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Abstract 

Cysteine-focused chemical proteomic platforms have accelerated the clinical development 

of covalent inhibitors of a wide-range of targets in cancer. However, how different 

oncogenic contexts influence cysteine targeting remains unknown. To address this 

question, we have developed DrugMap, an atlas of cysteine ligandability compiled across 

416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer 

cell lines, and we attribute this to differences in cellular redox states, protein 

conformational changes, and genetic mutations. Leveraging these findings, we identify 

actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands 

that block the activity of these transcription factors. We demonstrate that the NFkB1 probe 

blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and 

disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine 

ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and 

illustrate the use of covalent probes to disrupt oncogenic transcription factor activity. 
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Introduction 

The molecular and genetic characterization of cancer, and more recently high-throughput 

genomic and functional interrogations of malignancies, have revealed the pathways that cancers 

exploit to survive1-6. Findings from these investigations have been leveraged to develop 

blockbuster medicines that target oncogenes such as EGFR7,8, ALK9,10, BRAF11,12 and BTK13-15.  

These same approaches have also begun to identify the mechanisms by which cancers rewire or 

mutate oncogenic pathways to evade targeted agents. However, for the more than 400 oncogenic 

drivers discovered to date, less than 10% have been drugged, and this small subset is almost 

entirely composed of protein kinases or enzymes16. It remains unclear whether small-molecule 

targeting can be systematically extended to other classes of oncogenic drivers.  

In the pantheon of anti-cancer drugs, covalent inhibitors targeting the amino acid cysteine 

have recently gained traction, and drugs bearing irreversible cysteine-reactive warheads have 

met with clinical success17,18. Prominent examples include osimertinib8,19 for the treatment of 

EGFR-mutant non-small cell lung cancers (NSCLCs), ibrutinib14,15 for the targeting of BTK in B 

cell lymphomas, and sotorasib20,21 for inhibiting mutant KRAS•G12C in NSCLCs. Despite their 

efficacy in some patients, there is wide variability in responses, thought to stem from inter- and 

intra-tumoral heterogeneity22-26. However, how this heterogeneity determines the ability of drugs 

to engage their corresponding target is not well understood.  

 Concomitant with the rise of covalent inhibitors in the clinic, chemical proteomic methods 

have now become a popular approach to quantitatively and globally measure cysteine reactivity 

changes that are dependent on particular metabolic states or physiologies, or are influenced by 

covalent small-molecule inhibitors27-35. Advances in these cysteine-focused chemical proteomics 

approaches now allow for the routine quantification of 10,000+ cysteines per run, and multiplexing 

technologies have enabled the identification of corresponding targets for hundreds of covalent 

fragments17,36,37. Empowered by these technological advances, we set out to perform a series of 

chemical proteomic experiments to develop a quantitative portrait of cysteine ligandability across 
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400+ cancer cell lines, thereby establishing an initial framework for a cancer ligandability map. 

We refer to this dataset as DrugMap. By profiling changes in cysteine reactivity using broadly 

reactive electrophilic compounds and combining this information with comprehensive genomic 

characterization, we reveal widespread heterogeneity in cysteine targeting.  This variability can 

be explained, in part, by variation in the intrinsic redox environments of cancer cells, as well as 

cysteine-proximal mutations in proteins. By integrating protein structural datasets with chemical 

proteomic data, we uncover ligand- and mutation-induced conformational changes that can be 

read out as changes in cysteine ligandability. Leveraging the findings from DrugMap, we develop 

a covalent ligand for the oncogenic transcription factor NFkB1 that functions through disruption of 

DNA interactions, as well as a covalent ligand for SOX10 that induces oligomerization by acting 

as a 'molecular glue', disrupting oncogenic transcriptional circuits and ultimately blocking 

proliferation of melanoma. The development of DrugMap, and these two novel anti-oncogenic 

agents it enabled, represents an opportunity to begin systematically uncovering the rules 

governing cysteine ligandability, providing a roadmap for oncology-focused ligand discovery and 

drug development.  

 

Results 

Development of a Pan-Cancer DrugMap.  

To develop a comprehensive portrait of cysteine ligandability across multiple cancers, we selected 

416 cell lines representative of 25 cancer subtypes ("lineages"), each represented on average by 

~18 cell lines, with rarer cancers (e.g. Merkel cell carcinoma) covered by a minimum of two 

(Figure 1A, Table S1). We integrated the isoTOP-ABBP platform with tandem mass tag (TMT) -

based mass spectrometry quantification (iso-TMT) to measure cysteine reactivity28,35,37,38. In this 

approach, cell lysates are first treated with cysteine-reactive "scout" compounds or vehicle 

control, allowing reactive cysteines a chance to form covalent adducts, and then this is followed 

by a chase with a pan-cysteine-reactive probe (iodoacetamide-desthiobiotin, DBIA37) which reacts 
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with all remaining free cysteine thiolate groups.  Crucially, cysteines that reacted with the scout 

compound will escape being tagged by DBIA (Figure 1A). Throughout this work, we define 

ligandable cysteines as those which are engaged (e-value) >60% by cysteine-reactive 

compounds (Figures 1, S1A-B, see Methods). Given the breadth of cell lines profiled, we wished 

to identify covalent scout fragments that broadly represent cysteine engagement by larger sets of 

covalent fragments. To select scouts, we first mapped cysteines targeted by a larger set of 152 

covalent fragments, finding that three covalent scout probes, previously characterized in cysteine 

ligandability studies39-41, engage ~74% of cysteines covered by the larger fragment library 

(Figures S1C-E). Leveraging these three scout probes and the iso-TMT method, we 

systematically measured changes in cysteine reactivity across our pan-cancer cohort of 416 

cancer cell lines, which we divided across 420+ multiplex proteomics experiments, in total 

encompassing ~1,100 hours of mass spectrometry analysis (Table S2). We achieved deep 

cysteine coverage, quantifying a median of 14,000+ unique cysteine-containing peptides per cell 

line. The abundances of these cysteines correlated well to corresponding RNA expression and 

DNA copy number (Figures 1A, S1F, K). In aggregate, we quantified 78,778 cysteines across 

23,016 protein isoforms, finding that 5999 cysteines are ligandable (Figure 1A, S1G-J, see 

Methods).  

To enable a systematic analysis of cysteine ligandability, we developed a computational 

analysis method called cysteine set enrichment analysis (CSEA), based on commonly used gene-

centric enrichment score algorithms42,43. However, rather than highlighting gene-level feature 

enrichment, CSEA determines enrichment signals at cysteine-level resolution (Figure S2A). This 

analytical pipeline leverages a repository of 6,000+ unique cysteine sets compiled from molecular 

features (e.g. domains, proteins and pathways42,44), cysteine reactivity studies (e.g. cysteine 

reactivity changes in diverse physiological contexts, or triggered by covalent small-molecule 

profiling37,45), and biochemical-structural features (e.g. surface accessibility, cysteine depth46-51) 

(Figures S2A, Table S16). When applied across all cancer lineages, CSEA revealed that 
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microtubule-binding proteins are disproportionately ligandable.  Looking at individual lineages, we 

found that proteins that function as intramolecular scaffolds are enriched for cysteine ligandability 

in pancreatic cancers (Figures 1D, S2B). Proteins with CP-type G domains52 are highly 

ligandable across multiple cancer cell lines, including bone cancers (Figures 1E, S2B). Among 

cellular pathways underlying tumorigenesis, CSEA revealed that the EGF-JAK-STAT pathway is 

enriched across all cancer cell lines profiled and the Rho GTPase pathway is enriched in uterine 

cancers (Figure 1F, S2D). PI3K signaling provides an example of how ligandabilty is altered 

across proteins that are members of this signaling pathway, across individual cysteines in those 

proteins, and among different cell lines, including lymphomas, liver cancers, and pancreatic 

cancers (Figure S2E). Transcription factors, which have historically been considered difficult to 

target53, include multiple family members with ligandable cysteines, most notably homeodomain-

containing transcription factors (Figure S2C).  DrugMap thus reveals a rich detailed landscape of 

cysteine ligandability across cancer. 

Despite the relative structural simplicity and broad reactivity of the three covalent scout 

probes, we observed distinct liganding events for each, with KB03 showing the greatest unique 

ligandability (Figure S2F). The distinct reactivity of KB03 led us to ask whether we could infer 

protein-structural correlates of cysteine liganding. To this end, we trained a composite feed-

forward convolutional neural network on structural parameters computed across 55,000+ human 

protein structures48,49. Leveraging the >9,000 cysteines identified in DrugMap having 

corresponding structural annotation, this allowed us to predict KB03 ligandability with ~70% 

accuracy (Figure S3B). The predictive ability of this neural network suggested that coherent 

structural principles of cysteine liganding can be gleaned from this dataset. Thus, we ran CSEA 

over our library of structural cysteine sets, to identify structural features determining cysteine 

ligandability. This analysis revealed strong enrichment of ligandable cysteines in alpha-helices 

(Figure S3A-B, E). Subsequent analyses revealed that cysteines that are highly solvent-

accessible (those lying <2Å from bulk solvent and having a coordination number of <25) or deeply 
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buried (>8Å from bulk solvent with a coordination number of >50) are both disfavored for liganding 

(Figures 1H, S3D-E). In contrast, cysteines displaying intermediate burial (on average 4-6Å from 

bulk solvent, with a coordination number of 30-40) are more ligandable (Figures 1H, S3D). We 

also quantified the nearest amino acid neighbors within a 6Å sphere around ligandable 

cysteines32, resulting in identification of amino acid neighbors associated with ligandability in 

specific protein families (Figure 1G, S3F). We found a general trend for enrichment of basic amino 

acids near ligandable cysteines, possibly stemming from modulation of cysteine pKa
54 (Figure 

S3G). There was little correlation between structure-based and primary-sequence-based 

enrichment of residues near ligandable cysteines, emphasizing the importance of evaluating 

contributors to cysteine ligandability from a structural perspective (Figure S3H). 

A critical determinant of protein druggability is the availability of a structural pocket that 

can accommodate small-molecule binding near a critical portion of a protein55-59. To identify 

potential protein pockets, we used P2Rank and DeepPocket, two artificial intelligence-based 

pocket prediction algorithms that deploy unique pocket segmentation strategies60, allowing us to 

identify >250,000 high-confidence pockets across 55,500 protein structures (Figure S3H). Among 

ligandable cysteines, ~5% lay within a predicted pocket of >50 Å3 (Figures S3I,K). There is a 

higher abundance of ligandable cysteines in pockets localized to protein active sites and allosteric 

sites61, consistent with the known enrichment of binding pockets in these structural elements39 

(Figure S3L). Reassuringly, cysteines residing within pockets were twice as likely to be liganded 

(Figure S3J).  The amino acid content of pockets with ligandable cysteines favored aliphatic 

amino acids, notably leucine (Figure S3M).  This accords with the enrichment found by CSEA of 

ligandable cysteines localized to alpha helices (Figure S3C).  

In summary, by profiling reactivity changes in cysteines across 416 cell lines, we globally 

establish the identity of cysteines in cancers that can in principle be targeted by covalent drugs, 

and provide a complementary analytical platform to aid in the identification of molecular and 

structural features underlying cysteine ligandability. 
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Heterogeneity in cysteine ligandability is in part defined by cancer cell redox states and 

protein conformational changes.  

Our analysis of ligandable cysteines in DrugMap revealed that a majority of ligandable cysteines 

are consistently engaged across cancers (Figures 2A-B). However, for ~8% cysteines, we 

instead found heterogeneity in engagement, with these cysteines being ligandable in some cell 

lines but not others (Figures 2A-B, S4A, Table S3). To identify the molecular determinants 

governing heterogeneous cysteines, we employed CSEA.  This analysis identified a strong 

tendency toward heterogeneous ligandability for cysteines regulated by redox processes 

(Figures 2C, S4B). This led us to directly examine the contribution of the cellular redox 

environment to ligandability.  To do this, we pre-treated K562 cells with a cell-permeant reducing 

agent, tris(2-methoxycarboxyethyl)phosphine (TMCEP)62 prior to in vitro ligandabilty analysis.  

This revealed a substantial increase in liganding of cysteines that had shown heterogeneity of 

ligandability (Figures 2D, S4C,F, Table S4A). Further supporting the premise that intracellular 

redox environment impacts ligandability, we found that increasing the expression of NRF2, a 

master antioxidant regulator that promotes a reductive environment63-66, caused a concomitant 

increase in cysteine ligandability (Figures 2D, S4D-F, Table S4B). Importantly, there was strong 

overlap in effects on heterogeneous cysteine liganding following the two different perturbations 

(Figures 2E, S4G). NRF2 is commonly activated in cancers through mutation of its negative 

regulator KEAP167. Consistent with this, we observed increased ligandability for a subset of 

heterogeneous cysteines in a panel of KEAP1-mutant cell lines compared to KEAP1-WT cells 

(Figure S4H). These results suggest a potential opportunity to differentially target proteins 

required for proliferation based on the metabolic state of a cancer cell.   

Next, we asked if a difference in the liganding of heterogeneous cysteines can function as 

a surrogate readout for cellular redox states. Accordingly, we computed a proteomic redox score 

for each cell line in DrugMap.  Most cell lines had a proteomic redox score corresponding to higher 
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levels of liganding, suggesting a more reduced cellular environment (Figure S4I). Focusing on a 

panel of ovarian cancer cell lines with diverse proteomic redox scores, we found that cells with 

high levels of heterogeneous cysteine liganding showed higher ROS induction following treatment 

with auranofin, a drug previously reported to increase ROS levels32 (Figure S4J).  Taken together, 

these results support the hypothesis that a cancer cell’s redox state plays a substantial role in 

controlling cysteine ligandabilty, and that ligandability itself can be used as surrogate readout for 

measuring one dimension of the cellular redox environment.  

Because cysteine liganding does not occur in isolation but rather in the context of a whole 

protein and all its interacting partners, we sought to identify structural features that drive 

heterogeneity in cysteine engagement. To do this, we computed pairwise cys-cys correlations 

across >4,000+ cysteines.  This analysis revealed that cysteine pairs that are highly correlated in 

their ligandability tend to share common structural features, notably intermediate levels of residue 

burial (Figure S4K). Among the most highly correlated cysteines pairs were Cys64 and Cys112 

of the protein UGDH, two cysteines that happen to belong to the core subset of heterogeneous 

cysteines identified above (Table S3).  Because UGDH is known to undergo a conformational 

change as a mechanism controlling its catalytic activity68-70, and Cys112 in UGDH resides within 

an established allosteric regulatory switch (Figure 2F, S4K), we hypothesized that differences in 

ligandability may reflect different UGDH complex states. Consistent with prior studies, we found 

that treatment of UGDH with the allosteric modulator UDP-xylose71, led to a substantial increase 

in thermal stability, indicating an induction of conformational changes72 (Figure S4L). Addition of 

UDP-xylose to cell lysates prior to ligandabilty analysis resulted in a pronounced increase in 

UGDH•C112 liganding (Figure 2G, Table S5).  These results strongly suggest that heterogeneity 

in cysteine ligandability is driven, in part, by protein conformational changes. 

 

Ligand-induced conformational changes promote greater cysteine accessibility. 
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Chemical proteomic studies such as ours define cysteines as ligandable if their reactivity with 

pan-cysteine reactive probes (e.g. DBIA) decreases following treatment with scout probes (Figure 

S4A). Curiously, we found that for ~5% of cysteines detected in >40 cell lines, treatment with 

scout probes paradoxically increased cysteine reactivity with DBIA, the opposite of the decreased 

reactivity seen for liganded cysteines (Figures 2A, S4A). We refer to these unusual cysteines as 

‘anti-ligandable’ given their increase in accessibility following covalent inhibitor treatment (Figure 

2H, S4A). We detected anti-ligandable cysteines across hundreds of cell lines in DrugMap, and 

we also found them to be pervasive in previously reported cysteine-focused chemical proteomic 

datasets36,37,39,41,73 (Figures S5A-B). Given that liganding of proteins by small molecules can 

result in substantial conformational rearrangements74, we hypothesized that covalent adduction 

of one cysteine within a protein might result in a conformational change that increases the 

accessibility to DBIA of another cysteine in the same protein. To test this hypothesis, we 

concentrated on proteins containing cysteines with the greatest anti-ligandability.  This drew our 

attention to RACK1, a WD-40 containing protein that regulates protein translation75,76 (Figure 2I). 

Cys-cys correlations of anti-ligandable cysteines within RACK1 revealed that RACK1•C182, a 

surface-exposed cysteine residing in a shallow groove, had the strongest negative correlations to 

other RACK1 cysteines across our entire dataset (Figures 2I-J, S4K). Nearly all other RACK1 

cysteines were highly correlated and anti-ligandable (Figure 2I). Observing that RACK1•C182 is 

exclusively liganded by KB03 but not KB02 (Figure S2F), we compared DBIA accessibility for 

other anti-correlated RACK1 cysteines, and found a decrease in their engagement after KB03 but 

not KB02 treatment (Figure 2J). This decrease in engagement of RACK1 cysteines occurred 

across dozens of cell lines (Figure 2J).  Given that these RACK1 cysteines are buried in the apo 

structure (Figure 2J), their decreased engagement suggests a potential conformational change. 

Using thermal shift assays, we found that KB03 decreases thermal stability of wildtype RACK1 

but not of the RACK1•C182W mutant that blocks liganding of Cys182 (Figure 2K). Treatment 

with KB02, which did not bind RACK1•C182, had no impact on thermal stability in comparison to 
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vehicle control (Figure S5C).  These results provide strong evidence that RACK1 undergoes a 

conformational change upon Cys182 liganding. Interestingly, we uncovered several examples of 

paired ligandable and anti-ligandable cysteines in oncogenes identified in DrugMap, including 

XPO1 and EGFR (Figure S5D). To establish whether this finding can extend beyond broadly 

reactive covalent fragments, we treated lysates with osimertinib77 or selinexor78, drugs that target 

EGFR•C797 and XPO1•C528 respectively.  We found corresponding alterations in DBIA 

accessibility for multiple cysteines in these proteins (Figures 2L, S5E). Treatment with these 

drugs also subsequently increased KB05 engagement of EGFR•C539 and XPO1•C773 (Figures 

2L, S5E, Table S6), potentially suggesting the emergence of a cryptic pocket upon inhibitor 

binding. These results imply that protein conformational changes can be inferred at global scale 

in complex settings by monitoring differences in cysteine ligandability using chemical proteomics, 

thus outlining the beginnings of a new scalable approach to the study of protein structural 

dynamics.  

 

Genetic determinants of cysteine ligandability. 

To reveal how the landscape of cysteine ligandability may be influenced by a cancer’s genetic 

architecture, we leveraged the deep genomic and functional characterization that has been 

obtained for most of the cell lines profiled in DrugMap79.  We applied hierarchical clustering to 

identify genetic features associated with cysteine ligandability and resolved three main clusters 

from this multi-omic analysis, segregating largely based on lineage (Figure 3A). We did not 

observe a bulk correlation between cysteine ligandability and RNA expression or gene essentiality 

(Figures S6A-B).  However, a few cysteines showed strong correlations between ligandability 

and genomic or transcriptomic features (e.g. COL6A3•C775 and AGO•C328), potentially 

reflective of differences in protein complex formation that alter ligandability, and in accordance 

with protein complexes being tied to co-essentiality80 (Figures S6A-B). Strikingly, we observed a 

strong correlation between a cell line’s mutational burden and the prevalence of corresponding 
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alterations in cysteine ligandability (Figure S6C), prompting us to investigate how single 

mutations associate with ligandability changes. We identified >50 de novo cysteine mutations (i.e. 

X–>Cys) that create novel ligandable cysteines, many in essential genes (Figure S6D). Far more 

prominent in our analysis were cysteine-proximal mutations that associated with changes in 

cysteine ligandability. Proximal mutations could be local (e.g. <5Å) or distal (e.g., >40Å) to a 

cysteine (Figure 3B). Some proximal mutations associated with increased cysteine ligandability 

occurred in key oncogenes such as MGMT and IDH1 (Figure 3C).  Other mutations associated 

with cysteine anti-ligandability occurred in tumor suppressors such as MYH9 (Figure 3D). In 

HCC1395 cells, which harbor an allosteric F157L mutation in the antioxidant enzyme PRDX5, we 

saw an increase in ligandability of PRDX5•C100 relative to cell lines expressing WT PRDX5 

(Figure S6E). Supporting the correlation between cysteine-proximal mutations and changes in 

ligandability, overexpression of the PRDX5F157L mutant in HEK-293T cells increased Cys100 

ligandability compared to its WT counterpart (Figure S6E, Table S7), demonstrating that 

mutations need not be local to alter cysteine liganding. To better understand associations 

between the spectrum of mutations in a protein and changes in cysteine ligandability, we 

performed logistic regression analysis, revealing that clusters of mutations in TP53 correlate to 

changes in TP53•C141 liganding (Figures S6F-G). Finally, we compared how pathway 

ligandability is impacted in cell lines driven by common oncogenic mutations.  We identified, for 

example, that proteins involved in serine biosynthesis are particularly ligandable in cell lines with 

BRCA1 mutations (Figure S6H).  

 Given these genetic contributions to cysteine ligandability, we leveraged gene essentiality 

data to identify differentially targetable and essential proteins. To prioritize ligand development, 

we focused on transcription factors, because this class of proteins, as a whole, displays the 

greatest lineage-restricted essentiality79 (Figure S6G). Interestingly, multiple lineage-restricted 

transcription factors required for proliferation were found to contain highly ligandable cysteines 

(Figure 3E). Prominent examples included SOX10•C71 and PAX8•C45/C57 in solid tumors, and 
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IRF4•C194 and NFkB1•C61 in heme malignancies. Given their high degree of lineage-specificity, 

if these proteins could be targeted by covalent agents, they might achieve a large therapeutic 

index, due to their limited importance in non-essential tissues.  

 

Disruption of NFkB1-DNA interactions with a cysteine-directed chemical probe.  

One of the prominent examples identified above, NFkB1, is a compelling ligandable heme 

transcription factor, given the location of its ligandable cysteine in the DNA-binding interface and 

strong literature precedent indicating that NFkB1•C61 liganding disrupts the interaction of NFkB1 

with DNA81,82 and promotes target degradation83 (Figures 3E-F). To identify a covalent ligand for 

NFkB1•C61, we carried out an iso-TMT screen of a library of 4,000+ commercially available 

cysteine-reactive small-molecule inhibitors. This analysis led to the identification of SH-7346, a 

cyclic cyanamide that engages NFkB1•C61 with high specificity (Figure 3G). We established that 

SH-7346 engages NFkB1•C61 but not the NFkB1•C61S mutant (Figure S7A).  We then 

proceeded to measure the occupancy of a set of pyrrolidine-cyanamides with the goal of 

improving occupancy through modification of the distal sulfonamide group, using intact mass 

spectrometry analysis (Figure S7B). Compared to the initial hit, we observed an increase in 

NFkB1•C61 occupancy from 29% to 74% with SH-1696, which has an aniline-substituted pyridyl-

sulfonamide group (Figure S7B). In the process of hit expansion, we solved the structure of 

NFkB1 bound to a closely related analog SH-9857 at a resolution of 2.02Å (Figures 3H, S7C).  

