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Abstract 

Convolutional neural networks currently provide the best models of biological vision. However, 

their decision behavior, including the facts that they are deterministic and use equal number of 

computations for easy and difficult stimuli, differs markedly from human decision-making, thus 

limiting their applicability as models of human perceptual behavior. Here we develop a new 

neural network, RTNet, that generates stochastic decisions and human-like response time (RT) 

distributions, and also reproduces all foundational features of human accuracy, RT, and 

confidence. To test RTNet’s ability to predict human behavior on novel images, we collected 

accuracy, RT, and confidence data from 60 human subjects performing a digit discrimination 

task. We found that the accuracy, RT, and confidence produced by RTNet for individual novel 

images correlated with the same quantities produced by human subjects. Critically, human 

subjects who were more similar to the average human performance were also found to be 

closer to RTNet’s predictions. Overall, RTNet is a promising model of human response times 

that exhibits the critical signatures of perceptual decision making. 
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Introduction 

Traditional cognitive models of perceptual decisions
1,2

 are able to account for the major 

features of human perceptual decision making, but do not operate on the level of images. 

Recently, convolutional neural networks (CNNs) have reached and sometimes exceeded 

human-level performance for novel images
3,4

. In addition, these networks naturally handle 

multi-choice categorization tasks and currently provide the best models of the processing 

related to object recognition in the ventral visual stream of the human brain
3,5,6

. However, 

traditional CNNs’ decision behavior differs markedly from human decision behavior, thus 

limiting their applicability as models of human perceptual decision making. Specifically, unlike 

humans, traditional CNNs are both deterministic (i.e., they always give the same response for a 

given stimulus) and static (i.e., they are invariant in the amount of time spent on processing 

different images and thus always produce the same response time) (Figure 1A). 
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Figure 1. Model architectures. (A) A standard feedforward CNN architecture that consists of an 

input layer, several hidden layers, and an output layer. All images receive the same amount of 

processing and therefore the network cannot account for variable RT. Because all weights are 

fixed, the network is deterministic (i.e., it always arrives at the same response for a given 

stimulus). (B) RTNet architecture. Unlike standard CNNs, the connection weights in RTNet are 

not fixed but are instead each chosen from a distribution. A stimulus is processed multiple 

times by the network, each time using a different set of randomly chosen weights. The 

evidence from each processing step is accumulated and a decision is made when the evidence 

for one of the choice options reaches a predefined threshold. This architecture results in both 

stochastic decisions and variable RT. (C) Parallel cascaded network (CNet) architecture. CNet 

utilizes skip connections to introduce propagation delays between residual blocks (each of 

which consist of two convolutional layers). At each time step, all residual blocks receive inputs 

from lower blocks and actively participate in computations. However, due to propagation 

delays between blocks, earlier blocks achieve stable activations faster, whereas the later blocks 

only receive partial updates from earlier blocks and therefore require multiple processing steps 

to achieve stable activations. For instance, residual block 1 (blue) achieves stable activations at 

time step 1, whereas residual block 3 (purple) requires three time steps to receive complete 

input from all the blocks below and achieve stable output. At any given processing step, the 

network can generate a decision via the readout layer, although if time step is less than the 

number of residual blocks, the decision will be based on partial input in later blocks (D) Multi-

scale dense network (MSDNet) architecture. Similar to a standard feedforward CNN, MSDNet 

has a single input layer and several hidden layers. However, in this network, each hidden layer 

features its own classifier (i.e., its own output layer) allowing MSDNet to make a separate 

decision after the processing in each layer is completed. This allows the network to stop 

processing an image early if that image can already be decoded from earlier layers of the 

network, thus resulting in different RTs for different images (though a given image still always 

produces the same response and RT).  
 

 

Several lines of work have tried to build mechanisms into neural networks to make them 

stochastic and dynamic
7–11

. Early research on shallow multi-layer perceptron (MLP) models was 

able to create models that were both stochastic and dynamic, and were able to explain human 

behavior on simple cognitive tasks
12–14

. However, these models are not image-computable (i.e., 

they cannot handle complex input such as images). More recent work has produced image-

computable dynamic networks capable of generating response times (RTs). In these networks, 

the computational resources utilized for the decision increase with time
7–9

, allowing responses 
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to evolve through each processing step. However, although these networks can mimic the 

speed-accuracy tradeoff (SAT) found in humans, they are deterministic and their internal 

mechanisms are not well supported by existing models of human perception and cognition. 

 

Here we combine modern CNNs with traditional cognitive models to create a model that is 

image-computable, stochastic and dynamic, and can reproduce the critical features of 

perceptual decision making for novel images. The model, which we call RTNet for its ability to 

model human RTs, features a deep convolutional neural network with noisy weights and 

processes a given image several times using a different random sample of these weights in each 

processing step (Figure 1B). These weights are sampled from a Bayesian neural network (BNN) 

that estimates a posterior distribution over the best network parameters learnt during training. 

By varying the weights from one processing step to another, the network’s units produce 

variable responses to the same input that mimic the randomness of neural responses. After 

each processing step, RTNet accumulates the output corresponding to each choice until one of 

the choices reaches a predefined threshold. The model therefore has a strong conceptual 

relationship to race models from the cognitive literature on decision-making, which postulate a 

noisy accumulation process with separate accumulators for each choice
15–17

. By combining the 

image-computability of CNNs with traditional models of perception, we expect RTNet to be 

applicable across a wide range of perceptual tasks as well as reproduce the basic features of 

human perceptual decision making. 
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To assess a model’s ability to make decisions similar to humans, one needs to test whether it 

produces the foundational features of human decision-making
18

. Human perceptual decision 

making has been studied primarily in the context of 2-choice tasks using artificial stimuli such as 

Gabor patches or random dot motion
19

 (although notable exceptions exist where N-choice 

tasks are used
20–23

). Therefore, we first replicate the known decision-making signatures from 

such tasks using an 8-choice task with meaningful images (hand-written digits taken from the 

MNIST dataset
24

). We manipulate 1) task difficulty by adding two different levels of noise to the 

images, and 2) speed-accuracy trade-off (SAT) by asking subjects to emphasize either the 

accuracy or speed of their responses on different trials.  

 

Critically, we test RTNet under the same conditions and with the same images seen by the 

human subjects to explore the model’s capability to produce behavior similar to human agents. 

Beyond testing whether RTNet can reproduce the basic features of human perceptual decision 

making, we also explore whether the accuracy, RT, and confidence produced by RTNet for 

individual images predict the corresponding quantities for humans on the same images. Finally, 

throughout the paper, we compare the behavior of RTNet to that of two other popular dynamic 

CNN models – Parallel Cascaded Networks
7
 (CNet; Figure 1C), which is currently thought to be 

the best image-computable model of human RT
10

, and Multi-Scale Dense Networks
11

 (MSDNet; 

Figure 1D), which implements one of the most common ways for generating RTs in image-

computable models. We find that RTNet’s behavior mimics human perceptual decision making 

better than both of these models.  
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Results 

We collected data from 60 human subjects who performed a digit discrimination task (Figure 

2A). The experiment was a 2 x 2 design with factors of task difficulty (easy vs. difficult images) 

and speed pressure (speed vs. accuracy focus). Each condition consisted of 120 unique images, 

and each subject made a decision regarding each image exactly twice, which allowed us to 

determine the level of stochasticity in human behavior (Figure 2B). Overall, each subject 

completed 960 trials in total. 

