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 2

ABSTRACT 15 

Since the start of COVID-19 pandemic, a huge effort has been devoted to 16 

understanding the Spike (SARS-CoV-2)-ACE2 recognition mechanism. To this end, two deep 17 

mutational scanning studies traced the impact of all possible mutations across Receptor 18 

Binding Domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on 19 

the interface mutations of these experimental data, we benchmarked six commonly used 20 

structure-based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, 21 

and UEP). These predictors were selected based on their user-friendliness, accessibility, and 22 

speed. As a result of our benchmarking efforts, we observed that none of the methods 23 

could generate a meaningful correlation with the experimental binding data. The best 24 

correlation is achieved by FoldX (R = -0.51).  Also, when we simplified the prediction 25 

problem to a binary classification, i.e., whether a mutation is enriching or depleting the 26 

binding, we showed that the highest accuracy is achieved by FoldX with 64% success rate. 27 

Surprisingly, on this set, simple energetic scoring functions performed significantly better 28 

than the ones using extra evolutionary-based terms, as in Mutabind and SSIPe. 29 

Furthermore, we also demonstrated that recent AI approaches, mmCSM-PPI and 30 

TopNetTree, yielded comparable performances to the force field-based techniques. These 31 

observations suggest plenty of room to improve the binding affinity predictors in guessing 32 

the variant-induced binding profile changes of a host-pathogen system, such as Spike-ACE2. 33 

To aid such improvements we provide our benchmarking data at https://github.com/CSB-34 

KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at  35 

https://rbd-ace2-mutbench.github.io/  36 

 37 
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INTRODUCTION 39 

At the beginning of 21st century, the emergence of Severe Acute Respiratory 40 

Syndrome Coronavirus (SARS-CoV)[1] and Middle East Respiratory Syndrome Coronavirus[2] 41 

led to serious public health concerns. Evolving from these viruses, during late 2019, a new 42 

SARS virus, SARS-CoV-2, caused the most severe pandemic of the 21st century[3]. SARS-CoV-43 

2 infection is initiated upon having its Spike protein interacting with the host Angiotensin 44 

Converting 2 (ACE2) enzyme[4]. The widespread infection of SARS-CoV-2 compared to its 45 

predecessors was linked to higher binding affinity of Spike to ACE2[5]. Relatedly, alpha, 46 

beta, gamma, eta, iota, kappa, lambda, mu, and omicron SARS-CoV-2 variants were shown 47 

to have at least one mutation across the Spike-ACE2 interface[6]. This realization placed the 48 

characterization of interfacial Spike-ACE2 mutations at the center of COVID-19-related 49 

research. Within this context, in 2020, two deep mutational scanning (DMS) studies 50 

explored how Spike/ACE2 variants impact Spike-ACE2 interactions[7,8]. In these DMS 51 

studies, the residues on the Receptor Binding Domain (RBD) of Spike and the catalytic 52 

domain of human ACE2 were mutated into other 19 amino acid possibilities, followed by 53 

tracing of new RBD-ACE2 binding profiles.  54 

In parallel to these experimental efforts, a handful of structure-based computational 55 

studies employed a comprehensive investigation of variation across the RBD-ACE2 interface 56 

(Table 1). Three such studies utilized two fast and user-friendly tools, FoldX and HADDOCK 57 

[9–11]. Blanco et al. used FoldX with the inclusion of water molecules (FoldXwater) to trace 58 

the binding enhancing RBD and ACE2 mutations [9]. From their 21 binding enhancing 59 

mutation predictions, nine of them were confirmed as affinity enhancing by the DMS set. 60 

Rodrigues et al. investigated the impact of ACE2 orthologs on their RBD binding with 61 
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HADDOCK, where they proposed five significantly affinity improving ACE2 mutations[10]. 62 

Among these, D30E and A387E were shown to be affinity enhancing in the ACE2 DMS set as 63 

well. Complementary to this study, Sorokina et al. performed computational alanine 64 

scanning on ACE2 with HADDOCK[11]. Here, three out of five mutations (N49A, R393A, and 65 

P389A) were classified as binding enriching both by the computational predictions and the 66 