Alignment of the co-structure of SH-9857-bound NFkB1 with a model of DNA-bound NFkB1 

demonstrated that SH-9857 sterically clashes with DNA (Figure 3H). We established that SH-

1696 disrupts NFkB1-DNA interactions with an IC50 of ~5 µM in a C61-dependent manner (Figure 

3J) and also blocks NFkB1 transcriptional activity with an IC50 of 4.9 µM in a reporter cell line 

(Figures 3J, S7D). SH-1696, but not the structurally related control analog SH-9791, efficiently 

engages NFkB1 (Figures 3I, L, S7B, Table S8), with SH-9791 showing little effect on DNA 

binding or on NFkB1 transcriptional activity (Figures 3J, 3K-L, Table S8). Finally, we examined 
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SH-1696 activity in five hematopoietic cell lines dependent on NFkB1 (Figure S7F), finding that 

the compound decreases NFkB1 target gene expression as measured by qPCR (Figures 3M, 

S7E). These results suggest that liganding NFkB1•C61 may provide a mechanism to target 

NFkB1 signaling in hematopoietic cancers. 

 

Development of a chemical probe that disrupts SOX10 transcriptional activity. 

We next asked whether we could leverage DrugMap to help guide the development of a chemical 

probe for lineage-restricted transcription factors that do not have literature precedent. We 

prioritized the SOX10•C71 ligandability hotspot identified above for this analysis. The SOX10 

transcription factor is a member of the SOX family of high mobility group box (HMG-box) 

transcription factors 84-86 and a major known dependency of melanoma cells87,88. We found that 

SOX10•C71 was highly and consistently ligandable in the majority of melanoma models that we 

characterized (Figure 4A).  Furthermore, in melanomas89 defined by a high SOX10 signature, 

including immunotherapy-resistant models, we found that depletion of SOX10 strongly blocked 

proliferation (Figure S8A-C). We observed that SOX10•C71 is localized to the protein's 

conserved SOXE dimerization domain90,91 and is predicted to be adjacent to a small-molecule 

binding groove (Figure 4B). In light of these facts, we reasoned that SOX10•C71 represents a 

highly compelling ligandable dependency to prioritize for inhibitor development.   

 To develop a covalent probe for SOX10•C71, we established a SOX10 transcriptional 

reporter assay that was responsive to SOX10 depletion in the U257 melanoma cell line (Figure 

S9A).  Using this assay, we screened a commercially available library of 1,000 cysteine-reactive 

compounds (Figure 4C). Validation of the hits from this screen focused our attention on 

compound 2-A01, a benzanilide acrylamide, and we subsequently identified additional analogs 

with increasing potency, including SH-0029, a benzamide-THQ acrylamide (Figure S9B). We 

found that SH-0029 disrupts SOX10 transcriptional readout in five melanoma cell lines, with an 
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IC50 of ~11 µM, but a related analog, SH-0105 had minimal activity (Figures 4D, S9B-C).  

Additionally, SH-0029 did not perturb the transcriptional activity of other lineage-restricted 

transcription factors (Figure S9D). Using a biotinylated version of the SOX10 ligand (SH-0029-

DTB), we verified that it specifically engages SOX10•C71 but not a SOX10•C71A mutant, in HEK-

293T cells (Figure S9E). SH-0029 outcompeted SH-0029-DTB labeling of SOX10 in two 

melanoma cell lines, providing further evidence of SOX10•C71 engagement (Figure S9F).  

Initially, we were perplexed by the strong disruption of transcriptional activity but low level of 

SOX10•C71 engagement in iso-TMT experiments (Figures 4E, S9G, Table S9).  This surprising 

finding suggested an alternative mechanism of inhibition other than one that requires high-

occupancy binding92-95. The localization of SOX10•C71 to the SOXE domain, which has been 

implicated in SOX10 dimerization96, led us to explore whether SH-0029 might modulate SOX10 

multimerization. A SOX10 in vitro binding assay revealed that SH-0029, rather than disrupting 

SOX10-SOX10 dimerization, instead increases the interaction. This result was recapitulated in 

cells (Figures 4F-G, S9H-I).  This ‘glue-like’ effect of SH-0029 was completely dependent on 

Cys71, and SH-0029 did not increase the binding in a SOX10•C71A mutant, either in vitro or in 

cells.  This result was echoed by the negative control probe, SH-0105 (Figures 4F-G, S9I-K).  

 

A covalent SOX10 ligand disrupts melanoma transcriptional signaling and proliferation. 

Given the strong and consistent proliferation defect induced by depletion of SOX10 in melanoma 

cell lines (Figures S8A-B), we proceeded to examine the activity of SH-0029 in 40+ melanoma 

cell lines of diverse origins.  This revealed a wide range of inhibition of proliferation (Figures 4H, 

S10A). Sensitivity to SH-0029 correlated with an established SOX10 transcriptional signature and 

with sensitivity to SOX10 depletion (Figure S10B-C). Expression of a SOX10•C71A mutant in 

U257 melanoma cells partially, albeit significantly, rescued the proliferation block of SH-0029 in 

comparison to cells expressing WT SOX10 (Figures S10D). In contrast, treatment with SH-0029 
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or depletion of SOX10 showed only modest activity in SOX10-negative melanomas and in lung 

or colon models deficient in SOX10 expression (Figures 4H, S10A-B). 

To investigate how liganding of SOX10 impacts melanoma transcriptional networks, we 

defined an extended SOX10 transcriptional signature by depleting SOX10 in seven melanoma 

cell lines and analyzing the resulting transcriptional changes by RNAseq (Figure S10E, Table 

S10).  SH-0029 treatment in three melanoma cell lines revealed a significant enrichment for the 

SOX10 target genes as determined by gene set enrichment analysis, which we confirmed in other 

melanomas by qPCR (Figures 4I-J, S10F-G, Table S11). In SK-MEL5 cells, there was a strong 

and consistent overlap between cellular pathways perturbed following SH-0029 treatment and 

SOX10 depletion, and we found that many of the genes downregulated by SH-0029 in this model 

were bound by SOX10 near active enhancers, including those of the genes ERBB3 and IL-16 

(Figures S10H-J, Table S12). ERBB3 is a known melanoma-specific dependency97 and IL-16, 

an immunomodulatory regulator, is preferentially expressed in SOX10-high melanocytic cells98, 

suggesting that the SOX10 ligand causes down-regulation of the SOX10 transcriptional network. 

Collectively, our findings demonstrate the unexpected ligandability of SOX10, and show that its 

covalent adduction can disrupt both oncogenic transcriptional signaling as well as proliferation in 

melanomas. More generally, proven by examples like this, DrugMap provides a detailed roadmap 

for developing covalent ligands against challenging targets in oncology, by integrating high-

throughput dependency and ligandability datasets.  

 

Discussion 

Large-scale systematic analysis of cancer genomes, proteomes and metabolomes has been 

leveraged to nominate targets for drug development33,79,99. DrugMap represents the chemical-

biology complement to these studies, providing a roadmap for systematically evaluating cysteine 

ligandability across cancers.  
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Perhaps one of the most surprising findings from this study is that cysteine ligandability is 

heterogeneous. Although heterogeneity is now established as the rule rather the exception in 

cancer26, this principle had yet to be extended to protein-ligand interactions.  It is likely to have 

important ramifications for understanding differential responses to cysteine-reactive drugs in the 

clinic. Our finding that the cellular redox state is an important determinant of ligandability accords 

well with previous studies demonstrating that covalent inhibitors targeting EGFR can be 

modulated in their efficacy through active-site cysteine sulfenylation100-103.  As multi-omic profiling 

of tumors continues to identify new cell states, our data raise the intriguing possibility that this 

information can be leveraged to target proteins within cancers defined by a specific cell state, in 

addition to targets characterized by mutation or differential expression. Future studies aimed at 

deciphering how different metabolic states can regulate cysteine ligandability will be critical both 

for designing new therapeutic strategies and for understanding which tumors may or may not be 

amenable to specific covalent drugging approaches.  

Our investigations of the molecular features underlying heterogeneity in cysteine 

ligandability reveal a prominent role for protein conformational changes. When viewed through 

the lens of protein complexes, this heterogeneity may reflect differences in protein conformations 

or complexation across cancer cell lines74. While the systematic evaluation of protein 

conformations has historically been restricted to purified recombinant proteins, new mass-

spectrometry based assessments of protein conformations are beginning to reveal differences in 

protein-metabolite interactions and protein-protein interactions in their native contexts30,104-108.  

However, these studies have been restricted to a handful of cell lines109.  In contrast, the 

comprehensive data obtained herein begins to define a picture in which protein conformations 

may be substantially altered across a large number of cancer lineages, thus providing a novel 

opportunity to understand how cell state governs protein dynamics.  

 Drug-discovery approaches are assisted profoundly by protein structure 

determination57,105,110. However, for many targets of interest, including transcription factors, 
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structural solutions are not currently possible because of the intrinsically disordered regions within 

these proteins. Cysteine-focused chemical proteomics offers one potential solution to this 

problem, by systematically mapping sites of ligandability with covalent inhibitors. Our discovery 

that cysteine anti-ligandability can serve as a proxy readout of protein conformational changes 

suggests that this approach, when fully realized, may enable detection of cryptic or transient 

pockets in complex mixtures of protein states. In support of this hypothesis, we measured 

changes in cysteine accessibility following engagement with drugs directed against EGFR and 

XPO1 and proceeded to identify an increase in ligandabilty among these structurally-sensitive 

cysteines. Importantly, a change in protein conformation as determined by proteomics may also 

provide a first indication that liganding of a given cysteine has a measurable, functional impact on 

a protein, which may be a useful triaging mechanism for cysteines lacking annotated functions.  

 Cancer is a genetic disease, and tumors contain a multitude of mutations of unknown 

significance. While a loss-of-function mutation in a well-annotated protein domain provides 

important clues about its potential impact, for the vast majority of missense mutations, the 

functional consequences are unknown. Our study suggests that monitoring small-molecule 

interactions with proteins may help to reveal the functional impact of specific missense mutations. 

By leveraging the deep genomic characterization that has been performed for the majority of cell 

lines profiled in DrugMap, we begin to uncover how mutations can influence cysteine ligandability, 

providing not only opportunities for mutation-specific targeting but also a novel potential readout 

of protein conformational dynamics as read out by protein-ligand interactions in unique mutational 

contexts. Perhaps the biggest surprise from this analysis is the pervasiveness of cysteine-

proximal mutations that associate with altered cysteine ligandability. This finding suggests that 

many more opportunities exist for cancer-specific targeting in addition to concentrating on de novo 

cysteine mutations like KRAS•G12C18,33,99. Further understanding how mutations in trans affect 

cysteine ligandability is an important future endeavor that can be aided by studies that globally 
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assess protein-protein interactions in cancer using co-expression as an indirect readout of these 

connections111,112.   

Transcription factors represent ~19% of all oncogenes and, as a class, show the greatest 

differential essentiality in pan-cancer functional genomic investigations113.  Despite this, 

transcription factors have historically been thought to lie largely outside the reach of small-

molecule manipulation.  In a hopeful development, this study reveals that multiple transcription 

factors in fact contain highly ligandable cysteines, and this information can be usefully leveraged, 

which we prove by developing chemical probes to manipulate the activity of NFkB1 and SOX10. 

The development of each probe was entirely dependent on information about the target cysteine 

made available by the DrugMap atlas. Based on the localization of NFkB1•C61 to the DNA-

binding site, this protein provides a prominent example of how cysteine liganding can disrupt this 

biological activity, especially when realized with a more advanced inhibitor compound. For 

SOX10, a functional screen was required which led to the unexpected identification of a covalent 

‘glue-like’ mechanism like that previously reported for covalent ligands targeting TP53114. Given 

that numerous components of the transcriptional machinery function through multimerization, it 

would not be surprising if many other members of this class of proteins will be similarly amenable 

to this form of disruption, with covalent attachment proving to be the key to stabilizing transient 

interactions.   

In summary, this study highlights critical insights provided by cysteine-focused chemical 

proteomics, and systematically interrogates the general principles governing cysteine ligandability 

across cancer. While understanding what is ligandable in cancer is an immediate output of this 

study, it is also important to emphasize that chemical proteomics is at its core a distinct measure 

of protein-ligand interactions, and hence protein conformational states. Going forward, a broader 

characterization of cysteine ligandability in patient tumors is likely to further reveal how cysteine 

targeting can be influenced by the tumor and biochemical microenvironments, and to further 

illuminate the vast heterogeneity emerging from genomic studies of these malignancies.  
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Figure Legends 

Figure 1: Defining a cysteine ligandability map across cancer. (A) Development of a Pan-

Cancer ligandability map. Cancer cell lines analyzed in this study, and schematic of DrugMap 

development  (see also Table S1). (B) Mapping ligandability across 25 cancer types. Circular 

heatmap depicting differences in cysteine, domain, class and pathway ligandability (moving from 

inner- to outermost layers) across 416 cell lines. (see also Table S2 and Methods). (C) Examples 

of differences in cysteine ligandability among 64 lung cancer cell lines. (D) Cysteine set 

enrichment analysis (CSEA) plot of protein classes with ligandable cysteines identified in twelve 

pancreatic cancer cells (see Figure S2A, text, and Methods). (E) Protein domains with ligandable 

cysteines enriched in nine bone cancer cell lines. (F) Pathways with ligandable cysteines enriched 

in nine uterine cancer cell lines. (G) Amino acid neighbors of ligandable cysteines. Heatmap 

depicting relative abundance of residues within a 6 Å radius of ligandable cysteines for each 

protein class (see also Figures S3F-G, Methods). TF: transcription factors. (H) Structural 

characterization of ligandable cysteines. >20 structural features were calculated for each of the 

632 ligandable cysteines identified in a corresponding protein structure (See also Figures S3C-

E, Table S13 and Methods).  

Figure 2: Heterogeneity in cysteine ligandability is driven by cellular redox state and 

protein conformational changes. (A) Characterizing distinct cysteine populations in DrugMap. 

Cysteine ligandability plot for ~18,000 cysteines reveals ligandable (dark red), heterogeneous  

(light red) and anti-ligandable cysteines (blue) (see also Figure S4A and Methods). (B) Relative 

abundance of ligandable and heterogeneous cysteines. Top, proportion of ligandable cysteines 

that are homogeneous or heterogeneous in their engagement by scout probes. Bottom, notable 
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examples of homogeneous or heterogeneous cysteine ligandability (see also Table S3). (C) 

Heterogeneous cysteines are enriched by CSEA for redox regulation. (D) Cellular redox state 

regulates heterogeneous cysteine engagement. Left, plot depicting changes in cysteine 

ligandability following tris(2-methoxycarbonylethyl)phosphine (TMCEP)62 treatment. Right, Plot 

depicting changes in cysteine engagement following activation of NRF2.  Insets, examples of 

ligandability changes for heterogeneous cysteines following TMCEP treatment (bottom left) or 

NRF2 activation (bottom right). K562 cells were treated with TMCEP (1 mM) or vehicle (water) for 

1 hr or were treated a NRF2 activator (1 µM of KI69664,66) or vehicle (DMSO) for 48 hrs and 

changes in cysteine engagement by iso-TMT were determined following in lysate treatment with 

500 µM KB03 (see also Figure S4F and Table S4).  (E) Redox regulated heterogeneous 

cysteines. Network analysis of heterogeneous cysteines denoting cysteines whose ligandability 

changes following TMCEP and NRF2 activation. (F) UGDH•C64 and UGDH•C112 are highly 

correlated in their ligandability. Top, Plot of cys-cys engagement correlations across 

heterogeneous cysteines. Middle, UGDH•C64/C112 are tightly correlated in their heterogeneous 

ligandability across hundreds cell lines. Bottom, UGDH•C112 (purple) is proximal to UGDH 

allosteric switch (green) and protein-protein interface (PDB:5VR870). (G) UGDH oligomerization 

following treatment with UDP-xylose increases UGDH•C112 ligandability. Engagement plot for 

UGDH•C112 following treatment with the indicated concentrations of UDP-xylose. Changes in 

cysteine ligandability were determined as described in (D) (see also Table S5). (H) Anti-

ligandable cysteines identified across DrugMap. Average cysteine ligandability per protein is 

displayed, identifying RACK1 with the greatest degree of anti-ligandability following scout-probe 

treatment.  (I) RACK1•C182 is anti-correlated in its ligandability with other cysteines in RACK1. 

Schematic depicting RACK1 cysteine engagement and cys-cys correlations. (J) RACK1 liganding 

results in increase in cysteine anti-ligandability. Left, RACK1 cysteine engagement following 

treatment of KB02 (which does not ligand RACK1•C182) and KB03 (which ligands RACK1•C182) 

across > 200 cell lines in DrugMap. Right, RACK1 structure with average cysteine ligandability 
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displayed following treatment with KB02 or KB03 (PDB:4AOW115). (K) RACK1•C182 engagement 

decreases thermal stability. Thermal shift assay of RACK1-FLAG or RACK1•C182W-FLAG 

following treatment with 100 µM KB03. Expression of indicated proteins was determined by 

immunoblot (see also Figure S5C, Methods).  (L) EGFR and XPO1 liganding alters cysteine 

accessibility, revealing newly ligandable sites. PC9 and K562 lysates were pre-treated with 1 µM 

of osimertinib and selinexor, respectively, and changes in cysteine engagement following 

treatment with KB05 is displayed on the structures of EGFR  (PDB:3QWQ116) and XPO1 

(PDB=3GB8117) (see also Figure S5E). Cysteine engagement in cell lysates was determined as 

described in (D). Data are represented as mean ± SD. *p < 0.05. Student’s t-test (two-tailed, 

unpaired) were used to determine statistical significance. 

 

Figure 3: Genetic determinants of cysteine ligandabilty enable the development of a NFkB1 

probe that disrupts DNA interaction. (A) Identifying genetic associates of cysteine ligandability 

across cancer. Multi-omic clustering based on mRNA expression, gene essentiality, mutational 

status and cysteine ligandability across 300 cell lines. (B) Engagement plot identifying intra-gene 

mutations that associate with corresponding changes in cysteine ligandability (see Methods).  (C) 

Cysteine-proximal mutations associate with increased cysteine ligandability. Top, examples of 

increased cysteine ligandability following the proximal mutations (green) in the indicated cell lines 

compared to cells expressing the WT protein. Bottom, mutation of Glu110->Lys (green) in IDH1 

is associated with an increase Cys379 (red) ligandability (PDB:1T09118 ). (D) Proximal mutations 

associating with increased cysteine anti-ligandability. Top, examples of increased cysteine anti-

igandability following the proximal mutations (green) in the indicated cell lines compared to cells 

expressing the WT protein. Bottom, mutation of Arg->Gln (green) in ACAA1 increases Cys381 

(blue) anti-ligandability (PDB:2IIK). (E) Defining ligandable transcription factor dependencies. Plot 

comparing differential essentiality, expression and cysteine ligandability in each lineage profiled 

in DrugMap. (F) The DNA binding domain of NFkB1 (white) from PDB:2O61119 bound to DNA 
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(blue). The Cys61 alpha carbons (red) lie adjacent to the DNA backbone. (G) Identification of a 

covalent ligand for NFkB1•C61. iso-TMT screen of 4,000+ cysteine reactive compounds identified 

SH-7346, which ligands NFkB1•C61 with good specificity. Insets, iso-TMT engagement profile for 

SH-7346 and SH-6486. Bottom, further development of SH-7346 to SH-1696 was guided by 

NFkB1•C61 engagement as determined by intact mass spectrometry (see also Figure S7A-B and 

Methods). (H) Covalently bound SH-9857 blocks NFkB1 DNA binding. The SH-9857 (an SH-7346 

analog)-bound structure resolved at 2.02Å was aligned. The proximity of the Cys61 alpha carbons 

results in SH-9857 sterically clashing with DNA (See also Figure S7C, Table S15). (I) SH-1696 

engages NFkB1 in a Cys61-specific manner. Intact mass spectrometry analysis of SH-1696 and 

SH-9791 (negative control) binding to recombinant NFkB1. (J) SH-1696 disrupts NFkB1-DNA 

interactions. Cellular lysates isolated from HEK-293FT expressing HiBiT-tagged NFkB1•WT or 

NFkB1•C61S were treated with SH-1696 (3 nM-20 µM). IC50 was determined by measuring 

disruption in DNA binding through NFkB1 enrichment with a biotinylated oligonucleotide (see 

8Methods). (K) SH-1696 blocks NFkB1 transcriptional activity. HEK-293 cells expressing a NFkB1 

transcriptional reporter were treated with SH-1696 or SH-9791 (10 µM) and relative transcriptional 

activity was determined 3 hrs post-treatment. (L) SH-1696 engages NFkB1•C61. MM1S cell lysate 

was treated with 50 µM of SH-1696 or SH-9791, and NFkB1•C61 engagement was determined 

by iso-TMT (see also Table S8). (L) SH-1696 downregulates NFkB1 target genes in 

haematopoietic cancers. The indicated NFkB1-dependent cell lines were treated with vehicle 

(DMSO), SH-1696, or SH-9791 (10 µM) for 3 hrs, and relative gene expression was determined 

by qPCR (see also Figure S7E). Data are represented as mean ± SD. *p< 0.05. Student’s t-test 

(two-tailed, unpaired) were used to determine statistical significance. 

Figure 4: Development of a covalent molecular glue that disrupts SOX10 activity in 

melanoma. (A) SOX10•C71 is highly ligandable across melanoma cell lines. Top, SOX10•C71 is 

localized to the SOXE dimerization domain and conserved across vertebrates. Bottom, 

SOX10•C71 engagement across 35 melanoma cell lines was determined by iso-TMT. (B) 
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SOX10•C71 (red) resides near a putative small-molecule binding groove (opaque red). SOX10 

structure (AF-P56693-F1) encompassing amino acids 62-172. (C) Identification of cysteine-

reactive compounds that disrupt SOX10 transcriptional activity in melanoma. Top, U257 cells 

expressing a SOX10 transcriptional reporter were treated with a library of 1000 cysteine-reactive 

compounds and SOX10 activity was assessed after 48 hrs. Bottom, advancement of hit 

compound 2-A01 to lead compound SH-0029 was assessed by SOX10 transcriptional activity 

(see also Figures S9A-B, methods). (D) SH-0029 disrupts SOX10 activity in multiple melanoma 

cell lines. Melanoma cell lines expressing the SOX10 transcriptional reporter were treated for 48 

hrs at the indicated concentrations of SH-0029. (E)  SH-0029 engages SOX10•C71 at low 

occupancy. Left, SKMEL5 lysates were treated with 10 µM SH-0029 or the control compound SH-

0105, and SOX10•C71 engagement was determined by iso-TMT. Right, heatmap displaying 

cysteinome-wide reactivity changes (see also Figure S9G, Table S9). (F) SH-0029 increases 

SOX10-SOX10 interactions in a Cys71-dependent manner. Lysates from HEK-293T cells 

expressing HA-SOX10 or HA-SOX10•C71A were treated with vehicle control or 10 µM SH-0029 

and following immunoprecipitation with immobilized FLAG-SOX10 or FLAG-SOX10•C71A, the 

interaction with HA-SOX10 was determined by immunoblot (see also Figures S9H-J). (G) SH-

0029 functions as a SOX10 covalent molecular glue in cells. HEK-293T cells expressing the 

indicated proteins were treated with SH-0029 for 3 hrs and SOX10 dimerization was determined 

by immunoblot following immunoprecipitation from lysates with anti-FLAG M2 beads (see also 

Figures S9K-L). (H) SH-0029 differentially impacts SOX10-expressing melanoma proliferation. 