 

 

Figure 2. Experiment task. (A) Trial structure. Each trial began with a fixation cross presented 

for 500 to 1000 ms, followed by an image of a hand-written digit from the MNIST dataset 

embedded in noise and presented for 300 ms. Only the digits 1-8 were used. Subjects reported 

their choice and confidence (on a 4-point scale) using separate, untimed button presses. Note 

that the noisy stimulus subtended a visual angle of 6.06° and did not cover the entire screen. 

(B) Experimental design. The experiment included four conditions such that subjects judged 

easy (low noise) or difficult (high noise) images while emphasizing either speed or accuracy. 

Each condition featured 120 unique images that were the same across all subjects (total of 480 

unique images in the experiment). In addition, each image was presented twice to allow the 

estimation of the stochasticity of human perceptual choices. Each subject thus completed a 

total of 960 trials. The images within the first and second sets of presentation were shown in a 

different random order. 
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Having obtained these human data, we compared the human behavior to that of RTNet, CNet 

and MSDNet. Both RTNet and MSDNet were implemented using the eight-layer AlexNet 

architecture with five convolutional layers followed by three fully connected layers
25

. CNet was 

based on the architecture of ResNet18, since the implementation of this model relies on 

residual blocks and skip connections. Given that humans and deep learning models are 

impacted differently by stimulus noise
26,27

, we adjusted the noise levels of the images seen by 

each network to match their overall accuracy to the accuracy produced by the human subjects. 

In addition, to allow the networks to reproduce the speed-accuracy trade-off observed in the 

human data, we adjusted the threshold value that triggers a decision for each model as to 

match the human accuracy separately in the speed- and accuracy-focused conditions. To 

improve the correspondence between the model predictions and the human data, we trained 

60 instances of each model (by only changing the initial parameters before training began) and 

analyzed the data produced by these 60 instances in equivalent manner to the 60 human 

subjects. 

 

Signatures of human decision-making 

We examined six foundational signatures of human perceptual decision making that have 

already been established in studies of 2-choice tasks: 1) Human decisions are stochastic, 

meaning that the same stimulus can elicit different responses on different trials
28,29

, 2) 

increasing speed stress shortens RT but decreases accuracy (speed-accuracy trade-off)
18,30,31

, 3) 

more difficult decisions lead to reduced accuracy and longer RT
18,32,33

, 4) RT distributions are 

right-skewed, and this skew increases with task difficulty
18

, 5) RT is lower for correct than for 
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error trials
33–37

, and 6) confidence is higher for correct than for error trials
38

. For each of these 

signatures, we confirmed that the signature also occurs for our 8-choice task with naturalistic 

images, and then tested whether RTNet, CNet and MSDNet exhibit the same signature. 

 

Stochasticity of human decisions 

A central feature of human behavior is that human decisions are stochastic such that the same 

stimulus can elicit different responses on different trials
28,29,39

. We quantified the level of 

stochasticity in each condition by presenting each image twice. On average across all 

conditions, 36% of all images received different responses on the two presentations (one-

sample t-test: t(59) = 36.78, p < 0.0001) (Figure 3A). A repeated measures ANOVA with factors 

stimulus difficulty (easy vs. difficult) and SAT (speed vs. accuracy stress) revealed that 

stochasticity increased with both higher task difficulty (F(1,63) = 871.87, p < 0.0001) and higher 

speed pressure (F(1,63) = 9.14, p = 0.0036). 
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Figure 3. Decision stochasticity in humans and all networks. Stochasticity of decisions made by 

(A) humans, (B) RTNet, and (C) CNet and (D) MSDNet. Warm colors indicate that the same 

response was given both times an image was presented (whether the response was correct or 

incorrect), whereas cool colors indicate that different responses were given for the two image 

presentations (whether or not any of them was correct). Humans and RTNet exhibit stochastic 

decision-making with stochasticity increasing with task difficulty and speed stress. However, 

CNet and MSDNet in their standard versions are fully deterministic. In the legend, "consistent 

(two correct)” refers to instances when the correct responses was given for both presentations 

of a given image, “consistent (zero correct)” refers to instances when the same incorrect choice 

was made both times, “inconsistent (one correct)” refers to instances when only one of the 

Stochasticity in human decisions

Stochasticity in RTNet decisions

Stochasticity in CNet decisions

Stochasticity in MSDNet decisions

Easy + Accuracy focus Easy + Speed focus Difficult + Accuracy focus Difficult + Speed focus

Easy + Accuracy focus Easy + Speed focus Difficult + Accuracy focus Difficult + Speed focus

Easy + Accuracy focus Easy + Speed focus Difficult + Accuracy focus Difficult + Speed focus

Easy + Accuracy focus Easy + Speed focus Difficult + Accuracy focus Difficult + Speed focus

A)

B)

C)

D)
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choices was correct, “inconsistent (zero correct)” refers to instances where different incorrect 

choices were made each time.  

 

Due to the fact that RTNet uses a random sample of weights for each processing step, it 

naturally produces stochastic decisions too. On average across all conditions, RTNet produced 

different responses on the two image presentations on 20% of trials (t(59) = 32.65, p < 0.0001; 

Figure 3B). This level of stochasticity was lower than for human subjects and stems from the 

fact that the variability in the weights was fixed a priori by training a Bayesian neural network. 

However, increasing the variability of the weights can increase the stochasticity of the decisions 

made by RTNet. Further, the stochasticity in human decisions partially stems from factors such 

as fluctuations in attention, arousal, or serial dependence
28,29,39,40

, which we did not attempt to 

model. Because of these considerations, we did not try to match RTNet to the exact level of 

human decision stochasticity observed in the data. Critically, however, RTNet exhibited the 

same features such that stochasticity increased with higher task difficulty (F(1,59) = 120.12, p < 

0.0001) and higher speed stress (F(1,59) = 87.73, p < 0.0001). On the other hand, for a fixed 

level of speed-accuracy trade-off, both CNet and MSDNet are fully deterministic and should not 

exhibit any decision stochasticity, which we confirmed in our simulations (Figure 3C,D). We 

note that it should be possible to add noise in the weights of these models to induce stochastic 

decisions, but such noise would decrease their accuracy much more than it affects RTNet given 

that only RTNet is able to average out the noise over repeated processing steps. 

 

Speed-accuracy trade-off 
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The ability to trade off speed and accuracy against each other is a hallmark of decision-making 

across humans and many other animal species
30,31

. The human data confirmed that increased 

speed pressure led to lower accuracy (F(1,59) = 4.27, p = 0.0431; Figure 4A) and shorter RTs 

(F(1,59) = 119.29, p < 0.0001; Figure 4B). All models were able to replicate this pattern. 

Specifically, increased speed pressure resulted in lower accuracy for RTNet (F(1,59) = 9.68, p = 

0.0029), CNet (F(1,59) = 50.03 , p < 0.0001), and MSDNet (F(1,59) = 21.84 , p < 0.0001). 

