276 
just due to a noisy transcriptional apparatus55. At the same time, it has been functionally shown 277 
that antisense promoters can alter a sense gene’s transcription, translation, and steady-state 278 
message levels35,56. Amongst the 2,228 promoters we precisely mapped, 1,131 were primarily 279 
encoded within intergenic regions while 944 were found to fully or mostly overlap intragenic 280 
regions (Figure 3A, Figure S5A). Notably, intragenic promoters exhibited a higher prevalence 281 
within single-gene operons compared to individual genes within polycistronic operons (p = 1.05 282 
x 10-9, df = 1, Chi-squared Test). Although intergenic promoters were predominantly positioned in 283 
the sense orientation relative to the nearest downstream gene, 300 of the 944 intragenic 284 
promoters were positioned antisense relative to the genes they overlapped. Interestingly, 285 
intragenic promoter activity had greater correlation when comparing activity between growth 286 
mediums, indicating that these regions may be primarily composed of constitutive promoter 287 
elements (LB: r = 0.648, M9 minimal: r = 0.787, p > 1 x 10-16, Wilcoxon rank-sum test, Figures S5B-288 
C). 289 
 290 
Given that we have determined the locations of the antisense promoters driving transcription, we 291 
evaluated the genome-wide consequences of antisense promoters on the transcriptome. We 292 
performed RNA-Seq on E. coli MG1655 grown in LB and compared the transcript coverage of all 293 
genes with sense promoters, antisense promoters, and both sense and antisense promoters. We 294 
found that overall, genes regulated by both sense and antisense promoters exhibited a two-fold 295 
decrease in expression compared to strictly sense-regulated genes (Figure 3B). Notably, sense-296 
regulated genes exhibited similar promoter activity on average when compared to genes with 297 
both sense and antisense promoters, indicating that the result cannot be attributed solely to 298 
stronger promoters in sense-regulated genes. Genes with only antisense promoter activity 299 
generally did not exhibit detectable sense transcription.  300 
 301 
The significant overlap observed between protein-coding and promoter sequences is interesting 302 
given the sequence specificity necessary to encode these distinct functions. Therefore we sought 303 
to investigate how sequences navigate this constraint to accommodate diverse activities. After 304 
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comparing the amino acid composition within intragenic promoters, we observed a significant 305 
enrichment of stop codons and a preference for amino acids encoded by codons with higher AT 306 
nucleotide content (Figure 3C). Further inspection revealed specific codons that were 307 
preferentially utilized within intragenic promoter regions (Figure 3D), with a notable bias observed 308 
among arginine codons, showing a strong preference for AGA and AGG codons. The most 309 
enriched codons within intragenic promoters were typically rare in the genome, which may 310 
indicate a role of preferential codon usage in controlling promoter activity within genes. The 311 
connection between rare codons and regulatory roles has been previously observed in the context 312 
of N-terminal codon bias, where rare codons influenced expression levels through secondary 313 
structure interactions57. Moreover, the observed higher percentage of AT-content58,59 and rare 314 
codons60 may further support the notion that intragenic promoters are linked to horizontally-315 
acquired genes.  316 
 317 
Next, we investigated how intragenic promoter sequences had adapted to conform to the 318 
constraints of protein-coding sequence space. A peculiar feature of promoter sequences in E. 319 
coli, is the presence of trinucleotides matching stop codons within the canonical -10 and -35 σ70 320 
motifs (-35: 5’-TTGACA, -10: 5’-TATAAT). Therefore, we hypothesized that the reuse of these 321 
nucleotide patterns offers another mechanism by which the E. coli genome counteracts the 322 
spurious evolution of intragenic promoters, thereby explaining their scarcity relative to the ease 323 
by which they can evolve45. We used a σ70 PWM16 to identify the highest-scoring σ70 motifs within 324 
intragenic promoters and determined their relative coding frames. Interestingly, we observed a 325 
lower frequency of -35 elements in +2 coding frames and the -35 motifs detected at +2 positions 326 
exhibited significantly reduced resemblance to the canonical motif (Figure S6A). Similarly, -10 327 
motifs were least frequently found in the +1 positions, although -10 motifs at this position did not 328 
show lower overall scores (Figure S6B). The observed depletion of -35 motifs positioned in the 329 
+2 reading frame and -10 motifs in the +1 reading frame is likely due to the fact that the canonical 330 
sequences for these motifs would create stop codons within the protein if placed at these 331 
positions. This suggests a simple, but effective preventative mechanism against the spurious 332 
evolution of intragenic promoters that is inherent to their sequence motifs.  333 
 334 
The E. coli promoter landscape is dynamic in response to environmental conditions 335 
 336 
It is well understood that bacterial cells respond to environmental conditions through changes in 337 
their transcriptional profiles61, however, it has not been shown how the global promoter landscape 338 
changes to facilitate these cellular transitions. To explore this, we measured promoter activity of 339 
our genomic fragment library in exponentially growing cells under glucose minimal media 340 
conditions. Compared to LB, cells grown in glucose minimal media do not have access to 341 
environmental amino acids and must synthesize these and other essential compounds on their 342 
own62. We recovered replicable promoter activity measurements for 318,457 genomic fragments 343 
in glucose minimal media, spanning the genome with 8.38x coverage (Figure S7A, Figure S7B). 344 
We identify 3,321 candidate promoter regions in glucose minimal media with an average length 345 
of 293 bp (Figure S7C). Although 2,466 of these regions overlapped with regions found in LB, we 346 
found 960 only found in LB and 1,029 exclusive to M9 (Figure 4A). Many of these condition-347 
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dependent promoter regions were weak compared to those identified in both conditions (Figure 348 
S7D), nonetheless, each condition revealed distinct strongly activated regions unique to it. The 349 
observed low activity of condition-unique promoters is similar to what has been observed in 350 
synthetic inducible promoter systems, where tightly-regulated promoters often exhibit reduced 351 
expression in induced conditions63. To identify the most differentially-expressed promoters in 352 
each condition, we extracted regions larger than 60 bp that exhibited greater than two-fold 353 
difference in activity between conditions. With this criterion, we found 278 regions upregulated in 354 
LB and 644 regions upregulated in glucose minimal media. In glucose minimal media, the greatest 355 
increase in promoter activity occurred at ryhB, a Fur-regulated gene encoding a small RNA that 356 
regulates iron-binding and iron-storing proteins when available iron is limited64,65 (Figure S7E). In 357 
LB, the strongest activated region is positioned to drive expression of the rbsDACBKR operon, 358 
which is essential for uptake and utilization of extracellular ribose66  (Figure S7E).  359 