Cell lines were treated with 4 µM of SH-0029 or SH-0105 and proliferation was determined by 

crystal violet staining following four days of treatment and normalized to vehicle (DMSO). Inset, 

IC50 values were determined in COLO679, SKMEL5, IGR39, and HARA treated with SH-0029 

(0.0156-10 µM) (see also Figure S10B). (I-J) SH-0029 disrupts SOX10 transcriptional signaling 

in melanomas. (I) GSEA analysis identifies the SOX10 regulon as highly enriched in melanomas 

following treatment with SH-0029. (J) Heatmaps displaying relative levels of SOX10-regulated 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563287doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563287


 27 

genes following treatment with vehicle, SH-0029 or SH-0105 were determined by RNAseq (see 

also Figure S10E).  

 

Figure S1: Development of a Pan-Cancer cysteine ligandability map, related to Figure 1. 

(A) Saturation analysis demonstrates that three replicates are sufficient to quantify engagement 

within 2% of the median cysteine engagement across 24 replicates of K562 cells. K562 cell 

lysates were treated with 500 µM KB03 or vehicle, and changes in cysteine ligandability were 

determined by iso-TMT (see Methods).  (B) Heatmap of cysteine engagement across >6000 

cysteines detected across 24 replicates. Cysteine ligandability was determined as described in 

(A). (C) The scout fragments KB02, KB03 and KB05 broadly recapitulate cysteine engagement 

of 152 cysteine-reactive fragments. K562 cell lysate was treated with the indicated compounds 

(500 µM) and cysteine engagement was determined by iso-TMT.  Overlap in cysteine ligandability 

between scout fragments and 152 cysteine reactive compounds (n=16,026 cysteines analyzed). 

(D) Hierarchical clustering identifies a subset of compounds having high correlation with KB05, 

KB03, or KB02. (E) Left, heatmap depicting cysteine reactivity changes following treatment with 

scout probes or highly correlated fragments.  Right, structures of fragments that correlate strongly 

with scout fragments. (F) Quantification of cysteine-containing peptides for each cell line profiled 

in DrugMap. (G) Schematic describing data transformation workflow (see also Methods). (H) Low 

coefficient of variation across replicates of cell lines. (I) Principal component analysis (PCA) of 

cysteine ligandability across DrugMap demonstrates the presence of modest sources of variation 

that structure the entire dataset.  (J) A subset of cysteines display high reproducibility in 

engagement across 416 cell lines. (K) Mutual correlation of RNA expression level, DNA copy 

number variation (CNV), and iso-TMT protein abundance. 

 

Figure S2: Identification of highly ligandable cysteines in protein domains, classes and 

pathways, related to Figure 1. (A) Schematic describing Cysteine Set Enrichment Analysis 
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(CSEA), a bioinformatic pipeline to identify enriched cysteine sets defined by molecular, 

experimental, structural and pathway-level features (see also Table S16, Methods). (B) 

Heatmaps (left) and CSEA enrichment plots (right) displaying highly enriched protein classes, 

domains, and pathways in each cancer cell line profiled in DrugMap. (C) CSEA identification of 

ligandable transcription factor classes across DrugMap. Inset, engagement of leucine zipper 

transcription factors by scout fragments. (D) Ligandable cysteines localize to oncogenic 

pathways. (E) Pathway/protein/cysteine-level analysis of cysteine ligandability in liver cancer, 

lymphomas, and pancreatic cancer. Left, Heatmap of cysteine ligandability in each biological 

pathway. Right, Heatmap of ligandable proteins involved in the PI3K pathway. Bottom, Structure 

of PIK3CA with ligandable cysteine C301 highlighted in red (PDB:2RD0120).  (F) Some cysteines 

display scout-specific liganding. Left, fraction of cysteines uniquely engaged by each scout probe 

across DrugMap. Right, ternary plot highlighting examples of cysteines preferentially liganded by 

one scout.   

Figure S3: Structural characterization of ligandable cysteines, related to Figure 1. (A) 

Overview of the cysteine structural annotation that forms the basis for structure-informed CSEA. 

(B) Structure-informed deep learning enables ~70% accuracy in predicting KB03 liganding (see 

Methods).  (C) Structural cysteine sets enriched in KB03-liganded cysteines. (D-E) Structural 

features underlying cysteine ligandability. The indicated structural parameters were calculated for 

ligandable (red) and non-ligandable (black) cysteines by mapping cysteines identified in DrugMap 

(n=9,352) to corresponding human PDB structures (n>55,000) and extracting structural 

parameters (see Methods). (F) Schematic displaying nearest-neighbor identification. (G) Basic 

amino acid neighbors are enriched near ligandable cysteines, whereas acidic amino acids are 

depleted. (H) Bar chart showing disagreement between primary-sequence neighbors and 3D 

neighbors of ligandable cysteines. (I) Overlap in annotated pockets using p2rank60 and 

DeepPocket 58. (J) Ligandable cysteines (e>60%) are more likely to reside in pockets than not. 

(K) KB03-engaged cysteines are enriched in pockets having volumes of 200-300 Å3. Right, 
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distribution of ligandable cysteines across pockets of different volumes. Left, predicted KB03 van 

der Waals volume (blue) and docking within a pocket identified in protein SEC24D (PDB=3EFO121, 

see Methods).  (L) Ligandable cysteines within pockets are localized to the indicated protein 

domains. (M) Amino acid content of protein pockets containing ligandable cysteines (see 

Methods).  

Figure S4: Cellular redox state and protein conformational changes regulate cysteine 

ligandability, related to Figure 2. (A) Schematic representation of different cysteine classes 

discovered in DrugMap. (B) Overlap of heterogeneous cysteines with H2O2-regulated cysteine set 

as determined by CSEA. (C) TMCEP induces a reductive state in K562 cells. Flow cytometry 

analysis was used to monitor changes in DCF fluorescence in K562 cells treated with 1 mM 

TMCEP for 1 hr. (D) NRF2 activation regulates cellular redox states. K562 cells were treated with 

1 µM KI696 (NRF2 activator) for 48 hrs, and changes in DCF fluorescence were determined as 

described in (C). (E) Immunoblot of the indicated proteins in K562 cells following treatment with 

vehicle (DMSO) or 1 µM KI696 for 48 hrs. (F) Impact of redox environment on heterogeneous 

cysteine ligandability. Scatter plot denoting changes in the ligandability of heterogeneous 

cysteines following TMCEP treatment (left) or NRF2 activation (right). (G) TMCEP treatment and 

NRF2 activation increase a subset of heterogeneous cysteine ligandability. Scatter plot comparing 

changes in cysteine ligandability in K562 cell lysate following the indicated treatments (see also 

Figures 2D-E). Heterogeneous cysteines are highlighted. (H) A subset of heterogeneous 

cysteines are differentially ligandable in KEAP1-mutant cells. Bottom, heatmap depicting 

differential cysteine engagement between KEAP1-mutant and KEAP1-WT cancer cell lines 

profiled in DrugMap. Heterogeneous cysteines are indicated. Top, representative examples of 

differential ligandability for IDH2•C308 in a panel of KEAP1-mutant (red) and KEAP1-WT (black) 

cell lines of various lineages.  (I) Cysteine ligandability is an approximate measure of cellular 

redox state. Left, plot of proteomic redox score for 416 cell lines based on the ligandability of 

redox-sensitive heterogeneous cysteines. Right, ligandability of heterogeneous redox-sensitive 
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cysteines in OVCAR4 and SKOV3 ovarian cancer cell lines (see Methods). (J) Proteomic redox 

score correlates with cellular response to auranofin.  Comparison of DCF fluorescence changes 

following auranofin treatment for eight ovarian cancer cell lines with differing proteomic redox 

scores. The indicated cell lines were treated with 1 µM auranofin (AUR) for 6 hrs, and changes in 

DCF fluorescence were determined as described in (C). (K) Cys-cys ligandability correlations are 

enriched for cysteines within close spatial proximity. Left, heatmap depicting correlations of 

4,000+ cys-cys pairs. Surrounding insets, enrichment of structural elements by CSEA on the 

indicated clusters of highly-correlated cysteine pairs. Boxed inset, top-ranked cys-cys correlations 

identified in Cluster 3.  (L) UDP-xylose increases UGDH thermal stability. Top, cell lysate isolated 

from HEK-293T cells overexpressing FLAG-UGDH was treated with 1 mM of UDP-xylose followed 

by incubation at the indicated temperatures for 3 min. Following centrifugation, the relative levels 

of UGDH were determined by immunoblot (see Methods). Bottom, quantification of UGDH thermal 

stability following treatment with UDP-xylose. Data are represented as mean ± SD. *p < 0.05. ***p 

< 0.0001. Student’s t-test (two-tailed, unpaired) was used to determine statistical significance. 

Figure S5: Ligand-induced conformation changes promote greater cysteine accessibility, 

related to Figure 2. (A) Anti-ligandable cysteines identified in cell lines analyzed in DrugMap. (B) 

Anti-ligandable cysteines are pervasive in covalent fragment treatment studies. Dot plot 

highlighting anti-ligandable cysteines in the indicated studies.  (C) RACK1•C182 liganding by 

KB03 leads to thermal instability.  Top, cell lysate isolated from HEK-293T cells expressing FLAG-

RACK1 or FLAG-RACK1•C182W was treated with DMSO, 100 µM KB02 or 100 µM KB03 for 1 

hr followed by incubation at the indicated temperatures for 3 min. Following centrifugation, the 

relative levels of RACK1 were assessed by immunoblot. Bottom, quantification of thermal stability 

of RACK1 following treatment with KB02 (see also Figure 2K, Methods).  (D) Oncogenes with 

ligandable and anti-ligandable cysteine pairs identified in DrugMap. (E) Cysteine accessibility of 

EGFR (top) and XPO1 (bottom) following treatment with the corresponding covalent drug (see 

also Figure 2L). 
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Figure S6: Genetic determinants of cysteine ligandability, related to Figure 3. (A) RNA-

expression and cysteine ligandability are poorly correlated in general. Distribution of correlations 

between cysteine ligandability and RNA expression. Inset, ligandability of COL6A3•C775 is highly 

correlated with its corresponding RNA expression across DrugMap. (B). Gene essentiality and 

cysteine ligandability are poorly correlated in general. Distribution of correlations between 

cysteine ligandability and CRISPR-based genetic dependency. Inset, ligandability of AGO3•C328 

is negatively correlated with its corresponding dependency across DrugMap. (C) Increased 

mutational burden correlates with increased changes in cysteine ligandability.  Scatter plot 

comparing cysteine ligandability and mutational burden for cell lines analyzed in DrugMap. (D) 

Identification of newly encoded cysteines that are ligandable in DrugMap. Left, heatmap depicting 

ligandability of newly encoded cysteines in cell lines harboring the corresponding mutations. 

Right, dependency of the corresponding gene for each protein harboring a de novo ligandable 

cysteine. (E) Mutation of Phe157–>Leu increases PRDX5•C100 ligandability. Left, heatmap 

showing differential engagement of PRDX5•C100 across several cell lines in DrugMap, including 

HCC1395 (green), which encodes PRDX5•F157L. Middle, lysates isolated from HEK-293T cells 

expressing FLAG-PRDX5 or FLAG-PRDX5•F157L were treated with vehicle or KB05, and 

ligandability was determined by iso-TMT. Right, structure of PRDX5  highlighting location of F157 

and change in ligandability of PRDX5•C100 (PDB:1HD2122). (F) Systematic identification of amino 

acid mutations that associate with changes in cysteine ligandability. Left, scatter plot comparing 

cysteine ligandability and amino acid mutations. Right, distribution of cysteine ligandability 

changes in ZZEF1-WT and ZZEF1-mutant cell lines. (G) Lollipop plot depicting changes in 

TP53•C141 engagement in cell lines harboring the indicated mutations. (H) Cellular pathways 

with ligandable cysteines enriched in cell lines with corresponding oncogenic mutations. (I) 

Transcription factors (TFs) represent the most lineage-restricted class of dependencies in 

DepMap. Data are represented as mean ± SD. *p < 0.05. Student’s t-test (two-tailed, unpaired) 

was used to determine statistical significance. 
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Figure S7: Development of a covalent probe targeting NFkB1•C61, related to Figure 3. (A) 

SH-7346 ligands NFkB1 in a Cys61-dependent manner. Recombinant NFkB1 or NFkB1•C61S 

was incubated with 10 µM SH-7346, and engagement was determined by intact mass 

spectrometry analysis (see Methods). (B) Structures and engagement of SH-7346 and related 

analogs. NFkB1•C61 engagement with the indicated analogs was measured at 10 µM as 

described in (A), identifying SH-1696 as an advanced ligand. (C) Conformation and modeling of 

SH-9857. Left, the SH-9857 bromochlorobenzene ring is modeled in two different 

conformations that flip the bromine position. Additionally, SH-9857 positions closely between 

the covalently attached protomer (green) and an adjacent protomer in the crystal lattice (red). 

Right, the 2Fo-Fc map (1 σ, blue mesh) and Fo-Fc map (±3 σ, green and red mesh) around 

SH-9857. The 2Fo-Fc density and Fo-Fc difference map indicate confident modelling of the 

compound from the covalent attachment through the sulfonamide. Although the 

bromochlorobenzene is already modeled in two conformations, compound flexibility or 

additional unmodeled conformations result in negative density around the halogens. 

Regardless of this apparent conformational flexibility distal to the covalent bond, DNA binding 

would still be inhibited (see also Figure 3H, Table S15). (D) IC50 determination for SH-1696 

disruption of NFkB1 transcriptional activity. HEK-293 cells expressing a NFkB1 transcriptional 

reporter were treated with SH-1696, and relative transcriptional activity was determined 3 hrs 

post-treatment (see also Figure 3K). (E) SH-1696 downregulates NFkB1 target genes in 

haematopoietic cancers. The indicated NFkB1-dependent cell lines were treated with vehicle 

(DMSO), SH-1696, or SH-9791 (10 µM) for 3 hrs, and relative gene expression was determined 

by qPCR (see also Figure 3L). (F) Dependency of NFkB1 in haematopoietic cancer lines profiled 

in Figures 3L, S7E. 
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Figure S8: SOX10 is required for melanoma proliferation, related to Figure 4. (A-B) SOX10 

is required for the proliferation of established and immunotherapy-resistant melanoma cell lines. 

Relative proliferation of established melanoma cell lines (A) and immunotherapy-resistant patient-

derived lines (B) expressing the indicated sgRNAs was determined by measuring cellular ATP 

concentrations after six days (A). Cell lines with a decrease in proliferation of >30% following 

SOX10 depletion are characterized as dependent. Inset, micrographs of SKMEL5 and WM266-4 

expressing the indicated sgRNAs.  (C) Immunoblot analysis of SOX10 in melanoma cell lines 

expressing the indicated sgRNAs.  (D) SOX10 dependency correlates with SOX10 transcriptional 

activity (see Methods). Scale bar=200 µm. Data are represented as mean ± SD. ***p< 0.0001. 

Student’s t-test (two-tailed, unpaired) was used to determine statistical significance. 

 

Figure S9: Development of a covalent probe for SOX10•C71, related to Figure 4. (A) 

Validation of SOX10 transcriptional reporter. Left, SOX10 protein levels following siRNA treatment 

in U257 cells were examined by immunoblot.  Right, U257 cells harboring a luciferase-based 

SOX10 transcriptional reporter were transfected with the indicated siRNAs and relative 

transcriptional activity was determined 96 hrs later. (B) Generating an advanced SOX10 ligand. 

Structures and activities of hit compound 2-A01 and related derivatives, identifying SH-0029 (dark 

red) as the most potent analog. SOX10 transcriptional activity was determined following treatment 

with the indicated compounds (5 µM) for 48 hrs (see also Figure 4C). (C) SH-0029 disrupts 

SOX10 transcriptional activity in a dose-dependent manner.  Cells were treated with SH-0029 or 

the control analog SH-0105 at the indicated concentrations, and SOX10 activity was measured 

as described in (B). (D) SH-0029 does not perturb the activity of other transcriptional reporters. 

Cells expressing transcriptional reporters for the indicated transcription factor reporters were 

treated with SH-0029, and relative transcriptional activity was determined as in (A).  (E) SH-0029 

ligands SOX10•C71. Left, structure of a biotinylated analog of SH-0029 (SH-0029-DTB). Right, 

HEK-293T cells expressing FLAG-SOX10 or FLAG-SOX10•C71A were treated with SH-0029-
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DTB, and SOX10 levels were assessed by immunoblot following streptavidin enrichment from 

corresponding cell lysates. (F) SH-0029 ligands SOX10 in melanoma cells. U257 or U62 cells 

were treated with vehicle, SH-0029 or SH-0105 (90 µM) for 3 hrs followed by a chase with SH-

0029-DTB (30 µM) for 1 hr. SOX10 levels were determined by immunoblot as in (E). (G) SH-0029 

engages SOX10•C71 in a dose-dependent manner. SKMEL5 cell lysate was treated with vehicle 

or the indicated concentrations of SH-0029, and SOX10•C71 engagement was determined by 

iso-TMT (see Methods). (H) Left, schematic depicting SOX10 in vitro binding assay. Right, 

immunoblot demonstrating HA-SOX10 or HA-SOX10•C71 binding to FLAG-tagged counterpart 

but no interaction with a control protein (METAP2). (I) SH-0029 increase SOX10 interaction in a 

dose-dependent manner. SH-0029-induced SOX10-SOX10 interactions was assessed with the 

SOX10 in vitro binding assay as in (H). (J) SH-0029 but not SH-0105 increases SOX10 binding 

in vitro. (K) Probing SOX10 binding in cells. HEK-293T cells transiently expressing the indicated 

FLAG- or HA-tagged proteins were lysed, and SOX10 binding was determined by immunoblot 

following immunoprecipitation with anti-FLAG M2 beads. (L) SH-0029 but not SH-0105 increases 

SOX10 binding in cells. HEK-293T cells co-expressing FLAG-SOX10 and HA-SOX10 were 

treated with vehicle (DMSO), SH-0029 or SH-0105 for 3 hrs, and SOX10 binding was determined 

as described in (K).  Data are represented as mean ± SD. ***p< 0.0001. Student’s t-test (two-

tailed, unpaired) were used to determine statistical significance. 

Figure S10: Characterization of SOX10 ligands in melanoma cells, related to Figure 4. (A) 

SOX10-positive cells are more sensitive to SH-0029 treatment. SH-0029 IC50 values were 

determined in SOX10-positive or -negative cell lines. Relative proliferation was determined using 

crystal violet staining four days post-treatment (see Methods).  (B) SH-0029 sensitivity correlates 

with SOX10 dependency. Scatter plot comparing relative proliferation after SH-0029 treatment 

with relative proliferation after CRISPR-mediated SOX10 depletion. Relative proliferation was 

determined as in Figures 4H, S8A. (C) Comparison of SH-0029 sensitivity with SOX10 

transcriptional signature. (D) Mutation of SOX10•C71A partially but significantly rescues SH-0029 
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sensitivity in U257 cells. Left, relative proliferation following SH-0029 or SH-0105 treatment in 

U257 cells expressing sgSOX10_1 and PAM-resistant FLAG-SOX10 or FLAG-SOX10•C71A. 

Right, immunoblot analysis of SOX10 levels in the indicated cell lines (see Methods). (E) Defining 

a SOX10 target gene signature in melanoma. Left, heatmap depicting commonly downregulated 

genes following treatment with siSOX10, compared to siCTRL, in a panel of melanoma cell lines. 

Right, GSEA enrichment plot for SOX10 target genes. Cells were transiently transfected with the 

indicated siRNAs, and changes in gene expression were determined by RNA-seq 72 hrs post-

transfection (n=2-3 replicates/condition, see Methods).  (F) SH-0029 alters melanoma 

transcriptional circuits. Volcano plots comparing fold change in transcript level to significance 

following treatment with SH-0029. SOX10 target genes are highlighted in red (see also Figure 

4I). (G) SH-0029 regulates SOX1 target genes in diverse melanoma cell lines.  Cells were treated 

with vehicle, SH-0029 or SH-0105 (3 µM, 48 hrs), and expression changes for the indicated genes 

were determined by qPCR. (H-I) Pharmacological and genetic regulation of the SOX10 

transcriptional network. Heatmap depicting H3K27ac and SOX10 signal intensities (H) at genomic 

loci of genes downregulated following siSOX10 treatment in SKMEL5 cells. Heatmap of 

differentially expressed SOX10 target genes in SKMEL5 cells (I) following treatment with siCTRL 

and vehicle (DMSO),  2.5 µM SH-0029 or SH-0105 for 48 hrs (see Methods). Right, Overlap in 

regulated pathways following siSOX10 or SH-0029 treatment in SK-MEL5 cells (J)  SH-0029 

regulates SOX10-bound genes. SOX10 and H3K27ac ChIP-seq tracks for ERBB3 (top) and IL16 

(bottom) and corresponding changes in transcript levels following the indicated treatments. Data 

are represented as mean ± SD. *p < 0.05. Student’s t-test (two-tailed, unpaired) was used to 

determine statistical significance. 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for reagents should be directed to the Lead Contact, Liron Bar-

Peled (LBAR-PELED@mgh.harvard.edu). 
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Materials availability 

• All unique/stable reagents generated in this study are available from the Lead Contact 

with a completed Materials Transfer Agreement.  