Increased speed pressure also led to shorter RTs for RTNet (F(1,59) = 3362.57, p < 0.0001), CNet 

(F(1,59) = 695.88, p < 0.0001), and MSDNet (F(1,59) = 584.08, p < 0.0001). These results indicate 

that speed-accuracy trade-off is robustly observed even for relatively complex task with 

naturalistic images, and that all three models examined here exhibit this foundational 

phenomenon.  
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Figure 4. Behavioral effects shown by human subjects and the models. (A) Accuracy for 

humans decreases when response speed is emphasized as well as for more difficult decisions. 

Both effects are exhibited by all the networks. (B) RT for humans becomes shorter when 

response speed is emphasized, as well as for easier decisions. Both effects are also exhibited 

robustly by RTNet. However, while both CNet and MSDNet produced a robust effect for the 

speed manipulation, they exhibited much smaller effects for the difficulty manipulation. (C) RT 

distributions for a representative subject/model. (D) The skewness of RT distributions change 

across conditions. For humans and RTNet, the skewness of the RT distributions was higher for 

easier tasks and for accuracy focus. However, while CNet showed the same effect for the 

difficulty manipulation, it failed to demonstrate skewness differences for the SAT manipulation. 

On the other hand, MSDNet showed the same effect for accuracy focus, but failed to exhibit 

skewness differences between easy and difficult decisions. (E) For humans, RTNet and CNet, 

error trials were associated with higher RT than correct trials. However, MSDNet showed the 

opposite pattern such that correct trials were associated with longer processing time. (F) 

Confidence for correct trials was higher than confidence for error trials for humans and all 

networks. For all panels, dots represent individual subjects; error bars show SEM; *p<0.05; 

**p<0.01; ***p<0.001, ****p<0.0001; n.s., not significant. 

 

More difficult decisions lead to reduced accuracy and longer RT  

Another ubiquitous feature of decision-making is that more difficult stimuli lead to lower 

accuracy and longer RT
18,41

. Our human data robustly showed this effect with more difficult 

stimuli leading to lower accuracy (F(1,59) = 1558.50, p < 0.0001; Figure 4A) and longer RT 

(F(1,59) = 411.15, p < 0.0001; Figure 4B). The same pattern was robustly observed for RTNet, 

where difficult stimuli led to lower accuracy (F(1,59) = 218.51, p < 0.0001) but longer RT (F(1,59) 

= 223.45, p < 0.0001). However, while CNet and MSDNet also showed a very robust effect on 

accuracy (CNet: F(1,59) = 1116.80, p < 0.0001; MSDNet: F(1,59) = 247.52, p < 0.0001), they 

exhibited a smaller effect for RT (CNet: F(1,59) = 6.17, p = 0.0158; MSDNet: F(1,59) = 11.07, p = 

0.0015). Indeed, out of the 60 model instances, only 23 CNet instances and 36 MSDNet 

instances exhibited an RT increase for more difficult stimuli, while this effect was present in 

60/60 human subjects and 58/60 RTNet instances. These results indicate that the effect of task 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2022.08.23.505015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

difficulty on accuracy is exhibited robustly in humans and all networks, but the effect of task 

difficulty on RT is larger for humans and RTNet compared to CNet and MSDNet.  

 

Skewness of RT distributions 

For simple 2-choice decisions, human RT distributions are generally positively skewed and the 

skewness changes as a function of task conditions
2,18

. Our 8-choice task produced RT 

distributions that closely resemble what is observed in standard 2-choice tasks (Figure 4C). 

Similar-looking RT distributions were produced by RTNet but MSDNet produced RT distributions 

that, while still right-skewed, exhibited a much sharper drop-off after their peak (Figure 4C). We 

further assessed how the skewness of the RT distributions changed under different conditions. 

We found higher skewness for accuracy compared to speed focus (F(1,59) = 32.84, p < 0.0001), 

as well as for easy compared to difficult stimuli (F(1,59) = 5.10, p = 0.0277; Figure 4D). RTNet 

exhibited the same pattern with skewness increasing with a focus on accuracy (F(1,59) = 15.32, 

p = 0.0002) and with easier stimuli (F(1,59) = 84.50, p < 0.0001). For CNet, we found no 

difference in skewness of RT distributions between the SAT conditions (F(1,59) = 1.05, p = 0.31), 

but skewness increased for easy compared to difficult stimuli (F(1,59) = 8.02, p = 0.006). On the 

other hand, while MSDNet showed an increase in skewness with a focus on accuracy (F(1,59) = 

52.75, p < 0.0001), it produced RT distributions that did not significantly differ in skewness 

between the task difficulty conditions (F(1,59) = 0.72, p = 0.40). Overall, RTNet produced RT 

distributions which reflected the observed patterns in human data better than both Cnet and 

MSDNet. It should be noted that Cnet and MSDNet can only produce distinct RTs that are less 

than or equal to its layer numbers, which may affect their ability to reproduce human RT 
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distributions unless a relatively high number of layers is used. On the other hand, RTNet is 

capable of going through arbitrary number of samples regardless of the number of layers in its 

architecture. 

 

RT is faster for correct compared to error trials 

Another ubiquitous feature of human behavior in 2-choice tasks is that correct decisions are 

typically accompanied by faster RTs than incorrect decisions
33–37

. We replicated this effect in 

our 8-choice task (F(1,59) = 82.08, p < 0.0001; Figure 4E). The same difference between correct 

and error RTs also emerged for RTNet (F(1,59) = 831.15, p < 0.0001) and Cnet (F(1,59) = 83.92, p 

< 0.0001). However, MSDNet exhibited the opposite pattern such that RTs were faster for error 

compared to correct trials (F(1,59) = 65.70, p < 0.0001). This behavior is due to the fact that 

errors produced by MSDNet come mostly from decisions made in earlier layers. It may be 

possible to reverse this behavior by using a much more conservative decision threshold in the 

early compared to the late layers of MSDNet, though the effectiveness of this strategy and its 

effect on all other behavioral signatures examined here would need to be tested. What is clear 

is that MSDNet in its current form makes a qualitatively wrong prediction regarding the 

difference between correct and error RT, whereas RTNet and Cnet naturally reproduce the 

empirical effect. 

 

Confidence is higher for correct than error trials 

Finally, a ubiquitous feature of confidence ratings is that they are higher for correct compared 

to incorrect decisions
38,42

. Our human data replicated this effect (F(1,59) = 472.17, p < 0.0001; 
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Figure 4F). The effect was also robustly exhibited by all three networks: RTNet (F(1,59) = 

966.80, p < 0.0001), Cnet (F(1,59) = 785.99, p < 0.0001) and MSDNet (F(1,59) = 131.92, p < 

0.0001). Therefore, humans and all networks robustly showed higher confidence for correct 

trials compared to incorrect trials.  

 

Model predictions for accuracy, RT, and confidence for individual images 

The results above demonstrate that RTNet is able to reproduce all foundational features of 

human decision-making. On the other hand, both CNet and MSDNet fail to exhibit stochastic 

decisions and skewness difference in RT distributions between the SAT/difficulty conditions, 

and MSDNet further fails to account for lower RT for correct decisions. However, RTNet’s ability 

in those respects can easily be matched by traditional cognitive models that do not work on 

image-level data
16,34,43

. Therefore, a critical advantage of RTNet over traditional cognitive 

models would be the ability to predict human behavior for individual, unseen images because 

traditional models cannot do that. Here we tested specifically whether the accuracy, RT, and 

confidence for unseen images produced by RTNet, CNet and MSDNet predict the same 

quantities in humans. 