 360 
For each condition, we matched activated intergenic and sense promoter regions with the nearest 361 
downstream gene and found 159 genes poised for activation in LB and 392 genes poised for 362 
activation in glucose minimal media. To see if promoter activation resulted in an increase in 363 
expression of these genes, we compared RNA-Seq coverage of the genes with the top 100 364 
strongest promoter activation in each condition (Figure S8). In each condition, promoter 365 
activation resulted in a concomitant increase in RNA-Seq coverage (LB: p = 1.1 x 10-5, M9: p = 1.9 366 
x 10-5, Wilcoxon rank-sum test). To see which cellular responses were being mobilized by 367 
remodeling the promoter landscape, we used the RAST annotation engine67,68 to assign functional 368 
categories to activated genes and identify enriched cellular processes. Genes downstream of 369 
promoter regions activated in LB are predominantly associated with carbohydrate utilization 370 
whereas genes downstream of promoters activated in glucose minimal media were associated 371 
with amino acid utilization (Figure 4B). Overall, we find distinct condition-dependent activation of 372 
promoter regions leading to changes in gene expression associated with carbohydrate utilization 373 
in LB and amino acid utilization in glucose minimal media.  374 
 375 
Next, we explored how these changes in the promoter landscape are mediated by transcriptional 376 
machinery and evaluated the transcription factor binding site (TFBS) composition of promoter 377 
regions activated in each condition. As opposed to traditional transcriptomebased 378 
measurements which measure changes in downstream gene expression, this assay identifies 379 
upstream regulatory regions that contribute to promoter activity in response to changing 380 
conditions. By cross-referencing these activated promoter regions to TFBSs reported by 381 
RegulonDB, we identified transcription factors facilitating these changes to the promoter 382 
landscape (Figure 4C). Upon comparing TFBS content of these regions we found that binding 383 
sites for several global transcriptional regulators69, including IHF, Lrp, and Fis occurred at similar 384 
frequencies between these conditions. Conversely, binding sites for Fur, another global 385 
transcription factor, were enriched by roughly 20-fold within regions activated in glucose minimal 386 
media compared to regions activated in LB. This transcription factor is essential for maintaining 387 
iron homeostasis70,71, and is a known regulator of ryhB, the most upregulated gene we found in 388 
glucose minimal media. Binding sites for CRP were enriched by more than two-fold in regions 389 
activated in LB compared to glucose minimal media. This transcription factor is activated in 390 
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glucose-limited conditions and so would likely not induce promoter activity in glucose minimal 391 
media. Overall, we found 455 TFBSs within regions activated in LB and 637 annotations in regions 392 
activated in glucose minimal media (Figure 4D). In addition to global regulators, we found many 393 
TFBSs that appear exclusive to each condition targeting relatively few regulatory targets. 394 
Interestingly, the combined contribution of non-global transcription factors activating 10 or fewer 395 
sites were responsible for over a third of all activated promoter regions, underscoring the 396 
significant involvement of local transcriptional regulators in driving the overall changes to the 397 
transcriptome. Transcription factors MetJ, GadX, and GadW were exclusively found in regions 398 
activated in glucose minimal media whereas FlhDC, GlpR, and CytR were the most enriched 399 
amongst regions activated in LB.  400 
 401 
Mutational scanning of 2,057 E. coli promoters identifies regulatory elements controlling 402 
transcription 403 
 404 
After globally identifying promoter regions in the bacterial genome, we sought to develop an 405 
approach to identify sequence motifs regulating these promoters. Recent work has demonstrated 406 
a high-resolution saturation mutagenesis approach to identify regulatory motifs within individual 407 
uncharacterized promoters21,72. Inspired by this work, we implemented a scanning mutagenesis 408 
strategy to explore the sequence features that regulate active promoters. For 2,057 active TSS-409 
associated promoters identified in LB, we systematically scrambled individual 10 bp sequences 410 
spanning the -120 to +30 positions at five bp intervals (Figure 5A). Using this approach, we would 411 
expect that disrupting a repressor site would increase expression, whereas disrupting a RNAP or 412 
activator site would decrease expression. These scrambled sequences were designed to 413 
maximize distance from the original sequence while maintaining nucleotide content, ensuring 414 
perturbation of any motifs at each position contributing to transcriptional regulation. In total, we 415 
designed a library of 59,653 sequences consisting of 2,057 active TSS-associated promoters, 416 
their scrambled variants, and the previously described set of negative and positive controls. We 417 
measured promoter activity of this library as before and recovered replicable expression 418 
measurements for 52,900/59,653 (89%) of this library in LB, with an average of seven barcodes 419 
per variant (Figure S9A, S9B). Using this approach, we identify regions that either increased or 420 
reduced expression across thousands of promoters in a single assay (Figure 5B). These 421 
sequences were enriched at the -35 and -10 positions for regions that increased expression, 422 
which is expected considering the majority of promoters are σ70 dependent. However, many 423 
sequences outside of these -10 and -35 regions were also found to contribute to regulation. 424 
 425 
To validate our approach, we first examined the lacZYA promoter, a classic gene regulation model 426 
whose sequence motifs are well characterized. This promoter is known to contain a variety of 427 
regulatory motifs, including twin LacI repressor sites centered at +11 and -8273, a CRP activator 428 
site centered at -6174, and a σ70 RNAP binding site. Our analysis revealed distinct signals 429 
corresponding to each of these sites, as well as quantitative measurements for their contribution 430 
to expression (Figure 5C). Additionally, scanning mutagenesis of the previously characterized 431 
relBE promoter achieved similar results, identifying a reported RelBE repressor site at the +1 432 
position75 as well as -10 and -35 σ70 recognition motifs75.  433 
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 434 
Considering that our approach effectively captures the effects of known binding sites, we 435 
proceeded to investigate whether it could also identify regulatory sites within uncharacterized 436 
promoters. Although we performed this scanning mutagenesis for 2,057 TSS-associated 437 
promoters, here we highlight a few examples to demonstrate the utility of this method (Figure 438 
5D). The cyclopropane fatty acyl phospholipid synthase gene, cfa, exhibits dynamic expression76 439 
and plays a crucial role in cell membrane integrity under acidic conditions 77. While there have 440 
been several transcription factors implicated in regulation of cfa, the motifs responsible for its 441 
direct regulation are still unknown. Our approach identified a candidate σ70 promoter regulating 442 
this gene with a -10 motif centered 34 nucleotides upstream of the reportedly associated TSS as 443 
well as a -35 motif 57 bp upstream, implying that the reported TSS is likely not the primary site 444 
for transcription initiation. Additionally, we identified two repressor sites—one located in the 445 
spacer region and another upstream of the -35 motif. We also identified novel regulatory regions 446 
for an uncharacterized promoter regulating rpsL, an essential gene and component of the 30S 447 
ribosomal subunit. In this case, we identified a candidate σ70 RNAP binding site with predictably 448 
positioned -10 and -35 motifs, as well as an unknown repressor located over the transcription 449 
start site. Notably, mutating the repressor site resulted in a threefold increase in promoter 450 
expression. Although further experiments21 are necessary to identify the transcription factors 451 
acting on these promoters, our results provide valuable insights by pinpointing the sequence 452 
elements responsible for the regulation of these genes. 453 
 454 
Global identification of 7,293 E. coli promoter regulatory motifs 455 
 456 
We expanded the scope of our analysis to systematically explore the regulatory motifs amongst 457 
all 2,057 promoters tested. We used individual barcode measurements, across four replicates, to 458 
find significant differences between the mean expression of the WT and mutated sequences 459 
(Student’s t-test with 1% FDR). Among the mutations that significantly altered expression, 1,885 460 
increased expression whereas 5,408 decreased expression (Figure 6A). Mutated sites were 461 
located throughout promoters and resulted in dramatic changes in expression, some over 100-462 
fold (Figure S10A). We observed markedly different distributions for the positions of sequences 463 
that increased expression compared to those causing decreased expression (Figure 6B). Regions 464 
that increased expression were enriched at the -10, -35, and -70 positions, which is consistent 465 
with the σ70 RNAP binding motif as well as the typical position of transcriptional activators 466 
among class I bacterial promoters78–80. Regions that decrease expression were found to localize 467 
to the TSS, spacer, and -35, which is consistent with known mechanisms of RNAP occlusion by 468 
steric hindrance80,81. Alternatively, repressive sites within the spacer could be negatively 469 
influencing transcriptional initiation through transcription factor-independent mechanisms 82. 470 
Furthermore, we found that intergenic promoters contained more regions that altered promoter 471 
activity when scrambled compared to intragenic promoters, implying that intragenic promoter 472 
sequences contain more compact or fewer regulatory elements (Figure S10B).  473 
 474 
Next, we cross-referenced these regulatory regions with the extensive collection of putative and 475 
experimentally determined regulatory sites reported by RegulonDB83. First, for all promoter 476 
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mutagenesis profiles, we merged adjacent regions found to influence promoter activity, resulting 477 
in the identification of 1,414 regions that increase expression and 1,903 regions that decrease 478 
expression. Sites were 20 bp on average (indicating they exhibited regulatory impacts across four 479 
consecutive 10 bp scramble mutations spaced 5 bp apart) (Figure S10C) with effect sizes largely 480 
independent of their lengths (Figure S10D). Of the 2,453 unique TFBSs reported by RegulonDB, 481 
1,156 overlap with regulatory regions identified by our analysis and 49% (567/1,156) resulted in a 482 
significant change in activity of the promoter. The effect we observed after disrupting these 483 
reported TFBSs often did not agree with the annotated effect. Our scrambling results agreed with 484 
the reported effect for 65% (185/253) of activators and 43% (196/450) of repressors (Figure 6C). 485 
We presumed the lower concordance with repressors could be due to scrambling mutations 486 
disrupting both a repressor and -35 or -10 element, resulting in a decrease in expression which 487 
would appear to contradict a reported repressor site. Looking at the distribution of concordance 488 
for merged scrambles by position relative to the TSS, we observed a higher proportion of 489 
disagreement near the -35 and -10 elements, suggesting overlapping scrambles may be 490 
disrupting crucial promoter elements in addition to reported repressor sites (Figure S10E, S10F). 491 
This may be expected considering that many repressors operate by binding regions proximal to 492 
the RNAP binding site. Regardless, we found several examples where the regulatory effects 493 
predicted by RegulonDB were contradicted with strong evidence, which may indicate that the 494 
effect of the reported annotation is incorrect or that these sites may support multiple transcription 495 
factors (Figure 6D). Overall, we characterized regulatory sequences in promoters driving 496 
expression of 1,158 of the 2,56583 operons in E. coli as well as many other confirmed promoters. 497 
Thus, we conclude that this approach is an efficient and effective method to rapidly characterize 498 
regulatory motifs within thousands of experimentally verified promoter regions. 499 
 500 
Predicting promoter activity from sequence remains a challenge 501 
 502 
In this study we generated a powerful dataset linking 117,556 unique 150 bp sequences to a 503 
quantitative measurement of in vivo promoter activity. Using this unique dataset, we evaluated 504 
our ability to determine whether a promoter was active or inactive (classification) and the precise 505 
level of activity (regression). We trained several machine learning models of varying complexity 506 
for both classification and regression. As many sequences are highly similar due to library design 507 
and close proximity of previously reported TSSs, we split the data into 75% for training (n = 87,164) 508 
and 25% (n = 30,392) for testing according to genomic location, ensuring the two sets contain 509 
sequences equidistant to the origin (see Methods). For classification, we determined a threshold 510 
independently for each library based on the negative controls. Sequences are considered active 511 
if their expression is greater than two standard deviations above the negative median value and 512 
inactive if expression falls below this threshold. 513 