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
An2bodies 
SOX10 Cell 

Signaling 
Tech 

Cat#: 89356S 

SOX10 Abcam Cat#: ab155279 
NRF2 Abcam Cat#: ab62352 
KEAP1 Proteintec

h 
Cat#: 10503-2-AP 

H3K27ac AcIve 
moIf 

Cat#: 39133 

Lamin A/C Cell 
Signaling 
Tech 

Cat#: 4777S 

HA Cell 
Signaling 
Tech 

Cat#: 3724S 

FLAG Cell 
Signaling 
Tech 

Cat#: 14793S 

β-ACTIN Cell 
Signaling 
Tech 

Cat#: 4970 

HRP-labeled anI-mouse Cell 
Signaling 
Tech 

Cat#: 7076 

HRP-labeled anI-rabbit Cell 
Signaling 
Tech 

Cat#: 7074 

Affinity Gel, magne2c beads 
AnI-FLAG M2 Affinity Gel Sigma-

Aldrich  
Cat#: A2220 
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Streptavidin agarose Thermo 
Fisher 
ScienIfic 

Cat#: 20353 

SpeedBeads magneIc carboxylate modified 
parIcles 

CYTIVA Cat#: 45152105050250 

SpeedBeads magneIc carboxylate modified 
parIcles 

CYTIVA Cat#: 65152105050250 

Sera-Mag™ SpeedBeads and Sera-Mag™ 
Streptavidin-Coated MagneIc ParIcle 

CYTIVA Cat#: 30152105010350 

Protein G Dynabeads Thermo 
Fisher 
ScienIfic 

Cat#: 10004D 

AMG Pure Beads Beckman 
Coulter 

Cat#: A63881 

Agencourt RNAClean XP beads Beckman 
Coulter 

Cat#: A66514 

Bacterial and Virus Strains  
Stbl3 Fisher 

ScienIfic 
Cat#: 18265017 

XL10-Gold Agilent Cat#: 200314 
BL21-CodonPlus (DE3)-RIPL Novagen Cat#: WG14696 
Chemicals, pep2des, and Recombinant Proteins 
10x DPBS Corning Cat#: 14200166 
DMEM, no glutamine Corning Cat#: 15-013-CV 
DMEM, no phenol red Thermo 

Fisher 
ScienIfic 

Cat#: 21063045 

RPMI-1640, no glutamine Thermo 
Fisher 
ScienIfic 

Cat#: 21870076 

RPMI-1640, Glutamax supplement Thermo 
Fisher 
ScienIfic 

Cat#: 61870127 

DMEM/F-12 50/50, 1X Corning Cat#: 10-092-CV 
McCoy's 5A, 1X (Iwakata&Grace Mod.) with 
L-glutamine 

Corning Cat#: 10-050-CV 

FBS Corning Cat#: 35-010-CV 
Glutamax I Thermo 

Fisher 
ScienIfic 

Cat#: 35050061 

L-Glutamine Corning Cat#: 25-005-CI 
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D-(+)-Glucose Sigma-
Aldrich 

Cat#: G7528-250G 

Penicillin-Streptomycin (100x) Thermo 
Fisher 
ScienIfic 

Cat#: 15140122 

AnIbioIc-AnImycoIc (100x) Thermo 
Fisher 
ScienIfic 

Cat#: 15240062 

BlasIcidin  Invivogen Cat#: ant-bl-1 
Puromycin  Sigma-

Aldrich  
Cat#: P8833 

KI696 MedChem 
Express 

Cat#: HY-101140 

crizoInib Selleck 
Chemicals 

Car#: S1068 

alecInib MedChem
Express 

Car#; HY-13011  

ceriInib Selleck 
Chemicals 

Cat#: S7083 

lorlaInib Selleck 
Chemicals 

Cat#: S7536 

rocileInib Selleck 
Chemicals 

Cat#: S7284 

OsimerInib Selleck 
Chemicals 

Cat#: S7297  

Selinexor Selleck 
Chemicals 

Cat#: S7252 

Auranofin Cayman 
Chemical 

Cat#: 15316 

CM-H2DCFDA Thermo 
Fisher 
ScienIfic 

Cat#: C6827 

Trypsin-EDTA (0.05%), phenol red Thermo 
Fisher 
ScienIfic 

Cat#: 25300120 

Trypsin-EDTA (0.25%), phenol red Thermo 
Fisher 
ScienIfic 

Cat#: 25200056 

Trypsin-EDTA (0.05%), no phenol red Thermo 
Fisher 
ScienIfic 

Cat#: 15400054 

Protease inhibitor cocktail ROCHE Cat#: 5056489001 
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DMSO Fisher 
ScienIfic 

Cat#: MT-25950CQC 

DMSO Sigma-
Aldrich 

Cat#: 276855-100ML 

HEPES Fisher 
ScienIfic 

Cat#: BP310-1 

Magnesium Chloride Hexahydrate Sigma-
Aldrich  

Cat#: M0250 

Potassium Chloride Sigma-
Aldrich 

Cat#: 793590 

Tris-Base Fisher 
ScienIfic 

Cat#: BP152-5 

CHAPS hydrate Sigma-
Aldrich  

Cat#: C3023 

IGEPAL CA-630 Sigma-
Aldrich  

Cat#: I8896-100ML 

Triton X-100 Sigma Cat#: T8787-100ML 
Benzonase CHEMCRU

Z 
Cat#: sc-391121B-50KU 

Glycerol Sigma-
Aldrich 

Cat#: G5516-1L 

Sodium Deoxycholate Sigma 
Aldrich 

Cat#: D6750-10G 

Sodium Dodecyl Sulfate Sigma-
Aldrich 

Cat#: L4509-1KG 

DTT Sigma-
Aldrich 

Cat#: D9779 

Sodium Floride Sigma-
Aldrich  

Cat#: S7920 

Sodium Orthovanadate Sigma-
Aldrich  

Cat#: 450243 

KB02 (2-chloro-1-(6-methoxy-1,2,3,4-
tetrahydroquinolin-1-yl)ethan-1-one) 

Enamine Cat#: EN300-24641 

KB03 (N-Chloroacetyl-3,5-
bis(trifluoromethyl)aniline) 

Combi-
Blocks 

Cat#: SS-4792 

KB05 (N-(4-Bromophenyl)-N-
phenylacrylamide) 

Sigma 
Aldriche 

Cat#: 911798 

Iodoacetamide desthiobioIn (DBIA) This Study   
Tris(2-carboxyethyl)phosphine hydrochloride Sigma-

Aldrich  
Cat#: C4706-10G 

Tri(2-methoxycarbonylethyl)phosphine 
hydrochloride 

Sigma-
Aldrich 

Cat#: 66576-250MG 
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Poly L-lysine soluIon Sigma-
Aldrich  

Cat#: P8920-100ML 

Agarose LE molecular biology grade Genesee 
ScienIfic 

Cat#: 20-102 

Polybrene  Sigma-
Aldrich  

Cat#: TR-1003-G 

X-tremeGENE360 transfecIon reagent Sigma-
Aldrich 

Cat#: 08724156001 

Polyethyleneimine Polyscienc
es 

Cat#: 23966-100 

Crystal Violet Acros 
Organics 

Cat#: 40583-0250 

Sodium azide Sigma-
Aldrich 

Cat#: S8032 

BMOE Thermo Cat#: 22323 
ReBlot Plus mild anIbody stripping soluIon EMD 

Millipore 
Cat#: 2502 

Poly(2'-deoxyinosinic-2'-deoxycyIdylic acid) 
sodium salt 

Sigma-
Aldrich 

Cat#: 81349  

Pierce ECL Western Bloqng Substrate Thermo 
ScienIfic 

Cat#: 32106 

CyIva's Amersham ECL Prime Western 
Bloqng DetecIon Reagent 

CyIva Cat#: RPN2236 

SuperSignal West Aro UlImate SensiIvity 
Substrate 

Thermo 
ScienIfic 

Cat#: A38544 

Ethyl alcohol Sigma-
Aldrich  

Cat#: E7023-4L 

Water, LC/MS grade Sigma-
Aldrich 

Cat#: 1153334000 

Methanol, LC/MS grade FISHER 
CHEMICAL 

Cat#: A456-4 

Water, HPLC grade Sigma-
Aldrich  

Cat#: 270733-4L 

Ethyl alcohol, HPLC grade Sigma-
Aldrich 

Cat#: 459828-4L 

Trypsin/LysC Protease Mix, MS grade Thermo 
ScienIfic 

Cat#: A40009R 

EPPS Sigma-
Aldrich  

Cat#: E9502-100G 

Acetonitrile Sigma-
Aldrich 

Cat#: 271004-100ML 

Acetonitrile  FISHER 
CHEMICAL 

Cat#: A955-4 
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TMTpro™ 16plex Label Reagent Set Thermo 
ScienIfic 

Cat#: A44520R 

Hydroxylamine ACROS 
ORGANICS 

Cat#: AC270101000 

10% formic acid Thermo 
ScienIfic 

Cat#: 28905 

Calcium chloride dihydrate Sigma-
Aldrich 

Cat#: 223505-500G 

C18 microspin columns The Nest 
Group 

Cat#: SEM SS18V 

TEV protease Vivabiotec
h 

  

HiTrapTM  Q-HP 5ml CyIva Cat#: 17115401 
HiTrapTM  SP HP 5ml CyIva Cat#: 17115201 
HiLoad 16/600 Superdex 75 pg CyIva Cat#: 28989333 
PEG6000 Sigma-

Aldrich 
Cat#: 81255 

IPTG Sigma-
Aldrich 

Cat#: I5502 

HEPES Sigma-
Aldrich 

Cat#: H23830 

Imidazole Sinopharm 
Chemical 
Reagent 

Cat#: 30104916 

Citric acid monohydrate Sinopharm 
Chemical 
Reagent 

Cat#: 10007108 

NaCl Sinopharm 
Chemical 
Reagent 

Cat#: 10019308 

Glycerol  Sinopharm 
Chemical 
Reagent 

Cat#: 10010618 

DTT Sinopharm 
Chemical 
Reagent 

Cat#: 63002636 

Roche DiagnosIcs LightCycler 480 SYBR 
Green I Master 

Roche 
DiagnosIc
s 

Cat#: 04887352001 

Quick-RNA purificaIon Kit Zymo 
Research 

Cat#: R1055 

NucleospinRNA Macherey-
Nagel 

Cat#: 740955-50 
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Qscript cDNA SuperMix QuantaBio Cat#: 10144-106 
Gibson Assenbly New 

England 
Biolabs 

  

RNase A Roche Cat#: 43813100 
Proteinase K Thermo 

Fisher 
ScienIfic 

Cat#: 25530049 

Ultralow V2 DNA-Seq Library PreparaIon Kit NuGEN Cat#: 0344NB-A01 
Buffer TCL QIAGEN Cat#: 1031576 
2-Mercaptoethanol Sigma 

Aldrich 
Cat#: M6250 

Maxima reverse transcriptase Thermo 
Fisher 
ScienIfic 

Cat#: EP0753 

KAPA HiFi HotStart ReadyMix Roche Cat#: KK2602 
Nextera XT Library Prep kit Illumina Cat#: FC-131-1096 
NextSeq 500/550 High Output Kit v2.5 (75 
Cycles)  

Illumina Cat#: 20024906 

Oligonucleo2des 
NFkB1 consensus oligonucleoIdes (sense: 
/5BiosG/AGTTGAGGGGACTTTCCCAGGC, 
AnIsense: GCCTGGGAAAGTCCCCTCAACT) 

IDT N/A 

Oligo(dT) Primer (5-
AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTVN-3)  

IDT N/A 

TSO oligonucleoIde (5-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G
-3) 

QIAGEN N/A 

ISPCR (5-AAGCAGTGGTATCAACGCAGAGT-3)  IDT N/A 
Cri2cal Commercial Assays 
Pierce™ BCA Protein Assay Kits Thermo 

Fisher 
ScienIfic 

Cat#: 23225 

Pierce™ QuanItaIve PepIde Assays & 
Standards 

Thermo 
Fisher 
ScienIfic 

Cat#: 23275 

Secreted-Pair Luciferase Assay Kit Genecopo
eia 

Cat#: LF062 

QB Buffer Invivogen Cat#: rep-qblb 
QB Reagent Invivogen Cat#: rep-qbla 
NanoGlo HiBiT LyIc detecIon system Promega Cat#: N3040 
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Dual Glo Luciferase assay system Promega Cat#: E2940 
Cell Titer Glo Promega Cat#: G9243 
Qubit dsDNA HS Assay kit Thermo 

Fisher 
ScienIfic 

Cat#: Q32854 

Recombinant DNA 
pRK5-FLAG-METAP2 Addgene 32004 
pRK5-SOX10-FLAG-WT This study N/A 
pRK5-SOX10-FLAG-C71A This study N/A 
pRK5-SOX10-FLAG-C71W This study N/A 
pRK5-SOX10-HA-WT This study N/A 
pRK5-SOX10-HA-C71A This study N/A 
pRK5-RACK1-WT-FLAG This study N/A 
pRK5-RACK1-C182W-FLAG This study N/A 
pRK5-FLAG-UGDH-WT This study N/A 
pRK5-FLAG-UGDH-C276W This study N/A 
pRK5-PRDX5-WT-FLAG This study N/A 
pRK5-PRDX5-F157L-FLAG This study N/A 
plenICRISPRv2:sgCTRL This study N/A 
plenICRISPRv2:sgSOX10_1 This study N/A 
plenICRISPRv2:sgSOX10_2 This study N/A 
pCW57.1-7xTRE-SOX10-WT-3xFLAG(gRNA-
mutant) 

This study N/A 

pCW57.1-7xTRE-SOX10-C71A-3xFLAG(gRNA-
mutant) 

This study N/A 

pET28A-NFkB1 This study N/A 
SoGware and Algorithms 
Prism (v9.0e)  GraphPad hrps://www.graphpad.com/ 

scienIfic-souware/prism/ 
MATLAB R2022b MathWork

s 
hrps://www.mathworks.com/p
roducts/matlab.html 

ImageJ NIH hrps://imagej.net/souware/fiji
/ 

Flowjo v10.0.7. BD hrps://www.flowjo.com/ 
Chimera 1.17.3. UCSF hrps://www.cgl.ucsf.edu/chim

era/ 
 
 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  
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Cell culture 

Culture methods for 416 cell lines used for DrugMap including glioma neurospheres123 124and 

patient derived breast CTC cell lines125 are summarized in Table S1. A375, SKMEL2, RPMI7951, 

MeWo, IGR39, WM266-4, SKMEL5, HMCB, HS944T, SKMEL3, SKMEL30, HCT116, and HEK-

293T were grown in DMEM (Corning) supplemented with 10% fetal bovine serum (FBS, Corning), 

Penicillin-Streptomycin (100 mg/ml, Thermo Fisher Scientific) and L-Glutamine (2 mM, Corning). 

K562, G361, U62, COLO679, IPC298, COLO792, RVH421, MELJUSO, WM793B, M234, M189, 

M194, M270, M258, M283, M187, M307, M321, M272, M148, M249, M171, M144, M308, M176, 

M175, 10164, CALU6, HARA, HOP62, OVISE, EFO27, OVTOKO, and EFO21 were grown in 

RPMI-1640 (Corning) supplemented with 10% fetal bovine serum (FBS, Corning), Penicillin-

Streptomycin (100 mg/ml, Thermo Fisher Scieitific), and 1% GlutaMax (Thermo Fisher Scientific). 

SW620, SKMEL28, IGR1, A2058, C32, IGR37, LOX-IMVI, 10150, 10170, OVK18, TOV21G, and 

OAW28 were grown in DMEM/F12 (Corning) supplemented with 10% fetal bovine serum (FBS, 

Corning), Penicillin-Streptomycin (100 mg/ml, Thermo Fisher Scientific), and 1% GlutaMax 

(Thermo Fisher Scientifc). SKOV3 cells were grown in McCoy’s 5A (Corning) supplemented with 

10% fetal bovine serum (FBS, Corning), Penicillin-Streptomycin (100 mg/ml, Thermo Fisher 

Scientific) and L-Glutamine (2 mM, Corning). PC9 cells were grown in RPMI (Corning) 

supplemented with 10% fetal bovine serum (FBS, Corning), 1% Antibiotic-Antimycotic (Thermo 

Fisher Scientific), and L-Glutamine (Thermo Fisher Scientific).   All the cell lines were routinely 

tested for Mycoplasma and if not noted elsewhere were obtained from American Tissue Type 

Collection (ATCC).  

 

METHODS DETAILS 

Antibodies and Reagents 

Antibodies and reagents used in this study are listed in Key Resources Table.  
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Transient transfection  

Transient transfections were conducted as previously described32. Briefly, HEK-293T cells were 

plated at a confluence of 3 x 106 cells/10 cm dish. 24 hrs post seeding, cells were transfected with 

indicated plasmid in polyethyleneimine (PEI, Polysciences) with a ratio of 1:3 (DNA:PEI). Cells 

were harvested 48 hrs post transfection, washed once in ice-cold PBS buffer, and snap-frozen in 

liquid nitrogen. In experiments where cells were treated with compounds prior to harvest, tissue 

culture dishes were coated with poly-L-lysine (Sigma Aldrich, 1:100 diluted) for 20 min at 37°C 

prior to cell seeding. 48 hrs after transfection, cells were treated with SH-0029 or SH-0105 for 3h 

in serum-free media and then harvested as described above. 

 

Lentivirus generation  

Lentiviral plasmids for either sgRNA expression or over-expression were cloned into the indicated 

lentiviral expression plasmids (see Table S14). Lentiviral expression plasmids were co-

transfected with psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) envelope packaging 

plasmids into 1.8 x 106 HEK293T cells using X-tremeGENETM 360 Transfection Reagent (Sigma-

Aldrich). Virus-containing supernatants were collected 48 hrs after transfection. 

 

siRNA transfection 

siRNAs were obtained from Dharmacon, and target sequences are listed in Table S14. siRNA 

oligonucleotide pools of 4 different siRNAs were transfected into melanoma cells using 

Lipofectamine RNAimax (Invitrogen) at a final concentration of 20 nM following the manufacturer’s 

instructions. Briefly, melanoma cells were trypsinized and seeded at a confluency of 3 x 105 

cells/well in 6-well plates with pre-plated transfection complexes incubated in Opti-MEM (Life 

Technologies). Culture media were replaced 24 hrs post transfection. 48 hrs post siRNA 

transfection, adherent cells were trypsinized  and replated at a confluency of 1 x 104 cells/well in 
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96-well plates for luciferase assays. Cells were harvested 72 hrs post-transfection to examine 

protein levels by immunoblotting.  

 

Quantitative reverse-transcriptase (qRT)-PCR 

qRT-PCR was conducted as previously described with the following modificaitons126. Briefly, U62, 

SK-MEL28, COLO-792, IPC-298, SK-MEL3 cells were replated at a confluency of 1.5 x 105 

cells/well in 6-well plates. After 24 hrs, cells were treated with vehicle control (DMSO), 3 μM SH-

0029, or SH-0105 for 48 hrs. MM1S, AMO1, RPMI8226, KMS11, and KMS27 were replated at a 

confluency of 5 x 105 cells/well in 12-well plates and treated with vehicle (DMSO), SH-9791, or 

SH-1696 at the concentrations described in Figure 3 (10 μM) for 3 hrs. Total RNA was extracted 

with Quick-RNA extraction kits (Zymo Research) and cDNA synthesized using qScript cDNA 

synthesis kit (Quanta) according to manufacturer’s instructions. qRT-PCR was performed using 

LightCycler® 480 System (Roche) using the FastStart SYBR Green master mix (Roche). The 

relative expression of each gene was normalized to UBC(Ubiquitin C). Primer sequences are 

listed in Table S14. 

 

Cloning and mutagenesis 

cDNAs were amplified using Q5 High-Fidelity 2X master mix (NEB), Phusion (NEB), or Pfu DNA 

polymerase (Promega) and subcloned into the pRK5 (Addgene #32004), pLJM1 (Addgene 

#100510) or pLX304 (Addgene #25890) by T4 ligation or Gibson cloning (NEB). Site directed 

mutants were constructed using primers containing the desired mutations. All constructs were 

verified by DNA sequencing. Lentiviral sgRNA constructs and SOX10, PAX8, YAP1, and SOX2 

reporter constructs are listed in Table S14. 
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SOX10 transcriptional reporter assays   

To generate U257, SK-MEL5, HMCB, U62, and WM-2664 SOX10 reporter cell lines, cells were 

transduced with lentiviral particles harboring pEZX vector (Genecopoeia) with a secreted 

luciferase under the control of a SOX10 target gene promoter127. PAX8, YAP1, and SOX2 reporter 

cells were established in a similar manner in OVTOKO, MDA-MB-231, and H3122 cells, 

respectively128-130. To identify small molecule inhibitors of SOX10 transcriptional activity, U257 

SOX10 reporter cells were replated at a confluency of 5,000 cells/well in 96-well plates. 24 hrs 

post seeding, cells were treated with vehicle (DMSO) or the indicated small molecule library 

(Enamine) for 48 hrs. To determine SOX10 transcriptional activity, culture supernatants were 

collected and secreted luciferase (GLUC) and secreted alkaline phosphatase (SEAP, expression 

control) levels  were determined according to manufacturer’s instructions (Genecopoeia and 

Invivogen, respectively). 

 

Cell lysis and Immunoprecipitations 

Unless noted otherwise, all lysis buffers were supplemented with protease inhibitors (Roche), 10 

mM Sodium Fluoride (Sigma Aldrich),  and 1 mM Sodium Orthovanadate (Sigma Aldrich). To 

determine melanoma protein expression, pellets were lysed with 1% Triton-X100 lysis buffer (40 

mM HEPES pH 7.4, 10 mM KCl, 5 mM MgCl2, 1% Triton-X100) supplemented with benzonase 

(Santacruz Biotechnology) using a chilled bath sonicator (Q700, QSonica). Lysates were rotated 

for 30 min at 4°C and centrifuged at 21,000 x g for 10 min, and soluble fractions were collected. 

For co-transfection experiments, HEK-293T cells co-transfected with indicated plasmids were 

washed with PBS once and treated with SH-0029 or SH-0105 for 3 hrs in serum-free media. 

Plates were washed once with ice-cold PBS, snap-frozen for storage, then lysed using a chilled 

bath sonicator (Q700, QSonica) in CHAPS lysis buffer (40 mM HEPES pH 7.4, 10 mM KCl, 5 mM 
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MgCl2, 0.3 % CHAPS). Lysates were clarified by centrifugation at 21,000 x g for 10 min. FLAG 

immunoprecipitations were conducted as previously described32. In brief, anti-FLAG M2 resin 

(Sigma Aldrich) was added to the HEK-293T lysates generated as described above, resin was 

incubated for 2 h at 4°C with end-over-end rotation. Following immunoprecipitation, beads were 

washed three times with CHAPS lysis buffer supplemented with 150 mM NaCl.  Loading buffer 

was subsequently added and samples were denatured by boiling at 95°C for 5 min. Proteins were 

resolved by SDS-PAGE and analyzed by immunoblotting as previously described32 with 

antibodies described in Key Resource Table.  

 

Flow cytometric analysis of cellular ROS levels 

Cellular ROS levels were determined using CM-H2DCFDA (Thermo Fisher Scientific) as 

described previously32. For CM-H2DCFDA staining in EFO27, SKOV3, EFO21, OVISE, 

OVTOKO, TOV21G, OVK18, and OAW28, cells were washed with prewarmed PBS, trypsin 

digested and harvested by centrifugation at 1200 x g at room temperature for 2 mins. The cell 

pellet was resuspended in PBS with 1 μM of CM-H2DCFDA and incubated for 30 min in a 37°C 

incubator with 5% CO2. For CM-H2DCFDA staining in K562 cells, cells were pretreated with 1 

mM TMCEP (Sigma Aldrich) for 30 min or 1 μM KI696 (MedChemExpress) for 48 hrs and 

harvested by centrifugation at 1200 x g at room temperature for 2 mins. The cell pellet was 

resuspended in PBS with 1 μM of CM-H2DCFDA and 1 mM TMCEP or 1 μM KI696, then 

incubated for 30 min in a 37°C incubator with 5% CO2. Cells were subsequently washed with PBS 

and changes in CM-H2DCFDA fluorescence were determined via flow cytometry using Aurora 

(Cytek). Data was analyzed using Flowjo v10.6 for FITC intensity. 
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SOX10 interaction with SH-0029-DTB  

U257 or U62 melanoma cells were plated at a confluency of 4 x 106 cells per 15 cm dishes. After 

48 hrs, cells were treated with DMSO or SH-0029 (30, 60, or 90 μM) for 3h in serum-free RPMI, 

followed by SH-0029-DTB (30 μM) treatment  for 1 hr. Cells were washed once with ice-cold PBS, 

snap-frozen for storage and then lysed in Buffer A (15 mM Tris-HCl pH 8.0, 15 mM NaCl, 60 mM 

KCl, 1 mM EDTA, 0.5 mM EGTA, 0.05% NP-40) for 5 min on ice. Lysates were clarified by 

centrifugation at 400 x g for 5 min. For streptavidin enrichment, streptavidin agarose 

beads(Thermo Fisher Scientific) were added to lysates and incubated for 3 hrs at 4°C with end-

over-end rotation. Following enrichment, beads were washed three times with Buffer A 

supplemented with 150 mM NaCl.  Loading buffer was added to the immunoprecipitated proteins 

which were subsequently denatured by boiling at 95°C for 5 min. Proteins were resolved by SDS-

PAGE and analyzed by immunoblotting.   