DMS set. Two other studies made use of elaborate simulation techniques, mainly molecular 67 

dynamics simulations. Laurini et al. performed molecular mechanics/Poisson−Boltzmann 68 

alanine scanning and molecular dynamics simulations to find structurally and energetically 69 

critical RBD-ACE2 residues[12]. They proposed eight hotspot positions on RBD and ACE2, 70 

where three of them were characterized as affinity enhancing in the DMS sets. Gheeraert et 71 

al. performed 1 μs long molecular dynamics simulations of five RBD variants (alpha, beta, 72 

gamma, delta, and epsilon) in complex with ACE2[13]. They found that L452R, T478K (delta 73 

variant) and N501Y (alpha, gamma variants) cause drastic structural changes across the 74 

RBD-ACE2 interface. These mutations were classified as binding enriching in the RBD DMS 75 

set.  76 

Table 1. Affinity impacting RBD and ACE2 variant/hotspot predictions. The predictions agreeing 77 

with the experimental are underlined and shown in bold. 78 

Work carried 

out by 

Important RBD 

residues/mutations 

Important ACE2 

residues/ mutations 

Approach 

Blanco et al.[9] 

V445M/R/W, 

Q493F/L/M/Y, 

Q498F/L/M/Y, T500K, 

G326E 

Variant modeling and 

interface score calculation 

with FoldXwater 
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N501A/C/L/S/T, 

V503R/W/Y 

Rodrigues et 

al.[10] 

 

Q24E, D30E, H34Y, 

L79H, A387E 

Variant modeling and 

interface score calculation 

with HADDOCK 

Sorokina et 

al.[11] 

 

N49A, R393A, M383A, 

P389A, G354A 

Alanine scanning and 

interface score calculation 

with HADDOCK 

Laurini et 

al.[12] 
Q498, T500, R403 

D38, K31, E37, K353, 

Y41 

Interaction and energy 

analysis through 

molecular dynamics and 

MM/PB alanine scanning  

Gheeraert et 

al.[13] 

L452R, T478K, N501Y  

Interaction analysis 

through MD simulations  

 79 

As presented in Table 1, accurate reproduction of RBD-ACE2 DMS profiles can be 80 

tricky even when elaborate simulation techniques are used. So, if such time-intensive 81 

simulation approaches are facing challenges in back-calculating the impact of RBD-ACE2 82 

interface variation, how far are the fast prediction tools that were heavily used in the early 83 

months of pandemic, such as FoldX and HADDOCK, from accurately predicting the impact of 84 

RBD-ACE2 variations? To answer this question, we benchmarked six fast affinity prediction 85 
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tools, i.e., FoldX, HADDOCK, EvoEF1, MutaBind2, SSIPe, and UEP [14–20] against the Spike-86 

ACE2 interface DMS set. These predictors were selected based on their user-friendliness and 87 

speed, since we wanted to put an emphasis on the accessibility of these tools to the 88 

researchers who may not have programming experience or enough computing resources. 89 

Among these tools, FoldX and EvoEF1 use intra- and inter-molecular energies derived from 90 

empirical force field terms. HADDOCK scores complexes by combining intermolecular van 91 

der Waals, electrostatics, and empirical desolvation terms. Mutabind and SSPIe utilize FoldX 92 

and EvoEF1, respectively, to model the mutations. Both methods have their own scoring 93 

functions to consider evolutionary-based information too. UEP scores mutations based on 94 

statistically determined intermolecular contact potentials. HADDOCK, MutaBind2, and SSIPe 95 

can be run through a web service. FoldX can be called over a GUI through a YASARA plugin. 96 

EvoEF1 and UEP are available as stand-alone packages. On top of these conventional tools, 97 

we also tested two AI approaches, mmCSM-PPI[21,22] and TopNetTree[23,24] to investigate 98 

the impact of AI use in predicting RBD-ACE2 interaction changes. Our benchmarking files 99 

can be accessed at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option 100 

to visualize our mutant models at https://rbd-ace2-mutbench.github.io/  101 

102 
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RESULTS and DISCUSSION 103 

Benchmark Compilation  104 

The deep mutational scanning (DMS) experiments performed by Chan et al. and 105 

Starr et al. [7,8] scan the impact of all possible amino acid variations imposed on the RBD 106 

domain of Spike and the catalytic domain of ACE2 on RBD-ACE2 binding. These studies 107 

classified mutations as binding enriching or depleting when compared to the wild type 108 

interactions. While compiling our benchmark set, our aim was (i) to select the DMS subset 109 

reporting on the variations across RBD-ACE2 interface, since the selected methods are 110 

tuned to predict the impact of interface mutations, (ii) to include an equal number of 111 

binding enriching and depleting cases to obtain a balanced benchmark set.  112 

The DMS sets contained 988 interfacial mutations, measured over 26 RBD and 26 113 