 

Model predictions across all conditions for individual subjects 

In a first set of analyses, we assessed the correlations between the accuracy, RT, and 

confidence for each human subject and the corresponding quantities predicted by RTNet, CNet 

and MSDNet across all four conditions (easy with speed stress, difficult with speed stress, easy 

with accuracy stress, difficult with accuracy stress). We compared how well data from individual 
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human subjects could be predicted by RTNet, CNet, MSDNet, as well as from the data from the 

59 remaining human subjects. This last quantity, which we call subject-to-group relationship, 

provides an estimate of the noise ceiling (i.e., the performance that a true model could achieve 

given inter-subject variability)
44

.  

 

We found that all models predicted individual human data much better than chance for 

accuracy, RT and confidence (all p’s < 0.0001). However, RTNet provided substantially better 

predictions than both other models (Figure 5). This was true for accuracy (Difference with CNet: 

t(59) = 18.63, p < 0.0001; Difference with MSDNet: t(59) = 13.31, p < 0.0001), RT (Difference 

with CNet: t(59) = 30.67, p < 0.0001; Difference with MSDNet: t(59) = 30.67, p < 0.0001), and 

confidence (Difference with CNet: t(59) = 8.39, p < 0.0001; Difference with MSDNet: t(59) = 

7.68, p < 0.0001). 

 

 
Figure 5. Image-by-image correlation between human data and each model across all 

experimental conditions for individual subjects. Correlation between data from individual 

human subjects and the group average/RTNet/CNet/MSDNet for accuracy, RT, and confidence 

across all conditions. The strength of correlation is stronger for RTNet than CNet or MSDNet for 

each measure. The subject-to-group correlation provides an estimate of the noise ceiling for 

the correlations. Dots represent individual subjects; error bars show SEM; ****p<0.0001. 

Accuracy RT Confidence
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44

 

Critically, RTNet’s predictions were reasonably close to the noise ceiling in all cases (calculated 

as the average subject-to-group correlation in the human data). Specifically, RTNet’s predictions 

were within 62.5%, 79.6%, and 64.8% of the noise ceiling for accuracy, RT and confidence, 

respectively. These numbers were substantially lower for CNet (16.1%, 20.3%, 40.5%, 

respectively) and MSDNet (16.1%, 50%, and 51.3%, respectively). Thus, by reaching to between 

62.5% and 79.6% of the noise ceiling, RTNet can provide excellent predictions for the accuracy, 

RT, and confidence produced by human subjects for images that the model was not trained on. 

Additionally, we derived the model predictions for averages across the 60 subjects across all 

conditions (Supplementary Figure 1) and found that RTNet predicts average human accuracy 

and RT better than the other networks. 

 

Model predictions within each condition separately 

The analyses above explored the correlations between model predictions and human behavior 

across all experimental conditions. Because different conditions vary in their average accuracy, 

RT, and confidence, analyses across conditions are likely to produce higher correlations than if 

the same analyses are to be performed within each condition separately. Therefore, we 

repeated the analyses above but within each of the four conditions separately to investigate if 

the two models can still account for accuracy, RT, and confidence on individual images. We 

found that RTNet and MSDNet produced accuracy, RT, and confidence predictions that 

significantly correlate with individual subject data in all conditions (all p’s < 0.0001; Figure 6). 
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However, for the RT predictions produced by CNet for all conditions except speed focus with 

easy images, the correlations were either zero or negative (p’s > 0.62).  
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Figure 6. Image-by-image correlation between human data and each within each 

experimental condition. Correlation between data from individual human subjects and the 

group average/RTNet/CNet/MSDNet for accuracy, RT, and confidence within each experimental 

condition – A) speed focus; easy, B) speed focus; difficult, C) accuracy focus; easy, D) accuracy 

focus; difficult. The strength of correlation is significantly stronger for RTNet than CNet in eight 

out of the 12 comparisons and seven out of 12 comparisons for MSDNet; RTNet never exhibits 

significantly weaker correlations than either CNet or MSDNet. For all panels, dots represent 

individual subjects; error bars show SEM; *p<0.05; **p<0.01; ***p<0.001, ****p<0.0001; n.s., 

not significant. 

 

Critically, however, RTNet predicted the individual data significantly better than CNet in two out 

of four conditions for accuracy (all p’s < 0.001), in all four conditions for RT (all p’s < 0.0001) and 

in two out of four conditions for confidence (p < 0.005). Compared to MSDNet, RTNet predicted 

the individual data significantly better in three out of four conditions for accuracy (all three p’s 

< 0.001) and in all four conditions for RT (all p’s < 0. 02). However, there was no significant 

difference in correlations for confidence predictions between RTNet and MSDNet for any of the 

confidence conditions (all p’s > 0.05). RTNet was never significantly worse than either CNet or 

MSDNet in predicting any of the 12 conditions. Overall, these results demonstrate that RTNet 

predicts human behavior well across all three measures and across different types of analyses 

(across- or within-condition), and does so better than CNet and MSDNet. 

 

Humans who are more similar to the group average are also more similar to RTNet 

Our subject-to-group analyses revealed substantial variability in how well individual subjects’ 

data corresponded to the group average (see Figure 5). Since the group average constitutes the 

best model of human behavior, this variability indicates that different individuals deviate 

differently from the best model. Therefore, one would expect that the strength of the 

relationship for an individual subject and the group would be linked to the strength of the 
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relationship of that same subject and any good model of behavior. Here we tested if such 

dependency holds true for RTNet, CNet and MSDNet. We found that subjects who exhibited 

greater correlation in image-by-image accuracy across all conditions with rest of the group also 

exhibited greater correlation with the RTNet predictions (r = 0.69, p < 0.0001; Figure 7A). The 

same correspondence also emerged for RT (r = 0.83, p < 0.0001) and confidence (r = 0.89, p < 

0.0001). Similar results were obtained for CNet (Accuracy: r = 0.39, p < 0.0001; RT: r = 0.80, p < 

0.0001; Confidence: r = 0.85, p < 0.0001; Figure 7B) and MSDNet (Accuracy: r = 0.39, p < 0.0001; 

RT: r = 0.43, p < 0.0001; Confidence: r = 0.64, p < 0.0001; Figure 7C), demonstrating that all 

three models predict better the data from individuals who behave more similarly to the rest of 

the group. Nevertheless, all correlations were highest for RTNet compared to CNet and 

MSDNet.  
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Figure 7. Humans who are more similar to the group average are also more similar to each 

model. (A) We observed a strong positive correlation between the subject-to-group and 

subject-to-RTNet similarity values for accuracy, RT, and confidence. This indicates that 

individual subjects whose behavior was more similar to the group average on per image basis 

were also more similar to the predictions made by RTNet. (B,C) Similar results were also 

observed for CNet and MSDNet, although these correlations tended to be lower than for RTNet. 