 

SOX10 in vitro binding assays 

In vitro binding assays were conducted as previously described32. In brief, HEK-293T cells 

expressing the indicated proteins were washed once with ice-cold PBS, snap-frozen for storage, 

then lysed using a chilled bath sonicator (Q700, QSonica) in CHAPS lysis buffer (40 mM HEPES 

pH 7.4, 10 mM KCl, 5 mM MgCl2, 0.3 % CHAPS). Lysates were clarified by centrifugation at 

21,000 x g for 10 mins. For FLAG immunoprecipitations, anti-FLAG M2 resin (Sigma Aldrich) was 

added to lysate from cells expressing SOX10-FLAG, SOX10•C71A-FLAG or FLAG-METAP2 and 

incubated for 2 hrs at 4°C with end-over-end rotation. Lysates isolated from cells expressing 

SOX10-HA or SOX10•C71A-HA, were treated with DMSO or the indicated compounds for 3 hrs 

at 4°C and then incubated with SOX10-FLAG-bound resin for 1 hr at 4°C with end-over-end 

rotation. Following immunoprecipitation, beads were washed three times with CHAPS lysis buffer 
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supplemented with 150 mM NaCl.  Loading buffer was added to the immunoprecipitated proteins 

which were subsequently denatured by boiling at 95°C for 5 min. Proteins were resolved by SDS-

PAGE and analyzed by immunoblotting.   

 

Thermal Shift Assays 

HEK-293T pellets transiently expressing each protein were lysed with DPBS supplemented with 

protease inhibitors (Roche), Sodium Fluoride (Sigma Aldrich), and Sodium Orthovanadate (Sigma 

Aldrich), using a chilled bath sonicator (Q700, QSonica). Lysates were clarified by centrifugation 

at 300 × g for 3 min. Supernatants were diluted to 1.25 mg/mL using DPBS, aliquoted at 40-50 

μL/well in a PCR plate, and allowed to warm to RT. Vehicle (DMSO) or the indicated compound 

were subsequently added, and the samples were allowed to incubate at room temperature for 1 

hr in a PCR plate. Samples were heated to the indicated temperature for 3 min in a BioRad T100 

Thermal Cycler (BioRad). Samples were allowed to cool at room temperature for 5 min, incubated 

for 3 min on ice, transferred into 1.5 mL tubes, and centrifuged at 21,000 × g for 1 hr. Soluble 

fractions were collected for immunoblot analysis as described above.  Band intensity was 

assessed with Image J analysis and normalized to the value at the lowest temperature (RACK1: 

36°C, UGDH: 48°C) used in each experiment. The melting curve for each protein was generated 

with Prism v9 (GraphPad).  

 

CRISPR-mediated knockdown in melanoma models 

3 x 105 melanoma cell lines were transduced with lentiviral particles containing non-targeting 

sgRNAs or sgRNAs targeting Exon 1 of SOX10  in the presence of 10 μg/mL polybrene (Millipore 

Sigma). 24 hrs post infection, cell culture media were replaced, and cells were cultured for an 

additional 24 hrs. Cells were subsequently transferred into 10 cm dishes in fresh media to culture 
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for 3 days. Afterwards, cells were replated into 96-well plates in the presence of puromycin (0.25-

1 μg/mL) for proliferation assays 6 days post-seeding (see below) or were replated in a 6 cm dish 

or a 10 cm dish for immunoblot analysis blot analysis following 6 days of puromycin selection.   

 

Cell Proliferation assays 

To examine the impact of SOX10 depletion on melanoma cell lines, 1,000-7,000 melanoma cells 

expressing the indicated sgRNAs (see above) were seeded into a 96-well plate, and proliferation 

was determined 6 days post-seeding by measuring relative ATP levels as previously described32.  

In brief, 50 µL Cell Titer GloTM (Promega) was added to each sample well, and the luminescence 

was read on the SpectraMax M5 plate reader (Molecular Devices). To examine the impact of SH-

0029 or SH-0105 on cell proliferation, 2,000-7,000 cells were seeded in 96-well plates/well in 100 

µl media. The following day, cells were treated with the indicated compounds for 96 hrs. At which 

point culture media were removed, and cells were stained with Crystal Violet staining solution (0.5 

% in 20 % methanol) for 30 min at room temperature. Viability was assessed with Image J analysis 

as previously described64. To calculate half maximal inhibitory concentrations (IC50), cells were 

treated with 0.0156-10 µM compounds for 96 hrs, cell proliferation was analyzed with crystal violet 

images, and IC50 values were calculated using log(inhibitor) vs % normalized response formula 

in Prism v9 (GraphPad). For proliferation In U257 stably co-expressing sgSOX10-1 and PAM-

resistant FLAG-SOX10 or FLAG-SOX10•C71A, cells were replated in 96 well plates at 5,000 

cells/well in 100 µl medium after six days of puromycin selection. The following day, cells were 

treated with 0.5-10 µM SH-0105 or SH-0029 for 96 hrs. Cell proliferation was determined by 

measuring relative ATP levels as described above.   
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NFkB DNA HiBiT-Protein Complementation Assay 

HEK-293T cells stably expressing HiBiT-tagged NFkB1 or NFkB1-C61S mutant were lysed with 

RIPA buffer (Pierce) supplemented with HALT Protease & Phosphatase inhibitor cocktail (Thermo 

Fisher Scientific) with homogenization through QIAshredder spin column (QIAGEN), and lysates 

were clarified by centrifugation at 15,000 rpm for 10 min. Supernatants were normalized to 0.25 

μg/μl by BCA assay and incubated with 100 μM compounds for 3 hrs while shaking. Streptavidin-

coated 384-well plates (Thermo Scientific) were washed with 1xTBS and preincubated with 15 

nM NFkB1 consensus oligo (IDT, sense: /5BiosG/AGTTGAGGGGACTTTCCCAGGC, Antisense: 

GCCTGGGAAAGTCCCCTCAACT) for 1 hr to allow them to bind to plates. Plates were washed 

three times with 1x TBS, followed by an incubation with Protein Free Block for at least 1.5 hr. 

Lysates pretreated with compounds were subsequently incubated with NFkB1 oligo-coated plates 

for 1 hr at room temperature, and NFkB1 binding was measured by luminescence using NanoGlo 

HiBiT Lytic Detection System (Promega) according to manufacturer’s instructions. 

 

NFkB Dual Luciferase Reporter Assay 

HEK-293 NFkB1 reporter (BPS Bioscience) was seeded at 8,000 cells/well in 384-well plates with 

phenol red-free DMEM (Thermo Fisher Scientific) culture media. After 24 hrs, cells were treated 

with compounds for 3 hrs at the maximum concentration of 100 μM with serial dilution. NFkB1 

transcriptional activity was calculated by Firefly luminescence and Renilla luminescence using 

Dual-Glo Luciferase Assay System (Promega) according to manufacturer’s instruction. 

 

RNAseq analysis of melanomas treated with SH-0029 or SH-0105 
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U257, COLO679, and IGR-1 were replated at 1.5 x 105 cells/well into 6-well plates. The following 

day cells were treated with 3 μM SH-0029 or SH-0105 for 48 hrs. For SK-MEL5 treatment, 3  x 

105 cells were first transfected with the indicated siRNAs in 6-well plates. 24 hrs later, cells were 

treated with vehicle (DMSO) or 2.5 μM SH-0029 or SH-0105 for 48 hrs. Total RNA was extracted 

with NucleoSpin RNA extraction kit (MACHEREY-NAGEL) according to manufacturer’s 

instructions, and 1500 ng/30 μL RNA was sent to Novogene for sequencing.  

 

RNA-seq analysis following SOX10 depletion in melanoma using modified Smart-seq2 

protocol 

Seven melanoma cells (HMCB, MeWO, U257, U62, SKMEL5, SKMEL28, and SKMEL2) 

transfected with 20 nM of each indicated siRNA (as described above) were seeded in 96-well 

plates (5,000 cells/well) 48 hrs post transfection. Following 24 hrs proliferation in 96-well plates, 

cells were lysed with 25 uL of Buffer TCL (QIAGEN) supplemented with 1% β-mercaptoethanol 

(Sigma Aldrich) and stored at -80°C until use. Libraries from each cell line were generated based 

on the Smart-seq2 protocol131,132 with the following modifications. RNA from 10 µL lysates was 

first purified with Agencourt RNAClean XP beads (Beckman Coulter) before oligo-dT primed 

reverse transcription with Maxima reverse transcriptase (Thermo Scientific) and locked TSO 

oligonucleotide, which was followed by 10 cycle PCR amplification using KAPA HiFi HotStart 

ReadyMix (Roche) with subsequent Agencourt AMPure XP bead purification (Beckman Coulter). 

Libraries were prepared with tagmentation using the Nextera XT Library Prep kit (Illumina) with 

custom barcode adapters (sequences available upon request). Libraries from the seven 

melanoma cell lines transfected with different siRNAs with unique barcodes were combined and 

sequenced with paired-end, 38-base reads, using a NextSeq 500 sequencer (Illumina).  

 

RNAseq Data Processing 
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Melanoma RNA Samples were processed in Novogene. Reads were aligned using STAR 

v.2.4.0h. FeatureCounts was used to quantify the aligned fragments and FPKM expression values 

were calculated by removing duplicates and using Cufflinks v.2.2.1 and hg19 RefSeq gene 

definitions. DEseq2 v3.10133,134 was used to perform the differential expression analysis for the 

datasets in this study. Genes with 2-fold changes and P value < 0.05 were defined as differentially 

expressed genes. GO analysis was performed using datasets downloaded from the GSEA 

website42 (https://www.gsea-msigdb.org/qsea/index.isp). After integrating the SOX10 target 

genes , a hypergeometric test was performed to calculate p-values for the given gene sets. FDR 

was calculated by p.adjust(method = "fdr") using R. 

 

ChIP–seq  

ChIP assays were performed using 5 million cells per sample as previously described135. In brief, 

chromatin from 1% formaldehyde-fixed cells was fragmented to a size range of 200–700 bases 

with a Branson 250 Sonifier. Solubilized chromatin was immunoprecipitated with 5 μg antibodies 

against SOX10 (Abcam) or H3K27ac (Active Motif) at 4 °C overnight. Antibody–chromatin 

complexes were pulled down with protein G Dynabeads (Life Technologies), washed, and then 

eluted. After cross-link reversal and RNAseq (Roche) and proteinase K (Thermo Fisher Scientific) 

treatment, immunoprecipitated DNA was extracted with AMP Pure beads (Beckman Coulter). 

DNA was quantified with Qubit dsDNA HS Assay kit (Invitrogen). ChIP DNA samples were used 

to prepare sequencing libraries with Ultralow V2 DNA-Seq Library Preparation Kit (NuGEN). 

A Nextseq 1000 Illumina genome analyzer was used for sequencing.  

  

ChIP–seq Data Processing  

ChIP–seq sequencing reads were aligned to the hg19 genome using bwa v.0.7.12 with default 

settings. After the removal of duplicate reads using picard-tools v.1.95, aligned reads were 

extended to 200 bp to approximate fragment sizes. Density maps were normalized to 10 M reads. 
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IGV was used to visualize ChIP–seq coverage at specified loci. ChIP–seq peaks were identified 

using MACS2 v.2.2.7.1 with a q-value of 10−5. The narrow peak setting was used for TFs while 

broad peaks were used for histone marks. Peaks within 2 kb of a TSS were considered promoter 

sites and the remaining sites were considered distal sites. Chromatin and TF signals associated 

with peaks were quantified using pyBigWig v0.3.18. 

 

Generation of recombinant NFkB1 proteins 

NFκB1 (Uniprot P19838) constructs, HIS6-TEV-FLAG-NFκB1 (40-352), HIS6-TEV-FLAG-NFκB1 

(40-352; C61S) and crystallization construct, and HIS6-TEV-NFκB1 (40-245), were cloned into a 

pET28A vector (Novagen) and overexpressed with IPTG (Sigma Aldrich) induction in BL21-DE3 

codon plus cells (Novagen). Cells were lysed in 50 mM HEPES pH 8.0, 500 mM NaCl, and 5% 

Glycerol and captured on Nickel resin (Qiagen). The column was washed in buffer supplemented 

with 20 mM imidazole (Sinopharm Chemical Reagent) followed by protein elution with 250 mM 

imidazole. The eluate was digested with TEV protease (Vivabiotech) to remove the tag, and 

flowed over a second, subtractive nickel column. Protein was diluted into 20 mM HEPES pH 7.0, 

1mM DTT. For ion exchange, NFkB1 used in biochemical experiments was applied to a HiTrap 

Q HP column (Cytiva) while the crystallization construct was applied to a HiTrap SP HP column 

(Cytiva). Proteins were eluted with a linear gradient of 20 mM HEPES pH 7.0, 1 M NaCl, and 1 

mM DTT. Ion exchange fractions were pooled, concentrated, and applied to a Superdex 

75,16/600GL column for size exclusion in 20 mM HEPES pH 7.0, 250 mM NaCl, and 1 mM DTT. 

Proteins were exchanged into 20 mM HEPES pH 7.0, 250 mM NaCl, and 0.1 mM DTT, 

concentrated, and flash frozen for storage. 

 

Crystallization, Structure Solution, and Refinement 
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Protein was diluted with its storage buffer and incubated with a 5-fold molar excess of compound 

for 3 hrs at room temperature. Compound-bound protein was concentrated to 10 mg/mL and 

mixed 1:1 with 0.1 M Citrate (Sigma Aldrich) pH 5.0, 20% w/v PEG 6000 (Sigma Aldrich) for 

crystallization. A 2.02 angstrom dataset was collected at SPring-8 (BL45XU) and processed with 

XDS136, POINTLESS, and AIMLESS137. PDB 1SVC  was used for molecular replacement. Protein 

modeling and building were performed in Coot82 and refined with Refmac5138. The model was 

refined using TLS and required twin refinement due to a significant twin fraction. 

 

iso-TMT sample preparation 

Iso-TMT samples were prepared as previously described32,35,38. In brief, adherent or suspension 

cells were cultured until reaching ~80% confluency. Cells were washed once with ice-cold PBS, 

snap-frozen in liquid nitrogen, and stored at -80°C until use. To measure the impact of intracellular 

redox on cysteine ligandability, K562 cells were seeded at 2 x 105 cells/ml and treated with 1 mM 

Tris(2-methoxycarbonylethyl)phosphine (TMCEP) (Sigma-Aldrich) for 1 hr or 1 μM KI696 

(MedChem Express) for 48 hrs and subsequently harvested as described above. Frozen cell 

pellets were lysed in DPBS supplemented with Benzonase (Santacruz) and protease inhibitors 

(Roche) using a chilled bath sonicator (QSONICA) and centrifuged for 3 min at 300 x g. Proteins 

were quantified by BCA assay (Thermo Fisher Scientific) and a total of 50 μg of total protein 

extracts were used per compound treatment. Lysates were treated with vehicle (DMSO) or 500 

μM of KB02, KB03, or KB05 (Sigma-Aldrich) for 1 hr, followed by 1 mM DBIA treatment for 1 hr. 

For NFkB1 hit finding, lysates were treated with 200 μM compound for 90 minutes and 

subsequently treated with 1 mM DBIA for 1 hr. For experiments that investigated UGDH complex 

formation, K562 cell lysates were treated with 20, 100, or 1000 μM  UDP-xylose (UGA Complex 

Carbohydrate Resource Center) for 1 hr before KB05 treatment. For experiments that investigated 
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EGFR or XPO1 liganding, PC9 or K562 cell lysates were treated with 1 μM  Osimertinib (Selleck 

Chem) or Selinexor (Selleck Chem), respectively, for 1 hr before KB05 treatment. 

Following DBIA incubation, lysates were reduced with 5 mM 5-tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) (Sigma-Aldrich) for 2 min at room temperature, 

followed by alkylation using 20 mM Iodoacetamide (Sigma-Aldrich) for 30 min in the dark at room 

temperature. Proteins were precipitated using SP3 magnetic beads. In brief, SP3 magnetic beads 

(Cytiva) were prewashed with LC-MS grade water (Sigma Aldrich), and 250 µg combined SP3 

beads (1:1, hydrophobic:hydrophilic) and LC-MS grade ethanol (Sigma Aldrich)were added to 

each sample to reach a final concentration of 50% ethanol139. SP3 incubation was performed for 

30 min at room temperature, and beads were subsequently washed 3 times with 80% HPLC 

grade-ethanol (Sigma Aldrich) and then resuspended with 175 uL of Trypsin/Lys-C (1 µg, Thermo 

Fisher Scientific) in 200 mM EPPS (Sigma Aldrich)  pH 8.4 , 5 mM CaCl2. Proteins were digested 

overnight (16 h) at 37°C and digested peptides were enriched with streptavidin magnetic beads 

(Cytiva) for 1 hr at room temperature. Beads were subsequently washed three times with DPBS, 

twice with HPLC grade-water (Sigma Aldrich). Peptides were eluted with 50 % acetonitrile (Sigma 

Aldrich), 0.1% formic acid (Thermo Fisher Scientific), and dried using a Speedvac (Thermo Fisher 

Scientific). 

Cysteine-enriched peptides were reconstituted with 30 % acetonitrile, 70 % 200 mM EPPS 

pH 8.4 and labeled with 25 µg of TMT reagent (Thermo Fisher Scientific) per channel for 75 min 

at room temperature with rotation. Labeling was terminated by the addition of 5% hydroxylamine 

(Acros Organics) for 15 min followed by addition of 10% formic acid. Samples were pooled and 

dried using a Speedvac (Thermo Fisher Scientific). Peptides were desalted with stage tips using 

the following procedure: peptides were reconstituted with 5% acetonitrile/0.1 % formic acid and 

loaded onto C18 Micro Spin columns (Nest Group) pre-equilibrated with LC-MS grade methanol 

(Fisher Chemical) and LC/MS-grade water containing 0.1% formic acid. C18 spin columns were 
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washed 10 times with LC/MS grade water containing 0.1 % formic acid and subsequently eluted 

with 80% acetonitrile, 0.1% formic acid and dried using a Speedvac (Thermo Fisher Scientific).  

 

Mass spectrometry Data Acquisition  

All mass spectrometry data were acquired using an Orbitrap Eclipse™ Tribrid™ Mass 

Spectrometer in-line with an Easy NanoLC-1200 system (Thermo Fisher Scientific)37. Peptides 

were separated using 75μm capillary column packed with 50 cm of C18 resin (2 μm, 100 Å; 

Thermo Fisher Scientific) using 180, 205, or 210 min gradients of 10–35% acetonitrile in 0.1% FA 

per run, unless otherwise noted. Eluted peptides were acquired by data-dependent acquisition 

and quantified using the synchronous precursor selection (DDA-SPS–MS3) method for TMT 

quantification. Briefly, MS1 spectra were acquired at 120-K resolving power with a maximum of 

50-ms ion injection in the Orbitrap with high-field asymmetric-waveform ion-mobility spectrometry 

(FAIMS) values at -40, -50, and -70 compensate voltage (CV). MS2 spectra were acquired by 

selection of the top twenty most abundant features via collisional induced dissociation in the ion 

trap using an automatic gain control (AGC) setting of 10 K, quadrupole isolation width of 0.7 m/z, 

and a maximum ion accumulation time of 50 ms. These spectra were passed in real time to the 

external computer for online database searching. Intelligent data acquisition using Comet real-

time searching (RTS) was performed with a database including cell line mutations (DepMap)113 

and human protein databases (release_20210506)38,140. The same forward- and reversed- 

sequence human protein databases were used for both the RTS search and the final search 

(Uniprot)141. Next, peptides were filtered using simple, initial parameters that included the 

following: not a match to a reversed-sequence, containing TMTPro16 isobaric tags, maximum 

PPM error <50, minimum PPM error >5, minimum DCorr 0.10. If peptide spectra matched those 

above, an SPS–MS3 scan was performed using up to 20 b- and y-type fragment ions as 
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precursors with an AGC of 250 K for a maximum of 250 ms, with a normalized HCD collision 

energy setting of 55 (TMTPro16)38.  

 

Mass spectrometry Data Analysis 

The mass spectrometry data were searched by MSFragger142 (v3.4), X! Tandem143 

(v2013.06.15.1), Comet144 (v2021.01.rev0), MSGF+145 (v20220107) or Proteome Discover (2.5, 

Thermo Fisher Scientific) using the following parameters: 6 amino acids for minimum peptide 

length, 20 ppm precursor tolerance and 700 ppm fragment ion tolerance, allow tryptic peptides 

only, up to two missed cleavages, oxidation of methionine (+15.9949 Da) and DBIA on cysteine 

residues (+239.1634) as variable modifications while TMTPro16 (+304.2071 Da) on lysine and 

peptide N-termini, and cysteine carbamidomethylation (+57.0214 Da) were static modifications. 

For each mass spectrometry run, the searches were performed against a custom cell-line specific 

FASTA database that included the canonical UniProt human (v2021) protein sequences, common 

contaminants, cell-line-specific mutated peptide sequences, and reversed versions of UniProt 

sequences. The reversed sequences were added as decoys for target-decoy analysis. The initial 

search result from each search engine was then analyzed by PeptideProphet146. Then the 

PeptideProphet results from the multiple search engines were merged by iProphet147 analysis. 

Peptide ion FDRs were estimated by target-decoy approach at cell-line level based on iProphet 

probability. For the collective DrugMap dataset, peptides were filtered to obtain a 1% global FDR. 

PeptideProphet and iProphet analyses were performed via Trans-Proteomic Pipeline148 (TPP)  

(v6.0.0). TMT reporter-ion quantification from the MS3 scans of all identified PSMs was extracted 

by an in-house program. The raw reporter ion intensities were adjusted for impurity correction 

according to the manufacturer’s specifications. For quantification of each MS3 spectrum, a total 

sum signal-to-noise of all reporter ions of 100 (TMT16-plex) was used.  
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Intact Mass Spectrometry data acquisition and processing 

Recombinant NFkB1 proteins were diluted to 2.8 µM in 50 mM HEPES, 100 mM NaCl, and 0.01% 

Pluronic F127 and added to compound-containing wells for treatment at 10 µM. Reactions were 

incubated at room temperature for 3 hrs on a plate shaker and then quenched with a 1:3 dilution 

of 6M guanidine-HCl, 0.6% formic acid. 

Following compound treatment, proteins were separated by liquid-chromatography (LC) 

using a Vanquish Horizon UHPLC system (Thermo Fisher Scientific) configured with a PLRP-S 

(Agilent) reverse-phase column. Separated proteins were introduced and measured on an 

Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific). ESI source settings for 

protein ionization were as follows: source voltage of 3.4 kV, heated capillary temperature of 

320°C, and RF-Lens set to 50 percent. Data acquisition was performed over a mass-to-charge 

(m/z) range of 600-2300, at a 15,000 resolving power (at 200 m/z), an AGC target value of 1 x 

106, 3 mscans/spectrum, and maximum injection time of 50 ms. Intact protein MS data was 

deconvoluted using the open source UniDec software149. Relative covalent adduct formation was 

calculated using the intensity ratio of the adducted protein (parent + adduct) to the unmodified 

recombinant protein (parent). 