ACE2 residues (calculated by PDBePISA[25] on 6m0j PDB[26]). 13% of these 988 mutations 114 

were profiled as binding enriching (42 for RBD and 89 for ACE2, Figure 1A) and the rest as 115 

binding depleting. As shown in Figure 1A, the binding enriching RBD mutations span a 116 

narrow enrichment range [0.01, 0.30], while for ACE2 this range increases to [0.03, 3.37]. 117 

We added all enriching cases into our benchmark. To fairly represent the depleting cases, 118 

we selected 131 mutations sampling the whole depleting data spread (Figure 1A). We then 119 

analyzed the individual binding profiles of selected mutations with heatmaps (Figure 1B). As 120 

can be observed from these heatmaps, on the RBD side, several mutations on Q493, S477, 121 

F490, N501, V503, E484, Q498 lead to better RBD-ACE2 binding (Figure 1B, Figure S1, Table 122 

S1). Among these, Q493R and S477N were observed in omicron; E484K in beta, gamma, eta, 123 

iota, mu; E484Q in kappa; N501Y in alpha, beta, gamma, mu, omicron variants[6]. On the 124 

ACE2 surface, the top enriching mutations came from T27, Q42, S19, and L79 positions 125 

(Figure 1C, Figure S1). All these residues, except S19, were reported as species-associated 126 
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variations[27]. While appearing less frequently as binding enhancers, K31, E35, M82, and 127 

Y83 were earlier listed as critical residues for RBD-ACE2 interactions (Figure 1B-C and Figure 128 

S1)[9,12,26]. All these residue positions are situated around the core and the rim of the 129 

RBD-ACE2 interface. The top enriching mutations on the RBD side are Q493M, S477D, 130 

F490K, N501F, V503M, E484R, Q498H, and on the ACE2 side are T27L, Q42C, S19P (Table 131 

S1). Further investigation of these mutations did not lead to a generalized pattern for 132 

understanding RBD-ACE2 recognition. 133 

 134 

Figure 1. (A) RBD-ACE2 DMS benchmark set. The experimental binding profile distributions of the 135 

interfacial RBD (yellow, n=494) and ACE2 (blue, n=494) mutations are represented with box-and-136 

whisker plots. Values >0 indicate binding enriching and values <0 indicate binding depleting 137 
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mutations. 26.5% of this data set is selected as our benchmark set (n=262): n=84 for RBD (42 138 

enriching, 42 depleting) and n=178 for ACE2 mutations (89 enriching, 89 depleting cases)), 139 

represented as gray dots. This panel was generated in Python 3.8 by using pandas, Numpy and 140 

Seaborn libraries[34–39].  (B) The experimental binding enrichment and depletion values of our 141 

benchmark set, RBD (top) and ACE2 (bottom). The values > 0 correspond to binding enriching 142 

positions (light orange), while the values <0 represent the depleting ones (dark purple). The 143 

positions leading often to binding enriching mutations are highlighted in orange. (C) The structural 144 

depiction of enriching mutations. The interface residues of RBD-ACE2 complex are shown in 145 

spheres. The color code of the spheres follows the largest binding value measured for a given 146 

residue, as shown in Figure 1B. The important positions are highlighted with labels (yellow: RBD, 147 

blue: ACE2). The illustration is generated in PyMOL[28] using PDB 6M0J[26]. 148 

 149 

Benchmarking the affinity predictors: seeking for a linear correlation 150 

For all the mutations in our benchmark set (n=262), we calculated the score change 151 

imposed by the mutations with FoldX, FoldXwater, EvoEF1, MutaBind2, SSIPe, and 152 

HADDOCK. [14–20] (Figure S2). Then, we investigated whether there is any meaningful 153 

correlation with the calculated score changes and experimental binding 154 

enrichment/depletion values (Figure 2A, Table S2). Here, a perfect correlation would have 155 

an absolute value of 1. As a result, we observed insignificant linear correlations for 156 

HADDOCK, EvoEF1, and SSIPe predictors. Mediocre correlations with R values ranging from -157 

0.51 to -0.45 were observed for FoldX and MutaBind2. The best correlation (highest R-value) 158 

was obtained by FoldX (R = -0.51). Interestingly, including the water effect into FoldX 159 

predictions by using FoldXwater did not improve the accuracy of the original approach (R = -160 