(D) Comparison between individual subjects and the models in predicting the group data. RTNet 

significantly outperformed individual human subjects in predicting group accuracy, RT, and 

confidence. On the other hand, CNet and MSDNet were worse than individual humans in 

predicting accuracy and RT, but MSDNet was better at predicting confidence. For all panels, 

dots represent individual subjects; error bars show SEM; *p<0.05; **p<0.01; ***p<0.001, 

****p<0.0001; n.s., not significant. 

 

Given the variability in how similar individual subjects were to the group data, we also explored 

how well RTNet, CNet and MSDNet compare to the ability of individual subjects to predict the 

group data. We found that RTNet outperformed individual human subjects in predicting the 

accuracy (t(59) = 4.08, p = 0.0001), RT (t(59) = 16.17, p < 0.0001), and confidence (t(59) = 10.92, 

p < 0.0001) of the rest of group across all conditions (Figure 7D). Impressively, RTNet 

outperformed every individual human subject in predicting the group RT and confidence 

results, as well as 73.3% of individual subjects in predicting accuracy. On the other hand, CNet 

and MSDNet performed significantly worse than individual humans in predicting accuracy 

(CNet: t(59) = -42.42, p < 0.0001; MSDNet: t(59) = -42.42, p < 0.0001) and RT (CNet: t(59) = -

25.43, p < 0.0001; MSDNet: t(59) = -4.01, p = 0.0002) of the group. However, CNet was not 

significantly worse than individual humans in predicting confidence (t(59) = -0.36, p = 0.71), 

whereas MSDNet predicted the group confidence results better than most humans (t(59) = 

5.26, p < 0.0001). In sum, RTNet outperformed most individual subjects in predicting the group 

data for accuracy, RT, and confidence, but this was not true for CNet or MSDNet. 
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Discussion 

There is considerable interest in using neural networks as models of human visual processing 

and behavior, but relatively little work has been done on testing the extent to which existing 

image-computable models reproduce the full range of behavioral signatures exhibited by 

humans. Here we show that the current state-of-the-art neural networks such as Parallel 

Cascaded Networks (CNet) and Multi-scale Dense Networks (MSDNet) diverge in several ways 

from human behavior. Further, we develop a new neural network, RTNet, that exhibits all 

critical features of human perceptual decision making, including effects on accuracy, RT, and 

confidence. Further, RTNet predicted well human group behavior for novel images and did so 

better than both CNet and MSDNet, as well as better than individual human subjects. Finally, 

individual humans who were more similar to the group were also more similar to RTNet. 

Overall, RTNet provides the best current image-computable model of human accuracy, RT, and 

confidence.  

 

Relationship between RTNet and cognitive models of perceptual decision making 

RTNet is the first neural network to exhibit all critical signatures of human perceptual decision 

making. This success, however, is hardly surprising given the strong conceptual similarity 

between RTNet and traditional cognitive models of decision-making that also exhibit the 

signatures of human behavior
16,18,32,43,45

. These models are often referred to as sequential 

sampling models where (usually noisy) evidence is accumulated over time until a threshold is 

reached. The most common sequential sampling models are diffusion models, which are 

typically only applied to 2-choice tasks where evidence in favor of one response alternative is 
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also evidence against the other alternative
1,32

. Instead, RTNet is conceptually more similar to 

another subgroup of sequential sampling models called race models where each choice option 

has its own accumulation system and evidence for each choice is accumulated in parallel
34,46

.  

 

Despite their conceptual similarity, RTNet has two important advantages over traditional 

cognitive models. Most importantly, RTNet is image-computable and can be applied to actual 

images, whereas traditional models cannot. As such, traditional models cannot replicate 

RTNet’s ability to make accurate predictions regarding human accuracy, RT, and confidence for 

individual unseen images. The second advantage stems from the inability of traditional 

cognitive models to naturally capture the relationships between the different choice options. 

Specifically, to maintain a low number of free parameters, cognitive models are often fit with 

the assumption that evidence accumulates at the same rate for all incorrect choice options (but 

accumulates faster for the correct choice)
47

. However, this assumption ignores the fact that 

some incorrect options may be more similar to the correct option and thus are more likely than 

other options to be chosen. While dependencies between the choices can easily be 

incorporated in cognitive models, that would result in a large number of free parameters that 

would make fitting to data difficult. Conversely, RTNet inherently learns all relationships 

between the choice options during the training of the Bayesian neural network that forms its 

core. RTNet still requires the fitting of the overall signal strength (which we accomplish by 

adjusting the noise level of the images fed to RTNet), but this single free parameter allows it to 

capture all choice option dependencies, something that traditional models cannot achieve.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2022.08.23.505015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

Biological plausibility of neural network models of response time 

Physiological recordings have uncovered several features of the processing in the human visual 

system that are relevant to judging the plausibility of the networks examined here. First, the 

conduction from one area to another in the visual cortex (roughly corresponding to different 

layers in neural networks) takes approximately 10 ms
48

, with signal from the photoreceptors 

reaching the top of the visual hierarchy in inferior temporal cortex in 70-100 ms
49

. Therefore, a 

single sweep from input to output in a purely feedforward network should result in decisions 

with RT less than a few hundred milliseconds even though human decisions can range from a 

hundred of milliseconds to a few seconds. Second, neurons in each layer of the visual cortex 

continue to fire action potentials for hundreds of milliseconds after the stimulus onset and 

receive strong recurrent input from later layers of processing
50

. Finally, neuronal processing is 

known to be noisy such that the same image input generates very different neuronal 

activations on different trials
29

. 

 

MSDNet diverges from these known properties of the human visual cortex in several important 

ways. To generate meaningful RTs, MSDNet assumes that classification decisions are made 

after each layer of processing, though there is no evidence that decisions in the brain can be 

directly based on information in early visual cortex without further processing in subsequent 

layers. Moreover, because it assumes the existence of a single feedforward sweep through the 

network, it cannot naturally capture large RT variability between stimuli given the short 

latencies of processing between different layers. Finally, MSDNet does not incorporate any 

recurrent processing, capture the noisiness of the responses in the visual cortex, or replicate 
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the long periods of activity of the neurons in each processing area. These properties strongly 

limit the biological plausibility of MSDNet.  

 

In comparison, the dynamics of CNet are closer to those of biological neural networks. Indeed, 

several of CNet’s features – such as parallel and continuous processing of input, and 

transmission delays between layers – were directly inspired by biology. The transmission delays 

allow the network to mimic the processing latencies across cortical layers. These features were 

also found to account for differences in processing efficiency between images such that CNet 

produced more rapid responses for prototypical images with clear backgrounds compare to 

unusual or cluttered images. However, CNet includes several features that are not biologically 

plausible such as its lack of stochasticity of decisions and recurrent processing. Further, it 

remains unclear how its cascaded architecture could map onto brain areas
10

.  

 

It is possible to introduce stochasticity in CNet and MSDNet by feeding the outputs of the final 

softmax layer into a race model. However, such an architecture would imply that response 

stochasticity arises purely from noise in the decision stage. Although decision noise may exist in 

humans contributing to noisy motor responses, stochasticity in human responses is thought to 

predominantly arise from noisy inference
21 

or noisy sensory representations
51–53

. Therefore, 

CNNs with additional noise at the decision stage are less biologically plausible than RTNet, 

which includes noise in the evidence processing stage.  
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On the other hand, while also not capturing all properties of visual processing, RTNet appears 

more biologically plausible. First, it mimics the noisiness of neuronal responses for repeated 

presentations of the same stimulus. Second, because RTNet processes each stimulus multiple 

times, it naturally generates long-lasting neuronal activations and RTs on the order of many 

hundreds of milliseconds (or even seconds). Third, the network’s output is inherently 

stochastic, unlike feedforward networks or MSDNet and CNet that are inherently deterministic. 