 514 
We trained several different classifiers to predict whether a given sequence was active or inactive 515 
(Figure 7A). All classifiers output the predicted probability for each class, rather than directly 516 
predicting the class, allowing them to be compared using precision-recall curves. Further details 517 
for all models are included in the methods. We trained a simple logistic regression based on four 518 
biophysical features known to be associated with promoter strength: max -10 σ70 motif position 519 
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weight matrix (PWM) score, max σ70 -35 motif PWM score, paired -10 and -35 PWM score (PWMs 520 
scanned jointly allowing for, 16, 17, or 18 gap between the -10 and -35), and percent GC content. 521 
We trained this model only using variants from the TSS library, which contained the greatest 522 
diversity, as the model was unable to converge when trained on the full dataset. For comparison, 523 
we trained a gapped k-mer SVM (gkm-SVM) model with word-length 10 and 8 informative 524 
columns (L = 10, K = 8) on the same training set, as this model is best suited for sample sizes 525 
under 20,000 and observed decreased performance relative to the logistic regression (AUPRC = 526 
0.43, AUPRC = 0.53, respectively). Furthermore, we created a feature set of all 3 to 6-mer 527 
frequencies and trained a logistic regression, partial least squares discriminant analysis (PLS-528 
DA), and multi-layer perceptron (MLP). To observe the effects of reducing dimensionality, we 529 
additionally trained on only 6-mer frequencies for the MLP and random forest. For the simpler 530 
logistic regression and PLS-DA we performed an additional feature selection step based on the 531 
performance of a random k-mer. All models performed similarly, with AUPRC ranging from 0.26 532 
to 0.33. 533 

 534 
There has been recent work predicting transcriptional regulatory activity from MPRA data using 535 
convolutional neural networks (CNNs), which capture intricate sequence features without a priori 536 
knowledge84. Inspired by this work, we trained a CNN using the DragoNN toolkit which is built on 537 
top of the keras python package85. We performed hyperparameter tuning for a three-layer CNN 538 
and achieved an AUPRC = 0.44. Next, we compared the CNN to other machine learning models 539 
that require less hyperparameter tuning and are more interpretable. For comparison, we trained 540 
a random forest on one-hot encoded DNA, which is not well suited to categorical features, and 541 
achieved an AUPRC = 0.27. Furthermore, we trained this model using frequencies of 6-mers and 542 
observed a slight increase in performance (AUPRC = 0.31). Overall, the CNN achieved the highest 543 
AUPRC, but the logistic regression fit with biophysical features more accurately at higher levels 544 
of recall. However, these two models may not be directly comparable, as the logistic regression 545 
was trained on only the TSS library rather than the full dataset. 546 

 547 
We separately trained all of the models described above, with the exception of gkm-SVM, for the 548 
more difficult task of regression (Figure 7B). Additionally, we included a linear regression model 549 
that fit to the four “mechanistic” features to predict log-transformed expression. We evaluated 550 
each model using root mean squared error (RMSE) and R2 between predicted and observed values 551 
for promoter activity. Many models perform similarly to each other, with the CNN achieving the 552 
highest R-squared and lowest RMSE (RMSE = 3.12, R2 = 0.31, p < 2.2 x 10-16). We observe 553 
improvement in the linear regression on log-transformed data compared to linear regression 554 
without transformation, suggesting there are non-linear relationships that are presumably 555 
captured by more complex models. Random forest on one-hot encoded DNA performs worse than 556 
random forest on 6-mer frequencies, in line with the heuristic that random forests are not well 557 
suited to categorical features. Overall, the CNN performs best in both classification and 558 
regression, although simpler models have some predictive power and have the benefit of faster 559 
training times.  560 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2020.01.04.894907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.04.894907
http://creativecommons.org/licenses/by-nc/4.0/


 

14 

Discussion 561 

More than fifty years have passed since the first conceptions of what bacterial promoters were. 562 
Today, E. coli promoters are arguably the most well-studied gene regulatory element and yet we 563 
cannot seem to agree on basic questions of how many promoters exist, what elements define 564 
their function, how constrained they are in sequence space, and how far are we from predicting 565 
promoter activity from sequence. Systematic identification and characterization based on 566 
transcriptional profiling is confounded by genomic location, RNA processing, stability, and 567 
detection differences due to differences in sequences expressed.  568 
 569 
Here we attempted to separate promoter activity from other mechanisms of gene regulation to 570 
systematically identify promoter locations, strength, and internal structure genome-wide in rich 571 
media conditions. We systematically probed previous predictions and combined them with more 572 
unbiased approaches to better understand promoter architecture in E. coli. Overall, we found 573 
2,859 ≤150bp promoters during log-phase growth in LB, which is consistent with recent 574 
estimations by RNA profiling using long-read sequencing technologies42,43 and in vitro 575 
transcriptional assays86 . This included many promoters contained within genes, often in the 576 
antisense direction, that had large effects on mRNA levels and constrained codon choice within 577 
these genes. Despite the ability of our approach to interrogate promoter activity across the entire 578 
genome, there are certainly many more condition-specific promoters that remain undiscovered. 579 
Moreover, it is likely that we have not identified all active promoters even under the conditions 580 
investigated in this study. It is essential to acknowledge that our approach to classifying 581 
sequences as promoters is based on an empirically derived threshold. However, this is a 582 
simplification as promoters that fall below the threshold could become active due to the influence 583 
of other factors, such as message stability31 and genomic context25,27,28. Taken together, these 584 
measurements provide one of the richest datasets on autonomous promoter activity. Our data 585 
suggests that all sequences have some propensity to be a promoter, and this propensity is further 586 
modulated by other factors such as stability of the message produced or integration locus to 587 
ultimately determine mRNA levels. Moreover, the frequency of promoter-like activity in overall 588 
sequence space is seemingly very high. This view is consistent with the surprising ease by which 589 
promoters evolve from random sequences45,87,88.  590 
 591 
Our scanning mutagenesis of active TSS-associated promoters identified 3,317 regions with no 592 
corresponding TFBS annotation in RegulonDB, revealing that there is a great deal more we can 593 
learn about how regulation is encoded in the E. coli genome. For regions that overlapped known 594 
sites, an appreciable proportion disagreed with the reported effect. There could be several 595 
explanations for this disagreement and the discovery of these missing annotations. First, it could 596 
be that the predictions of TFBSs in RegulonDB are actually false positives due to promiscuous or 597 
nonproductive binding events. This seems plausible considering a recent study of the global 598 
transcription factor PhoB, which supports the notion that transcription factors engage in many 599 
genomic binding events with apparent non regulatory functions89. Second, some transcription 600 
factors may possess condition-dependent behavior and the conditions tested in our study do not 601 
capture the full scope of their regulatory program. Finally, it is plausible that a portion of the sites 602 
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we identify represent true functional sites that are missing from current annotation and should 603 
be interesting targets for further dissection, such as identifying which transcription factors 604 
operate at these motifs. Further studies using high resolution mutagenesis strategies21 will be an 605 
effective approach to determining which sequences within promoters contribute to regulation 606 
and further efforts to predict promoter sequence-function relationships. 607 
 608 
To better understand how promoter activity is modulated by sequence, we trained a suite of 609 
machine learning models to identify promoter sequences (classification) and predict the precise 610 
level of activity (regression). These models varied in complexity, from simple linear regression 611 
models based on a handful of known biological features to CNNs trained on raw sequence. Even 612 
with the large training set and a wealth of mechanistic information, the performance of these 613 
predictive models is limited. There are several possible explanations for why it remains a 614 
challenge to classify or predict the activity of E. coli promoters. First, it is likely challenging to 615 
develop a single generalizable model for all promoters as there are several families of sigma 616 
factors with distinct motifs. Therefore, models that are sigma-factor specific may be more 617 
tractable. Indeed, recent studies by us and others have leveraged large MPRA datasets 618 
characterizing σ70 promoters to develop a variety of statistical and biophysical models that 619 
predict expression with surprisingly high accuracy38,90–92. These findings suggest that overcoming 620 
the challenges associated with promoter activity prediction is plausible with the appropriate 621 
training sets and a reasonable scope of study. Second, although the range of our MPRA is quite 622 
dynamic, accurate predictive models may require techniques with even greater quantitative 623 
resolution, especially in the noise regime of the assay where most observations fall. Finally, we 624 
might simply lack the basic models for how sequences define biological functions, such as 625 
promoter activity, and thus we are looking in the wrong places for information. Recent efforts to 626 
use much larger libraries of random DNA sequences to identify strong promoters may serve as a 627 
better starting point to constrain computational models for how sequences affect function93,94. 628 
 629 
The experimental workflows demonstrated here enable the rapid and iterative exploration of how 630 
sequence affects bacterial promoter function. The convergence of DNA synthesis technologies 631 
with multiplexed assays for genetic function now allow an individual to routinely design, build and 632 
test 104-105 designs on a monthly basis. Such empirical power has no equivalent in other physical 633 
systems and has now reached the limits of human experimental design and planning. Thus, 634 
understanding bacterial promoters might be one of the best problems to develop and test large-635 
scale design-of-experiment and active learning methodologies to build better predictors and 636 
discriminate between different mechanistic models of function.  637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
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 689 
Figure 1) Functional characterization of 17,635 previously reported E. coli promoters. A) Three 690 
sources of genome-wide promoter predictions show little agreement in the reported TSSs at the 691 
single-nucleotide level. B) We synthesized oligos overlapping the -120 to +30 bp context of 692 
17,635 reported TSSs and integrated construct into a fixed genomic landing pad. Measuring 693 
barcode expression using RNA-Seq captures quantitative measurements of transcriptional 694 
activity for individual TSSs. C) MPRA results are highly replicable across technical replicates (r = 695 
0.965, p < 2.2 x 10-16). D) The TSS library measurements span over 100-fold with negative 696 
controls exhibiting low levels of expression and positive controls spanning the entire dynamic 697 
range. E) A majority of tested TSSs are inactive in LB.  F) Active and inactive TSSs have 698 
significantly different mean PWM scores for -10 and -35 σ70 motifs (Wilcoxon rank-sum test, 699 
“***” =< 0.001).  700 
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 701 