0.45 vs. R = -0.51). Furthermore, the enhanced scoring function of MutaBind2 built upon 161 

FoldX did not improve the original FoldX scoring (R = -0.49 vs. R = -0.51). The same was 162 
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observed for SSIPe, since it was built upon EvoEF1’s sampling (R = -0.28 vs. -0.27). As the 163 

naïve predictor, we ran UEP on a subset of our benchmark (n=129), as UEP is tuned to 164 

predict mutation-induced changes of residues that are in contact with more than two 165 

atoms. This effort also resulted in an insignificant correlation (R=0.14). 166 

We further calculated the pairwise correlations of score changes predicted by each 167 

algorithm (Figure 2B). This comparison revealed that HADDOCK reports the most                   168 

distinct scores compared the other algorithms. We then computed all-atom Root Mean 169 

Square Deviations (RMSDs) of each generated mutant model in an all-to-all fashion to 170 

understand whether the distinct behavior of HADDOCK came from differentially modeled 171 

side chain formations (Figure S3). This analysis demonstrated that HADDOCK indeed 172 

generates the largest RMSD models compared to the models computed by the other tools. 173 

Notably, MutaBind2 and FoldX conformers resulted in the second highest RMSD cases, 174 

indicating that the further minimization steps used by MutaBind2 significantly impacts the 175 

final conformation of the FoldX models. As expected, EvoEF1 and SSIPe mutant models 176 

came out to be identical, since SSIPe utilizes EvoEF1 to structurally model the mutations. 177 
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 178 

Figure 2. (A) Correlations between experimental DMS benchmark set and the binding affinity 179 

predictors. Data points for all scenarios are n=262, except UEP where the number of points is 129 180 

(~50% of the benchmark set). R- and p-values were calculated by using statistics and scipy libraries 181 

of Python 3.8. The statistical data (R and p values) are tabulated in Table S2. 182 

 (B) The correlation heatmap of the computational and the experimental scores. The correlation 183 

values are expressed in terms of Pearson Correlation Coefficients (PCC), ranging between -1 and 1. 184 
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Highly negatively (PCC = -1) and positively (PCC = 1) correlated predictors are colored with dark 185 

purple and light orange, respectively.  186 

 187 

Benchmarking the affinity predictors: seeking for a binary classification 188 

Apart from analyzing the correlation between ΔScores and experimental binding 189 

values, we also performed a binary assessment. In this assessment, the tools were tested 190 

whether they can predict the direction of binding affinity change (as enriching or depleting). 191 

Accordingly, we counted a prediction as successful if the experimental and computational 192 

data would agree whether a mutation is enriching or depleting. In this regard, the overall 193 

prediction accuracy was calculated as the percentage of correct predictions (the success 194 

rate). According to this binary assessment, the overall success rates of predictors varied 195 

between 54% and 64% (Figure 3A), where the top-ranking predictor once again came out to 196 

be FoldX (64%). FoldXwater ranked the second, once again implying that the inclusion of 197 

water effects did not improve the prediction accuracy. When we analyzed ACE2 and RBD 198 

subsets individually, better prediction rates for depleting mutations were consistently 199 

observed, despite the narrow prediction range posed by the experimental data (Figure 3A). 200 

Strikingly, MutaBind2 and SSIPe predicted most mutations as depleting, hinting at a 201 

problem in using evolutionary-based terms in scoring the host-pathogen system RBD-ACE2. 202 

These observations did not change, when we calculated the success rates only for the 203 

residues that frequently lead to enriching mutations (the highlighted residues in Figure 1B-204 

C). To investigate this issue further, we calculated the conservation scores of RBD-ACE2 205 

interface amino acids by using ConSurf[29] (Figure S4A). As an outcome, we showed that 206 

the ACE2-RBD interface is significantly non-conserved (Figure S4B), which led to the 207 

misclassification of most mutation outcomes.  208 
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When we further scored the lowest ranking predictor, HADDOCK’s models with 209 

FoldX, HADDOCK’s success rate increased by 5% (from 54% from 59%) (Figure S5). 210 