Finally, the accumulation process implemented in RTNet has been observed in multiple regions 

in the human parietal cortex, frontal cortex, and subcortical areas
54–57

. Nevertheless, one 

critical limitation of the biological plausibility of RTNet is its lack of recurrency. That being said, 

the question of how to train recurrent neural networks on static images remains open
44,49,58–60

. 

Further, while the core of RTNet does not include recurrency, the evidence accumulation 

system can be thought of as a recurrent network. In fact, several recent studies demonstrated 

the advantages of combining a standard feedforward network with a recurrent network in 

performing a range of tasks and extrapolating to solve problems of greater complexity than 

they were trained on
61,62

. Thus, while RTNet remains less biologically plausible than a true 

recurrent network, it is as biologically plausible as current methods of training neural networks 

permit. 

 

Using noisy weights to generate stochasticity in RTNet’s responses 

One critical feature of RTNet is that its weights are noisy. Practically, there are many different 

ways of generating noise in the weights. In early iterations of RTNet, we attempted to create 

variability by training a feedforward network and then adding the same amount of variability to 
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each connection. This approach resulted in variability that was too small for some weights and 

too large for others
63

, often leading to no accuracy gains from the process of evidence 

accumulation. Indeed, a given amount of noise over a specific weight may not change the 

performance of a network at all, but the same disturbance over another weight may have 

destructive effects
64–66

. We therefore chose to obtain the weight variability by training a 

Bayesian neural network so that each weight has an appropriate amount of noise. In the future, 

it may be possible to use other methods for setting the noise level for each connection, but we 

are currently unaware of any method besides training a Bayesian neural network that can 

generate appropriate noise for each weight.  

 

RTNet assumes that every time evidence is sampled from a stimulus, the network’s weights 

change randomly (according to the BNN’s posterior weight distributions). These random 

moment-by-moment fluctuations in the network’s weights lead to noisy activations. However, 

in the brain, noisy activations in response to a stimulus are thought to arise from random 

fluctuations in neuronal activity itself. Therefore, it can be argued that a more biologically 

plausible implementation of RTNet would involve noise in unit activations rather than 

weights
67

. The main reason we chose to add noise in weights rather than activations is due to 

the practical ease of implementing BNNs that can naturally generate variability in networks. 

Mechanistically, however, there may be no meaningful distinction between noisy weights and 

noisy activations, since noisy weights lead to noisy activations, which mimic the randomness of 

neural responses.  
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Limitations 

One limitation of RTNet is that its mechanism for stopping the accumulation process is non-

optimal. Following a large literature of race models in cognitive psychology
16,34,47

, RTNet makes 

a decision when any one choice option receives sufficient evidence to exceed a threshold. 

However, if another choice option has almost same amount of evidence, the observer has little 

ability to differentiate between the two choices and is essentially guessing between them. 

Previous research showed that guessing can be an appropriate behavior if the observer knows 

that the task is very difficult
68

 or if the observer has been deliberating for a long time
69

. 

However, in a race model, guessing can happen at any time point regardless of task difficulty. 

Nevertheless, human decisions are often suboptimal
70,71

, and therefore it is unclear as to 

whether this suboptimal decision-making mechanism should be seen as a drawback if the goal 

is to model human decision-making. 

 

Another limitation of RTNet is that each sweep of the feedforward path is independent of the 

previous states, whereas the current state in the human brain is influenced by its previous 

states
58

. To address this limitation, the sampling process in RTNet can be modified such that the 

current state of the network depends on the previous states. For example, a weight over an 

edge at a specific moment can be made a function of its previous values, which would make the 

sequential samples dependent on each other. Additional studies are needed to investigate the 

effect of such state dependence on model performance. 

 

Conclusion 
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We developed a new neural network, RTNet, which exhibits the basic features of human 

perceptual decision making and predicts human accuracy, RT, and confidence on an image-by-

image basis. The network provides a better model of human perceptual decisions than the 

current state-of-the-art networks for generating response times – CNet and MSDNet. RTNet 

thus represents an important step in the use of neural networks as models of human decisions. 
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Methods 

Behavioral experiment 

Pre-registration 

This study’s sample size, experiment design, included variables, hypothesis, and planned 

analyses were pre-registered on Open Science Framework (https://osf.io/kmraq) prior to any 

data being collected.  

 

Subjects 

Sixty-four subjects (31 female, age=18-32) with normal or corrected to normal vision were 

recruited. We had pre-registered the collection of only 40 subjects, but due to less time 

restrictions than we had anticipated, and to further increase the statistical power, we collected 

data from more subjects. All subjects signed informed consent and were compensated for their 

participation. The protocol was approved by the Georgia Institute of Technology Institutional 

Review Board. All methods were carried out in accordance with relevant guidelines and 

regulations.  

 

Stimulus, task, and procedure 

Subjects performed a digit discrimination task where they reported their perceived digit 

followed by rating their decision confidence. Each trial began with subjects fixating on a small 

white cross for 500-1000 ms, followed by a presentation of the stimulus for 300 ms (Figure 2). 

The stimulus was a digit between 1 and 8 (the digits 0 and 9 were excluded) superimposed on a 

noisy background. Subjects’ task was to report the perceived digit using a computer keyboard 
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by placing four fingers of their left hand on numbers 1-4 and placing four fingers of their right 

hand on numbers 5-8. This setup allowed subjects to respond without looking at the keyboard, 

thus providing less noisy response times. Following their categorization response, subjects 

reported their decision confidence on a 4-point scale (where 1 corresponds to the lowest 

confidence and 4 corresponds to the highest confidence). There was no deadline on the 

response or confidence rating.  

 

The experiment included manipulations of speed-accuracy trade-off and task difficulty. Speed-

accuracy trade-off was manipulated by asking subjects to emphasize either the speed or 

accuracy of their responses. To facilitate proper responding, we organized the experiment into 

alternating blocks of speed and accuracy focus. Task difficulty was manipulated by adding 

different levels of uniform noise to the stimuli. Specifically, “easy” stimuli included average 

uniform noise of 0.25 (range = 0-0.5), whereas “difficult” stimuli included average uniform 

noise of 0.4 (range = 0-0.8). To add the noise, the pixel values were first transformed to be 

between 0 and 1 and random numbers drawn from the corresponding noise distributions were 

added separately to each pixel. We scaled the resulting image to be between 0 and 1 again, and 

finally converted the image to a uint8 format (scaled between 0 and 255). The noise levels were 

chosen based on the pilot testing to produce two different performance levels. Easy and 

difficult images were randomly interleaved. 

 

The task stimuli were selected from a publicly available handwritten digits (MNIST) dataset
24

. 

This dataset contains 60,000 training images and 10,000 testing images. Since the training 
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images were used to train the models in this study, we randomly selected images from MNIST 

test set to include in our experiment. This ensures that the selected images for the experiment 

are novel both for the human subjects and for the trained models. We randomly selected 480 

images for the experiment (120 for each condition). The MNIST dataset images are of size 28 x 

28 pixels which appeared overly small on the computer screens we were using. Therefore, 

before adding noise, the selected images were first resized to 84 x 84 pixels (using MATLAB’s 

imresize function), and they were padded with the background color of MNIST images to size 

256 x 256 pixels (visual angle = 6.06°).  