 702 
Figure 2) Genome-wide Identification of E. coli promoters. A) 321,123 sheared genomic 703 
fragments were screened using the same MPRA platform. The fragments were 200 to 300 bp in 704 
size giving an average 8.5x coverage across each strand of the E. coli genome. Promoter 705 
activity of each fragment was measured and averaged at each position to recover nucleotide-706 
specific expression. B) We created a website to showcase the E. coli promoter landscape 707 
(https://ecolipromoterdb.com/). This section of the genome displayed in this figure contains 708 
five candidate promoter regions that appear within intergenic regions. C) Meta-analysis of mean 709 
promoter activity at experimentally validated active TSSs, inactive TSSs, and negative controls. 710 
D) Oligo tiling library identifies promoters within candidate promoter regions. We synthesized 711 
150 bp oligos tiling all promoter regions identified in rich media at 10 bp intervals. We then 712 
determine minimal promoter boundaries by identifying the overlap of transcriptionally active 713 
tiles. E) Oligo tile expression across the mraZ promoter shows two distinct promoters. Positions 714 
are defined according to the right-most genomic position of each 150 bp oligo. Dashed line 715 
indicates the threshold for active oligo tiles F) Distribution of the number of promoters per 716 
promoter region shows many regions contain multiple promoters. G) Left: Distribution of the 717 
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lengths of the minimal promoter boundaries shows enrichment for σ70-promoter sized regions 718 
(40 bp). Right: 40 bp minimal promoters (red) span a wide range of expression whereas 150 bp 719 
promoters are typically weak (blue). 720 
 721 

 722 
Figure 3) Intragenic promoters are widespread, often found in the antisense orientation, and 723 
alter transcript levels and codon usage of the genes they are within. A) Orientation and 724 
positioning of identified promoters reveals many promoters are intragenic and antisense. B) 725 
Antisense promoters suppress gene expression genome-wide. Left: Meta-gene analysis of the 726 
median RNA-Seq coverage across all sense, antisense, and dual-regulated genes. Right: Meta-727 
gene analysis of sense promoter activity at sense, antisense, and dual regulated genes. C) 728 
Intragenic promoters are enriched for specific amino acids relative to whole genome amino acid 729 
frequencies (Chi-squared test, “*” = p < 0.05). Amino acids are arranged by mean AT-content of 730 
all corresponding codons. D) Specific, often rare, codons are enriched in intragenic promoters. 731 
Codon bias within intragenic promoters relative to whole genome. Bars are colored by the 732 
relative genome-wide usage compared to other synonymous codons (Chi-squared test, “*” = p < 733 
0.05).  734 
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 735 
Figure 4) The E. coli promoter landscape dynamically responds to environmental conditions. A) 736 
Shared and unique promoter regions are found between LB and glucose minimal media. B) 737 
Genes activated by promoters in glucose minimal media are enriched for amino acid-related 738 
genes according to RAST subsystem annotations. C) Occurrence of reported transcription 739 
factor binding sites in promoter regions activated in LB compared to glucose minimal media 740 
(M9). Black lines indicate 2-fold enrichment threshold. D) Number of binding sites per 741 
transcription factor within activated promoter regions. A median of four sites per transcription 742 
factors were activated in LB and a median of five sites in M9. 743 
 744 
 745 
 746 
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 747 
Figure 5) Scanning mutagenesis of 2,057 TSS-associated promoters identifies known and 748 
novel regulatory motifs. A) Scanning mutagenesis of 2,057 E. coli promoters to identify 749 
regulatory elements. For each promoter, 10 bp regions were mutated across the full length of 750 
the promoter at 5 bp intervals. B) Mutating each position across E. coli promoters identifies 751 
sequences that activate and repress promoter activity. Rows are rearranged using hierarchical 752 
clustering and the intensities are normalized within each row. C) Scanning mutagenesis of the 753 
well-characterized (Left) lacZYA and (Right) relBE promoters captures known regulatory 754 
elements. D) Scanning mutagenesis of the newly characterized (Left) cfa and (Right) rpsL 755 
promoters identifies regions encoding regulation within these promoters. 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2020.01.04.894907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.04.894907
http://creativecommons.org/licenses/by-nc/4.0/


 

22 

 764 
Figure 6) Global identification of 3,317 E. coli regulatory motifs by scanning mutagenesis. A) We 765 
identified scrambled regulatory regions that significantly increase (N = 1,885) or decrease (N=5,408) 766 
expression when scrambled relative to the unscrambled promoter. Data are colored by whether the 767 
regulatory region activates or represses activity of the promoter. B) Activating promoter sequences are 768 
enriched at the -10, -35, and -80 positions whereas repressing sequences are enriched at +1, -20, and -50 769 
positions. C) Identified regulatory regions overlapping reported TFBS annotations shows mixed 770 
concordance with reported effects; 77.8%  (2,583/3,317) of identified regulatory regions are unreported by 771 
RegulonDB. D) Scanning mutagenesis of the FadR promoter (bottom) identifies a repressing sequence 772 
near the -30 that has been reported to be activating (top).    773 
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 774 