Normalizing HADDOCK scores by the buried surface area (BSA) of the interface did not 211 

improve the success rates (Figure S5). On the UEP subset, the overall prediction 212 

performances vary within a broader range, i.e., 49%-69% (Figure 3B), where the top two 213 

predictors became FoldX and FoldXwater (69% vs. 66%) and the lowest performing 214 

predictors became UEP and HADDOCK (52% and 49%). On both datasets, all predictors had 215 

difficulties in predicting binding-enriching mutations compared to the binding-depleting 216 

ones (Figure 3).  217 

 218 

219 
Figure 3. (A) The success rates on the benchmark set (n=262). (B) Success rates of predictors are 220 

calculated by using UEP’s data set (n= 129). In both panels, if the success rate changes drastically 221 

compared to the overall dataset (first column on the left), it is shown in bold. The plots were 222 

prepared by using R-Studio [30–33]. 223 

 224 

Volume and hydrophobicity biases are the most obvious misprediction determinants  225 
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To explore the prediction dependencies of each tool, we assessed their success rates 226 

after classifying the benchmark cases according to volume, hydrophobicity, and flexibility 227 

changes imposed by the mutations (Figure 4, Table S3, Figure S6). The residue-based 228 

volume values were taken from Zhi-hua et al [34], the hydrophobicity ones from Eisenberg 229 

et al. [35], and the flexibility ones from Shapovalov and Dunbrack [36]. For each property, 230 

we calculated the frequency distributions of the computed changes, given the enrichment 231 

or depletion status of the original mutation (Figure 4A-C). To serve as a background, we 232 

calculated the frequency distributions of the experimental data too (gray lines in Figure 4A-233 

C). Here our assumption was a discrepancy between the tails of the experimental data and 234 

the predictors’ distributions should point to an obvious bias for a given property. 235 

Accordingly, when we investigated the volume change plots, we saw that all predictors had 236 

difficulties in predicting volume decreasing mutations when the mutation induces an 237 

enrichment in binding (Figure 4A). In the case of depleting mutations, only HADDOCK has an 238 

apparent bias toward classifying volume increasing mutations wrongly. In the case of 239 

hydrophobicity change, for all predictors, there is a slight tendency to classify 240 

hydrophobicity decreasing binding enriching mutations wrongly. This is more pronounced 241 

for hydrophobicity decreasing and binding depleting mutations for HADDOCK. We did not 242 

observe any bias for the predictors regarding the changes in the side chain flexibilities.  243 

To gauge whether the enriching and depletion mutation predictions were balanced 244 

for a given property, we calculated the difference between the area under the curve of the 245 

successfully predicted enriching and depletion mutations (∆Success, Figure S6). Here, our 246 

assumption was, if the prediction is balanced, then the ∆Success should be close to zero. On 247 

the other hand, the ∆Success values towards 100 and -100 should indicate extreme biases. 248 

This analysis revealed that HADDOCK has moderate volume change bias with 34 ∆Success 249 
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score. Normalizing HADDOCK scores by the BSA of the interface doubled this bias leading to 250 

78 ∆Success score. When HADDOCK models were scored with FoldX, the original 34 251 

∆Success shifted to -31 ∆Success, resulting in a bias toward depleting mutations (Figure S6). 252 

When we considered the success rates based on hydrophobicity, we found out that FoldX 253 

tends to predict depleting cases better with -31 ∆Success score. Inclusion of water in FoldX 254 

(FoldXwater) increases this moderate bias (∆Success score -36 vs -31). The bias towards 255 

increased hydrophobicity might stem from the fact that only three of the 26 ACE2 interface 256 

residues (Y41, Y83, K353) and only six of the 26 RBD interface residues (L455, F456, N487, 257 

Y89, Q498, N501) are core interface residues, while the rest are partially or totally solvent 258 

exposed (as calculated by EPPIC [37]). The predictors are not tuned to perform well on such 259 

unusual binding sites, where a short fraction of the interface is composed of buried 260 

hydrophobic residues. As an outcome, we observed challenges in predicting mutations with 261 

changes in hydrophobicity. Finally, we could not find any relation between the flexibility 262 

change and success rate of predictors (Figure 4C and Figure S6). Finally, we found that 263 

∆Success is extremely skewed for all metrics for MutaBind2 and SSIPe, since they predict 264 

almost all mutations as depleting. 265 

To present a complete analysis, we also investigated the impact of the 266 

physicochemical property changes induced by each mutation on the prediction accuracy 267 