 

The experiment started with three blocks of training each containing 50 trials. The first block 

contained images from the MNIST dataset without any noise. This was done to familiarize the 

subjects with the experiment. The next two blocks were used to introduce the speed-accuracy 

trade-off by asking subjects to focus on accuracy in the first block and on speed in the second. 

The difficulty level of the stimuli in these two training blocks was same as in the main 

experiment. During the whole training session, the experimenter was standing beside the 

subject quietly and was available to answer any questions. None of the images used in the 

training session was used in the main experiment.  

 

Once the subject confirmed that he or she understands the task, the experimenter left the 

room and subjects completed the main experiment that consisted of 960 trials organized in 

four runs each containing four blocks of 60 trials. Each block consisted of a single speed-

accuracy trade-off condition, and each run included exactly two “accuracy focus” and two 
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“speed focus” conditions in a randomized order. At the beginning of each block, subjects were 

given the name of the condition for that block (“accuracy focus” or “speed focus”) and asked to 

adjust their responding policy accordingly. In each block, we pseudo-randomly interleaved trials 

from the two difficulty levels such that each was presented exactly 30 times. All 480 images 

were shown to subjects in first two runs and the procedure was repeated with a new random 

ordering of the stimuli in the last two runs. All images were same for all subjects, and each 

image was assigned only to one specific condition. 

 

Apparatus 

The experiment was designed in MATLAB 2020b environment using Psychtoolbox 3
72

. The 

stimuli were presented on a 21.5-inch Dell P2217H monitor (1920 x 1080 pixel resolution, 60 Hz 

refresh rate). Subjects were seated 60 cm away from the screen and provided their responses 

using a keyboard. 

 

Behavioral analyses 

We followed the data analyses steps outlined in our preregistration. We first excluded subjects 

who did not follow sufficiently well the speed/accuracy instructions by not providing faster 

average RT in the “speed focus” compared to the “accuracy focus” condition. This resulted in 

removing two subjects (out of 64). We preregistered the exclusion of subjects with floor or 

ceiling effects on accuracy but no subject met the criteria for exclusion. However, following our 

preregistration, we excluded two subjects because they showed ceiling effects for confidence. 

Note that our preregistration document called for excluding subjects who provided average 
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confidence of more than 3.7 but because this would have resulted in excluding a much larger 

number of subjects than we had anticipated, we only excluded subjects whose average 

confidence was above 3.85. Therefore, 60 subjects were used in all subsequent analyses. 

 

We additionally excluded individual trials with extreme RT values using preregistered criteria 

based on Tukey’s interquartile criterion. Specifically, for each subject, we computed the 25
th

 

and 75
th

 percentiles of the RT distributions in each condition. We then removed all RTs with 

values more than 1.5 times the interquartile range such that if �1 is the RT value at the 25
th

 

percentile and �3 is the RT value at the 75
th

 percentile, we removed values smaller than 

�1 � 1.5 	 
�3 � �1� and larger than �3 � 1.5 	 
�3 � �1�. This step resulted in removing 

an average of 5.46% of total trials (range of 1.35-8.22% for each subject). 

 

Once these preprocessing steps were completed, we computed average accuracy, RT, 

confidence, and skewness of the RT distributions separately for each condition. The skewness 

was computed as 
∑ ������

��
���

�����	�
 where 
 and � are the mean and standard deviation of the sample 

distribution, respectively. We also computed average RT and average confidence scores for 

error and correct trials across subjects to examine how RT and confidence change as a function 

of response accuracy. Finally, for visualization purposes, we plotted RT distributions for one 

subject in Figure 4C. The RT distributions were generated using kernel density estimation (KDE), 

which approximates the underlying probability density function that generated the data by 

smoothing the observations with a Gaussian kernel
73

. The KDE plots were created using 

Seaborn’s KDE plot with a smoothing bandwidth of 1.2
74

. 
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Network architecture 

RTNet 

The RTNet model consists of two main modules (Figure 1B). The first module is a Bayesian 

neural network (BNN) which is capable of making predictions regarding an image. BNNs are a 

type of artificial neural network built by introducing stochastic components into the network to 

simulate multiple possible models with their associated probability distribution
75

. The main 

difference between a BNN and standard feedforward neural network is that in BNN the weights 

are distributions instead of point estimates. A random sample from these distributions results 

in a unique feedforward network. This random sampling enables variability in the output of the 

network, which in turn can be fed into an accumulation process that drives a decision. The 

second module of our model consists of exactly such accumulation of the evidence produced 

on each step by the first module. At each processing step, the output of the network (in the 

form of activations of the final layer) was accumulated towards a pre-defined threshold. 

Evidence for each choice option was accumulated separately from the rest, similar to a race 

model
16

. The accumulation process continues until the total amount of accumulated evidence 

for one of the alternatives reaches a predefined threshold. The alternative for which the 

threshold was reached then becomes the response of the model. The response time produced 

by RTNet is simply the number of samples used to reach the decision threshold. The confidence 

of the model was obtained by taking the difference in evidence scores between the chosen 

response and the second-best choice.  
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CNet 

The parallel cascaded network (CNet) builds upon the architecture of residual networks 

(ResNet) by utilizing skip connections to introduce propagation delays during input processing. 

At each processing step, all units in all layers are updated parallelly. However, due to the 

propagation delays introduced by each residual block, simpler perceptual features get 

transmitted faster across blocks. For instance, at the first time-step, only the first residual block 

receives input and model predictions at this step are based only on the computations of the 

first residual block. At the second time step, all the other layers receive partial input from the 

first block. Even though the model prediction at this point will be based on computations from 

all blocks, only the first block will have received complete input and achieved stable output. The 

other blocks will only contain partial updates from the lower block and therefore their output 

will not be stable. In general, a residual block, �, takes (� � 1� time steps to receive complete 

and stable input. At any point during processing, the network can generate a prediction since all 

the residual blocks contribute to the computations. However, if the time step (�) is less than the 

number of residual blocks, the responses will be based on unstable representations in the 

higher blocks. Due to this architecture, the network’s responses are subject to a trade-off 

between speed and complexity of processing. Decision time is indicated by the processing step 

at which the decision was made, and decision confidence is derived from the softmax value in 

the final layer, at the time of decision. The softmax values are obtained by transforming the 

activation scores 
�� of all nodes in the output layer according to the function: 

��

∑ 

���

�

, where 

� refers to the node whose output is being transformed and � refers to the number of nodes in 

the output layer (which is equal to the number of classes).  
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MSDNet 

MSDNet has an architecture similar to a standard feedforward neural network (Figure 1A) but 

with early-exit classifiers after each of its layers (Figure 1C). At each output layer, the evidence 

for each choice is computed using a softmax function and if the evidence for any alternative 

exceeds a predefined value the network stops processing and immediately produces a 

response. The layer at which the response was made is indicative of the decision time, and the 

softmax value at that layer is indicative of decision confidence
76,77

.  

 

Implementation 

We implemented both RTNet and MSDNet using the AlexNet architecture, which has eight 

layers with learnable parameters
25

. The AlexNet architecture consists of five convolutional 

layers with a combination of max pooling followed by three fully connected layers. For MSDNet, 

in addition to the standard AlexNet structure, we incorporated additional readout layers 

located right after each layer of processing (Figure 1C). The feature map size of all these 

readout layers were set to the number of classes.  