 775 
Figure 7) Various machine learning models for promoter activity classification and regression. A) 776 
Performance of various models to classify promoter sequences. Convolutional neural networks 777 
performed best in the lower recall range, while logistic regression based on simple hand-crafted features 778 
performs better in the higher recall range. Dashed line represents the expected performance from random 779 
prediction using full library. B) Performance of regression models to predict a quantitative level of 780 
promoter activity. We evaluated performance using both root mean squared error (RMSE) and coefficient 781 
of determination (R2) on the held-out test set. Similar to classification, convolutional neural networks 782 
performed the best with the lowest RMSE and highest R2.  783 
 784 
 785 
 786 
 787 
 788 
 789 
 790 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
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Methods 799 
 800 
Strains 801 
 802 
All experiments were performed in the E. coli MG1655 background95 which carries the following 803 
genotype: F-, λ-, rph-1 (Yale Coli Genetic Stock Center no. 6300). For the genomically-integrated 804 
MPRA, previously reported strains38 with engineered landing pads in the right midreplichore 805 
(essQ-cspB intergenic locus, Addgene no. 110244), chromosomal terminus (nth-ydgR intergenic 806 
locus, Addgene no. 110245), and left midreplichore (ybbD-ylbG intergenic locus, Addgene no. 807 
110243) were used. Briefly, these landing pads encode a fluorescent mCherry reporter as well as 808 
chloramphenicol resistance, both of which are flanked by loxP sites for recombination-mediated 809 
cassette exchange. 810 
 811 
TSS library design 812 
 813 
 The TSS library incorporates all TSSs from the RegulonDB database83 (Version 8.0, 814 
genome version U00096.2) and those identified in two recent genome-wide TSS mapping 815 
studies18,19. Recent work provides evidence that most regulatory motifs fall within 100 bp 816 
upstream of the TSS39 and the initial transcribed region (+1 to +20) can also influence gene 817 
expression. Thus, each TSS was synthesized embedded in its local sequence context -120 to +30 818 
relative to the TSS, capturing a majority of the cis-regulatory elements.  There were 23,798 unique 819 
TSSs across all three sources, many of which were a few base pairs away from each other. We 820 
minimized redundancy and collapsed together TSSs within 20 bp and selected the most upstream 821 
TSS for our library, yielding 17,635 TSSs for the final synthesized library. Additionally, we included 822 
500 negative controls from the E. coli genome that are assumed to have minimal regulatory 823 
activity. These were selected from 150 bp regions that are more than 200 bp from a TSS (on either 824 
strand), and many fall within coding regions. We included a set of 112 short synthetic positive 825 
controls that were previously characterized40,96 and span a wide range of expression.  826 
 827 
TSS library barcoding and cloning 828 
 829 
The TSS library was synthesized by Twist Biosciences and delivered lyophilized as a 26 pmol 830 
pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 12 cycles 831 
using GU72 and GU116 with NEB Q5 High-Fidelity 2x Master Mix (#M0492L). Unless otherwise 832 
stated, all amplifications were performed using this polymerase mixture. This product was then 833 
ran on a 2% TAE agarose gel and approximately 200 bp amplicons were extracted using a 834 
Zymoclean Gel DNA Recovery Kit (#D4008). For barcoding, 1 ng of this eluate was amplified for 835 
9 cycles using primers GU72 and GU73. Following cleaning using a Zymo Clean and Concentrator 836 
Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 837 
  838 
The plasmid backbone, pLibacceptorV2 (Addgene #106250) was digested using SbfI-HF and SalI-839 
HF with the addition of rSAP (NEB #M0371S). The digested library was ligated into 840 
pLibacceptorV2 using T7 DNA Ligase (NEB #M0318S), cloned into 5-alpha Electrocompetent E. 841 
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coli (NEB #C2989K), and plated on LB + kanamycin (25 ug/mL) yielding approximately 2.3 million 842 
colonies estimated by counting simultaneously plated dilutions. After allowing for 24 hours of 843 
growth on plates, the library was scraped and resuspended in LB, and then 800 million cells 844 
(based on OD600) were inoculated in 450 mL LB + kanamycin (25 ug/mL) overnight. Unless stated 845 
otherwise, all plasmids were isolated using a Qiagen Plasmid Plus Maxiprep Kit (#12963) and 846 
concentrated using a Promega Wizard SV Gel and PCR Clean-up System (#A9281). 847 
 848 
In order to clone the RiboJ::sfGFP reporter construct, the library was digested using NEB’s BsaI-849 
HF and NheI-HF with the addition of rSAP. The reporter construct was digested using NEB’s BsaI-850 
HF and NcoI-HF. Similarly to the previous cloning step, the reporter was cloned into the library 851 
using T7 DNA Ligase, cloned into 5-alpha electrocompetent E. coli, and plated on LB + kanamycin 852 
(25 ug/mL), yielding 6.8 million colonies. The completed plasmid library was isolated as stated 853 
above. 854 
 855 
Isolation of genomic fragment library 856 
 857 
To isolate genomic fragments, 10 ug of E. coli MG1655 gDNA was sheared using a Covaris 858 
focused ultra-sonicator. The settings used were as follows: Duty factor was set to 10%, Intensity 859 
was set to 4, cycles/burst was set to 200, and time was 60 seconds. The sheared gDNA was ran 860 
on a 3% TAE agarose gel and fragments between 200 and 300 bp were extracted using a 861 
Zymoclean Gel DNA Recovery Kit and eluted in 18 uL water. All 18 uL of the extracted fragments 862 
were end repaired using Enzymatics End Repair Mix (Part # Y9140-LC-L) following manufacturers 863 
protocols, cleaned using 45 uL (1.8x volume) of Agencourt AMPure XP Beads (#A63880), and 864 
eluted in 20 uL of water. The 20 uL eluate was A-tailed following the New England Biolabs 865 
protocol:  866 
 867 
Reaction: 868 

20 uL End-repaired DNA 869 
5 uL NEB Buffer 2 (10x) 870 
0.5 uL dATP (10mM) 871 
3 uL Klenow Fragment (3’ -> 5’ exo-) (Enzymatics #P7010-HC-L) 872 
21.5 uL Nuclease-free water 873 