(Figure 4D). The physicochemical change classes we considered were no change, polarity 268 

loss/gain, and charge loss/gain. To serve as a background, we calculated the share of each 269 

class within the original data set (gray bars in Figure 4D). As a result, we could not observe 270 

any specific bias given a physicochemical property change. The success shares reflect the 271 

general trends observed in successfully predicting binding enriching or depletion mutations, 272 

as shown in Figure 4A.  273 
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274 
Figure 4. The effects of mutation-induced changes in the amino acid physical properties on the 275 

predictor's success rates according to (A) Volume change, (B) Hydrophobicity change, (C) Flexibility 276 

change. The original data set distribution for a given binding class is plotted in gray. The other 277 

predictors are colored as provided in the legend. Volume/hydrophobicity/flexibility-increasing 278 

mutations reside on the “positive side” of the plot (x-axis value >0), whereas 279 

volume/hydrophobicity/flexibility-decreasing mutations reside on the “negative side” of the pot (x-280 

axis value <0) (D) The percentage of the correctly predicted cases, given the physicochemical change 281 

induced upon mutation when polarity and charge states are considered. and light colors represent 282 
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successfully predicted depleting and enriching cases, respectively. The original data share for a given 283 

class in the dataset is plotted in grey.  284 

 285 

Which other physicochemical factors could play a role in the misprediction of mutations? 286 

Interestingly, we could not observe any bias over the correctly predicted cases when 287 

the experimental data spared was considered (Figure S7A). This observation directed our 288 

attention towards a factor that is missing in all these assessments, namely, the RBD/ACE2 289 

glycan chains. Both the catalytic domain of ACE2 and RBD contains multiple glycosylation 290 

sites, the impact of which were explored by detailed all-atom MD simulations [38–44]. 291 

Nguyen et al., for example, conducted simulations involving non-glycan, MAN9-glycan, and 292 

FA2-glycan ACE2-RBD MD simulations for more than 200 microseconds  [38]. As an 293 

outcome, they revealed that ACE2 glycans impact virus binding affinity through electrostatic 294 

effects, without disrupting the physical contacts established between the virus and its host. 295 

The direct impact of the glycans on the ACE2-RBD binding affinity were demonstrated 296 

experimentally too[45]. To explore the potential impact of missing glycan chains in our 297 

calculations, we computed the distances from wrongly predicted mutation sites to the six 298 

ACE2 glycosylation sites (N53, N90, N103, N322, N432, N546) (Figure S7B). This analysis 299 

showed that for all the predictors, at least one fourth of the wrongly predicted mutation 300 

sites fall within 20 Å of these six sites, endorsing the role of missing glycans. Here, we should 301 

note that HADDOCK provides an option to incorporate glycans into the predictions. Though, 302 

as demonstrated earlier, its use will be limited to very short glycan chains presented in the 303 

reference EM structure[10]. We therefore did not resort to this option for the sake of being 304 

consistent in our benchmarking. 305 

Can AI methods perform better than the classical techniques? 306 
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During recent years, several AI methods have been proposed for predicting 307 

mutation-imposed interaction changes [21–23,46–48]. Among these tools, we concentrated 308 

on two, mmCSM-PPI[22] and TopNetTree[23,24], of which results on the RBD-ACE2 system 309 

were readily available. [24,49–56]. The machine learning approach, mmCSM-PPI, utilizes 310 

physicochemical and geometrical properties of protein structures within a graph-based 311 

structural framework to model the impact of mutations on the inter-residue interaction 312 

network. mmCSM-PPI includes evolutionary scores, non-covalent interactions, and 313 

dynamics terms from Normal Mode Analysis. We ran mmCSM-PPI against our experimental 314 

data set through their user-friendly web interface and obtained an R value of 0.53, which is 315 

as high as the one from FoldX (Figure S8A, Table S2). mmCSM-PPI2 produced the most 316 

similar results to MutaBind2 and SSIPe, with PCC values of 0.70 and 0.50, respectively 317 

(Figure S8B). In predicting the direction of mutation impact, the overall success rate for 318 

mmCSM-PPI2 became 57%, with success rates of 22% for enriching and 92% for depleting 319 

mutations (Figure S8C-D). The failure of mmCSM-PPI in predicting the enriching mutations 320 

aligns well with the behavior of other two evolutionary-inclusive MutaBind2 and SSIPe 321 

algorithms.  322 

TopNetTree, a recent deep learning approach, includes physical pairwise 323 

interactions, Euclidean distances, and cavity structures within a topological framework. 324 

Notably, TopNetTree has been actively used in numerous SARS-CoV-2 studies[46,50,52–325 