 

CNet was implemented using the architecture of ResNet-18
7 

since it requires networks with skip 

connections. ResNet-18 architecture consists of 17 convolutional layers, where 16 of these 

layers are embedded within eight residual blocks (skip connections), followed by a final fully-

connected layer with softmax activation to generate the decision. 
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We chose to implement RTNet within a relatively large-scale CNN such as AlexNet (rather than 

a shallow network which may have also been able to learn to classify the MNIST dataset). Our 

goal was to eventually compare our model to others such as CNet and MSDNet, which are 

generally based on larger CNNs and work on multiple existing datasets. Additionally, difficulties 

associated with training Bayesian neural networks limited us to relatively small network 

structures (rather than VGG or ResNet models). We found the AlexNet architecture to be a 

reasonable compromise in this trade-off between model complexity and ease of training BNNs. 

All neural networks were implemented in PyTorch
78

. Bayesian networks were implemented 

using Pyro
79

, which is a probabilistic programming library built on PyTorch.  

 

Network training 

We trained all the models to achieve classification accuracy higher than 97% on the MNIST test 

set.  

 

RTNet 

We trained the BNN module of RTNet for a total of 15 epochs with a batch size of 500. We used 

the Evidence lower bound (ELBO) loss function
80

 and Adam
81

 for optimization with a learning 

rate of 0.001, and the default values for weight decay and epsilon 
weight decay = 0; � = 10��). 

To ensure that each network performs greater than 97% on MNIST test set, we followed a 

specific rule for each model. When testing an image with the BNN module of RTNet, we 

sampled 10 times from the posterior distributions learned during the training and thus 

obtained 10 unique responses for each image. The response with highest frequency among 10 
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responses was chosen as the final decision of the BNN module. We resized the MNIST images to 

the standard input size to Alexnet model architecture (227 x 227 pixels). We also normalized 

the input images to have a mean of 0.1307 and standard deviation of 0.3081, which is a 

standard procedure when using Alexnet for classification of the ImageNet dataset
82

. We trained 

sixty instances of RTNet using the above procedure but with different weight initializations for 

each network instance. We used a different combination of mean and standard deviation (SD) 

values for each of the 60 instances to maximize differences in network initializations. 

Specifically, different network instances of RTNet were initialized such that all means of the 

weights and biases were set to a value between 0.1 and 1.2 with 0.1 increments, and all SDs of 

weights and biases were set to a value ranging from 1 to 5 with increments of 1 (for a total of 

12 	 5 � 60 instances). 

 

CNet 

We trained CNet using the same procedure that was used by the original authors since their 

training protocol was found yielded the best network behavior and performance. The network 

achieved an accuracy > 97% with 12 training epochs and a batchsize of 500. The models were 

trained on a temporal-difference (TD) learning procedure along with cross-entropy loss. In the 

original publication, TD learning was found to perform better than softmax-based cross-entropy 

loss in encouraging correct responses to emerge faster. The loss function was optimized using 

an initial learning rate of 0.01, weight decay of 0.005 and a momentum of 0.9. The images were 

normalized to a mean of 0.1307 and standard deviation of 0.3081. We trained sixty instances of 
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CNet using the above procedure but using a different random seed for initializing the network’s 

weights to allow individual differences in network’s learning.   

 

MSDNet 

Due to its deterministic nature, for MSDNet, only three epochs with a batchsize of 500, were 

enough to achieve test accuracy of more than 97% with the same batch size and a weighted 

cumulative loss function
76

. Adam
81

 was used for optimization with a learning rate of 0.001. For 

testing, the response of the last output layer was taken as the network’s decision. If a network 

did not achieve accuracy greater than 97%, we started the training over with the same initial 

values. Since MSDNet is also built on the architecture of AlexNet, we resized the MNIST images 

to the standard input size for AlexNet and normalized the images to have a mean of 0.1307 and 

standard deviation of 0.3081. To make the initializations of MSDNet as similar as possible to the 

initializations of RTNet, for each RTNet instance, we set the initial values for the weights and 

biases of the MSDNet instance by randomly sampling from the Gaussian distribution used in the 

corresponding RTNet initialization.  

 

Choosing parameters that allow the models to mimic human accuracy 

Because the goal of our study was to examine whether the models exhibit the signatures of 

human perceptual decision making, we matched the accuracy of the models across the four 

experimental conditions to the average accuracy in the human data. For all models, this was 

achieved by adjusting the noise level in the images (separately for the “easy” and “difficult” 

images) and the threshold parameter (separately for the speed and accuracy conditions). Lower 
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noise levels lead to higher accuracy, whereas higher threshold parameters lead to longer 

processing and response times (and also contribute to higher accuracy levels).  

 

Parameter values were adjusted using a coarse search followed by a fine search. In the coarse 

search for RTNet, we varied the amplitude of uniform noise from 1 to 10 with increments of 1 

(where the noise amplitude refers to the length of the interval over which the noise values are 

generated), and the threshold value from 2 to 12 with increments of 2. The results were closest 

to the human accuracy levels when the noise was in the range 2-3 for easy images and 4-5 for 

difficult images, and the threshold was set to 2-4 for the speed focus condition and 6-8 for the 

accuracy focus condition. We then conducted a fine search near those values by changing the 

noise level from 2 to 5 with 0.1 increments and changing the threshold values from 2 to 8 with 

0.5 increments. The closest match to human accuracy was achieved for noise levels of 2.1 and 

4.1 for easy and difficult images, respectively, and a threshold value of 3 for the speed 

condition and 6 for the accuracy condition. 

 

We used a similar procedure to tune the parameters of CNet. Note that the threshold value for 

CNet is the softmax evidence at the output layer. The coarse search was performed using 

threshold values between 0.5 and 0.9 with increments of 0.04. The results were closest to the 

human accuracy levels when the threshold was in range 0.79-0.83 for the speed focus 

condition, and 0.86-0.9 for the accuracy focus condition. We then performed a fine search in 

these ranges by incrementing the threshold by steps of 0.01. The closest match to human 

accuracy was achieved for a threshold value of 0.83 for the speed condition and 0.9 for the 
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accuracy condition. For noise levels, the best match to human accuracy was obtained when the 

noise levels were set to 1.42 and 1.83 for easy and difficult images, respectively.  

 

We also used a similar procedure to tune the parameters of MSDNet. Note that the threshold 

value for MSDNet is the softmax evidence at each early exit. The coarse search was performed 

using the threshold values between 0.5 and 0.95 with increments of 0.05. The results were 

closest to the human accuracy levels when the threshold was in range 0.55-0.65 for the speed 

focus condition, and 0.8-0.9 for the accuracy focus condition. We then performed a fine search 

in these ranges by incrementing the threshold by steps of 0.01. The closest match to human 

accuracy was achieved for a threshold value of 0.58 for the speed condition and 0.82 for the 

accuracy condition. For finding the optimal noise levels, the best match was obtained when the 

noise levels were set to 1.9 and 3.0 for easy and difficult images, respectively.  

 

Data and code availability 

Behavioral data, as well as all codes and trained models are publicly available at: 

https://osf.io/akwty. 
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