 874 
The reaction was Incubated for 30 minutes at 37ºC, then heat inactivated for 20 minutes at 75ºC 875 
before cleaning using 90 uL Agencourt AMPure XP beads and eluting in 20 uL water. Y-adapters 876 
to facilitate fragment amplification and barcoding were ligated to the A-tailed fragments using 877 
the following reaction mix: 878 
 879 
Reaction: 880 
 20 uL A-tailed DNA 881 
 5 uL NEB T4 DNA Ligase Buffer (10x) (NEB #B0202S) 882 
 2 uL Y-adapter GU Y-Frag (25 uM) 883 
 1 uL NEB T4 DNA Ligase (NEB #M0202T) 884 
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22 uL Nuclease-free water  885 
 886 
This reaction was incubated for 20 minutes at 25ºC, heat inactivated for 20 minutes at 65ºC, and 887 
subsequently cleaned using 90 uL Agencourt AMPure XP beads and eluting in 12 uL nuclease-888 
free water. 889 
 890 
Barcoding and cloning of genomic fragment library 891 
 892 
To barcode the genomic fragments, 1 uL of the processed fragments was amplified for 13 cycles 893 
using GU72 and GU116. This product was then cleaned using a Zymo Clean and Concentrator Kit 894 
and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was amplified for 10 895 
cycles using primers GU72 and GU73. Following cleaning using a Zymo Clean and Concentrator 896 
Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 897 
 898 
This library was cloned following the same protocols as the TSS library. The transformation of 899 
the barcoded library yielded approximately 3.3 million colonies and the transformation after 900 
addition of the RiboJ::sfGFP yielded approximately 1.25 million colonies.  901 
 902 
Genomic promoter tiling library design 903 
 904 
We used a custom peak caller on the single-nucleotide resolution strand-specific expression 905 
pileup generated from our genomic fragment library to define “peaks” of promoter activity. Our 906 
peak calling method is simple and conservative, as we wanted to tile the most active regions and 907 
keep the library size reasonable. We defined a peak as a continuous region with expression above 908 
an empirically determined threshold. We considered a continuous range of thresholds and for 909 
each evaluated the percentage of active TSSs, from our previous library, contained in a peak and 910 
determined an expression level of 1.1 was sufficient and captured 90% of active TSSs (data not 911 
shown). We required that each peak be at least 60 bp, and merged adjacent peaks that were within 912 
40 bp, yielding 1753 and 1724 peaks for the minus and plus strands, respectively. We tiled each 913 
peak by synthesizing 150 bp windows across the region, with no overlap between adjacent tiles, 914 
yielding 48,491 peak tiles. Additionally, we included 1000 randomly generated 150 bp sequences 915 
to test what fraction of random sequence can drive expression. We included the same set of 916 
positive and negative controls as described in the TSS library design. 917 
 918 
Genomic promoter tiling library barcoding and cloning 919 
 920 
The active TSS mutagenesis library was synthesized by Agilent and delivered lyophilized as a 10 921 
pmol pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 10 922 
cycles using GU120 and GU121. This product was then cleaned using a Zymo Clean and 923 
Concentrator Kit and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was 924 
amplified for 8 cycles using primers GU120 and GU122. Following cleaning using a Zymo Clean 925 
and Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 926 
 927 
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This library was cloned following the same protocols as the TSS library. The transformation of 928 
the barcoded library yielded approximately 1.5 million colonies and the transformation after 929 
addition of the RiboJ::sfGFP yielded approximately 5.2 million colonies.  930 
 931 
Active TSS mutagenesis design 932 
 933 
We systematically mutagenized all active TSSs from our initial TSS library to design a follow-up 934 
library. We used 500 negative controls to classify the TSS library into active and inactive TSSs. 935 
We set the active threshold at two standard deviations above the median expression for the 936 
negative controls, resulting in 2,670 active TSSs. We mutagenized the active sequence by 937 
scrambling 10 bp windows, sliding across the 150 bp at 5 bp intervals, resulting in 5 bp of overlap 938 
between adjacent scrambles. We scrambled the sequence using the existing 10 bp to preserve 939 
nucleotide content and selected the scramble that was most dissimilar to the original sequence 940 
out of 100 scrambling attempts. Our final library included 59,653 scrambled sequences and 2,057 941 
unscrambled sequences. We also included the same set of negative and positive controls as 942 
described above for the TSS library, for a total library size of 62,322. 943 
 944 
Active TSS mutagenesis library barcoding 945 
 946 
The active TSS mutagenesis library was synthesized by Agilent and delivered lyophilized as a 10 947 
pmol pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 12 948 
cycles using GU123 and GU124. This product was then cleaned using a Zymo Clean and 949 
Concentrator Kit and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was 950 
amplified for 10 cycles using primers GU123 and GU125. Following cleaning using a Zymo Clean 951 
and Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 952 
 953 
This library was cloned following the same protocols as the TSS library. The transformation of 954 
the barcoded library yielded approximately 3.7 million colonies and the transformation after 955 
addition of the RiboJ::sfGFP yielded approximately 5.2 million colonies.  956 
 957 
Library Barcode mapping 958 
 959 
We used PCR to individually barcode each library sequence to quantitatively measure expression 960 
in our MPRA. Prior to genome integration, DNA-sequencing was performed to computationally 961 
map barcodes to sequences. A custom barcode mapper developed by Nathan Lubock 97 was 962 
used to collapse reads into a barcode-sequence map. We used two filtering steps for barcode 963 
quality. First, we required a minimum number of reads for every barcode, assuming reads that 964 
appear once or twice correspond to sequencing errors. Second, BBMap 98 was used to align the 965 
reads associated with a given barcode, and discarded barcodes that map to sequences that are 966 
too dissimilar to one another. A Levenshtein distance of 30 was used to discard barcodes that 967 
map to two very distinct sequences, while still allowing for a small number of sequence errors.  968 
 969 
 970 
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Library integration into specific genomic loci 971 
 972 
Library integration was performed as previously described 38.  973 
 974 
The isolated plasmid library was digested with SalI-HF and NheI-HF to eliminate incompletely 975 
cloned plasmid before transformation into electrocompetent MG1655 with a landing pad 976 
engineered in the nth-ydgR locus and plating on LB + kanamycin (25 ug/mL). Colonies were 977 
resuspended in LB and 800 million cells were inoculated into 250 mL LB + kanamycin (25 ug/mL) 978 
and grown overnight. Several 2 mL frozen aliquots were made of this overnight culture. 979 
 980 
The library was integrated into the nth-ydgR locus as follows. A frozen aliquot of MG1655 with a 981 
landing pad engineered in the reverse orientation at the nth-ydgR intergenic locus was 982 
transformed with the library and grown overnight in 200 mL LB + kanamycin (25 ug/mL). 983 
Following overnight growth, 400 million cells of this culture were seeded into 250 mL LB + 984 
kanamycin (25 ug/mL) + 0.2% arabinose (g/mL) and grown for 24 hours. After integration of the 985 
library, the plasmid backbone was removed through heat-curing. From the 24 hour induced 986 
culture, 800 million cells were inoculated into 80 mL of LB + kanamycin (25 ug/mL) and grown at 987 
42 ºC for approximately 1.5 hours before reaching an OD 600 = 0.3. Upon reaching exponential 988 
growth, 200 million cells from this culture library were plated and grown for 16 hours at 42 ºC. 989 
Heat-cured plates were scraped and resuspended in LB and 400 million cells were inoculated into 990 
200 mL LB + kanamycin (25 ug/mL). This culture, consisting of our integrated and heat-cured 991 
library, was grown overnight at 37 ºC and several frozen 2 mL aliquots were made. 992 
 993 
To test the TSS library in the essQ-cspB and ybbD-ylbG midreplichore regions, the same protocol 994 
was followed using strains engineered with landing pads in these intergenic regions. 995 
 996 
Library growth and harvest for expression measurements 997 
 998 
To measure expression of all promoter libraries, libraries were grown and harvested as previously 999 
described 38 with minor changes to culture conditions. 1000 
 1001 
For each library and biological replicates, a 2 mL frozen aliquot of the library was inoculated in 1002 
200 mL LB (BD#244620) with 25 ug/mL of kanamycin and grown at 30 ºC overnight. The 1003 
overnight cultures were used to seed new cultures at OD600 = .0005 and grown for approximately 1004 
5.5 hours at 30 ºC until reaching an OD600 between = 0.5 and 0.55. The genomic fragment library 1005 
was also grown in Minimal Media (Fisher Scientific #DF0485-17) with 0.2% glucose (g/mL) and 1006 
25 ug/mL of kanamycin for 10 hours at 30 ºC until reaching an OD600 between = 0.5 and 0.55. 1007 
Cultures were rapidly cooled to 0 ºC in an ice slurry for two minutes. Three 50 mL aliquots were 1008 
pelleted at 4 ºC by centrifugation at 13,000xg for two minutes and the supernatants were poured 1009 
out before snap-freezing the pellets in liquid nitrogen. Three 5 mL aliquots of each library were 1010 
harvested using the same approach to be processed for genomic DNA extractions. 1011 
 1012 
 1013 
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RNA and DNA sequencing library preparation 1014 
 1015 
RNA was extracted from 50 mL library pellets using a Qiagen RNEasy Midi kit (#75142) and 45 1016 
ug of each extract was concentrated using a Qiagen Minelute Cleanup Kit (#74204). Barcoded 1017 
cDNA was generated from 25 ug of each concentrated RNA extract using Thermo Fisher 1018 
SuperScript IV (#18090010) primed with GU101. The manufacturer’s protocol was followed aside 1019 
from extending the reaction time to 1 hour at 52 ºC. The cDNA reaction was cleaned using a Zymo 1020 
Research DNA Clean and Concentrator kit (#D40140) before amplification. Barcoded cDNA was 1021 
amplified via PCR for 13 cycles using primers GU59 and GU102. This reaction was cleaned using 1022 
a Zymo Research DNA Clean and Concentrator Kit and 1 uL of this reaction was used in a second 1023 
PCR for indexing and addition of flow cell adapters. The second PCR was for 8 cycles and utilized 1024 
primers GU102 with either GU61, GU62, GU63, or GU64 (which add separate 6 bp indices).  1025 
 1026 
gDNA was extracted from 5 mL cell library pellets using a Qiagen Gentra Puregene kit (#158567). 1027 
Barcoded DNA was amplified from 1 ug of gDNA via PCR for 12-15 cycles using primers GU59 1028 
and GU60. The reaction was subsequently cleaned using a Zymo Research DNA Clean and 1029 
Concentrator kit. To add sequencing adapters and indices to the library, 1 ng of this reaction was 1030 
subject to a second PCR for 8 cycles using primers GU70 with either GU63, GU64, GU65, or GU66 1031 
(which add separate 6 bp indices). RNA and DNA sequencing libraries were cleaned using a Zymo 1032 
Research Clean and Concentrator Kit (#D40140) before quantification using an Agilent 1033 
Tapestation. 1034 
 1035 
For each library, eight separate sequencing libraries were prepared: Four sequencing libraries for 1036 
each RNA/DNA with two biological replicates and two technical replicates of each biological 1037 
replicate. Biological replicates originated from separately grown and harvested glycerol stocks of 1038 
each library. For each biological replicate, two RNA/gDNA extractions and sequencing library 1039 
preparations (technical replicates) were performed in parallel. Libraries were submitted to the 1040 
Broad Stem Cell Research Center at UCLA for sequencing on a HiSeq2500 or to the UCLA 1041 
Translational Pathology Core Laboratory for sequencing on a NextSeq500. Raw sequencing data 1042 
and promoter expression measurements are available on NCBI’s Gene Expression Omnibus 1043 
(Accession no. GSE144621).  1044 
 1045 
RNA-Seq of MG1655 in M9 minimal Media and Rich LB media 1046 
 1047 
To compare the promoter landscape to local transcriptional levels, RNA-Seq was performed on 1048 
MG1655 grown in M9 minimal media (BD Difco #248510) supplemented with 0.2% glucose, 2 mM 1049 
magnesium sulfate, and 0.1 mM calcium chloride. Similarly, RNA-Seq was performed for MG1655 1050 
grown in LB (BD#244620). Cells growth and RNA preps were prepared as previously described 1051 
(see methods section titled: library growth and harvest for expression measurements). Samples 1052 
were prepared using an Illumina TruSeq® Stranded mRNA Library Prep (#20020594) following 1053 
manufacturers protocols to achieve strand-specific coverage. We note that no rRNA depletion 1054 
was performed to preserve the fully intact transcriptional landscape. Samples were submitted to 1055 
the UCLA TCGB sequencing core and sequenced on a Hiseq 4000.  1056 
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Standardizing Promoter Expression Quantification and Activity Thresholding 1057 
 1058 
We processed the TSS, scramble, and peak tiling libraries using the same computational pipeline 1059 
to facilitate comparisons between libraries. First, we use a set of 96 short synthetic positive 1060 
controls, designed to span a range of activity40,96, to fit a robust linear regression (rlm function 1061 
from MASS package) with the TSS library as the reference. Each library is standardized 1062 
independently to the TSS library using the set of positive controls present in both libraries. Next, 1063 
for each library we independently determined the level of background noise based on the median 1064 