 

Calculation of Cysteine Engagement 

To study cysteine ligandability, we calculated “engagement” (ε) by cysteine-reactive compounds 

(e.g. KB05, KB03, KB02) (Equation 1). Cysteine engagement is measured in units of percent. 

 

Equation 1 

𝜀 = 200 ∗ (
𝐷𝑀𝑆𝑂

𝐷𝑀𝑆𝑂 + 𝐾𝐵05,3,2
− 0.5) 

Engagement is formally equivalent to a probability of liganding by a cysteine-reactive compound, 

whereas the commonly calculated ratio (Equation 2) is like a mathematical odds.  
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Equation 2 

𝑅 =
𝐷𝑀𝑆𝑂
𝐾𝐵05,3,2

 

These similar constructions have different emphases. For example, ratios exhibit more prominent 

fluctuations at positive extremes, whereas engagement equalizes the width of the number line 

that is allotted to different levels of cysteine ligandability. To allow direct comparison, we provide 

a conversion from ratios to engagement (Equation 3).  

 

Equation 3: 

𝜀 = 200 ∗ (
𝑅

𝑅 + 1
− 0.5) 

 

To compare these two metrics, consider a cysteine whose ratio is initially 10 and doubles to 20 in 

a second measurement. While this equals a 100% absolute increase in reactivity as understood 

with ratios, this difference only spans roughly 10 percentage points in the engagement space. 

Thus, engagement gives equal attention to cysteines which fluctuate from “reactive” to “highly 

reactive” and those which fluctuate from “not reactive” to “reactive.” To complete our data 

processing workflow, we partitioned the data by scout (KB05, KB03, KB02) and quantile-

normalized the engagement values for all cell lines profiled, effectively creating three datasets. 

Per scout, this operation equalized both the centers and the widths of the distributions of cysteine 

engagement values across all cell lines (Figure S1G). 

 

CSEA 

In order to systematically enumerate features that are unusually prevalent among a set of 

cysteines, such as biological pathways or protein structural elements, we developed Cysteine Set 

Enrichment Analysis (CSEA). CSEA requires two user-defined lists of cysteines: one should 
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contain cysteines of interest, and the other background set should contain cysteines not expected 

to share meaningful sources of variation with cysteines in the set of interest. CSEA uses the 

background set as a reference against which to detect unexpectedly high enrichment of a feature 

among the cysteines of interest. We compiled >6000 sets of cysteines, conceptually binned into 

four kinds of set, based on: molecular functions, biological pathways, experimental literature, and 

protein structures (Table S16). This repository constitutes a library against which users can check 

for features enriched in their cysteines of interest. CSEA can be run against the entire library, or 

any subset of it—even a single cysteine set. 

 

CSEA uses the common permutation test42 to establish the significant enrichment of a particular 

feature in a user-defined set of interest. Provided an appropriately large background set of 

cysteines, CSEA will tabulate the overlap between random draws of cysteines from the 

background set and a set of cysteines from the library, e.g. the set of all cysteines which belong 

to myosin motor domains. This process is formally equivalent to evaluating the intersection in a 

two-way Venn diagram. Each overlap calculation represents one permutation. Users can choose 

how many permutations CSEA performs, but the results typically stabilize after ~200 

permutations. Collectively, these permutations form an empirical null distribution against which 

the “true” overlap between the cysteines of interest and the feature in question is compared. This 

comparison is made mathematically formal by fitting a Gaussian to the null overlap distribution 

(Equation 4),  

 

Equation 4: 

	

𝛼𝑒!"
#!$
% &

!
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where α, β, and γ are fitting constants, and x is the probability density of the null distribution. After 

fitting, a one-sided tail integration is computed from the “true overlap” to infinity. This tail area 

equals the p value for the feature of interest. In a case where the null set is completely devoid of 

any cysteines having the feature studied, CSEA interpolates a Gaussian with minimal density 

near 0 in order to facilitate p-value calculation. P-values generated in this case are denoted in the 

output; however, this use illustrates one setting where the user-defined background may be 

suboptimal and warrant further consideration by the user. This procedure is repeated for each 

feature or library set the user wishes to evaluate. The Benjamini-Hochberg method is then applied 

to control the false discovery rate in a set of p-values generated over a single run. Users are free 

to substitute more stringent, family-wise error rate correction procedures, such as the Bonferroni 

correction. 

 

Circos Plot 

The Circos plot summarizes variations in cysteine liganding across the panel of cell lines profiled 

in this study. The plot was calculated with respect to scout KB03. As the plot is read from the 

center to the periphery, information is summarized with increasing density. The innermost ring 

displays differences in cysteine ligandability at single sites among individual cell lines, whereas 

the outermost ring represents the ligandability of all cysteines detected in a particular signaling 

pathway, summarized across all cell lines of a particular tissue. Lineage-specific information in 

the Circos plot is organized angularly.  

 

The innermost ring of the Circos plot highlights a “batch-aware” analysis, wherein the quantile-

normalized engagement values of different cell lines are grouped by batch and the batch median 

is subtracted, yielding a matrix of differences instead of absolute engagement values. This step 

is common to routine batch correction methods150 and serves to partially mitigate the complex 

batch effects innate to biological data, facilitating analyses of cysteine ligandability across groups 
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of cell lines. For example, the innermost ring of the Circos plot highlights local variation in cysteine 

ligandability that might be specific to a single cancer cell line. This “batch-aware” analysis 

underpins our analysis of heterogeneous liganding (see “Cysteine Heterogeneity” below).  

 

In the innermost ring, all cell lines belonging to the labelled lineages are plotted, causing some 

slices to appear more granular than others. The second ring of the Circos plot highlights the 

ligandability of cysteine-containing protein domains, stratified by lineage. We represented the 49 

most commonlydetected protein domains across our panel of cell lines. For each of these 

domains, and specifically for each lineage, we show how often the cysteines in a particular domain 

were liganded. The third ring of the Circos plot displays the ligandability of 12 broad protein 

classes and their subclasses as defined by the PANTHER database151. Similar to the second ring, 

the amount of color represents the fraction of cysteines in proteins of a particular class that were 

liganded in that lineage. The outermost ring of the Circos plot shows the maximum ligandability 

of all detected cysteines belonging to each of 14 PANTHER signaling pathways151, subsetted by 

lineage. 

  

Structural Analysis of Cysteine Ligandability  

In order to analyze the structural underpinnings of cysteine ligandability, we built a database of 

protein biophysical parameters (Table S13), each characterizing a facet of the geometric or 

chemical/electrostatic locale around a cysteine. We first downloaded all PDBs of human proteins 

that been deposited at wwPDB.org as of November 2022 and divided them into their biological 

assemblies. We then implemented custom scripts to filter out PDBs lacking cysteines, and 

mapped the remaining PDB chains to the Uniprot database. We chose a PDB to represent each 

cysteine, prioritizing by best coverage of the protein's amino acid sequence, and using highest 

resolution as a tiebreaker. We then analyzed our entire directory of mapped PDBs to collect 

structural parameters of all cysteines, using custom Python scripts to calculate the Euclidean 
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distances between neighboring amino acids, and the Bio.PDB module of the Biopython package, 

the DSSP package48,51, the p2rank60 and DeepPocket58 pocket prediction algorithms, and the 

Voss Volume Voxelator to calculate the other parameters discussed in this study. 

 

Neural Network Prediction of Cysteine Ligandability 

The neural network in this study features two components: a convolutional neural network (CNN) 

and a feed-forward network, i.e. a multi-layered perceptron (MLP). The MLP was fed tabularized 

biophysical calculations on cysteines (the features computed above) constituting a complete 

structural parametrization, plus corresponding cysteine liganding data from the mass 

spectrometry analysis. A set of 30-row x 20-column binary distance matrices, with each column 

representing an amino acid and each row a half-Angstrom-thick shell centered on a cysteine of 

interest, were treated as images and fed into the CNN. We designed the CNN to convolve along 

the distances in 1D in order to abstract the spatial arrangement of amino acids surrounding a 

particular cysteine. The output from these networks was then concatenated and sent through 

further feed-forward layers (with dropout) before returning a classification (ligandability prediction) 

for a single cysteine. The network was trained with the python TensorFlow package. 

 

Cysteine Heterogeneity 

In order to identify cysteines with unusually high variance in ligandability, we integrated both 

“global” and “local” analyses of heterogeneity. With respect to scout KB03 alone, we first 

calculated the coefficient of variation (CV) of cysteine ligandability across all cell lines, effectively 

summarizing macroscopic or global fluctuations of cysteine ligandability across our entire panel 

of 416 cell lines into a single vector. We then calculated “local” variance by repeating the previous 

calculation but instead grouping cell lines by batch, producing a CV matrix where columns and 

rows represented batches and cysteines, respectively. In order to harmonize these global and 

local views of heterogeneity, we first collapsed the local CV matrix into a column vector by 
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counting the number of times a particular cysteine had CV>10% in quantile-normalized 

engagement within a batch. The choice to strictly threshold CV here allowed us to prioritize strong 

intra-batch ligandability differences. At this point, the data was reduced to two vectors, which were 

then individually rank-ordered. Cysteines were finally nominated as heterogeneous if they scored 

within the top 5% of each vector. Such a cysteine is thus both heterogeneous at the global level 

(“on average”) and also frequently heterogeneous at the local level (within batches). Lastly, in 

order to isolate cysteines whose reactivities are potentially controlled by processes that vary 

across diverse cellular contexts and are not merely singleton events, such as private amino acid 

mutations, we required that any candidate heterogeneous cysteine be detected in at least 50% of 

cell lines profiled in this study. 

 

Network analysis of heterogeneous cysteines 

The MATLAB corr() function was used to calculate pairwise correlation coefficients between all 

pairs of cysteines. These correlation coefficients were taken to characterize edges between two 

cysteines. The MATLAB clustergram() function was used to cluster the cysteine-cysteine 

correlations, forming networks that could be analyzed at the global level. 

 

Integration of cysteine ligandability data with cell-intrinsic molecular feature data 

All gene expression, mutation, and CRISPR-essentiality data were downloaded from the Cancer 

Cell Line Encyclopedia’s (CCLE) data portal152. Cell lines that underwent RNA-Seq, WGS, and 

genome-wide CRISPR screening, as well as cysteine ligandability profiling were included for 

analysis. We identified RNA expression clusters by first calculating each gene's standard 

deviation of log TPM values across all cell lines and then using the 2000 highest-scoring genes 

to partition the cell lines under study into three transcriptionally defined clusters. Further sub-

clustering was then performed at the level of each molecular feature. For example, at the genetic 

dependency level, CRISPR scores were first row-normalized by z-score, and then the 2,000 
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genes with the highest standard deviation in each major cluster, totaling 6,000 genes, were 

combined and row-clustered. Columns were sorted by embryonic tissue of origin. The same 

operation was repeated at the RNA level, except that log TPM values were first row-clustered, 

and we then visualized row-normalized z-scores of the transcript levels. For each cell line, the 

max cysteine ligandability was taken for each protein, allowing us to match the rows in the 

cysteine liganding heatmap to those shown at the genetic dependency level. At the genome level, 

>1000 commonly mutated genes organized in KEGG153- and PANTHER151-based oncogenic and 

signaling pathways, respectively, are shown. Proteins containing at least one missense mutation 

were considered mutated. A binary matrix indicating protein mutational status was clustered, and 

the row sorting was used to visualize somatic mutations across the panel of cancer cell lines. 

 

Identification of mutations that associate with changes in cysteine ligandability 

In order to find genetic variants that influence cysteine ligandability, we enumerated cis-

associations between protein mutation status and local differences in cysteine engagement. We 

first intersected the cell lines profiled in this study with those profiled by WGS in the CCLE. We 

then sorted all proteins by the genomic coordinates of their missense mutations and plotted the 

“batch-aware” cysteine engagement values of any cysteine quantified within that mutant protein. 

Our analysis assumes that, absent a protein mutation, a cysteine expressed in one cell line should 

display roughly the same ligandability as it does in another cell line. On this premise, the batch-

aware cysteine engagement value represents the effect size of a corresponding, putatively causal 

missense variant within the same protein. Thus, it allows identification of singleton events (i.e. 

mutations observed in only one cell line) that might influence cysteine ligandability. What we 

loosely term an “association” is predicated on the intuitive notion that differences in cysteine 

ligandability among a handful of cell lines profiled in the same batch—a local form of variation—

can be associated with a corresponding amino acid mutation, either proximal or distal to a cysteine 

of interest. 
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Logistic Regression Analysis 

In order to transition from singleton changes in cysteine ligandability to bona-fide associations 

between amino acid mutation and alterations in cysteine ligandability, we performed a 

cysteinome-wide logistic regression analysis. Specifically, we asked whether local differences in 

cysteine engagement, rather than cysteine engagement itself, can be used to infer the mutational 

status of a protein. Toward this end, we first restricted our screen to cysteines that were detected 

in at least 25 cell lines and missense-mutated in at least 10 of them. We then partitioned the 

batch-aware, quantile-normalized cysteine engagement values of the relevant cell lines into a 

“wild-type” category and a “mutant” category. For our initial analysis, we did not sub-stratify by 

the mutant amino acid. We then performed a logistic regression via the MATLAB mnrfit() function 

according to Equation 5: 

Equation 5: 

ln ;
𝛾

1 − 𝛾=
= 𝛽' + 𝛽(𝑋( 

where 𝛾 represents the probability that a measurement 𝑋(, i.e. a single batch-aware, quantile-

normalized engagement value, belongs to the “wild-type” category not the "mutant" category, and 

the 𝛽) are coefficients learned by the model. Recalling that the batch-aware analysis returns a 

matrix of local differences, the y-intercept of this model then intuitively represents the log-odds 

that, given the observed distribution of batch-aware engagement data, a difference of zero 

corresponds to a wild-type protein. Thus, we z-scored these intercepts and multiplied them by -1 

to yield a log-odds of membership in the “mutant” category. In order to ascertain the direction of 

change between mutant and wild-type, we subtracted the median signed difference of cell lines 

harboring a missense mutation in the gene encoding that cysteine from that of the corresponding 

wild-type cell lines. 
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Identification of Lineage-restricted Dependencies 

In order to delineate targets for chemical probe development, we identified genes that exhibit 

lineage-restricted genetic dependency and also contain ligandable cysteines. We first intersected 

the cell lines profiled in this study with those that underwent corresponding CRISPR-based 

knockout and RNA-Seq profiling in DepMap. We then row-normalized the data reported for both 

'omic features (i.e. CRISPR scores and RNA-Seq log TPM) and summarized these two tables 

into their constituent lineage subtypes as reported in CCLE. Specifically, we collapsed columns 

by taking medians across all available cell lines belonging to a single lineage subtype (e.g. 

melanoma). At the level of lineage subtypes and not individual cell lines, we then estimated the 

relative importance of a particular gene within a lineage subtype by subtracting the row-

normalized values of all other lineage subtypes from the one in question, forming a distribution of 

differences. For example, in this study we profiled cysteine ligandability in >20 tissue types 

spanning ~70 lineage subtypes, meaning that ~70 subtractions were performed for each gene, 

where one lineage subtype at a time was held constant. We summarized each distribution by 

taking its median. In principle, any gene showing persistent, positive differences, as encapsulated 

in the median difference, across tens of lineage subtypes, should be uniquely important for cell 

lines of that lineage subtype,  but not other lineages. We finally calculated the inner product of the 

different matrices for each 'omic feature, obtaining a final “score” for all genes jointly assayed in 

both datasets, across all lineages. Higher scores indicate mutual elevations in both transcriptional 

exclusivity and CRISPR-based essentiality for a particular gene within a given lineage subtype. 

The angular coordinate of the plot is used to summarize scores for each subtype within a particular 

lineage, and the radial coordinate indicates the magnitude of the score. Negative scores were 

filtered out. Given that transcription factors constituted the class of proteins most enriched at the 

periphery of the plot (as evidenced by simple counting), we subsetted to transcription factors. The 

maximum ligandability, per lineage, of cysteines belonging to multiple transcription factors 

detected in this study are shown. 
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NRF2 and SOX10 Signature Calculation 

To identify cell lines characterized by high levels of NRF2 activity with corresponding KEAP1 

mutations, we intersected the cell lines profiled in this study with those that underwent WGS and 

RNA-Seq profiling in the CCLE. For this subset of jointly profiled cell lines, we first calculated row-

normalized z-scores on the log TPM data. This step accentuated the relative differences in 

expression level across cell lines, preventing housekeeping genes with high basal transcription 

from dominating our transcriptional signature. We then calculated the median of these row-

normalized transcript levels across canonical NRF2 target genes64, forming a distribution of NRF2 

transcriptional activity. Cell lines with missense mutations in KEAP1 and high NRF2 

transcriptional activity were operationally defined as possessing functionally-inactivated KEAP1 

and were included for cysteine reactivity analyses. To estimate SOX10 activity in cell lines, we 

first calculated row-normalized z-scores on the log TPM data in the CCLE. Specifically, for each 

transcript, z-scores were calculated across all available cell lines, irrespective of tissue of origin. 

We then calculated the median of these row-normalized transcript levels across canonical SOX10 

target genes87,154,155. This step defined a single number, i.e. a SOX10 signature level, for each 

cell line.  

 

Visualization of Protein Structures 

Scenes containing representations of protein structures were generated in Chimera 1.17.3156. 

 

Quantification and statistical analysis 

Statistical analyses were performed with Excel (Microsoft), Prism (GraphPad v9.5.1), and 

MATLAB (R2022b). Error bars represent mean ± s.d. Statistical significance was assessed using 

unpaired, two-tailed Student’s t-tests. P values are indicated in figure legends and source data. P 
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< 0.05 is indicated with single asterisks, P < 0.001 with double asterisks, and P < 0.0001 with 

triple asterisks. 

 

Compound synthesis 

Reagents and solvents were obtained from commercial suppliers and used without further 

purification, unless otherwise stated. Reactions were carried out under a positive atmosphere of 

nitrogen and monitored by thin layer chromatography (TLC) using shortwave UV light or by 

SHIMADZU LC/MS . Normal phase flash column chromatography was performed using silica gel 

60 N (spherical, 75-150 μm). 1H NMR spectra were recorded on Bruker Avance 400 MHz 

spectrometer and were calibrated using residual non-deuterated solvent as the internal 

references (CDCl3: 7.26 ppm;; MeOH-D4: 3.31 ppm, acetone-D6: 2.05 ppm; DMSO-D6: 2.50 ppm). 

The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet, 

t = triplet, q = quartet, p = pentet, m = multiplet, br = broad. 

Analytic procedures  

LCMS:  

Instrument specifications: 

Agilent 1100 Series LC/MSD system with DAD\ELSD Alltech 2000ES and Agilent LC\MSD VL 

(G1956B), SL (G1956B) mass-spectrometer. 

Agilent 1200 Series LC/MSD system with DAD\ELSD Alltech 3300 and Agilent LC\MSD 

G6130A, G6120B mass- spectrometer. 

Agilent Technologies 1260 Infinity LC/MSD system with DAD\ELSD Alltech 3300 and Agilent 

LC\MSD G6120B mass- spectrometer. 

Agilent Technologies 1260 Infinity II LC/MSD system with DAD\ELSD G7102A 1290 Infinity II 

and Agilent LC\MSD G6120B mass-spectrometer. 
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General Parameters: 

Detection: DAD – DAD1A 215 nm, DAD1B 254 nm MSD – single quadrupole, AP-ESI 

(positive/negative mode switching) 

Temperature: 25 °C  

LCMS procedure: 

Column: InfinityLab Poroshell 120 SB-C18 4.6x30mm 2.7 Micron with Guard: UHPLC Guard 

3PK InfinityLab Poroshell 120 SB-C18 4.6x5mm 2.7 Micron 

Mobile phases: A - Deionized water: Formic acid (99.9:0.1%). B - HPLC-grade MeCN: 

(Deionized water: Formic acid (99.9:0.1%)) (95:5%)  

Gradient: from A - 99%, B - 1% to A - 1%, B - 99%  

 

HPLC procedures:  

Instrument specifications: 

Agilent 1260 Infinity systems equipped with DAD and mass-detector General Parameters: 

Temperature: 25 °C  

HPLC procedure 1:  

Column: Chromatorex 18 SMB 100-5T 100A, 5 μm, 19 mm x 100mm with SiliaSphere C18 

100A 5μm 100 A, 19mm x 10 mm 

Detection: DAD – DAD1A 215 nm, DAD1B 254 nm. MSD – single quadrupole, AP-ESI 

Mobile phases: A - Deionized water (100%). B - HPLC-grade CH3CN (100%)  

HPLC procedure 2:  

Column: Chromatorex 18 SMB 100-5T 100A, 5 μm, 19 mm x 100mm with SiliaSphere C18 

100A 5μm 100 A, 19mm x 10 mm 

Detection: DAD – DAD1A 215 nm, DAD1B 254 nm. MSD – single quadrupole, AP-ESI 

Mobile phases: A - Deionized water (100%). B - HPLC-grade MeOH (100%)  

HPLC procedure 3:  
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Column: Chromatorex 18 SMB 100-5T 100A, 5 μm, 19 mm x 100mm with SiliaSphere C18 

100A 5μm 100 A, 19mm x 10 mm 

Detection: DAD – DAD1A 200 nm, DAD1B 215 nm. MSD – single quadrupole, AP-ESI 

Mobile phases: A - Deionized water (100%). B - HPLC-grade CH3CN (100%)  

HPLC procedure 4:  

Column: Chromatorex 18 SMB 100-5T 100A, 5 μm, 19 mm x 100mm with SiliaSphere C18 

100A 5μm 100 A, 19mm x 10 mm 

Detection: DAD – DAD1A 200 nm, DAD1B 254 nm. MSD – single quadrupole, AP-ESI 

Mobile phases: A - Deionized water (100%). B - HPLC-grade MeOH (100%)  

HPLC procedure 5:  

Column: XBridge Shield RP18 OBD Column, 30*150 mm, 5μm 

Detection: UV - wavelength: 254 and 220 nm 

Mobile Phases: A: Water (10 mmol/L NH4HCO3). B: ACN; Flow rate: 60 mL/min. 

HPLC procedure 6:  

Column: conditions (Column: YMC-Actus Triart C18, 30*150 mm, 5μm 

Detection: UV - wavelength: 254 and 220 nm 

Mobile Phases: A: Water (10 mmol/L NH4HCO3). B: ACN; Flow rate: 60 mL/min. 

 

General synthetic methods  

Reagents and solvents were obtained from commercial suppliers and used without further 

purification, unless otherwise stated. Reactions were carried out under a positive atmosphere of 

nitrogen and monitored by thin layer chromatography (TLC) using shortwave UV light or by 

SHIMADZU LC/MS . Normal phase flash column chromatography was performed using silica gel 

60 N (spherical, 75-150 μm). 1H NMR spectra were recorded on Bruker Avance 400 MHz 

spectrometer and were calibrated using residual non-deuterated solvent as the internal 

references (CDCl3: 7.26 ppm;; MeOH-D4: 3.31 ppm, acetone-D6: 2.05 ppm; DMSO-D6: 2.50 
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ppm)157. The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d 

= doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br = broad.  

General amide coupling procedure 

Amide coupling procedure was performed as previously described158. The -NH2 substrate, -COOH 

substrate, EDC, HOAt, NEt3, and DMF are added to a flame dried round bottom flask under 

nitrogen atmosphere and stirred for 12 h. The reaction mixture is then diluted with EtOAc, 

transferred to a separatory funnel, washed with H2O, dried over magnesium sulfate, and 

concentrated.  