54,56]. In particular, Chen et al., trained TopNetTree on SARS-CoV-2 datasets to accurately 326 

predict changes in binding free energy for the S protein, ACE2, or antibodies induced by 327 

mutations[24]This tool was not available as a web server or a standalone tool. Though, since 328 

its RBD mutation profiles were published earlier, we could take them as a basis in our 329 

assessment [24]. Over our RBD data set, TopNetTree obtained an R value of -0.01 (Figure 330 
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S9A), indicating a lack of meaningful correlation. So, although this approach was specifically 331 

trained to predict the outcome of mutations on the complete S protein, it fails to predict the 332 

impact of its interfacial mutations. We further observed that, like in the other methods, 333 

TopNetTree predicts the depleting cases more efficiently (64% success rate) than the 334 

enriching ones (48% success rate) (Figure S9C-D). It also generates the most diverse set of 335 

predictions compared to the other probed methods (Figure S9B). 336 

Expanding on these results, we claim that, contrary to expectation, machine/deep 337 

learning approaches do not yield significantly better results on the RBD-ACE2 system, 338 

compared to the classical force-field-based techniques.  339 
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CONCLUSION 340 

In the early months of SARS-CoV-2 pandemic, several fast and user-friendly mutation 341 

modeling and scoring tools, such as FoldX and HADDOCK, were heavily used to predict the 342 

impact of Spike/ACE2 variations across the Spike-ACE2 interface. Expanding on these 343 

efforts, in this work, we benchmarked six fast and commonly used structure-based binding 344 

affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP) and two AI 345 

approaches (mCSM-PPI and TopNetTree) against the RBD-ACE2 DMS binding data. As a 346 

result, we observed that none of the predictors could produce a meaningful correlation with 347 

the experimental data (best correlation R-value -0.51 was obtained with FoldX). Even when 348 

a binary classification (binding enriching/depleting) was considered, the highest accuracy 349 

was obtained by FoldX with 64% success rate. Furthermore, all predictors had difficulties in 350 

predicting binding enriching mutations, especially the ones using conservation-based terms 351 

in their scoring. Finally, the most obvious biases in mispredictions were found to be toward 352 

volume and hydrophobicity changes, especially for HADDOCK and FoldX, respectively.  353 

These observations suggest plenty of room to improve the affinity predictors for 354 

guessing the variant-induced binding profile changes of host-pathogen systems, such as 355 

Spike-ACE2. To aid such improvements we provide our benchmarking data at 356 

https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our 357 

mutant models at  https://rbd-ace2-mutbench.github.io/ . We hope that our benchmarking 358 

study will guide the computational community for being prepared not only for combatting 359 

SARS-CoV-2-related health concerns but also other infectious diseases.  360 
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MATERIALS and METHODS 361 

Interfacial DMS value selection 362 

The original DMS sets contained 3,819 and 2,223 point mutations for RBD and ACE2, 363 

respectively. From this set, we isolated the interfacial 988 RBD-ACE2 point mutations, for 364 

the following residues (calculated over 6m0j[26] with PDBePISA[25] (Figure 1C)): 365 

Twenty-six RBD positions: R403, K417, V445, G446, Y449, Y453, L455, F456, Y473, A475, 366 

G476, S477, Q484, G485, F486, N487, Y489, F490, Q493, G496, Q498, T500, N501, G502, 367 

V503, and Y505. 368 

Twenty-six ACE2 positions: S19, Q24, T27, F28, D30, K31, H34, E35, E37, D38, Y41, Q42, L45, 369 

L79, M82, Y83, T324, Q325, G326, N330, K353, G354, D355, R357, A386, R393.  370 

 371 

Structure-based binding affinity predictors 372 

Below are the brief scoring description of each predictor used. Except for UEP, all 373 

predictors explicitly model the mutation according to predictor’s force field. Except for 374 

HADDOCK, these predictors sample a single conformation of the mutation. 375 

FoldX: The scoring function of FoldX is a linear sum of vdW energy (ΔGvdw), hydrophobic 376 

(ΔGsolvH) and polar group desolvation (ΔGsolvP) energies, hydrogen bond energy from water 377 

molecules (ΔGwb), hydrogen bond energy (ΔGhbond), electrostatic energy (ΔGel), the 378 

electrostatic contribution of different polypeptides (ΔGkon), entropic penalty for backbone 379 