of 500 negative controls and subtracted this background from the newly fitted measurements. 1065 
These steps standardize our data so we can train jointly across all datasets.  1066 
 1067 
-10 Motif and -35 Motif characterization 1068 
 1069 
 A position weight matrix from bTSSfinder was used to identify and score the best match to the -1070 
10 and -35 motifs within active tss-associated promoters, inactive tss-associated promoters, and 1071 
a set of 500 negative controls. Best scores were reported regardless of position within the 1072 
sequence. For all pairwise comparisons of active tss-associated promoters, inactive tss-1073 
associated promoters, and the negative controls, the distributions of motif scores were compared 1074 
and a student’s t-test was performed to determine significance. 1075 
 1076 
Genomic fragment processing, alignment and promoter landscape quantification 1077 
 1078 
To calculate fragment expression, we used measurements from DNA-seq and RNA-seq and 1079 
excluded fragments with low expression (< 0.1) or high variance (5-fold difference in relative 1080 
expression between biological replicates). To identify the coordinates of genomic fragments 1081 
assayed using the MPRA, fragment sequences were aligned using bowtie299 (version 2.3.4.3 ). 1082 
To determine nucleotide-resolution calculations for promoter activity, we utilize the script, 1083 
frag_expression_pileup.py. This script outputs WIG files in a strand-specific manner detailing the 1084 
median expression of fragments overlapping each nucleotide position. 1085 
 1086 
Identification of minimal promoter regions 1087 
 1088 
To identify minimal sequences necessary for promoter activity, contiguous stretches of 1089 
candidate promoter region peak tiles were grouped and the minimal shared overlapping region 1090 
was identified. Peak tiles above the expression threshold were identified and grouped together if 1091 
they shared an overlap of at least 110 bp of their 150 bp total length. The minimal region 1092 
necessary for promoter activity was found by determining the overlap of the outermost 1093 
sequences within a contiguous stretch of tiles. 1094 
 1095 
Determining promoter-gene associations 1096 
 1097 
To assign genomic promoter peaks to their regulated genes, peaks were first assigned specific 1098 
nucleotide positions by identifying the maximum activity score within a peak. Promoter peaks 1099 
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were considered intragenic if their maximum scoring nucleotide overlapped with a gene 1100 
coordinate. For peaks whose maximum scoring nucleotides were within intergenic regions, 1101 
regulated genes were assigned by identifying the first downstream gene within 500 bp. Once gene 1102 
associations were identified, promoter peaks were labeled sense or antisense depending on 1103 
whether the regulated gene shared strand orientation with the promoter peak 1104 
 1105 
RNA-Seq alignment and genome transcript coverage  1106 
 1107 
RNA-Seq analysis was performed using the script RNAseq_LB_processing.sh or 1108 
RNAseq_M9_processing.sh. This script trims reads using the trimmomatic software (ver. 1109 
0.36+dfsg-3) and aligned to the MG1655 reference genome (U00096.2) using Hisat2 100 (ver. 1110 
2.1.0-1). Genome nucleotide-resolution coverage was determined using Samtools depth (ver. 1.7-1111 
1). Meta-analysis across gene groups (as in figure 3B), was performed using Deeptools101 (ver. 1112 
2.5.6). Gene expression coverage (as in figure 4B) was calculated using custom script 1113 
wig_over_bed.py, which calculates the total (.wig) coverage across reported E. coli genes. In all 1114 
cases, default parameters were used with the exception of allowing for strand-specific 1115 
quantifications. 1116 
 1117 
Amino acid and codon bias within intragenic promoters 1118 
 1119 
Amino and codon usage was characterized within intragenic promoters and compared to all  E. 1120 
coli coding regions. To identify intragenic promoters, minimal regions necessary for promoter 1121 
activity were identified by cross referencing genomic coordinates to reported genes. Reported 1122 
gene coordinates were acquired from RegulonDB Version 8.083. Once intragenic promoters were 1123 
identified, nucleotide triplets were extracted while conserving the reading frame of the 1124 
overlapping gene. Similarly, nucleotide triplets were extracted from all reported E. coli coding 1125 
regions after filtering out sequences which did not have nucleotide lengths of a multiple of three. 1126 
For these extracted sequences, codon frequencies were normalized to their relative abundance 1127 
compared to other codons encoding the same amino acid. Amino acid frequencies were 1128 
normalized to the total number of amino acids within each group. Significantly enriched or 1129 
depleted codons were identified by performing a chi-squared test within each amino acid group 1130 
and adjusting the p-value using FDR. Significantly enriched or depleted amino acids were 1131 
identified by performing a chi-squared test for each amino acid relative to the total pool of amino 1132 
acids and adjusting the p-value using FDR. 1133 
 1134 
Comparison of condition-dependent promoter and gene activation between rich and minimal 1135 
media 1136 
 1137 
To identify condition specific promoters, coordinates of candidate promoter regions identified in 1138 
both M9 and LB conditions were compared to identify overlaps. Coordinates of promoter peaks 1139 
were cross compared between conditions using the bedtools intersect tool (bedtools v2.27.1) 1140 
and considered unique to a particular condition if they had no overlap between conditions. To 1141 
identify regions that were activated between conditions, we compared the relative promoter 1142 
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activity between conditions at all positions in the genome and identified stretches greater than 1143 
60 bp that exhibited over 2-fold difference in activity. Regions were called using custom script 1144 
run_differential_wig.sh available on the Github repository. To identify genes being expressed by 1145 
differentially active regions, intergenic differentially active regions and matched these to the 1146 
nearest downstream gene within 500 bp. 1147 
 1148 
Identification of SEED subsystem annotations enriched in differentially activated genes 1149 
 1150 
To identify genetic functions associated with condition-dependent genes, the E. coli MG1655 K-1151 
12 genome (Genbank: U00096.2) was annotated using the SEED and RAST webserver 67,68. Genes 1152 
within 500 bp downstream of promoter regions activated by condition were identified and 1153 
associated with activation in LB or minimal media. For each media condition, genes were grouped 1154 
by functional categories and the number of genes for each category was tallied.  1155 
 1156 
Identification of condition dependent TFBSs 1157 
 1158 
The TFBS content of promoter peaks unique to each condition was evaluated by cross-1159 
referencing with TFBSs reported by RegulonDB 83 (Release 8.8). Genomic regions activated in 1160 
each condition were assigned TFBSs based on overlapping genomic coordinates using the 1161 
bedtools intersect tool (bedtools v2.27.1) with default parameters and ignoring strand 1162 
assignments. Incidents of each TFBS overlap were quantified between conditions and normalized 1163 
to incidents per 100,000 bp of promoter peak sequence. 1164 
 1165 
 1166 
Identification of statistically significant scrambling promoter variants  1167 
 1168 
We identified scrambling promoter variants that significantly altered expression compared to the 1169 
wild-type (WT) variant in the script scramble_ttest.Rmd. We considered each scramble and 1170 
barcode combination as an independent observation, rather than summarizing expression as an 1171 
average across all barcodes. A two-sample two-sided Student’s t-test (t.test) was performed to 1172 
test for a significant difference in mean expression levels between barcodes for a scrambled 1173 
variant and barcodes for the corresponding WT variant. We performed multiple testing correction 1174 
and identified 1,885 scrambles that increase expression and 5,408 that decrease expression 1175 
relative to the WT variant, at a false discovery rate of 1%.  1176 
 1177 
Next, bedtools merge was used to merge overlapping adjacent scramble variants to produce 1178 
“merged” scrambles. These merged sites correspond to a continuous scrambled region that 1179 
induced significant changes in expression. We identified 1,414 merged scrambles that increased 1180 
expression and 1,903 merged scrambles that decreased expression, and scrambles were merged 1181 
separately based on effect. 1182 
 1183 
 1184 
 1185 
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Comparison of identified regulatory regions to RegulonDB annotations 1186 
 1187 
We compared our identified merged scramble sites to existing RegulonDB annotations. We used 1188 
bedtools intersect and required that 10% of the TFBS overlapped with a merged scramble site to 1189 
count as an overlap. Next, we assessed whether the expression effect seen in our MPRA agreed 1190 
with the direction of effect of the TFBS as indicated in RegulonDB. A merged scramble site was 1191 
marked as “concordant” if any of the component scrambles agreed with existing annotation, and 1192 
not concordant otherwise. 1193 
 1194 
Machine learning models 1195 
 1196 
We implemented several machine learning models, independently trained for both classification 1197 
and regression. All reproducible code is provided in the Github 1198 
(https://github.com/KosuriLab/ecoli_promoter_mpra.git) and we will briefly describe each model 1199 
and the appropriate parameters or implementation details.  1200 
 1201 
Data processing 1202 
 1203 
We standardized all datasets as detailed above in “Universal Promoter Expression Quantification 1204 
and Activity Thresholding”. Next, we split our data, using custom scripts, into 75%/25% for 1205 
training/testing based on genomic location, ensuring the splits are equidistant from the origin, to 1206 
avoid overfitting (define_genome_splits.py). Briefly, we split the genome into eight chunks, with 1207 
the first and last chunk adjacent to the origin of replication. We designated the second and 1208 
seventh chunk as the test set and remaining chunks as training set. This splitting maintains 1209 
roughly the same distance from the origin between the training and test sets to avoid any potential 1210 
effects of genome location. Many of our library designs include high overlap between adjacent 1211 
positions in the genome. Splitting by genome location mitigates inflated performance due to 1212 
highly similar sequences present in both train and test sets. Across the three libraries (TSS, peak 1213 
tiling, scramble) there are 87,164 training samples and 30,392 test samples.  1214 
 1215 
We trained models for both regression and classification. Our data was skewed toward negative 1216 
examples, with many samples near our determined threshold. For classification, we created a 1217 
buffer around the threshold and only include sequences with expression <= 0.75 as negatives and 1218 
>= 1.25 as positives and labeled sequences as active or inactive. Our training set was reduced to 1219 
53,326 samples and testing set to 18,567 samples. 1220 
 1221 
We used the classification models to predict probabilities, instead of the class, to derive 1222 
precision-recall curves. 1223 
 1224 
Simple model with promoter features 1225 
 1226 
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For the models in this section we created features only for the TSS library because it is closest to 1227 
endogenous sequence and is a smaller dataset. The training and test sets were split by genomic 1228 
location, as described above, with 13,118 training samples and 4549 testing samples. 1229 
 1230 
We created a simple model which incorporates four features related to promoter function. We 1231 
calculated the maximum position weight matrix (PWM) score using motifs from  bTSSfinder102 1232 
for both the -10 and -35 core promoter motifs. We scanned the -10 and -35 PWM individually and 1233 
took the max score at any position using scoring functions from the Bioconductor package 1234 
Biostrings103. Next, we scanned the sequence with -10 and -35 PWM jointly, allowing either 16, 17, 1235 
or 18bp spacing in between the PWMs, reflecting common spacer lengths between core motifs. 1236 
We assigned the “paired” max score as the max score at any position in the sequence across the 1237 
three length options. Finally, we calculated the GC content (percentage) as this has been shown 1238 
to be negatively correlated with promoter strength104. We constructed models in R with these four 1239 
features and fit 1) a linear regression (lm), 2) a linear regression on the log-transformed 1240 
expression values (lm) , and 3) a logistic regression (glm, family = ‘binomial’, type = ‘response’). 1241 
 1242 
We trained the gapped k-mer SVM (gkm-SVM105) model on only the TSS dataset because the 1243 
model is suited for training sets < 20,000. The training and test sets were split by genome position 1244 
as described above. We specified a word length = 10 with 8 informative columns (L = 10, K = 8). 1245 
 1246 
K-mer frequencies and simple models (linear regression, logistic regression, partial least squares 1247 
regression, partial least squares discriminant analysis) 1248 
 1249 
All of the models described in the remaining sections were trained using all three combined 1250 
datasets, as described above. 1251 
 1252 
We created a feature set based on k-mer frequencies, with k-mers ranging in length from 3 to 6-1253 
mers. We generated feature sets and trained models in python. For simpler models we performed 1254 
an additional feature selection step using custom scripts (kmer_feature_generator.py).  1255 
 1256 
We trained four models:  1257 