 

Compound preparation 

SH-9791 

 

A solution of (3R)-1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (400 mg, 1.86 mmol, 1 

equiv) in DMF (5 mL) was treated with HATU (1060 mg, 2.79 mmol, 1.5 equiv) and DIEA (721 

mg, 5.57 mmol, 3 equiv) at 0°C under nitrogen atmosphere followed by the addition of 

benzylamine (219 mg, 2.04 mmol, 1.1 equiv) in portions at room temperature159. The resulting 

mixture was stirred for 3 hrs at room temperature under nitrogen atmosphere. The resulting 

mixture was diluted with water (20 mL). The aqueous layer was extracted with CH2Cl2 (3x10 mL). 

The organic layers were concentrated under vacuum. The residue was purified by Prep-TLC (PE 
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/ EA 1:3) to afford tert-butyl (3R)-3-(benzylcarbamoyl)pyrrolidine-1-carboxylate (520 mg, 92%) as 

a yellow solid.  LC-MS: (M-H)+ found 303.15. 

A solution of tert-butyl (3R)-3-(benzylcarbamoyl)pyrrolidine-1-carboxylate (200 mg, 0.66 mmol, 

1 equiv) in DCM (3 mL) was stirred at room temperature under nitrogen atmosphere, then the 

addition of TFA (1 mL) was administered dropwise160. The resulting mixture was stirred for 2 hrs 

under nitrogen atmosphere. The resulting mixture was concentrated under vacuum to afford (3R)-

N-benzylpyrrolidine-3-carboxamide (200 mg, crude) and was used in the next step directly without 

further purification.  LC-MS: (M+H)+ found 205.10. 

A solution of (3R)-N-benzylpyrrolidine-3-carboxamide (200 mg, 0.98 mmol, 1 equiv) in DCM (3 

mL) was treated with Et3N (495 mg, 4.89 mmol, 5 equiv) at 0°C under nitrogen atmosphere 

followed by the addition of BrCN (114.08 mg, 1.077 mmol, 1.1 equiv) in portions at 0°C161. The 

resulting mixture was stirred for 2 hrs at room temperature under nitrogen atmosphere. The 

mixture was diluted with CH2Cl2 saturated NaHCO3 and the aqueous layer was extracted with 

CH2Cl2 (3x10 mL). The organic layers were concentrated under vacuum. The crude product (150 

mg) was purified by HPLC procedure 5 (Gradient: 10% B to 34% B) in 9 min to afford (3R)-N-

benzyl-1-cyanopyrrolidine-3-carboxamide (40 mg, 18%) as a white solid.  1H NMR (400 MHz, 

Chloroform-d) δ 7.42 –7.31(m, 3H), 7.31 – 7.29 (m, 1H), 7.28 - 7.25 (m, 1H), 5.91 (s, 1H), 4.47 

(d, J = 5.6 Hz, 2H), 3.71 – 3.57 (m, 3H), 3.45 – 3.40 (m, 1H), 2.92 – 2.85 (m, 1H), 2.25 – 2.10 (m, 

2H). LC-MS: 228.00 (MH+) 
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Figure 1. 1H NMR spectrum of SH-9791. 

 

 

SH-9857 

 

A solution of (3S)-3-aminopyrrolidine-1-carbonitrile (100 mg, 0.900 mmol, 1 equiv) in DCM 

(0.7 mL) was treated with Et3N (455 mg, 4.50 mmol, 5 equiv) for 5 min at room temperature under 

nitrogen atmosphere followed by the addition of (2-bromo-4-chlorophenyl) methanesulfonyl 

chloride (273.49 mg, 0.900 mmol, 1 equiv) in DCM (0.3 mL) dropwise at 0°C160. The resulting 
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mixture was stirred for 2 hrs at room temperature under nitrogen atmosphere. The reaction was 

quenched with water at 0°C. The resulting mixture was extracted with CH2Cl2 (2 x 15 mL). The 

combined organic layers were washed with brine (1x10 mL) and dried over anhydrous Na2SO4. 

After filtration, the filtrate was concentrated under reduced pressure. The residue (100 mg) was 

purified by HPLC procedure 6, gradient: 33% B to 55% B in 9 min to afford 1-(2-bromo-4-

chlorophenyl)-N-[(3S)-1-cyanopyrrolidin-3-yl] methanesulfonamide (39 mg, 11%) as a yellow 

solid. LCMS: (M+H)+ found 377.75.  1H NMR (300 MHz, Chloroform-d) δ 7.67 (d, J = 2.0 Hz, 1H), 

7.53 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 8.3, 1H), 4.52 (s, 3H), 3.84 (t, J = 5.7 Hz, 1H), 3.58 – 3.37 

(m, 3H), 3.22 (d, J = 10.2, 1H), 2.15 – 2.01 (m, 1H), 1.87 – 1.75 (m, 1H).  

 

Figure 2. 1H NMR spectrum of SH-9857. 

 

SH-7346 
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tert-butyl (S)-3-aminopyrrolidine-1-carboxylate (130 mg, 0.70 mmol, 1.00 equiv.) and 

phenylmethanesulfonyl chloride (130 mg, 1.05 mmol, 1.50 equiv.) were dissolved in ACN (5.00 

mL), and then, TEA (0.31 mL, 2.10 mmol, 3.00 equiv.) was added to the solution160. The mixture 

was heated at 30 ºC for 2 hrs. The mixture was concentrated in vacuo and the crude product was 

used into next step without further purification. 

To a solution of tert-butyl (S)-3-((phenylmethyl)sulfonamido)pyrrolidine-1-carboxylate (crude) 

in DCM (0.50 mL), HCl-Dioxane (3.50 mL, 4.00 M) was added dropwise, then mixture was heated 

at 30 ºC for 2 hrs162. The mixture was concentrated in vacuo and the crude product was used 

without further purification. 

(S)-1-phenyl-N-(pyrrolidin-3-yl)methanesulfonamide (crude) was dissolved in DMSO (3.00 

mL), and then DIEA (0.37 mL, 2.10 mmol, 3.00 equiv.) and cyanic bromide (147 mg, 1.40 mmol, 

2.00 equiv.) were added to the solution161. The mixture was heated at 30 ºC for 2 hrs. The mixture 

was purified by prep HPLC to give (S)-N-(1-cyanopyrrolidin-3-yl)-1-phenylmethanesulfonamide 

(40 mg, 0.15 mmol, 99%). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 - 1.82 (m, 1 H) 1.98 - 2.10 

(m, 1 H) 3.13 (dd, J=9.69, 4.82 Hz, 1 H) 3.35 - 3.39 (m, 1 H) 3.40 - 3.54 (m, 2 H) 3.88 (sxt, J=5.88 

Hz, 1 H) 4.39 (s, 2 H) 7.31 - 7.43 (m, 5 H) 7.55 (br d, J=6.63 Hz, 1 H). MS-ESI, 266.1 (M+H+). 

HRMS-TOF, (M+H+), 266.0945.   
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Figure 3. 1H NMR spectrum of SH-7346. 

 

 

SH-1696  

 

To a stirred solution of NaH (38 mg, 1.60 mmol, 2 equiv) and aniline (82 mg, 0.878 mmol, 1.1 

equiv) in THF (5 mL) at 0°C, tert-butyl (3S)-3-(N-methyl2-chloropyridine-3-

sulfonamido)pyrrolidine-1-carboxylate (300 mg, 0.798 mmol, 1 equiv) was added163. The resulting 

mixture was stirred for 12 hrs at 50°C then concentrated under reduced pressure.  The residue 

was purified by reverse-phase flash chromatography with the following conditions: column, C18 

silica gel; mobile phase, ACN in water, 0% to 100% gradient in 20 min; detector, UV 254 nm to 
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afford tert-butyl (3S)-3-[N-methyl2-(phenylamino)pyridine-3-sulfonamido]pyrrolidine-1-

carboxylate (80 mg, 23%) as a yellow oil.   LC-MS: (M+H)+ found 433. 

To a stirred solution of tert-butyl (3S)-3-[N-methyl2-(phenylamino)pyridine-3-

sulfonamido]pyrrolidine-1-carboxylate (80 mg, 0.185 mmol, 1 equiv) in DCM (2 mL), HCl(gas) in 

1,4-dioxane (0.5 mL, 16.456 mmol, 88.98 equiv) was added dropwise at room temperature162. 

The resulting mixture was stirred for 1hr and then concentrated under reduced pressure to afford 

crude N-methyl-2-(phenylamino)-N-[(3S)-pyrrolidin-3-yl]pyridine-3-sulfonamide (90 mg, crude) as 

a yellow solid.  LC-MS: (M+H)+ found 333. 

To a stirred solution of N-methyl-2-(phenylamino)-N-[(3S)-pyrrolidin-3-yl]pyridine-3-

sulfonamide (90 mg, 0.27 mmol, 1 equiv) and BrCN (32 mg, 0.30 mmol, 1.1 equiv) in DMF (3 mL), 

K2CO3 (75 mg, 0.54 mmol, 2 equiv) was added at room temperature161. The resulting mixture 

was stirred for 1 hr then concentrated under reduced pressure and purified by HPLC procedure 

5, gradient: 35% B to 57% B in 10 min to afford N-[(3S)-1-cyanopyrrolidin-3-yl]-N-methyl-2-

(phenylamino)pyridine-3-sulfonamide (12 mg, 12%) as a yellow oil.  1H NMR (400 MHz, DMSO-

d6) δ 8.54 (s, 1H), 8.41 (dd, 1H), 8.09 (dd, 1H), 7.63 – 7.57 (m, 2H), 7.39 – 7.30 (m, 2H), 7.12 – 

7.04 (m, 1H), 7.03 – 6.96 (m, 1H), 4.79 – 4.67 (m, 1H), 3.46 – 3.40 (m, 2H), 3.30 – 3.27 (m, 1H), 

3.27 – 3.23 (m, 1H), 2.77 (s, 3H), 1.95 – 1.77 (m, 2H). LC-MS: 358.0 (M+H+).   
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Figure 4. 1H NMR spectrum of SH-1696 . 

 

 

SH-9840  

 

A round bottomed flask was charged with tert-butyl (3S)-3-(methylamino) pyrrolidine-1-

carboxylate (500 mg, 2.50 mmol, 1 equiv), TEA (758 mg, 7.49 mmol, 3 equiv), and a stir bar. 

THF (10 mL) was added, the mixture was cooled to 0°C, then phenylmethanesulfonyl chloride 

(523 mg, 2.75 mmol, 1.1 equiv) was added160.  The solution was stirred for 1 hr at room 
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temperature before quenching the reaction by the addition of MeOH.  The resulting mixture was 

concentrated in vacuo, and the residue was purified by silica gel column chromatography using 

PE/EA (2:1) to afford tert-butyl (3S)-3-(N-methylphenylmethanesulfonamido) pyrrolidine-1-

carboxylate (480 mg, 54%) as off-white oil.  LC-MS: (M+H)+ found: 355.20. 

A round bottomed flask was charged with tert-butyl (3S)-3-(N-

methylphenylmethanesulfonamido) pyrrolidine-1-carboxylate (480 mg, 1.35 mmol, 1 equiv) and 

a stir bar162.  A solution of HCl in 1,4-dioxane (10 mL)  was added, and the solution was stirred 

for 1 h at room temperature. The solution was concentrated in vacuo to afford crude N-methyl-

1-phenyl-N-[(3S)-pyrrolidin-3-yl] methanesulfonamide (300 mg, 87%) as an off-white amorphous 

solid that was used without further purification.  LC-MS: (M+H)+ found: 255.05. 

A round bottomed flask was charged with N-methyl-1-phenyl-N-[(3S)-pyrrolidin-3-yl] 

methanesulfonamide (100 mg, 0.393 mmol, 1 equiv), TEA (119 mg, 1.18 mmol, 3 equiv), DCM 

(3 mL), and a stir bar161. The mixture was cooled to 0°C, cyanogen bromide (46 mg, 0.43 mmol, 

1.1 equiv) was added, and the mixture stirred for 1 hr at room temperature. The mixture was 

diluted with water (30 mL), and the aqueous phase was extracted with DCM (30 mL) three times. 

The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and 

concentrated in vacuo. The resulting crude material was purified by Prep-HPLC to give N-[(3S)-

1-cyanopyrrolidin-3-yl]-N-methyl-1-phenylmethanesulfonamide N-[(3S)-1-cyanopyrrolidin-3-yl]-

N-methyl-1-phenylmethanesulfonamide (54 mg, 49%) as an off-white amorphous solid. 1H NMR 

(400 MHz, DMSO-d6) δ 7.45 – 7.33 (m, 5H), 4.46 (s, 2H), 4.34 (p, J = 7.8 Hz, 1H), 3.46 (ddd, J 

= 9.2, 6.8, 5.5 Hz, 1H), 3.34 – 3.25 (m, 2H), 3.22 (dd, J = 9.7, 7.3 Hz, 1H), 2.68 (s, 3H), 1.98 – 

1.84 (m, 2H). LC-MS: 280.05 (M+H)+ 
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Figure 5. 1H NMR spectrum of SH-9840. 

 

 

SH-1688 

 

To a stirred solution of tert-butyl (3S)-3-(N-methyl2-bromobenzenesulfonamido)pyrrolidine-1-

carboxylate (200 mg, 0.477 mmol, 1 equiv) and K2CO3 (198 mg, 1.43 mmol, 3 equiv) in DMF (2 

mL) and H2O (0.4 mL) were added Pd(dppf)Cl2164. CH2Cl2 (38.9 mg, 0.048 mmol, 0.1 equiv) 
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and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (111 mg, 0.572 mmol, 1.2 

equiv) in portions at room temperature under nitrogen atmosphere. The resulting mixture was 

stirred for 2hrs at 80°C. The resulting mixture was extracted with EtOAc (3x3 mL) and 

concentrated under reduced pressure. The residue was purified by Prep-TLC (CH2Cl2 / 

MeOH 10:1) to afford tert-butyl (3S)-3-[N-methyl2-(1H-pyrazol-4-

yl)benzenesulfonamido]pyrrolidine-1-carboxylate (110 mg, 56%) as a yellow solid.   

To a stirred solution of tert-butyl (3S)-3-[N-methyl2-(1H-pyrazol-4-

yl)benzenesulfonamido]pyrrolidine-1-carboxylate (110 mg, 0.271 mmol, 1 equiv) in 4 N HCl (gas) 

in 1,4-dioxane (2 mL) at room temperature162. The resulting mixture was stirred for 1 hr at room 

temperature and concentrated under reduced pressure to afford crude N-methyl-2-(1H-pyrazol-

4-yl)-N-[(3S)-pyrrolidin-3-yl]benzenesulfonamide (100 mg) as a yellow solid.  

To a stirred solution of N-methyl-2-(1H-pyrazol-4-yl)-N-[(3S)-pyrrolidin-3-

yl]benzenesulfonamide (70 mg, 0.228 mmol, 1 equiv) and K2CO3 (94.73 mg, 0.684 mmol, 3 

equiv) in DMF (0.7 mL) was added BrCN (26.6 mg, 0.251 mmol, 1.1 equiv) in portions at 

0°C under nitrogen atmosphere161. The resulting mixture was stirred for 1hr at room temperature 

then concentrated under reduced pressure. The crude material was purified by Prep-HPLC 

(Column: XBridge Prep OBD C18 Column, 30*150 mm, 5μm; Mobile Phase A: Water (10 mmol/L 

NH4HCO3), Mobile Phase B: ACN; Flow rate: 60 mL/min; Gradient: 26% B to 45% B in 9 min) to 

afford N-[(3S)-1-cyanopyrrolidin-3-yl]-N-methyl-2-(1H-pyrazol-4-yl)benzenesulfonamide (13.9 mg, 

18.30%) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 8.16 – 8.10(m, 1H), 7.85 (s, 2H), 

7.61 (td, J = 7.6, 1.4 Hz, 1H), 7.48 (td, J = 7.7, 1.4 Hz, 1H), 7.42 – 7.36(m, 1H), 4.16 (p, J = 7.6 

Hz, 1H), 3.43 – 3.37 (m, 1H), 3.27 – 3.22 (m, 1H), 3.12 – 3.08 (m, 1H), 2.99 – 2.95 (m, 1H), 2.40 
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(s, 3H), 1.80 – 1.75 (m, 2H). LC/MS: 332.00 (M+H+).

 

Figure 6. 1H NMR spectrum of SH-1688. 

 

SH-0105 

 

 

 

N-(4-(4-methyl-3-oxo-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinoxaline-1-

carbonyl)benzyl)acrylamide was obtained by using the aforementioned standard coupling 

conditions with 51 mg (0.22 mmol) of 1-methyl-7-(trifluoromethyl)-3,4-dihydroquinoxalin-2(1H)-
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one hydrochloride, 54 mg (0.263 mmol) of 4-[(prop-2-enamido)methyl]benzoic acid, 54 mg (0.348 

mmol) of EDC, 33 mg (0.326 mmol) of Et3N, and 31.4 mg (0.231 mmol) of HOAt. Purified by 

HPLC procedure 4 (gradient: from A-85%: B-15% to A-35%: B-65%; Rf = 0.81; run time = 6.5 

min). Yield: 40.0 mg (40 %). Beige solid. 1H NMR (400 MHz, Methanol-D4) δ 7.53 (s, 1H), 7.42 

(d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.6 Hz, 1H), 6.98-6.96 (m, 1H), 5.69 (dd, 

J = 8.3, 3.7 Hz, 1H), 4.57 (s, 2H), 4.48 (s, 2H), 3.48 (s, 3H). EI MS m/z: pos. 418.0 (M+H+). 

  

Figure 7. 1H NMR spectrum of SH-0105. 

 

 

 

SH-0073 
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4-(N-methylprop-2-enamido)-N-(2-oxo-2,3,4,5-tetrahydro-1H-1-benzazepin-7-yl)benzamide was 

obtained by using the aforementioned standard coupling conditions with  53 mg (0.301 mmol) of 

7-amino-2,3,4,5-tetrahydro-1H-1- benzazepin-2-one, 57 mg (0.278 mmol) of 4-(N-methylprop-2-

enamido)benzoic acid, 49 mg (0.316 mmol) of EDC, and 43 mg (0.316 mmol) of HOAt. Purified 

by HPLC procedure 1 (gradient: from A- 70%: B-30% to A-45%: B-55%). Yield: 56.9 mg (62 %). 

White powder. LCMS purity: 95.4 % (LCMS procedure 1, Rf = 0.51, run time = 2 min). 1H NMR 

(400 MHz, Methanol-D4) δ 8.03 (d, J = 8.6 Hz, 2H), 7.62-7.60 (m, 2H), 7.44-7.42 (m, 2H), 7.04 (d, 

J = 8.9 Hz, 1H), 6.31 (dd, J = 16.8, 2.1 Hz, 1H), 6.22-6.15 (m, 1H), 5.63 (dd, J = 10.2, 2.2 Hz, 1H), 

3.39 (s, 3H), 2.81 (t, J = 6.9 Hz, 2H), 2.34-2.21 (m, 4H). EI MS m/z: pos. 364.1 (M+H+)  
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Figure 8. 1H NMR spectrum of SH-0073. 

 

 

SH-0059 

  

N-(2-methyl-1-oxo-1,2-dihydroisoquinolin-7-yl)-4-(N-methylprop-2-enamido)benzamide was 

obtained by using the aforementioned standard coupling conditions with 51 mg (0.293 mmol) of 

7-amino-2-methyl-1,2-dihydroisoquinolin- 1-one, 62 mg (0.302 mmol) of 4-(N-methylprop-2-

enamido)benzoic acid, 59 mg (0.38 mmol) of EDC, and 41.9 mg (0.308 mmol) of HOAt. Purified 
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by HPLC procedure 1 (gradient: from A-75%: B- 25% to A-50%: B-50%). Yield: 43.8 mg (44.1 %). 

Beige powder. LCMS purity: 98.5 % (LCMS procedure 1, Rf = 0.43, run time = 2 min). 1H NMR 

(400 MHz, Methanol-D4) δ 8.63 (d, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.7, 2.3 Hz, 1H), 8.08 (d, J = 8.8 

Hz, 2H), 7.68 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 7.3 Hz, 1H), 6.70 (d, J = 

7.3 Hz, 1H), 6.31 (dd, J = 16.8, 2.2 Hz, 1H), 6.23-6.16 (m, 1H), 5.64 (dd, J = 10.1, 2.1 Hz, 1H), 

3.63 (s, 3H), 3.40 (s, 3H). EI MS m/z: pos. 362.2 (M+H+).  

 

 

Figure 9. 1H NMR spectrum of SH-0059. 

 

SH-0096 
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N-(7-fluoro-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-4-(prop-2-enamido)benzamide was obtained 

by using the aforementioned standard coupling conditions with 44 mg (0.244 mmol) of 6-amino-

7-fluoro-1,2,3,4-tetrahydroquinolin-2-one, 46 mg (0.241 mmol) of 4-(prop-2-enamido)benzoic acid, 

40 mg (0.258 mmol) of EDC, and 34.9 mg (0.256 mmol) of HOAt. Purified by HPLC procedure 1 

(gradient: from A-85%: B-15% to A-60%: B- 40%). Yield: 24 mg (31.1 %). Beige powder. LCMS 

purity: 96.9 % (LCMS procedure 1, Rf = 0.51, run time = 2 min). 1H NMR (400 MHz, Methanol-D4) 

δ 7.95 (d, J = 8.9 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 11.0 Hz, 

1H), 6.50-6.38 (m, 1H), 5.82 (dd, J = 9.3, 2.6 Hz, 1H), 2.96 (t, J = 7.6 Hz, 1H), 2.60 (dd, J = 8.5, 

6.6 Hz, 1H). EI MS m/z: pos. 354.0 (M+H+). 
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Figure 10. 1H NMR spectrum of SH-0096. 

 

 

SH-0002 

 

 

2-acrylamido-N-(1,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)benzamide was obtained by 

using the aforementioned standard coupling conditions with 56 mg (0.298 mmol) of 6-amino-1,4-
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dimethyl-3,4-dihydroquinolin-2(1H)-one, 63 mg (0.33 mmol) of 3-(prop-2-enamido)benzoic acid, 

61 mg (0.393 mmol) of EDC, and 42.5 mg (0.312 mmol) of HOAt. Purified by HPLC procedure 2 

(gradient: from A-60%: B-40% to A-10%: B-90%). Yield: 20.0 mg (19.0 %). Beige solid. 1H NMR 

(400 MHz, CDCl3) δ 8.21 (s, 1H), 8.17 (s, 1H), 7.94 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 

8.3 Hz, 1H), 7.54-7.44 (m, 2H), 7.41 (t, J = 7.9 Hz, 1H), 6.96 (d, J = 8.7 Hz, 1H), 6.45 (d, J = 16.8 

Hz, 1H), 6.28 (dd, J = 16.9, 10.2 Hz, 1H), 5.79 (d, J = 11.5 Hz, 1H), 3.35 (s, 3H), 3.08- 2.98 (m, 

1H), 2.72 (dd, J = 15.8, 5.4 Hz, 1H), 2.44 (dd, J = 15.8, 7.5 Hz, 1H), 1.27 (d, J = 7.0 Hz, 3H). EI 

MS m/z: pos. 364.2 (M+H+). 