(ΔSmc), entropic penalty of the side chain (ΔSsc), and steric overlaps (ΔGclash) (Eq. 1). FoldX 380 

also has an option to include the contribution of water molecules to the binding affinity 381 

(FoldXwater).  382 
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EFoldX = a*ΔGvdw + b*ΔGsolvH + c*ΔGsolvP + d*ΔGwb + e*ΔGhbond + f*ΔGel + g*ΔGkon + h*T 383 

ΔSmc + k*TΔSsc + l*ΔGclash  (Eq. 1) 384 

EvoEF1: The scoring function of EvoEF1 contains van der Waals (Evdw), electrostatics (Eelec), 385 

hydrogen bond (EHB), desolvation energies (Esolv), and the energy of a reference state (Eref) 386 

(Eq. 2).  387 

EEvoEF1 =  [Evdw + Eelec +  EHB + Esolv] − Eref  (Eq. 2) 388 

MutaBind2 and SSIPe: use FoldX and EvoEF1, respectively, to explicitly model the desired 389 

mutation. MutaBind2 further imposes relaxation and utilizes extra force field and contact-390 

based terms, together with a metric measuring the evolutionary conservation of the 391 

mutation site. All these terms are incorporated into a random forest based scoring 392 

algorithm. SSIPe uses EvoEF1 energy terms and residue conservation-related terms, 393 

extracted from iAlign[57] and PSI-BLAST[58].  394 

HADDOCK: In this work, we used HADDOCK water refinement to model the mutations. The 395 

complexes then scored according to the sum of three terms, van der Waals, electrostatic, 396 

and desolvation energy (Eq.3) [59]. For each HADDOCK modeling, we generated 250 397 

conformations, and subsequently selected the conformation with the lowest HADDOCK 398 

score for further analysis. 399 

EHADDOCK = w*EvdW + w*Eelec + w*Edesolv  (Eq. 3) 400 

 UEP: UEP predicts the impact of all possible interfacial mutations, when the position of 401 

interest has interactions with at least two other residues (within 5Å range). The scoring 402 

function of UEP expands on the statistically determined intermolecular contact potentials. 403 

To run FoldX and EvoEF1, we used their stand-alone packages 404 

(http://foldxsuite.crg.eu/products#foldx, https://github.com/tommyhuangthu/EvoEF). 405 

HADDOCK, MutaBind2, and SSIPe were run on their servers, as given in 406 
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https://milou.science.uu.nl/services/HADDOCK2.2/, 407 

https://lilab.jysw.suda.edu.cn/research/mutabind2/  https://zhanggroup.org/SSIPe/. 408 

MutaBind2, SSIPe, and UEP directly provide the binding affinity change predictions, whereas 409 

for the rest we calculated the predicted binding affinity change according to Eq. 4:  410 

∆∆Gpredicted = ∆Gmut - ∆Gwt (Eq. 4) 411 

A mutation is evaluated as binding enriching if the predicted binding value change 412 

(∆Scorepredicted) is <0 and binding depleting, if (∆Scorepredicted) is >0.  413 

 414 

Conservation analysis 415 

To investigate why the evolutionary-based approaches failed, we used ConSurf[29] on RBD 416 

and ACE2. ConSurf assigns a conservation score to each residue within the protein complex, 417 

ranging from 1 to 9, with 1 indicating non-conserved residues and 9 signifying highly 418 

conserved ones. 419 

Performance evaluation according to change in amino acid physical properties upon a 420 

mutation 421 

The predictions were evaluated from the perspectives of volume, hydrophobicity, 422 

flexibility, and physicochemical property change upon mutation (∆Propertychange = 423 

Propertymutation - Propertywildtype, Table S3). The physicochemical properties considered were: 424 

polar amino acids - N, Q, S, T, Y; non-polar amino acids - A, G, I, L, M, F, P, W, V, C; charged 425 

amino acids - H, E, D, R, K. Success rate and metric evaluations were performed in Python 426 

3.8.5 with Pandas, Numpy, seaborn, and Matplotlib libraries [60–65]. For each category, the 427 

percentage of successfully predicted cases were calculated by Eq .5. 428 

Success rate = Correct-Predictions/All-Predictions*100 (Eq. 5) 429 
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  430 
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DATA AVAILABILITY 431 

All results including the codes and notebooks are deposited in Github 432 

(https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench) and the models and the scores 433 

can be visualized at https://rbd-ace2-mutbench.github.io/ .  434 

 435 
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