● linear regression (statsmodel.api.OLS) 1258 
● logistic regression (sklearn.linear_model.LogisticRegression()) 1259 
● partial least squares regression (sklearn.cross_decomposition.PLSRegression()) 1260 
● partial least squares discriminant analysis 1261 

(sklearn.cross_decomposition.PLSRegression() on binary dependent variable) 1262 
 1263 
For each k-mer, we computed the frequency in a set of random genomic sequences, the same 1264 
length and size of the training set. We include a k-mer if the absolute correlation with expression 1265 
is greater than the “random” k-mer frequency, resulting in 4800/5440 filtered k-mers. We chose 1266 
partial least squares regression because it projects the input features onto a new space and is 1267 
better equipped to handle a large number of features with high collinearity. 1268 
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Random forest regression and classification  1269 
 1270 
Next, we trained a random forest, for both regression 1271 
(sklearn.ensemble.RandomForestRegressor()) and classification 1272 
(sklearn.ensemble.RandomForestClassifier()). We train on one-hot encoded DNA as a 1273 
comparison to the neural network model, although random forest is not well suited to categorical 1274 
input features. To compensate for this, we trained the random forest using frequencies of all 6-1275 
mers and observed improved performance. 1276 
 1277 
Multi-layer perceptron and neural networks 1278 
 1279 
We trained a multi-layer perceptron for both regression (sklearn.neural_network.MLPRegressor()) 1280 
and classification (sklearn.neural_network.MLPClassifier()). MLPs are a class of feedforward 1281 
artificial networks and are “vanilla” neural networks consisting of an input layer, hidden layer, and 1282 
output layer. We used two different feature sets: frequency of all 3- to 6-mers and frequency of 1283 
only 6-mers. Feature sets were standardized with sklearn.preprocessing.StandardScaler() to 1284 
remove mean and scale to unit variance. We trained all four models with the following 1285 
parameters: alpha = 0.005, hidden_layer_sizes=(800, 30), solver = ‘lbfgs’, random_state=1, 1286 
max_iter=10000, early_stopping=True, learning_rate=’adaptive’, tol=1e-8.  1287 
 1288 
We trained a convolutional neural network (CNN) on one-hot encoded DNA sequence for both 1289 
regression and classification. We performed hyperparameter tuning and training using 84, a toolkit 1290 
for working with CNNs built on keras. We performed a random hyperparameter search for a three-1291 
layer CNN for 100 combinations and the optimal parameters are listed below. 1292 
 1293 
Regression: 1294 

● Dropout: 0.1340735187802852 1295 
● Pooling width: 16 1296 
● Convolutional filter width (for each layer): 16, 17, 18 1297 
● Number of filters (for each layer): 19, 39, 54 1298 

 1299 
Classification: 1300 

● Dropout: 0.45541334972592196 1301 
● Pooling width: 7 1302 
● Convolutional filter width (for each layer): 8, 29, 29 1303 
● Number of filters (for each layer): 99, 87, 60 1304 

 1305 
 1306 
 1307 
 1308 
 1309 
 1310 
 1311 
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