 

 

Figure 11. 1H NMR spectrum of SH-0002. 
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SH-0042 

 

 

 

N-(1,3-dimethyl-2-oxo-1,2-dihydroquinolin-6-yl)-3-(prop-2-enamido)benzamide was obtained by 

using the aforementioned standard coupling conditions with 56 mg (0.298 mmol) of 6-amino-1,3-

dimethyl-1,2-dihydroquinolin-2-one, 63 mg (0.33 mmol) of 3-(prop-2-enamido)benzoic acid, 61 

mg (0.393 mmol) of EDC, and 42.5 mg (0.312 mmol) of HOAt. Purified by HPLC procedure 2 

(gradient: from A-60%: B-40% to A-10%: B-90%). Yield: 9.6 mg (8.9 %). Beige powder. LCMS 

purity: 100 % (LCMS procedure 1, Rf = 0.6, run time = 2 min). 1H NMR (400 MHz, Methanol-D4) 

δ 8.24 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 9.1, 2.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 

7.77 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 9.1 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 6.50-6.38 

(m, 2H), 5.82 (dd, J = 9.2, 2.7 Hz, 1H), 3.79 (s, 4H), 2.24 (s, 3H). EI MS m/z: pos. 362.2 (M+H+)  
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Figure 12. 1H NMR spectrum of SH-0042. 
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3-acrylamido-N-(1,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)benzamide was obtained by 

using the aforementioned standard coupling conditions with 56 mg (0.298 mmol) of 6-amino-1,4-
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dimethyl-3,4-dihydroquinolin-2(1H)-one, 63 mg (0.33 mmol) of 3-(prop-2-enamido)benzoic acid, 

61 mg (0.393 mmol) of EDC, and 42.5 mg (0.312 mmol) of HOAt. Purified by HPLC procedure 2 

(gradient: from A-60%: B-40% to A-10%: B-90%). Yield: 48.0 mg (45.0 %). Beige solid. 1H NMR 

(400 MHz, Methanol-D4) δ 8.17 (s, 1H), 7.78 (dm, J = 8.1 Hz, 1H), 7.64-7.59 (m, 3H), 7.46 (t, J = 

7.9 Hz, 1H), 7.12 (d, J = 9.4 Hz, 1H), 6.47-6.35 (m, 2H), 5.78 (dd, J = 9.2, 2.7 Hz, 1H), 3.35 (s, 

3H), 3.35 (s, 3H), 3.06 (h, J = 7.0 Hz, 1H), 2.72 (dd, J = 15.9, 5.5 Hz, 1H), 2.42 (dd, J = 15.9, 7.0 

Hz, 1H). EI MS m/z: pos. 364.2 (M+H+). 

 

 

 

Figure 13. 1H NMR spectrum of SH-0029. 
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SH-0029-DTB 

 

 

------------------------------------------------------------------------------------------------------------------------------- 

 

------------------------------------------------------------------------------------------------------------------------------- 

 

 

Synthesis of 2  

To a flame-dried round bottom flask, methyl 3-hydroxy-5-nitrobenzoate (5.00 g, 25.4 

mmol), potassium carbonate (4.20 g, 30.5 mmol), and propargyl bromide (1.68 g, 30.5 mmol) in 

DMF (20 mL) stirred at RT for 16 h. The mixture was diluted with diethyl ether (100 mL) and water 

(100 mL) and then transferred to a separatory funnel. The organic layer was separated, dried with 
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magnesium sulfate, concentrated, and used in the next step without further purification to afford 

methyl 3-nitro-5-(prop-2-yn-1-yloxy)benzoate.  

The isolated alkyne intermediate (1.00 g, 4.25 mmol) was suspended in MeOH (30 mL) 

and stirred at RT, then aqueous sat. NH4Cl (10 mL) and Zn metal (1.00 g, 15.4 mmol) were added 

portion-wise. The mixture was raised to reflux for 1 h, cooled to RT, and filtered through celite. 

The filtrate was concentrated to remove methanol then redissolved in EtOAc. The mixture was 

transferred to a separatory funnel and washed with sat. NaHCO3, dried with magnesium sulfate, 

concentrated, and purified via column chromatography to afford methyl 3-amino-5-(prop-2-yn-1-

yloxy)benzoate.  

In a flame-dried round bottom flask, the amine intermediate (1.00 g, 4.88 mmol) was 

dissolved in THF and cooled to 0o C. Acryloyl chloride (0.530 g, 5.86 mmol) and NEt3 (0.591 g, 

5.86 mmol) were added dropwise. The reaction mixture was stirred for 3 h, quenched with 10 mL 

of DI water, and then transferred to a separatory funnel. The aqueous layer was extracted three 

times with EtOAc, dried with magnesium sulfate, concentrated, and purified via column 

chromatography to afford methyl 3-acrylamido-5-(prop-2-yn-1-yloxy)benzoate. 

Methyl 3-acrylamido-5-(prop-2-yn-1-yloxy)benzoate (1.00 g, 3.86 mmol) was dissolved in 

THF/H2O (10:1, 11 mL), then LiOH monohydrate (0.195 g, 4.63 mmol) was added portion wise. 

The reaction mixture was stirred for 12 h at RT, then quenched with 20 mL of 1M HCl. The solution 

was transferred to a separatory funnel, extracted 3xEtOAc, dried with magnesium sulfate, 

concentrated, and purified via column chromatography to afford compound 2. 

 

Synthesis of 4 

1,4-dimethylquinolin-2(1H)-one (2) (2.00 g, 11.7 mmol) was dissolved in 50.0 mL of AcOH, 

then Pd/C (cat.) was added, and the atmosphere was replaced with hydrogen gas. The reaction 

mixture was raised to 75o C, and then stirred for 16 h. The crude mixture was cooled to RT and 
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filtered through celite. The filtrate was then poured into ice-water, and the product was collected 

via filtration and used in the next step without further purification.  

 1,4-dimethyl-3,4-dihydroquinolin-2(1H)-one (1.00 g, 5.71 mmol) was dissolved in H2SO4 (10 

mL) and cooled to 0o C. Fuming nitric acid (5.71 mmol) was added dropwise, then the mixture 

was allowed to warm to RT and stirred for 3 h. The crude mixture was poured into a 2:1 ice-water 

mixture and extracted with EtOAc, dried with magnesium sulfate, concentrated, and purified via 

column chromatography to afford 1,4-dimethyl-6-nitro-3,4-dihydroquinolin-2(1H)-one. 

1,4-dimethyl-6-nitro-3,4-dihydroquinolin-2(1H)-one (1.00 g, 4.59 mmol) was suspended in 

MeOH (70 mL). Then, aqueous sat. NH4Cl (20 mL) and Zn metal (1.00 g, 15.4 mmol) were added 

portion-wise. The mixture was raised to reflux for 1 h, cooled to RT, and filtered through celite. 

The filtrate was concentrated to remove methanol and then redissolved in EtOAc. The mixture 

was transferred to a separatory funnel, washed with sat. NaHCO3, dried with magnesium sulfate, 

concentrated, and purified via column chromatography.  

 

Synthesis of 5 

Compound 5 was obtained by using the aforementioned standard coupling conditions with 49 mg 

(0.203 mmol) of compound 2, 45 mg (0.229 mmol) of compound 4, 43 mg (0.277 mmol) of EDC, 

and 29 mg (0.214 mmol) of HOAt. The crude reaction mixture was purified by preparatory HPLC. 

 

Synthesis of 8 

Desthiobiotin (6, 200 mg, 0.93 mmol), N-hydroxysuccinimide (241 mg, 1.11 mmol), and 

EDC-HCl (213 mg, 1.11 mmol) were stirred in DMF under a nitrogen atmosphere for 12 hours. 

The crude mixture was diluted with EtOAc, washed with water, dried with magnesium sulfate, and 

concentrated (used without further purification). 

To a solution of desthiobiotin NHS-ester (100 mg, 0.32 mmol) in dichloromethane, N,N-

diisopropylethylamine (42 mg, 0.32 mmol) and 14-azido-3,6,9,12-tetraoxatetradecan-1-amine (83 
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mg, 0.32 mmol) were added. The reaction mixture was stirred overnight at room temperature 

under a nitrogen atmosphere. The solvent was then removed in vacuo, and the resulting oil was 

subjected to flash chromatography to isolate compound 8 (N-(14-azido-3,6,9,12-

tetraoxatetradecyl)-6-((4R,5S)-5-methyl-2-oxoimidazolidin-4-yl)hexanamide). 

 

Synthesis of SH-0029-DTB 

In a round bottom flask, compound 5 (0.100 g, 0.240 mmol), (+)-sodium l- ascorbate (8.5 mg, 

0.048 mmol), copper(II) sulfate powder (7.6 mg, 0.048 mmol), and compound 8 (110 mg, 0.240 

mmol) were added. The atmosphere was purged with argon gas, then DMF (3 mL) was added. 

The reaction mixture was stirred at RT for 16 h. The solvent was removed in vacuo and directly 

purified via column chromatography to isolate SH-0029-DTB. 1H NMR (400 MHz, Methanol-D4) δ 

8.16 (s, 1H), 7.73 (s, 1H), 7.63-7.61 (m, 3H), 7.32 (s, 1H), 7.12 (d, J = 9.5 Hz, 1H), 6.47-6.36 (m, 

J = 42.9 Hz, 2H), 5.79 (dd, J = 8.8, 3.0 Hz, 1H), 5.25 (s, 2H), 4.59 (t, J = 4.9 Hz, 2H), 3.87 (t, J = 

5.0 Hz, 2H), 3.78-3.52 (m, 12H), 3.45 (t, J = 5.5 Hz, 2H), 3.36-3.32 (m, 6H), 3.11-3.04 (m, 1H), 

2.72 (dd, J = 16.0, 5.5 Hz, 1H), 2.42 (dd, J = 15.8, 7.0 Hz, 1H), 2.13 (t, J = 7.4 Hz, 2H), 1.59-1.53 

(m, J = 7.5 Hz, 2H), 1.51-1.26 (m, 12H), 1.04 (d, J = 6.5 Hz, 3H). EI MS m/z: pos 876.4 (MH+). 
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Figure 14. 1H NMR spectrum of SH-0029-DTB. 

 

SH-0017 

 

 

N-(1-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinolin-5-yl)-4-(prop-2-enamido)benzamide was 

obtained by using the aforementioned standard coupling conditions with 49 mg (0.275 mmol) of 

5-amino-1-methyl-1,2,5,6,7,8- hexahydroquinolin-2-one, 57mg (0.298mmol) of 4-(prop-2-
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enamido)benzoic acid, 57 mg (0.367 mmol) of EDC, and 39.3 mg (0.289 mmol) of HOAt. Purified 

by HPLC procedure 2 (gradient: from A- 70%: B-30% to A-20%: B-80%; Rf = 0.56; run time = 6.5 

min). Yield: 52.9 mg (55.5 %). Yellow powder. LCMS purity: 100 % (LCMS procedure 1, Rf = 0.39, 

run time = 2 min). 1H NMR (400 MHz, Methanol-D4) δ 7.83 (d, J = 8.9 Hz, 2H), 7.74 (d, J = 9.0 

Hz, 2H), 7.42 (d, J = 9.3 Hz, 1H), 6.49-6.36 (m, 3H), 5.80 (dd, J = 9.3, 2.6 Hz, 1H), 5.16-5.15 (m, 

1H), 3.56 (s, 3H), 2.87-2.73 (m, 2H), 2.1-1.91 (m, 4H). EI MS m/z: pos. 352.2 (M+H+). 

 

Figure 15. 1H NMR spectrum of SH-0017. 

 

 

SH-0087 
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N-(1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-4-(N-methylprop-2-enamido)benzamide was 

obtained by using the aforementioned standard coupling conditions with 59 mg (0.335 mmol) of 

6-amino-1-methyl-1,2,3,4- tetrahydroquinolin-2-one, 69 mg (0.336 mmol) of 4-(N-methylprop-2-

enamido)benzoic acid, 52 mg (0.335 mmol) of EDC, and 47.9 mg (0.352 mmol) of HOAt. Purified 

by HPLC procedure 1 (gradient: from A-75%: B-25% to A-50%: B-50%). Yield: 69.4 mg (62.5 %). 

Beige powder. LCMS purity: 100 % (LCMS procedure 1, Rf = 0.58, run time = 2 min). 1H NMR 

(400 MHz, Methanol-D4) δ 8.04-8.02 (m, 2H), 7.64-7.60 (m, 2H), 7.44-7.41 (m, 2H), 7.14 (d, J = 

8.5 Hz, 1H), 6.31 (dd, J = 16.9, 2.1 Hz, 1H), 6.21-6.15 (m, 1H), 5.63 (dd, J = 10.2, 2.2 Hz, 1H), 

3.38 (d, J = 8.6 Hz, 6H), 2.96-2.93 (m, 2H), 2.66-2.63 (m, 2H). EI MS m/z: pos. 364.2 (M+H+)  
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Figure 16. 1H NMR spectrum of SH-0087. 

 

 

SH-0077 

 

 

N-(2-chloro-1,3-benzothiazol-6-yl)-4-(prop-2-enamido)benzamide was obtained by using the 

aforementioned standard coupling conditions with 52 mg (0.283 mmol) of 2-chloro-1,3-

benzothiazol-6-amine, 59 mg (0.309 mmol) of 4-(prop-2-enamido)benzoic acid, 52 mg (0.335 

mmol) of EDC, and 40.4 mg (0.297mmol) of HOAt. Purified by HPLC procedure1 (gradient: from 
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A-60%: B-40% to A-35%: B-65%). Yield: 13.1 mg (13 %). Yellow powder. LCMS purity: 100 % 

(LCMS procedure 1, Rf = 0.65, run time = 2 min). 1H NMR (400 MHz, Methanol-D4) δ 8.50 (d, J = 

2.1 Hz, 1H), 7.97 (dm, J = 8.9 Hz, 2H), 7.89 (d, J = 8.8 Hz, 1H), 7.83 (dm, J = 8.9 Hz, 2H), 7.75 

(dd, J = 8.9, 2.1 Hz, 1H), 6.51-6.38 (m, 2H), 5.82 (dd, J = 9.3, 2.6 Hz, 1H). EI MS m/z: pos. 358.0 

(M+H+). 

 

 

 

Figure 17. 1H NMR spectrum of SH-0077. 

 

 

SH-0013 
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N-[(4-{6-oxa-2-thia-9-azaspiro[4.6]undecane-9-carbonyl}phenyl)methyl]prop-2-enamide was 

obtained by using the aforementioned standard coupling conditions with 46 mg (0.22 mmol) of 6-

oxa-2-thia-9-azaspiro[4.6]undecane hydrochloride, 54 mg (0.263 mmol) of 4-[(prop-2-

enamido)methyl]benzoic acid, 54 mg (0.348 mmol) of EDC, 33 mg (0.326 mmol) of Et3N, and 

31.4 mg (0.231 mmol) of HOAt. Purified by HPLC procedure 4 (gradient: from A-85%: B-15% to 

A-35%: B-65%; Rf = 0.81; run time = 6.5 min). Yield: 50 mg (58 %). Pink powder. LCMS purity: 

100 % (LCMS procedure 1, Rf = 0.52, run time = 2 min). 1H NMR (400 MHz, Methanol-D4) δ 7.40-

7.39 (m, 4H), 6.33-6.23 (m, 2H), 5.69 (dd, J = 8.5, 3.5 Hz, 1H), 4.48 (s, 2H), 3.94-3.54 (m, 6H), 

3.00-2.90 (m, 2H), 2.83-2.63 (d, J = 57.7 Hz, 2H), 2.27-2.08 (m, 3H), 1.84-1.68 (m, 1H). EI MS 

m/z: pos. 361.2 (M+H+). 
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Figure 18. 1H NMR spectrum of SH-0013. 

 

 

SH-0035 

 

N-(1,1-dimethyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-(N-methylprop-2-enamido)benzamide 

was obtained by using the aforementioned standard coupling conditions with 36 mg (0.203 mmol) 

of 6-amino-3,3-dimethyl-1,3-dihydro-2- benzofuran-1-one, 47 mg (0.229 mmol) of 4-(N-

methylprop-2-enamido)benzoic acid, 43 mg (0.277 mmol) of EDC, and 29.1 mg (0.214 mmol) of 

HOAt. Purified by HPLC procedure 3 (gradient: from A- 65%: B-35% to A-40%: B-60%). Yield: 
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35.8 mg (47.2 %). Beige powder. LCMS purity: 100 % (LCMS procedure 1, Rf = 0.55, run time = 

2 min). 1H NMR (400 MHz, MeOD-D4) δ 8.26 (d, J = 2.0 Hz, 1H), 8.07-8.04 (m, 3H), 7.62 (d, J = 

8.4 Hz, 1H), 7.45 (d, J = 8.6 Hz, 2H), 6.31 (dd, J = 16.8, 2.1 Hz, 1H), 6.22-6.15 (m, 1H), 5.64 (dd, 

J = 10.2, 2.2 Hz, 1H), 3.40 (s, 3H), 1.68 (s, 6H). EI MS m/z: pos. 365.0 (M+H+).  

 

 

 

Figure 19. 1H NMR spectrum of SH-0035. 

 

 

2-A01 
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4-acrylamido-N-(5-bromo-2-hydroxyphenyl)benzamide was obtained by using the 

aforementioned standard coupling conditions with 38 mg (0.203 mmol) of 4-acrylamidobenzoic 

acid, 43 mg (0.229 mmol) of 2-amino-4-bromophenol, 43 mg (0.277 mmol) of EDC, and 29 mg 

(0.214 mmol) of HOAt. Purified by preparatory HPLC. Beige powder. 1H NMR (400 MHz, DMSO) 

δ 10.44 (s, 1H), 10.21 (bs, 1H), 9.39 (s, 1H), 7.97-7.93 (m, 2H), 7.82-7.80 (m, 2H), 7.18 (dd, J = 

8.6, 2.5 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H), 6.47 (dd, J = 17.0, 10.1 Hz, 1H), 6.31 (dd, J = 17.0, 2.0 

Hz, 1H), 5.81 (dd, J = 10.0, 2.0 Hz, 1H). EI MS m/z: pos. 361.0 (MH+). 
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Figure 20. 1H NMR spectrum of 2-A01. 
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using the aforementioned standard coupling conditions with 38 mg (0.203 mmol) of 4-

acrylamidobenzoic acid, 41 mg (0.229 mmol) of 7-amino-2H-benzo[b][1,4]thiazin-3(4H)-one, 43 
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mg (0.277 mmol) of EDC, and 29 mg (0.214 mmol) of HOAt. Purified by preparatory HPLC. Beige 

powder. EI MS m/z: pos. 354.1 (MH+). 

 

 
Figure 21. 1H NMR spectrum of SH-0081. 
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Desthiobiotin (200 mg, 0.93 mmol), N-hydroxysuccinimide (241 mg, 1.11 mmol), and EDC-

HCl (213 mg, 1.11 mmol) were stirred in DMF under a nitrogen atmosphere for 12 hrs158. The 

crude mixture was diluted with EtOAc, washed with water, dried with magnesium sulfate, and 

concentrated (used without further purification).  

To a solution of desthiobiotin, NHS-ester (100 mg, 0.32 mmol) in dichloromethane, N,N-

diisopropylethylamine (0.32 mmol) and N-boc ethylenediamine (0.32 mmol) were added165. The 

reaction mixture was stirred overnight at room temperature under a nitrogen atmosphere. The 

solvent was then removed in vacuo, and the resulting oil was dispersed in 20% TFA in 

dichloromethane (DCM) and stirred for 3 hrs at room temperaturee. The TFA and DCM were 

removed in vacuo to yield a yellow oil, which was washed repeatedly with diethyl ether to remove 

impurities.   

Iodoacetic acid159 (8.0 g, 43.0 mmol) and DCC (4.2 g, 20.5 mmol) were stirred in EtOAc (120 

mL) for 2 hrs under a nitrogen atmosphere. The crude mixture was filtered and concentrated for 

direct use in the next reaction.  

N-(2-aminoethyl)-6-((4R,5S)-5-methyl-2-oxoimidazolidin-4-yl)hexanamide166 (0.182 g, 0.71 

mmol) dispersed in 10 mL of methanol/DCM (1:9 v/v), to which was added N,N-

diisopropylethylamine (0.71 mmol) and iodoacetic anhydride (378 mg, 1.07 mmol). The reaction 

was stirred in the dark for 1 h at room temperature. The reaction mixture was concentrated, then 

triturated with acetone to isolated DBIA as a white solid.  Note: the compound is light sensitive. 

Thus, work was done in low light conditions and the flask was wrapped in foil. 1H NMR (400 MHz, 
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DMSO-D6) δ 8.23 (s, 1H), 7.76 (s, 1H), 6.27 (s, 1H), 6.08 (s, 1H), 3.57-3.53 (m, 3H), 3.46-3.39 

(m, 1H), 3.03 (bs, 4H), 2.00 (t, J = 7.4 Hz, 2H), 1.46-1.40 (m, 2H), 1.29-1.17 (m 6H), 0.91 (d, J = 

6.4 Hz, 3H). EI MS m/z: pos. 425.1 (M+H+).  

 

Figure 22. 1H NMR spectrum of DBIA. 

Supplemental Data Tables 

Table S1. Culture methods of 416 cancer cell lines analyzed in DrugMap, related to Figure 1.   

Table S2. Cysteine ligandability analyzed in DrugMap, related to Figure 1. 
 
Table S3. List of heterogeneous cysteines, related to Figure 2.  
 
Table S4. Cysteine ligandability analyzed in iso-TMT experiments of K562 treated with TMCEP 
(A) or KI696 (B), related to Figure 2. 
 
Table S5. Cysteine ligandability analyzed in iso-TMT experiments of HEK-293T overexpressing 
FLAG-UGDH treated with 1 mM UGDH, related to Figure 2. 
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Table S6. Cysteine ligandability analyzed in iso-TMT experiments of PC9 or K562 treated with 1 
μM Osimertinib or Selinexor, respectively, related to Figure 2. 
 
Table S7. Cysteine ligandability analyzed in iso-TMT experiments of HEK-293T overexpressing 
FLAG-PRDX5 or FLAG-PRDX5•F157L, related to Figure S6.  
 
Table S8. Cysteine ligandability analyzed in iso-TMT experiments of MM1S treated with 50 uM 
SH-7971 or SH-1696, related to Figure 3.  
 
 
Table S9. Cysteine ligandability analyzed in iso-TMT experiments of SKMEL5 treated with 10 uM 
SH-0105 or SH-0029, related to Figure 4.  
 
Table S10. RNAseq analysis of 7 melanoma transfected with siSOX10 or siCTRL, related to 
Figure S10. 
 
Table S11. RNAseq analysis of COLO679, IGR1, and U257 treated with 3 µM of SH-0105, SH-
0029 for 48 hrs, related to Figure S10. 
 
 
Table S12. RNAseq analysis of SKMEL5 transfected with siSOX10 or siCTRL treated with 2.5 
µM of SH-0105 or SH-0029 for 48 hrs, related to Figure S10. 
 
 
Table S13. Structural parameters, related to Figure 1. 
 
Table S14. sgRNA plasmid, siRNA and primers used in this study, related to STAR Methods. 
 
Table S15. Crystallographic Data and Refinement Statistics, related to Figure 3 and S7. 
 
Table S16. CSEA cysteine sets, related to Figure 1.  
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